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Abstract

Recent research has demonstrated that goal-
oriented dialogue agents trained on large
datasets can achieve striking performance
when interacting with human users. In real
world applications, however, it is important to
ensure that the agent performs smoothly in-
teracting with not only regular users but also
those malicious ones who would attack the
system through interactions in order to achieve
goals for their own advantage. In this paper,
we develop algorithms to evaluate the robust-
ness of a dialogue agent by carefully designed
attacks using adversarial agents. Those attacks
are performed in both black-box and white-
box settings. Furthermore, we demonstrate
that adversarial training using our attacks can
significantly improve the robustness of a goal-
oriented dialogue system. On a case-study of
the negotiation agent developed by (Lewis et
al., 2017), our attacks reduced the average ad-
vantage of rewards between the attacker and
the trained RL-based agent from 2.68 to−5.76
on a scale from −10 to 10 for randomized
goals. Moreover, with the proposed adversar-
ial training, we are able to improve the robust-
ness of negotiation agents by 1.5 points on av-
erage against all our attacks.

1 Introduction

Crafting an intelligent agent to communicate in
the dialogue system using natural languages has
been a long-standing problem in AI. It requires
designing an agent to understand, plan and gen-
erate natural language to achieve different goals
such as question-answering, cooperation, negotia-
tion etc (Vinyals and Le, 2015; Li et al., 2017; Ser-
ban et al., 2016; Dhingra et al., 2016; Serban et al.,
2016). Inspired by recent successes in deep neural
networks, (Lewis et al., 2017) has recently devel-
oped an end-to-end learning framework to train a
recurrent neural network (RNN)-based negotiation

agent in goal-oriented dialogue systems. This NN-
based technique has been identified as one of the
state-of-the-arts and has been applied to several
other tasks (Bahdanau et al., 2014; Luong et al.,
2015; Rush et al., 2015; Chan et al., 2016).

Although NN-based dialogue agents have
shown convincing performance on several tasks,
it is not clear whether they also work well when
facing malicious users or agents. To answer this
question, we study how to evaluate the robustness
of a goal-oriented dialogue system. For simplicity,
we consider a goal-oriented agent A that aims to
maximize some score, and define the “robustness”
ofA as the worst-case performance under any fea-
sible agent A′. We also call A′ an adversarial
agent that tries to “attack”A since it aims to mini-
mize A’s score. The problem of evaluating the ro-
bustness of A can then be solved by designing an
adversarial agent to attack A. For instance, con-
sidering a negotiation agent that can decide when
to make a deal, we say the agent is not robust if an
adversarial agent can fool the target agent to make
a deal with significant lower scores. Ideally, be-
fore deploying an agent into real systems, we need
to ensure it performs smoothly under strong adver-
sarial attacks.

The concept of adversarial agent is related to
recent studies on adversarial examples for im-
age classifiers—it has been shown that a care-
fully designed small perturbation can easily make
neural networks mis-classify (Goodfellow et al.,
2014; Szegedy et al., 2013; Moosavi Dezfooli
et al., 2016; Carlini and Wagner, 2017; Cheng
et al., 2019), and several recent works has ex-
tended these attacks to natural language process-
ing models such as sentiment analysis (Gao et al.,
2018; Yang et al., 2018) and machine transla-
tion (Ebrahimi et al., 2018; Cheng et al., 2018).
However, all of the previous work consider at-
tacking a static model, where except input im-



age/sentence there is no interaction between the
attacker and the target model. Instead, we inves-
tigate a much more challenging problem, where
there can be many turns of interactions between
adversarial and target agents. This leads to sev-
eral difficulties including 1) How to lead the target
agent to a bad state and 2) how to force the target
agent to make a wrong decision. Therefore, previ-
ous methods for attacking static models cannot be
directly applied.

In this paper, we tackle the aforementioned
challenges by proposing several novel ways to de-
sign an adversarial agent to evaluate the robustness
of goal-oriented dialogue systems. We highlight
our major contributions as follows:

• We propose a framework to generate adver-
sarial agents in both black-box and white-box
settings. To the best of our knowledge, this is
the first work on crafting adversarial agents
instead of adversarial examples in an interac-
tive dialogue system.

• We conduct a series of studies on the negoti-
ation agent proposed in (Lewis et al., 2017).
We demonstrate that the proposed strategies
can successfully attack existing negotiation
agents to significantly reduce their average
score. For instance, our attacks can reduce
the average advantage of the RL-based nego-
tiation agent from 2.68 to −5.76 on random
problems with the total value of 10.

• We also show that through the proposed it-
erative adversarial training procedure, we
could significantly improve the robustness of
a goal-oriented agent against various attacks.

2 Related work

2.1 Goal-oriented dialogue agent

Goal-oriented dialogue systems aim at building a
conversation model that is capable of accomplish-
ing tasks through the interactions with human us-
ing natural language (Li et al., 2017; Eric and
Manning, 2017; Wen et al., 2016; Wei et al., 2018;
Bordes et al., 2016). Traditional approaches to
learn a goal-oriented intelligent agent relies heav-
ily on dialogue states annotated in the training data
(Wen et al., 2016; Henderson et al., 2014). The
use of state annotations allows a cleaner separa-
tion of the reasoning and natural language aspects

of dialogues. However, it is very expensive to an-
notate every state in a large amount of training
data. (Bordes et al., 2016) explores end-to-end
goal orientated dialogue with a supervised model.
And (He et al., 2017) uses task-specific rules to
combine the task input and dialogue history into
a more structured state representation. Recently,
reinforcement learning has been widely used in
dialogue systems to increase the agent versatil-
ity (Mordatch and Abbeel, 2017) and improve the
agent’s performance in goal-oriented tasks such as
cooperative bot-bot dialogues (Das et al., 2017)
and negotiation tasks (Lewis et al., 2017).

2.2 Adversarial examples in NLP
applications

Algorithms have been proposed to craft adversar-
ial sentences in NLP applications. (Papernot et al.,
2016) uses Fast Gradient Sign method to gen-
erate adversarial example on RNN/LSTM based
model. (Li et al., 2016) learns the importance
of words by deleting them in sentiment analysis
task and then use reinforcement learning to lo-
cate such words. (Samanta and Mehta, 2017) and
(Liang et al., 2017) generate adversarial sequences
by inserting or replacing existing words with ty-
pos and synonyms. (Gao et al., 2018) aims to
attack sentiment classification models in a black-
box setting. It develops some scoring functions
to find the most important words to modify. (Jia
and Liang, 2017) aims to fool the SQuAD read-
ing comprehension system by adding crafted sen-
tences. (Yang et al., 2018) proposes a greedy algo-
rithm to swap the word/character and uses a Gum-
bel softmax function to reduce the computation.
(Ebrahimi et al., 2018) aims to generate adver-
sarial examples on character CNN model in ma-
chine translation problem by using Jacobian ma-
trix to determine which word/character should be
replaced or deleted. (Zhao et al., 2017) generated
natural adversarial example using Generative Ad-
versarial Networks (GANs). (Cheng et al., 2018)
proposed a framework to conduct non-overlapping
and targeted keyword attack on seq2seq model.

All the above-mentioned work focus on the
static setting, i.e., the input does not depend on
the model’s output. However, in our work, one
agent’s input depends on the other agent’s output,
which makes the input undecidable in the begin-
ning. Therefore, an adversarial sentence or exam-
ple is not enough to conduct attack in dialogue sys-



tems. Instead, for the first time, we propose novel
ways to construct a adversarial agent, which can
bait the target agent to step to a wrong state and
make a bad decision.

2.3 Defense against adversarial examples

Many defense algorithms have been proposed re-
cently to enhance the robustness of classification
models. Among them, adversarial training (Madry
et al., 2018; Goodfellow et al., 2014) has become
one of the most successful methods, which uses
both clean and adversarial examples to train a ro-
bust model. (Wong and Kolter, 2018) proposed
another kind of adversarial training to improve
the verification lower bound of neural networks;
(Liu and Hsieh, 2019) combines the idea of gen-
erative adversarial network (GAN) and adversarial
training to further boost the robustness on test im-
ages. Another promising way to enhance robust-
ness is by adding randomness to the model. (Liu
et al., 2018) shows adding randomness to both in-
put and intermediate layers of neural networks can
improve robustness; (Liu et al., 2019; Ye and Zhu,
2018) show that combining Bayesian neural net-
work (with randomized weights) and adversarial
training can achieve state-of-the-art adversarial er-
ror under attacks. However, all the existing de-
fense methods only work for static models (usu-
ally for classification tasks). In this paper, we pro-
pose an adversarial training algorithm for an agent
using RL with an “adversarial agent”. This is to
our knowledge the first algorithm for improving
the robustness of an agent.

3 Competitive Negotiation Dialogues

We use the negotiation agent developed in (Lewis
et al., 2017) as the running example in this paper.
Note that our algorithm can be generalized to other
goal-oriented dialogue systems by designing a dif-
ferent scoring function according to the task.

In a competitive negotiation dialogue setting,
two agents are negotiating with each other over a
set of items. We adopt the same setting as (Lewis
et al., 2017), in which case items can be catego-
rized into either a ball, a hat or a book. Each agent
is given the goal of the conversation (denoted by
g), which contains the initial values and the quan-
tities of each of the three items. Agents then ne-
gotiate to maximize the total value of their pos-
sessed items. Agents are allowed to negotiate up
to a maximum of 10 turns. Scores will be granted

Input
Human 3xbook value 2 3xhat value 1 1xball value 1
Agent 3xbook value 1 3xhat value 2 1xball value 1
Human I’d like the books and the hats.
Agent I will take the books and hats.
Human I need the books and at least one other object.
Agent Ok, you can have one book and one ball
Human If I can have all books, I can leave you the rest.
Agent Deal
Human 〈selection〉
Output Reward
Human 3xhat 1xball 7/10
Agent 3xbook 6/10

Table 1: Competitive negotiation dialogue generated
between agent and human.

to agents based on the total value of the items if
they reach an agreement. If they choose not to
agree, 0 score will be granted to both agents. A
competitive negotiation dialogue example played
by human and agent could be found in Table 1.

We assess the robustness of a trained end-to-
end negotiation agent used in (Lewis et al., 2017).
In the negotiation chatbot setting, agents first chat
using natural language and then make a selection
based on what they have chatted with. We refer to
the first phase as negotiation phase and the sec-
ond phase as decision phase.

In the negotiation phase, conversation response
at time t, xt is generated word by word based on
chat history x0..t−1 and the goal of the conversa-
tion g. The conversation model is controlled by a
speaking module θ and tokens are randomly sam-
pled from probability distribution pθ. This process
continues recursively until an end-of-sentence to-
ken 〈EOS〉 or selection token 〈selection〉 token
is generated. When 〈EOS〉 is encountered, the
turn terminates and the conversation is handled to
another agent. When 〈selection〉 is encountered,
the negotiation phase terminates and the negotia-
tion will reach the decision phase.

xt ∼ pθ(xt|x0...t−1, g) (1)

In the decision phase, both agents will output a
decision o based on a decision module probability
distribution p′θ. Agents’ decisions will be based on
conversation history x0...T up to the current time
step T and the goal of the conversation g. Here
O is a set of all legitimate selections, which is de-
fined to be a space of where each selection must
be greater or equal than 0 and the sum of selec-
tions for the same item must be equal to its orig-
inal quantity. Since we only have a few items, it



is possible to enumerate all the possibilities to get
the set O.

o∗ = arg max
o∈O

∏
i

p′θ(oi|x0...T , g) (2)

Agents will then collect rewards (i.e. scores)
from the environment (which will be 0 if they
output conflicted decisions, e.g. the total num-
ber of items are different from the initial amount).
It is important to keep the agent producing sen-
tences that are correct both grammatically and se-
mantically and keeping them competitive at the
same time. Therefore, a common strategy is to
train agents using supervised learning to learn nat-
ural language and to use reinforcement learning
to optimize models’ performance using on goal-
oriented learning. We measure two statistics score
and agreement. score is the average score for
each agent (0-10). agreement is the percentage
of dialogues where both agents agreed on the same
decision. To measure the extent of success of our
adversarial agent, we use advantage which is easy
to compute directly from adversarial agent score
minus target agent score, i.e. Sadv − Sori.

4 Proposed Black-box Attack Algorithms

We first build our adversarial agent in black-box
setting. Black-box setting in goal-oriented dia-
logue system is defined where the target agent is
unknown to the attacker, but it is possible to make
queries to obtain the final decision made by the
target agent. To be noted, our aim is to test the ro-
bustness of the target agent. Therefore, in the de-
cision phase we let adversarial agent chooses the
complementary of target agent’s choice, so those
two agents will always reach agreement. The ad-
versarial agent thus only has the speaking module
and there is no decision network needed. In this
section we proposed two adversarial agents in the
black-box setting.

4.1 Reinforcement learning attack
Inspired by the procedure of goal-based reinforce-
ment learning, we modified the reward function of
our adversarial agent with the advantage instead of
the score he got:

radv = Sadv − Sori (3)

where Sadv and Sori are adversarial agent score
and target agent score respectively. After a com-
plete dialogue has been generated, we update ad-

versarial agent’s parameters based on the outcome
of the negotiation.

To learn the adversarial agent’s speaking net-
work by reinforcement learning, we denote the
subset of tokens generated by the adversarial agent
as Xadv. In the completed dialogue, γ is the dis-
count factor that rewards actions at the end of the
dialogue more strongly, and µ is a running average
of completed dialogue rewards so far. We define
the future reward R for an action xt ∈ Xadv as
follows:

R(xt) =
∑

xt∈Xadv

γT−t(radv − µ). (4)

Then by a standard policy gradient algorithm, we
could train our adversarial agent. Note that this
attack doesn’t require the knowledge on the target
agent’s structure/weights, and the experimental re-
sults demonstrate significant attack performance
over regular agents.

4.2 Transfer attack

Transfer attack is a popular idea for attacking
black-box models (Papernot et al., 2017). In dia-
logue systems, we can also consider the following
transfer process: a sentence that leads to low radv

in one dialogue might also lead to similar results in
another dialogue. To implement this idea, we first
collect a list of last sentences spoken by the adver-
sarial agent from dialogues with high reward, de-
noted by L. In the conversations, we let our adver-
sarial agent and the target agent negotiate n turns
using the regular speaking module, and then plug
in one sentence in L at the (n + 1)-th turn. Our
experimental results show that this transfer attack
does not work well in practice.

5 Proposed White-box Attack
Algorithms

In the white-box setting, we assume that the at-
tacker can access every part of the target agent,
including the weights of both speaking and deci-
sion models, and the decision output in every di-
alogue. Similar to the black-box attacks, we let
the adversarial agent choose the complementary of
target agent’s choices to ensure 100% agreement.
By exploiting the knowledge of the target agent’s
model, white-box attacks can achieve much higher
advantage than black-box attacks.



5.1 Force target agent to select at a fixed turn

To begin with, we consider a simplified strategy
where we first let our adversarial agent and the tar-
get agent negotiate n turns using regular speaking
module. For the (n + 1)-th turn, we propose the
following two ways to modify the output of reg-
ular speaking module to maximize the rewards of
adversarial agent.

5.1.1 Reactive attack

The first strategy is that the adversarial agent pro-
duces a sentence that forces the target agent to say
〈selection〉. The conversation will then enter the
decision phase. At the same time, the sentence
produced by the adversarial agent should guide the
target agent to make a bad selection that would
be in favor of the adversarial agent. We call this
method reactive attack.

We formulate this strategy as an optimization
problem. Let x̂ = xtn...T−1 be the output sen-
tence generated by adversarial agent in the speak-
ing model after n -th turn. Specifically, we define
x0...T−1 as all the tokens in the dialogue history
before 〈selection〉. Zr(x0...T−1) indicates the
logit layer outputs for predicting xT based on chat
history x0...T−1 in the speaking model. Zo(x0...T )
indicates the logit layer outputs on conversation
history x0...T in the decision model. Because we
have a constraint to force the target agent to say the
end-of-dialog token 〈selection〉, we could format
this constraint as

[Zr(x0...T−1)]ksel−max
i 6=ksel

[Zr(x0...T−1)]i ≥ 0 (5)

where ksel is the corresponding index of end-of-
dialog token 〈selection〉.

At the same time, the score of output o should
be in favor of our adversarial agent. Assume the
original decision output is o′,

L(x̂) = max{[Zo(x0...T )]o′−max
o∈Ō

[Zo(x0...T )]o,−κ}
(6)

where Ō is the set of outputs that score of adver-
sarial agent is greater than target agent i.e. Ō =
{o ∈ Ō|Sadv(o) > Sori(o)}, and κ ≥ 0 denotes
the confidence margin parameter. Note that x̂ is
a sub-sequence in x0...T , so the right hand side of
(6) is a function of x̂.

Combining these two equations together, we

can get our final objective function:

min
x̂

L(x̂) (7)

s.t. [Zr(x0...T−1)]ksel−max
i 6=ksel

[Zr(x0...T−1)]i ≥ 0

Eq (7) is a discrete optimization problem since x̂
is the sentence produced by adversarial agent.

In this paper, we use a modified version of the
greedy algorithm to optimize (7). Although the
original algorithm proposed in (Yang et al., 2018)
only considered the unconstrained discrete prob-
lem, we show that the following slightly modified
version performs well for solving (7). At each it-
eration, we try to replace each word in x̂ by the
special token 〈PAD〉. A word that achieves min-
imal loss after swapping with 〈PAD〉 is then se-
lected as the word to be replaced. Then we try to
replace the selected word with each word in the
vocabulary. For all the trials that satisfy the con-
straint, we choose the one with minimal loss and
conduct the actual change. We run this procedure
iteratively to minimize (7). In the experiments, we
only replace two words in x̂ to ensure the fluency
and correctness of the adversarial sentences.

5.1.2 Preemptive attack
The other attack strategy is to produce a sentence
to guide the target agent to lower its demand in
the reply instead of making target agent say end-
of-dialog token. And after the reply from tar-
get agent, the adversarial agent speaks the end-of-
dialogue token to enter the decision phase. Simi-
lar to the reactive attack, adversarial agent’s score
should be greater than target agent’s score in the
decision phase. Clearly, this strategy is more chal-
lenging than the previous one because there is an
intermediate sentence spoken by the target agent
before end-of-dialogue. We call this preemptive
attack.

Let x̂ = xtn...tnT
be the output sentence gen-

erated by adversarial agent in the speaking model
after turn n, where tn is the first word and tnT is
the last word of the sentence. Similarly, we could
formally turn the intuition into optimization prob-
lem as follows:

L(x̂) = max{[Zo(x0...T )]o′−max
o∈Ō

[Zo(x0...T )]o,−κ}
(8)

Since we do not need to force target agent to say
end-of-dialogue, the problem becomes an uncon-
strained discrete optimization problem. We then



Algorithm 1 Arbitrary turn attack algorithm
Input: Target agent B, Input goal g
Output: Dialogue x0...T , Agent score Sadv and
Sori
while 〈selection〉 is not generated do

Set the loss L(·) to be (7)
Optimize the Loss L(·)
if L(·) < 0 then

Add the output into the dialogue
else

Set the loss L(·) in to be (8)
Optimize the Loss L(·)
if L(·) < 0 then

Add the output into the dialogue
else

if Transfer Attack then
Randomly add a sentence in L (mali-
cious sentences) into the dialogue.

else
Add the sentence generated by regu-
lar speaking model into the dialogue
(delayed attack).

end if
end if

end if
end while
Generate o using dialogue x0...T

Calculate Sadv and Sori
Return: x0...T ,Sadv,Sori

directly apply the unconstrained version of greedy
algorithm (Yang et al., 2018) to solve it.

5.2 Force target agent to select at arbitrary
turn

While we could let our adversarial agent and the
target agent negotiate n turns, it is still unknown
which n should be chosen to get the best perfor-
mance. In other words, we aim to not only know
what to say but also when to say to fool the target
agent.

We propose two strategies to force target agent
to make bad decisions at arbitrary turn. The de-
tails are presented in Algorithm 1. When it is the
turn for adversarial agent to speak, we first try to
apply reactive and preemptive attacks. If both at-
tacks couldn’t make the loss L(·) less than 0, there
are two strategies: 1) just output the sentence gen-
erated by the regular speaking module (delayed at-
tack), and 2) conduct transfer attack. The compar-
isons can be found in the experiments.

6 Adversarial Training

Adversarial training is a popular method to im-
prove the robustness of machine learning mod-
els (Miyato et al., 2016; Madry et al., 2018). In
this section, we use the agents designed in the pre-
vious sections to improve the robustness of the tar-
get agent.

In standard adversarial training for neural net-
work models (Goodfellow et al., 2014; Jia and
Liang, 2017), adversarial examples (images or
sentences) generated by an attack are added to the
training procedure to refine the model. Since our
setting is interactive and there is no fixed data used
in selfplay, we should conduct training with ad-
versarial agents instead of adversarial examples.
Moreover, as pointed out by (Jia and Liang, 2017),
training on the examples generated by a single at-
tack will lead to over-fitting to a particular attack,
so we should do adversarial training iteratively.

Taking the black-box RL agent as an example,
we consider the following min-max formulation:

min
θori
{max
θadv

Sadv − Sori}, (9)

where θori is the weights for the target agent and
θadv is the weights for the adversarial black-box
agent. We solve (9) by the following alternating
minimization procedure. At each iteration, we first
update the target agent (θori) using the standard
policy gradient algorithm, and then use our RL al-
gorithm in Section 4.1 to update adversarial agent
to counter the target model. We iteratively conduct
these updates until convergence. The experiments
show that the adversarial training procedure can
improve the robustness not only under RL attack
but also under other white-box attacks.

7 Experimental Results

We perform extensive experiments on evaluating
the robustness of the negotiation agents developed
in (Lewis et al., 2017). Furthermore, we show that
the robustness of negotiation agents can be signif-
icantly improved using the proposed adversarial
training procedure. Our codes are publicly avail-
able at https://github.com/cmhcbb/
Robustness-of-Dialogue-systems.

7.1 Experimental Setup
We use the code released by the authors (Lewis
et al., 2017) and follow their instructions to get
the target end-to-end negotiation agents. More
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specifically, we first train the model on 5808 di-
alogues, based on 2236 unique scenarios in super-
vised way to imitate the actions of human users.
We call this model supervised model (SV agent).
Then we use reinforcement learning to conduct
goal-oriented training in order to maximize the
agent’ reward. The second model is called the re-
inforcement learning model (RL agent). As a re-
sult, when doing selfplay between RL agent and
SV agent, we could get RL agent with 5.86 per-
plexity, 89.57% agreement and 7.23 average score,
while SV agent achieves 5.47 perplexity and 4.55
average score. These numbers are similar to the
numbers reported in (Lewis et al., 2017).

To evaluate the robustness of these agents, we
conduct all the proposed attacks on both super-
vised model (SV agent) and reinforcement learn-
ing model (RL agent). The successfulness of an
attack is measured by average score advantage and
positive advantage rate (PAR). Average score ad-
vantage is defined by averaged adversarial agent’s
score minus average target agent’s score. The
value is in the region of [−10, 10] since the to-
tal values are controlled to be 10 for both sides,
and a larger advantage indicates a more success-
ful attack. Also, we define positive advantage rate
(PAR) as the ratio of dialogues that the adversar-
ial agent gets a higher score than the target agent.
We will see that most attacks developed in this pa-
per will improve both average score advantage and
PAR. Note that this is the first work on attacking a
goal-oriented dialogue agent so there is no previ-
ous method that could be included in the compar-
isons.

7.2 Results on Black-box Attacks

As introduced in Section 4, we have two black-box
attacks: reinforcement learning attack (RL attack)
and Transfer attack.

RL Attack. In the reinforcement learning at-
tack, we use a learning rate of 0.1, clip gradients
above 1.0, and set the discount factor γ = 0.95
in (4). We train the adversarial agent for 4 epochs
on all scenarios. From Table 2, we observe that
with 100% agreement rate, our adversarial agent
could gain 2.32 score advantage against the RL
agent and 4.25 advantage against the SV agent.
Also, our agent achieves a relatively high positive
advantage rate at 84.45% and 69.35% respectively.
We show some adversarial dialogues played by
adversarial agent and target agent in Table 3. It

shows that RL agent is able to identify the weak
point of target agent by saying ”take book you get
rest”, which could easily let the agent accept the
deal and make a bad selection that is inconsistent
with the context of dialogue.

Transfer attack. In transfer attack, we first let
our adversarial agent speak the sentence gener-
ated by the speaking model with target agent for
3 turns. If the end-of-dialog token has never
been mentioned, in the 4th turn, the adversar-
ial agent speaks the sentence generated by our
RL agent. The detailed results are shown in Ta-
ble 2. We observe that the transfer attack is not
successful—only -0.13 and -1.189 score advan-
tage are achieved. We found that transferring
sentences between dialogues is not successful be-
cause the item values and conversation histories
are quite different between dialogues.

7.3 Results on White-box Attacks

We conduct the white-box attacks introduced in
Section 5.

Force target agent to select at a fixed turn.
There are two types of algorithms (reactive attack
and preemptive attack) introduced in Section 5.1.
The detailed results are shown in Table 2. We
observe that the reactive attack could achieve bet-
ter results than black-box method with 5.40 score
advantage against SV agent and 4.98 score ad-
vantage against RL agent. On the other hand,
preemptive attack is not that successful—it gets
2.81 advantage against SV agent and 0.77 score
advantage against RL agent. Furthermore, we
have included some adversarial dialogues played
by white-box adversarial agent and target agent
in Table 4. From these examples, we could see
that white-box adversarial agent could generate
the adversarial sentences, slightly unnatural how-
ever still readable, that could fool the target agent
to make terrible decisions.

Force target agent to select at arbitrary turn.
To determine when should we begin the attack, we
design combinations of reactive attack, preemp-
tive attack and transfer attack or delayed attack in
Section 5.2. Here, we conduct experiments to val-
idate the effectiveness of these two attack combi-
nations. From Table 2, the combinations achieve
better results than all the previous attacks. The
best result is achieved by the combination of reac-
tive attack, preemptive attack and delayed attack



vs SV agent vs RL agent
Model PAR% Score(advantage) Agreement% PAR% Score(advantage) Agreement%
RL model(w/o attack) 75.79 7.23 vs 4.55 (2.68) 89.57 44.70 5.05 vs 5.00 (0.05) 76.36
Transfer attack 44.43 6.41 vs 6.54 (-0.13) 100 36.10 5.65 vs 6.84 (-1.19) 100
RL attack 84.45 8.28 vs 4.03 (4.25) 100 69.35 7.11 vs 4.79 (2.32) 100
Reactive attack 87.00 8.83 vs 3.43 (5.40) 100 90.23 8.72 vs 3.77 (4.95) 100
Preemptive attack 71.86 7.76 vs 4.95 (2.81) 100 69.23 6.78 vs 6.01 (0.77) 100
RA+PA+DA 84.33 8.79 vs 2.96 (5.83) 100 86.93 8.73 vs 2.95 (5.78) 100
RA+PA+TA 83.12 8.67 vs 3.05 (5.62) 100 89.74 8.62 vs 2.92 (5.70) 100

Table 2: Negotiation task evaluation with different adversarial agent on 2000 randomly generated scenarios, against
the supervised model and reinforcement learning model. The maximum socre is 10. When agents failed to agree,
all agents get 0 score. PAR stands for positive advantage rate. RA+PA+DA stands for the combination of re-
active attack, preemptive attacka and delayed attack. RA+PA+TA stands for the combination of reactive attack,
preemptive attacka and transfer attack.

Input
Adv agent 1xbook value 1 4xhat value 1 1xball value 5
RL agent 1xbook value 2 4xhat value 1 1xball value 4
Adv agent i want the hats and 2 balls
RL agent i need the balls and the hat
Adv agent take book you get rest
RL agent deal
Adv agent 〈selection〉
Output Reward
Adv agent 4xhat 1xball 9/10
RL agent 1xbook 2/10

Table 3: Dialogue example generated by black-box RL
attack agent against RL agent.

Input
Adv agent 1xbook value 0 1xhat value 1 3xball value 3
RL agent 1xbook value 1 1xhat value 0 3xball value 3
Adv agent i would like the balls and the hat
RL agent i need the balls and the book
Adv agent i need the balls and fine book
RL agent 〈selection〉
Output Reward
Adv agent 1xhat 1xbook 3xball 10/10
RL agent 0/10

Table 4: Dialogue example generated by reactive attack
agent against RL agent.

Input
Adv agent 1xbook value 4 2xhat value 1 2xball value 2
RL agent 1xbook value 8 2xhat value 0 2xball value 1
RL agent i would like the book and the hat.
Adv agent i want reasonable balls and book
RL agent 〈selection〉
Output Reward
Adv agent 1xbook 2xball 8/10
RL agent 2xhat 0/10

Table 5: Dialogue example generated by RA+PA+DA
attack agent against RL agent.

(RA+PA+DA), which gets 5.83 advantage against
SV agent and 5.78 score advantage against RL
agent, with very high positive advantage rates at
84.33% and 86.93% respectively. We have in-
cluded some adversarial dialogues played by this
adversarial agent and the target agent in Table 5.
We observe that with the delayed attack, the ad-
versarial agent can decide when to attack, thus
achieves much better performance than attacking
at a fixed turn.

7.4 Adversarial Training
Using the algorithm proposed in Section 6, we
conduct adversarial training using the black-box
RL attack model. The results are shown in Table
6. First, we observe that the adversarial trained
model achieves much better performance against
black-box RL attack; the advantage of RL attack
drops from 2.32 to −1.8. Moreover, the model
achieves consistently better performance against
other white-box attacks. For instance, the advan-
tage of the strongest RA+PA+DA attack is reduced
from 5.78 to 3.98.

vs advtrain model
Model PAR% Score(advantage) Agreement%
RL model(w/o attack) 48.67 6.51 vs 6.64 (-0.13) 91.75
Transfer attack 23.05 4.93 vs 7.59 (-2.66) 100
RL attack 62.61 5.71 vs 7.51 (-1.80) 100
Reactive attack 80.76 8.83 vs 4.31 (4.52) 100
Preemptive attack 34.39 5.64 vs 7.41 (-1.77) 100
RA+PA+DA 73.96 8.05 vs 4.07 (3.98) 100
RA+PA+TA 73.45 8.06 vs 4.13 (3.93) 100

Table 6: Negotiation task evaluation with different ad-
versarial agent on 2000 randomly generated scenarios,
against adversarial trained model.

7.5 Analysis and Discussions
RL agents are more robust than SV agents.
From Table 2, we could see that all the attack
methods perform better when facing SV agents
than RL agents. It is because that SV agents only



learn to mimic human’s action and are trained only
on human data. Therefore, it is reasonable that RL
agents are more robust than SV agents.

The importance of arbitrary turns. In reactive
attack and preemptive attack, we begin our attack
at the n-th turn and we set n = 2 in the experi-
ments. Here we show the results with different n
in Table 7. We observe that the performance of
white-box attacks are quite consistent with differ-
ent choices of n. This probably indicates that there
the best n varies for different cases. Therefore, if
we could change the n from case to case adap-
tively, which is done by delayed attack, we could
see a performance boost.

n PAR% Score(advantage) Agreement%
1 94.02 8.84 vs 3.32 (5.52) 100
2 90.23 8.72 vs 3.77 (4.95) 100
3 92.02 8.81 vs 3.62 (5.19) 100
4 90.35 8.71 vs 3.87 (4.84) 100

Table 7: Negotiation task evaluation with different
choices of n against RL model.

Adversarial training helps to improve the ro-
bustness. We then try to investigate the robust-
ness of the adversarial trained model. We found
that in the original model, it is easy for an at-
tacker to find a sentence to quickly end the di-
alogue. However, after adversarial training, it
becomes much harder to find such sentences.
Moreover, although we only conduct adversarial
training on black-box RL model, the adversar-
ial trained model still achieves better performance
against other white-box attacks. This indicates
that the adversarial trained model could probably
detect the slight unnaturalness of those sentences
and thus have a better reading comprehension abil-
ity.

8 Conclusion

In this paper, we develop adversarial agents to
evaluate the robustness of a goal-oriented dialogue
system. Our experimental results show that the
current NN-based models are not robust against
our adversarial agents. Furthermore, by iterative
adversarial training using our black-box RL agent,
we can significantly improve the robustness of the
dialogue system.
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