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Abstract

We study the problem of learning from group comparisons, with applications in
predicting outcomes of sports and online games. Most of the previous works in
this area focus on learning individual effects—they assume each player has an
underlying score, and the “ability” of the team is modeled by the sum of team
members’ scores. Therefore, current approaches cannot model deeper interaction
between team members: some players perform much better if they play together,
while some players perform poorly together. In this paper, we propose a new model
that takes the player-interaction effects into consideration. However, under certain
circumstances, the total number of individuals can be very large, and number
of player interactions grows quadratically, which makes learning intractable. In
this case, we propose a latent factor model, and show that the sample complexity
of our model is bounded under mild assumptions. Finally, we show that our
proposed models have much better prediction power on several E-sports datasets,
and furthermore can be used to reveal interesting patterns that cannot be discovered
by previous methods.

1 Introduction

Nowadays there are a lot of online games in the form of group comparisons, and this e-sports industry
is growing at an unexpected pace. For example, League of Legends (LoL) has attracted more than 11
million active players in each month; Dota 2 had a grand prize of near 25 million dollars last year. A
big crowd of players and matches certainly creates many challenges: for instance, how to design a
good matchmaking system to match two teams with similar strengths, and how to form a better team
composition to win the game. To answer these questions, we consider the core problem of modeling
group comparisons: given the results of previous games (each game is a group comparison between
two teams), how to predict the outcome of an unseen game?

All the previous work in this area focuses on the individual scoring model, that is, assuming each
player has an underlying score, and the "ability" of the team is modeled by the sum of team members’
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scores. Through the process, one can also rank a player by his or her score in the model. For example,
[13] extends the Bradley-Terry model to the group comparison setting; [12] proposed a TrueSkill
algorithm to learn individual scores using a Bayesian model, which has now been used by game
companies and sport analysts.

However, a common weakness of previous methods is that they ignore the player-interaction effects.
In a team challenge, the players work together and will always influence each other, and this
player-interaction effect can significantly alter game results. To make the prediction more accurate,
incorporating the player-interaction effects are demanding. On the other hand, people are also
interested in the cooperation effects between players. Team coach can pair a better team based on
both individual abilities and cooperation abilities; game designers such as Blizzard can use the results
to design their heroes. This brings us to the questions we wish to answer in this paper:

• Can incorporating player-interaction effects improve the prediction accuracy of the model?
How to interpret those effects?

• If the total number of players is too large, how can our algorithm scale up and meanwhile
maintain good generalization error and efficient computational time?

To answer the first question, we propose a new model that can incorporate pairwise effects, and show
that the pairwise effects can be learned when there are not too many players. The player-interaction
can not be fully modeled by pairwise effects. This is the first step, and investigating effects with
order higher than two is our future work. As for the second question, we propose a latent factor
model to describe pairwise interactions between players, and propose an efficient stochastic gradient
descent algorithm to solve it. A theoretical bound of the sample complexity is provided under mild
conditions.

In the experimental part, we test our model on online game datasets and show that our proposed
models have much higher prediction accuracy than previous individual-score based models. For
example, in Heroes of the Storm data our new models can get around 80% accuracy, while state-of-
the-art models such as Trueskill can only achieve 60% accuracy.

2 Problem Setting

Assume there are n individuals {1, · · · , n}, and T observed comparisons. Each game involves two
disjoint teams I+

t and I−t , each of them is a subset of {1, · · · , n}, indicating the players involved
in the team. Without loss of generality we assume team I+

t wins the game, and team I−t loses the
game. For simplicity, we assume each game has an equal number of players on each team, and there

could be N =
( n
L

)
different combinations, where L = |I+

t | = |I−t | is the number of players on

each team. For each game, the outcome ot can be observed under two scenarios:

• Measured outcomes (scores): for each comparison, the value of the score difference is
observed: ot ∈ R can be any real number.

• Binary indicator outcomes (wins/losses): for each comparison, the sign of the score differ-
ence is revealed: ot ∈ {+1,−1}.

Most problems are given in the form of second case. However, in some cases it is possible to observe
the scores. For example, the score in an NBA game, or the number of kills in an online matching
game. Our proposed approaches work for both cases since we assume a general loss function, while
in the experiment we focus on binary outcomes.

3 Related Work

Learning individual scores from group comparisons. Most of the previous work focus on learning
individual scores by group comparisons [13, 12]. All of them make the following assumption:

Assumption 1. The team’s score is the sum over team members’ scores: s+
t =

∑
j∈I+

t
wj , where

wj is the ability of player j. The observed outcome is determined by s+
t − s−t .
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For example, [13] proposed a generalized Bradley-Terry model: assume wj is the score for the j-th
player, and

P (I+
t beats I−t ) = exp(

∑
j∈I+

t

wj)/
(

exp(
∑
j∈I+

t

wj) + exp(
∑
j∈I−t

wj)
)
,

then the MLE estimator for the underlying scores w ∈ Rn can be estimated by ŵ =

arg minw

∑T
t=1 logP (I+

t beats I−t ). Trueskill [12] is a Bayesian approach for learning the scores
using a similar generating model, and is used in most of the real world online game matching systems.

Here we also consider a simple but effective individual-score based method:

min
w∈Rn

∑T

t=1
`(wTxt, ot) +R(w). (1)

w ∈ Rn is the individual score vector we want to learn. xt ∈ Rn is the indicator vector, where
(xt)j = 1 if j ∈ I+

t , (xt)j = −1 if j ∈ I−t , and (xt)j = 0 for all other elements. Although we
cannot find this simple model in the literature, in practice we found this often outperforms Trueskill
and Bradley-Terry model when `(·, ·) is logistic loss and R(w) is L2 regularization, so we also
include this model in our comparisons in the experimental part. For all the individual score models, it
is not hard to observe that they require at least O(n) games in order to recover n individual scores
with small error.

Factorization machine. Factorization machines were introduced by Rendle [17]. They hold great
promise in the applications with sparse predictors, especially when pairwise interaction of variables
is useful and linear complexity with polynomial results is desired. For example, [16] introduced a
factorized sparse model to identify high-order feature interactions in linear and logistic regression
models. In this paper, we propose a factorization model to help scale up when number of players (n)
is large.

Other related work. Ranking individuals from pairwise comparisons have been extensively studied.
The famous Elo system [11] has been used for a long time for chess and other sports ratings. [19, 10]
also proposed some different approaches with theoretical guarantee. [3, 4] recently provide a novel
view of the ranking problem by modeling intransitivity in pairwise comparisons (intransitivity means
a > b, b > c, c > a). However, all these papers consider pairwise comparisons, while we consider
the problem of group comparisons in this paper.

Another recent line of research studies how to improve the ranking algorithm by exploiting feature
information. [20] discussed a Bradley-Terry model with features. [21] applied a factorization model
to incorporate feature information. [5] proposed a simple method to combine feature-based and
comparison-based approaches and demonstrated the use of feature can reduce the complexity in
theory. We do not consider features in this paper. However, since most of the online game matching
data has features associated with each game, it is our future work to explore this area.

4 Exploiting higher order information

All the current approaches cannot model the pairwise relationships of team members: some players
perform much better if they play together, and some players perform poorly together. We propose the
following methods to model pairwise interactions.

Basic Model for Higher Order Interactions. We assume each player has its individual score wjj .
And for each pair of players, there is a pairwise score wjq . A team’s ability is modeled by

s+
t =

∑
j,q∈I+

t

wjq.

Our goal is to learn the model so that the score s+
t is larger than s−t for each game. Assume

e+
t , e

−
t ∈ {0, 1}n are the indicator vectors for I+

t and I−t respectively, where (e+
t )j = 1 if j ∈ I+

t

and (e−t )j = 1 if j ∈ I−t . Then the objective function can be written as

Basic HOI: min
W∈Rn×n

T∑
t=1

`((e+
t )TW (e+

t )− (e−t )TW (e−t ), ot) + λ‖W‖2F . (2)
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W = (wjq) ∈ Rn×n is the score matrix of players, where diagonal element wjj corresponds to the
ability score of player j and wjq corresponds to the pairwise score of players (j, q). One way to
solve (2) is by transforming it to classical empirical risk minimization. Since

(e+
t )TW (e+

t ) = tr(We+
t (e+

t )T ) = vec(W )T vec(e+
t (e+

t )T ),

problem (2) is equivalent to

min
w∈Rn2

T∑
t=1

`(wTxt, ot) + λ‖w‖22, (3)

where w = vec(W )T ,xt = vec(e+
t (e+

t )T − e−t (e−t )T ). After this reformulation, (3) can be solved
by standard SVM or logistic regression packages when `(·, ·) is hinge loss or logistic loss.

Indeed, this model is quite flexible and can be extended to extract higher order interactions, such as
interactions among any 3 players, or 4 players. The only problem is the number of parameters will be
very large when higher order information is used.

Difficulty in scaling to large problems. Our basic model is quite effective when the number of
players n is small (see our experimental results). However, in many real world problems n is very
large. For example, even a small online game would have tens of thousands of players, and popular
games such as LoL or Heroes of the Storm typically have millions of players. Unfortunately, our
basic model cannot scale to large n due to the following two reasons:

• In terms of sample complexity, (2) has n2 parameters. Based on standard statistical learning
theory, it requires at least O(n2) observed samples to recover the underlying scores. Even
for 10,000 players, (2) will require 100 million games to get a good estimate.

• In terms of computing, (2) requires O(n2) memory to store the W matrix, which is typically
dense unless making further structural assumption. Therefore, a standard solver will be hard
to scale beyond 30, 000 players.

4.1 Factorization Model for Higher Order Interactions (Factorization HOI)

To overcome the large n problem, we propose the following Factorization HOI model, which assumes
a team’s score can be written as

s+
t =

∑
j∈I+

t

wj +
∑
j∈I+

t

∑
q∈I+

t

vTj vq.

Model parameters that have to be estimated are w ∈ Rn and V ∈ Rk×n, each vj is the j-th column
of V . The hyper-parameter k defines the dimensionality of the factorization.

In this model, we capture the individual strength by wj , and each pairwise strength is modeled by
wjq ≈ vTj vq. This assumption is the key point which allows high quality and efficient parameter
estimation of higher order interactions. An intuitive explanation about this model is that each player
is associated with k latent features, and the interaction between two players is modeled by the
interaction of them via these latent features.

To estimate the parameters for Factorization HOI, we solve the following optimization problem:

argmin
w∈Rn,V ∈Rk×n

T∑
t=1

`(s+
t − s−t , ot) +

λw
2
‖w‖22 + λV ‖V ‖2F (4)

= argmin
w∈Rn,V ∈Rk×n

T∑
t=1

`(wT (e+
t − e−t ) +

∑
j,q∈I+

t

vTj vq −
∑
j,q∈I−t

vTj vq, ot)

+
λw
2
‖w‖22 + λV ‖V ‖2F ,

where λw and λV are the regularization parameters.

Efficient Solver. To solve (4), we propose the following algorithm that alternatively updates w and
V . When V is fixed, the problem becomes a standard empirical risk minimization (similar to (1)),
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which can be solved by standard packages for linear SVM or logistic regression. When w is fixed,
we use stochastic gradient descent (SGD) to solve the following subproblem with respect to V :

argmin
V ∈Rk×n

T∑
t=1

(
`(rt +

∑
j,q∈I+

t

vTj vq −
∑
j,q∈I−t

vTj vq, ot) +
∑

j∈I+
t ∪I

−
t

λV
dj
‖vj‖22

)
, (5)

where dj = |{t : j ∈ I+
t ∪ I−t }| is number of games involving player j and rt = wT (e+

t − e−t ).
The SGD update is then

vj ← vj − 2η(`′(s+
t − s−t )(

∑
q∈I+

t

vq) + (λV /dj)vj) if j ∈ I+
t

vj ← vj − 2η(−`′(s+
t − s−t )(

∑
q∈I−t

vq) + (λV /dj)vj) if j ∈ I−t .

Each SGD step only costs O(kL) time by pre-computing
∑
q∈I+

t
vq and

∑
q∈I−t

vq , so Factorization
HOI can scale to very large datasets.

4.2 Sample Complexity Analysis. How many games do we need?

To derive the theoretical guarantee, we first re-formulate (4). In this model, we can rewrite

s+
t = wTe+

t + (e+
t )T (V TV )e+

t .

Therefore, by assuming M = V TV , and using the fact that ‖M‖∗ = minV :M=V TV ‖V ‖2F , the
Factorization HOI (4) can be converted to the following nuclear norm regularization problem:

min
w,M

T∑
t=1

`(fw,M (e+
t , e

−
t ), ot) + (λw/2)‖w‖22 + λV ‖M‖∗,

where fw,M (e+, e−) := wT (e+−e−) + (e+)TMe+− (e−)TMe−. We then derive the guarantee
for the following equivalent hard-constraint form:

min
w,M

1

T

∑
t∈Ω

`(fw,M (e+
t , e

−
t ), ot) s.t. ‖w‖2 ≤ w, ‖M‖∗ ≤M, (6)

where Ω is the set of observed group comparisons (there can be repeated pairs in Ω). Assume e+
t , e

−
t

are sampled from E defined by all the n-dimensional 0/1 vectors with L ones, where L is the number
of players on each team. Both of them are sampled from a fixed distribution, under the sampling with
replacement model. Our goal is to bound the expected error defined by

R(f) := E
[
1
(
sgn(f(e+

t , e
−
t )) 6= sgn(ot)

)]
.

More specifically, we want to study the sample complexity of our model: how many samples do we
need for our model to achieve small prediction error? We will show that the number of samples is
proportional to the nuclear norm (M) and the two norm (w) of the underlying solution, which can
be small in many realistic scenarios. The sample complexity analysis is based on problem (6), but
solving it is slow (due to the need of SVD). In practice, we solve problem (4) for large-scale problem.
Note that this is a generalized low-rank model, so based on [9], solving (4) with gradient descent
could converge to global minimum under certain assumptions. All the detailed proofs are included in
the appendix.

We will need the notation of expected and empirical `-risk:

Expected `-risk: R`(f) = E[`(f(e+
t , e

−
t ), ot)]

Empirical `-risk: R̂`(f) =
1

T

T∑
t=1

`(f(e+
t , e

−
t ), ot).

Let the set of feasible w,M defined as Θ = {(w,M)|‖w‖2 ≤ w and
‖M‖∗ ≤M} and FΘ = {fw,M | (w,M) ∈ Θ}. We then have the following lemma:
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Lemma 1. Let ` be a loss function with Lipschitz constant L` bounded by B with respect to its first
argument, and δ be a constant where 0 < δ < 1. Then with probability at least 1− δ, the expected
`-risk is upper bounded by:

R`(f)≤R̂`(f)+min

4w

√
L

T
+ 8L`ML

√
log(2n)

T
,

√
144c3L`B

√
L(w +

√
nLM)

√
N

T

+

B

√
log 1

δ

2T
,

for all f ∈ FΘ, where T is number of games and c3 is a universal constant. For other constants
please see Section 2 for details.

Lemma 1 states that the expected loss will be close to empirical loss if w andM are small, and the
bound is proportional to w,M and inverse proportional to

√
T .

Now we discuss the recovery guarantee if the score s+
t , s
−
t are generated from some underlying

model following s+
t =

∑
j∈I+

t
wj +

∑
j∈I+

t

∑
q∈I+

t
Mjq with ‖w‖ ≤ w and ‖M‖∗ ≤ M, and

assume the assumptions in Lemma 1 are also satisfied. We then have the following two theorems:

Theorem 1. (Guarantee for score difference case). Let δ ∈ (0, 1) be a constant. Suppose the
following assumptions hold:

• T clean comparisons1 ot=s+
t −s−t are observed.

• The convex surrogate loss functions ` is bounded for each ot, with `(z, z) = 0.

with probability at least 1− δ, the optimal f∗ from problem (6) satisfies:

R(f∗) ≤min

O
(

w√
T

+M
√

log(2n)

T

)
, O

√ (w +
√
nLM)

√
N

T

+O

√ log 1
δ

T

 ,

When we can only observe the winning/losing game results (ot = sgn(s+
t − s−t )), we have the

following guarantee.

Theorem 2. (Guarantee for binary result case). Let δ ∈ (0, 1) be a constant. Suppose the following
assumptions hold:

• T clean comparisons ot = sgn(s+
t − s−t ) are observed.

• The convex surrogate loss functions ` is bounded for each ot.

With probability at least 1− δ, the optimal f∗ from problem (6) satisfies:

R(f∗)≤O
(
R̂`(f

∗)−R∗`
)

+min

{
O

(
w√
T

+M
√

log(2n)

T

)
,

O

√ (w+
√
nLM)

√
N

T

+O

√ log 1
δ

T


where R∗` = inff R`(f).

In Theorem 2, the term R̂`(f
∗) − R∗` may not be zero but will be small, depending on how we

define loss. In summary, after observing T samples, the expected error will be O(min(w +M, (w +

M)1/2N1/4))/
√
T ) in Theorem 1. The second term has less dependency on w andM, but will be

large for large L (number of players per team), since N = O(nL). However, we take the minimum
for these two terms, so in either cases the sample complexity will be small if the nuclear normM
and two norm of w are small. We have the same conclusion for binary (+1/−1) observations when
R̂`(f

∗)−R∗` = O(ε).

1“clean comparison” means that the observed outcomes are noiseless.
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Figure 1: Projection of interaction features for each hero (vi) to 2-D space. Colors represents the official
categorization for these heroes. This low-dimensional representation reveals some interesting patterns for
pairwise interactions between heroes in Heroes of the Storm.

All the previous discussion is based on the assumption that we can observe clean comparisons.
However, in practice, we usually observe noisy comparisons. We use a standard "flip sign model"[19],
where each comparison result is independently flipped (õt = −sgn(ot)) with probability ρf ∈ [0, 0.5),
where õt is the observed flipped result. The following theorem shows that with noisy comparisons,
we just need slightly more samples, depending on the noise level.
Theorem 3. (Guarantee for noisy comparisons). Let each ot is now observed under the "flip sign
model" with ρf ∈ [0, 0.5). Then by solving Factorization HOI with squared loss,

min

O
(

1

1− 2ρf
(
w√
T

+M
√

log(2n)

T
)

)
, O

√ (w +
√
nLM)

√
N

(1− ρf )T

+O

√ log( 1
δ )

T


comparisons suffice to guarantee an ε-accurate result.

Theorem 3 demonstrates that in noisy comparison case, Factorization HOI can achieve ε−accurate
result with the same order of sample complexity as in clean comparison cases, but with a extra price,
which is a 1

1−ρf or 1√
1−ρf

factor.

5 Experimental Results

We include the following algorithms in our experiments:

• Basic HOI: the proposed basic model using pairwise information with squared hinge loss
(see eq (2)).
• Factorization HOI: the proposed model in eq (4) with squared hinge loss, which approxi-

mates the pairwise interaction by a factor form.
• Trueskill [12]: the state-of-the-art algorithm used in all the online game matching engines.

Since it is an online algorithm, we test the performance after running 1 epoch and 10 epochs.
We do not observe any accuracy gain after 10 epochs.
• Bradley-Terry model [13]: the generalized Bradley-Terry model for group comparison data.
• Logistic Regression (LR): another baseline for individual score model (1) using logistic loss.

We have not seen this algorithm in the literature, but we found this simple approach works
quite well so we include it into comparison.

Datasets and parameter settings. We consider datasets from two online games: Heroes of the
Storm (HotS) and Dota 2. Both of them are Multiplayer Online Battle Arena (MOBA) games. In
each game, two five-player teams fight with each other on a map. Each player can choose one of the
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heroes (characters), and each hero has different abilities. There are totally around 60 heroes in HotS
and 100 heroes in Dota 2. For each dataset we consider two tasks: (1) we consider each hero as an
individual so that each game we get the group comparisons between 5 heroes versus another 5 heroes.
And the goal is to predict the outcome of the games. Since there are only around 100 heroes, the
parameter space will not be too large even for learning n2 pairwise interactions. (2) We also consider
each player as an individual, so that each group comparison is between 5 players versus another 5
players. In this case, there can be tens of thousands of players, so the parameter space is huge.

We collect the following three sets of data. For HotS tournament matches, we download all matching
records provided by Hotslog2 for the years of 2015 and 2016. For HotS public game data, we crawl the
matching history of Master players in Hotslog. There are three game modes for public games—quick
match, team league, and hero league. Here we only consider the hero league data since it is closer to
the official tournament games. For Dota 2, we download the recent data from OpenDota 3. We focus
on a set of “notable players” (defined by the website), and get all their matching data in public games.
For each dataset, we have two different views, taking heroes as individuals (n) or taking players as
individuals (n). So we have 6 datasets in total, as listed in Table 1.

For each dataset, we randomly divided the games into 80% for training and 20% for testing. For all
the methods, we cross validate on the training set to choose the best parameter, and then use the best
parameter to train a final model, which is then evaluated on the testing set. For our model, determining
the values of k is a trade-off between the model efficiency and accuracy. In our experiments, we
choose k by cross validation. Accuracy is evaluated by number of correct predicted games divided by
the total number of testing games. The results are presented in Table 2. Note that Basic HOI will
generate n2 parameters, so it runs out of memory for some datasets. We have the following findings:

• Our proposed algorithms, Basic HOI and Factorization HOI are always better than indi-
vidual models, which indicates that higher order information is useful for modeling group
comparisons. Moreover, we observe that higher order information is particularly useful for
tournament data (HotS tournament), which makes sense because tournament players are
more advanced and have better teamwork. The outcome of a professional game is often
determined by some good use of “combo”.4

• For hero data, since the number of individuals is small, Basic HOI is able to learn a good
model for all the individual scores and thus slightly outperforms Factorization HOI. However,
when the number of individuals grow to thousands (e.g., two HotS player datasets), Basic
HOI has too many parameters to learn and suffers from over-fitting, so the accuracy is lower
than Factorization HOI. Furthermore, Factorization HOI is able to scale to large amount of
individuals (e.g., 30,000 players in Dota 2), while Basic HOI will run out of memory since
it requires O(n2) memory.

Finally, in addition to better prediction accuracy, our model reveals interesting patterns that cannot
be discovered by individual scores. First, we extract the top-5 and bottom-5 hero pairs for HotS
Tournament data (see Table 3). Among them, one of the top-5 pairs, (Reghar, Illidan), is a famous
strong combination recognized by professional players, while most of the bottom-5 pairs are clearly
not good since they are heroes with repeated functions. Our results can thus guide the players and
professional coaches for selecting heroes. For example, Illidan works well with Reghar, but is very
bad with Thrall. We also extract the top-5 and bottom-5 pairs based on Bradley-Terry and Trueskill
(see Table 4). It is obvious that the top-5/bottom-5 pairs based on Bradley-Terry and Trueskill
are totally different from pairs got from our method, which shows that our method can capture
interaction effect that are not explored well in the previous methods. In addition, we project the
learned latent factors vi in the Factorization HOI model to a 2D space by PCA in Figure 1. These
vectors characterize the pairwise interaction between heroes. We observe many interesting patterns.
For example, most of the siege heroes are on the right bottom area of the space; Murky and Leoric are
on the top-left corner, where they have similar behavior (this is actually an important combination that
helped C9 team to win the 2015 Heroes of the Storm championship). Illidan is in the very left-botton
corner, which means it is very good with other heroes in the third quadrant, but very bad with the
heroes in the first quadrant.

2https://www.hotslogs.com/Default
3https://www.opendota.com
4In games, a “combo” indicates a set of actions performed in sequence that yield a significant benefit or

advantage. A “combo” usually requires very precise timing, so is more commonly used by advanced players.
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Table 1: Dataset Statistics
Datasets HotS Tournament HotS Tournament HotS Public HotS Public Dota 2 Dota 2

(Hero) (Player) (Hero) (Player) (Hero) (Player)
Number of Games (T ) 9,610 9,610 139,462 139,462 46,459 46,459

Number of Individuals (n) 54 3,470 62 7,251 113 30,452

Table 2: Performance of the proposed algorithm and other algorithms. The numbers are prediction
accuracy (%), and ”oom” indicates out of memory here.5

Datasets LR Trueskill (1) Trueskill (10) Bradley-Terry Basic HOI Factorization HOI
HotS Tournament (H) 59.73 62.90 58.48 59.52 80.59 77.84
HotS Tournament (P) 83.45 80.02 84.50 84.18 83.89 85.17

HotS Public (H) 54.34 53.36 53.06 53.50 54.45 54.75
HotS Public (P) 54.01 53.64 53.87 53.92 53.39 55.76

Dota 2 (H) 61.64 52.50 52.61 61.37 65.34 63.72
Dota 2 (P) 65.98 62.16 64.26 62.72 oom 68.25

Table 3: Top-5 pairs and bottom-5 hero pairs learned by our model on Heroes of the storm tournament
data.

Top 5 pairs Bottom 5 pairs
(Lunara, Leoric) (Raynor, Zeratul)

(Kerrigen, Sylvanas) (Illidan, Thrall)
(Reghar, Illidan) (Sonya, Zeratul)

(Chen, Jaina) (Muradin, Lt. Morales)
(Thrall, Valla) (Anub’arak, Illidan)

Table 4: Top-5 and bottom-5 pairs for Trueskill and Bradley-Terry Method

Top 5 pairs (Trueskill) Bottom 5 pairs (Trueskill) Top 5 pairs (BTL) Bottom 5 pairs (BTL)
(Auriel,Kerrigan) (Chromie,Sgt.Hammer) (Auriel,Medivh) (Chromie,Sgt.Hammer)
(Auriel,Tracer) (Chromie,The Butcher) (Auriel,The Lost Vikings) (Chromie,Gazlowe)
(Auriel,Rexxar) (Chromie,Valla) (Auriel,Rehgar) (Chromie,The Butcher)

(Auriel,The Lost Vikings) (Chromie,Gazlowe) (Auriel,Kerrigan) (Chromie,Tychus)
(Auriel,Kerrigan) (Chromie,Tychus) (Auriel,Brightwing) (Chromie,Artanis)

6 Conclusions

Previous models for group comparisons are all based on individual score models. In this paper,
we develop novel algorithms to utilize higher order interactions between players. The proposed
algorithm achieves much higher accuracy than existing methods, indicating that modeling higher
order interaction is crucial for mining group comparison data.
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8 Appendix: Proofs

For the convenience of notation, in the following part we will use xm and xl to represent e+
t and e−t ,

so xm and xl are the indicator vectors of team m and team l respectively. We use oml to represent
the game outcome between the two teams.

8.1 Proof of Lemma 1

We will use the following lemma to prove Lemma 1 (which can be found in [2]):
Lemma 2. (Bound on Expected `-risk [2]). Let ` be a loss function with Lipschitz constant L`
bounded by B with respect to its first argument, and δ be a constant where 0 < δ < 1. Let R(FΘ) be
the Rademacher complexity of the function class FΘ (w.r.t Ω and associated with `) defined as:

R(FΘ) = Eσ[ sup
f∈FΘ

1

T

T∑
α=1

σα`(f(xmα , elα), omαlα)], (7)

where each σα takes values {±1} with equal probability. Then with probability at least 1− δ, for all
f ∈ FΘ we have:

R`(f) ≤ R̂`(f) + 2EΩ[R(FΘ)] + B

√
log 1

δ

2T
.

Proof (of Lemma 1): Note that xm is indicator vector of team m, thus
√
L = max

m∈[N ]
‖xm‖2, where

L is the number of players on each team. The model complexity of (7) can be bounded by:

R(FΘ) = Eσ[ sup
f∈FΘ

1

T

T∑
α=1

σα`(fw,M (xmα ,xlα), omαlα)]

≤ L`Eσ[ sup
f∈FΘ

1

T

T∑
α=1

σαfw,M (xmα ,xlα)]

=
L`
T

Eσ[ sup
‖w‖2≤w,‖M‖∗≤M

T∑
α=1

σα(wT (xmα − xlα)

+ xTmαMxmα − xTlαMxlα)]

≤ L`Eσ[ sup
‖w‖2≤w

1

T

T∑
α=1

σαw
T (xmα − xlα)

+ sup
M :‖M‖∗≤M

1

T

T∑
α=1

σαtrace(Mxmαx
T
mα)

+ sup
M :‖M‖∗≤M

1

T

T∑
α=1

σαtrace(Mxlαx
T
lα)]

≤ 2w

√
L

T
+ 4L`ML

√
log(2n)

T

This is the first bound of R(FΘ). Note that the last inequality comes from the condition
√
L =

max
m∈[N ]

‖xm‖2 and Theorem 1 in [14]. In the following part we derive another bound for R(FΘ) that

has better dependency to w andM. We can rewrite R(FΘ) as:

R(FΘ) = Eσ[ sup
f∈FΘ

1

T

T∑
α=1

σα`(fw,M (xmα ,xlα), omαlα)]

= Eσ[ sup
f∈FΘ

1

T

∑
(m,l)

Γml`(fw,M (xm,xl), oml)]

11



where Γ ∈ RN×N with each entry defined as Γml =
∑
α:mα=m,lα=l σα. Use the same method in

[18], we can decompose Γ into two matrices A and B, where A contains the "heavily-hit" entries,
and B the "lightly-hit" entries, where the two types of entries are differentiated according to some
threshold p.

Given m, l, let hm,l = |{α : mα = m, lα = l}| be the number of times the sample Ω hits entry m, l.
Let p > 0 be an arbitrary parameter to be specified later, and define

Am,l =

{
Γm,l hm,l > p

0 hm,l ≤ p Bm,l =

{
0 hm,l > p

Γm,l hm,l ≤ p

Clearly, Γ = A+B. We can write R(FΘ) as:

R(FΘ) = Eσ[ sup
f∈FΘ

1

T

∑
(m,l)

Aml`(fw,M (xm,xl), oml)]

+ Eσ[ sup
f∈FΘ

1

T

∑
(m,l)

Bml`(fw,M (xm,xl), oml)] (8)

Since |`(fw,M (xm,xl), oml)| ≤ B, the first term of (8) can be upper bounded by

1

T
Eσ[B

∑
(m,l)

Aml] ≤
B
√
p

Using the Rademacher contraction principle, the second term of (8) can be upper bounded by:

L`
T

Eσ[ sup
‖w‖2≤w,‖M‖∗≤M

∑
(m,l)

Bmlfw,M (xm,xl)]

=
L`
T

Eσ[ sup
‖w‖2≤w,‖M‖∗≤M

∑
(m,l)

Bml(w
T (xm − xl) + xTmMxm − xTl Mxl)]

≤ L`
T

Eσ[ sup
‖w‖2≤w

∑
(m,l)

Bmlw
T (xm − xl)] +

L`
T

Eσ[ sup
‖M‖∗≤M

∑
(m,l)

Bmlx
T
mMxm]

+
L`
T

Eσ[ sup
‖M‖∗≤M

∑
(m,l)

Bmlx
T
l Mxl]

=
L`
T

Eσ sup
‖w‖2≤w

∑
(m,l)

Bmlw
T (xm − xl) +

L`
T

Eσ[ sup
‖M‖∗≤M

∑
(m,l)

Bml(XMXT )mm]

+
L`
T

Eσ[ sup
‖M‖∗≤M

∑
(m,l)

Bml(XMXT )ll]

≤ 2wL`
√
L

T
Eσ[‖B‖2] +

2L`
T

Eσ[ sup
W :‖W‖∗≤W

‖B‖2‖XXT ‖∗]

≤ 2wL`
√
L

T
Eσ[‖B‖2] +

2L`ML
√
n

T
Eσ[‖B‖2]

≤
8.8c3L`

√
L(w +

√
nLM)

√
p
√
N

T
.

Choosing p = BT
8.8c3L`

√
L(w+

√
nLM)

√
N

, (8) is bounded by√
36c3L`B

√
L(w +

√
nLM)

√
N

T
.

Applying Lemma 2, we can get the bound in Lemma 1.
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8.2 Proof of Theorem 1

Lemma 3. (Consistency of Excess Risk [1]). Let ` be a convex surrogate loss function. Then there
exists a strictly increasing function Ψ, Ψ(0) = 0, such that for all measurable f :

R(f)−R∗ ≤ Ψ(R`(f)−R∗` ),

where R∗ = inff R(f) and R∗` = inff R`(f).

Proof (of Theorem 1). When we can observe the score differences, oml = s+
t − s−t . Let

f∗w,M (xm,xl), θ
∗ = [w∗;M∗] ∈ Θ to be the optimal solution of problem (6). If the scores

s+
t , s
−
t are generated from some underlying model w∗,M∗ following s+

t =
∑
j∈I+

t
w∗j +∑

j∈I+
t

∑
q∈I+

t
M∗jq with ‖w∗‖ ≤ w and ‖M∗‖∗ ≤M, we have `(wT ∗(xm − xl) + xTmM

∗xm −
xTl M

∗xl, s
+
t −s−t ) = `(s+

t −s−t , s+
t −s−t ) = 0. Thus, we can get R̂(f∗). Apparently,R∗ = R∗` = 0,

so Lemma (3) here is:

R(f∗) ≤ Ψ(R`(f
∗)),

Therefore, applying Lemma 1 we can get:

R`(f
∗) ≤ min

4w

√
L

T
+ 8L`ML

√
log(2n)

T
,

√
144c3L`B

√
L(w +

√
nLM)

√
N

T

+ B

√
log 1

δ

2T

Let LΨ be the bounded Lipschitz constant for Ψ. Then we can derive:

R(f∗) ≤ Ψ(R`(f
∗))

≤ LΨ

(
min

{
4w

√
L

T
+ 8L`ML

√
log(2n)

T
,√

144c3L`B
√
L(w +

√
nLM)

√
N

T

+ B

√
log 1

δ

2T


= min

O
(

w√
T

+M
√

log(2n)

T

)
, O

√ (w +
√
nLM)

√
N

T


+O

√ log 1
δ

T


8.3 Proof of Theorem 2

When we can only observe the winning/losing game results, ot = sgn(s+
t − s−t ). R∗ = 0 still holds,

but R∗` may not be zero. Applying Lemma (3), we have:

R(f∗) ≤ Ψ(R`(f
∗)−R∗` ).

Using Lemma 1, we can bound R`(f∗)−R∗` by:

R`(f
∗)−R∗` ≤ R̂`(f∗)−R∗` + min

{
4w

√
L

T
+ 8L`ML

√
log(2n)

T
,√

144c3L`B
√
L(w +

√
nLM)

√
N

T

+ B

√
log 1

δ

2T
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Therefore, we can derive:

R(f∗) ≤ Ψ(R`(f
∗)−R∗` )

≤ LΨ

(
R̂`(f

∗)−R∗` + min

{
4w

√
L

T
+ 8L`ML

√
log(2n)

T
,√

144c3L`B
√
L(w +

√
nLM)

√
N

T

+ B

√
log 1

δ

2T


= O

(
R̂`(f

∗)−R∗`
)

+ min

{
O

(
w√
T

+M
√

log(2n)

T

)
,

O

√ (w +
√
nLM)

√
N

T

+O

√ log 1
δ

T


8.4 Proof of Theorem 3

Theorem 3 follows directly from the following theorem provided that min
f∈FΘ

R` − R∗` = O(ε), so

prove Theorem 4 will suffice.
Theorem 4. (Kendall’s Tau guarantee for noisy comparisons from flip sign model). Let δ be any
constant such that 0 < δ < 1. Suppose that we observe T noisy group comparisons under the flip
sign model parameterized by some noise level 0 ≤ ρf ≤ 0.5.

Consider the following problem:

min
w,M

1

T

∑
(m,l)∈Ω

[wT (xm − xl) + xTmMxm − xTl Mxl − õml]2,

s.t. ‖w‖2 ≤ (1− 2ρf )w, ‖M‖∗ ≤ (1− 2ρf )M, õml ∼ Dρf

(9)

where the distribution Dρf is defined by:

P (õml = +1|sgn(oml) = −1)

=P (õml = −1|sgn(oml) = +1)

=ρf

where oml represents the clean comparison result. Then with probability at least 1− δ, the optimal
f∗ of the problem satisfies:

R(f∗) ≤ O
(

min
f∈FΘ

R` −R∗`
)

+ min

{
O

(
1

1− 2ρf
(
w√
T

+M
√

log(2n)

T
)

)
,

O

√ (w +
√
nLM)

√
N

(1− 2ρf )T

+O

√ log 1
δ

T


To prove Theorem 4 we need the following lemma. We will give the proof of Theorem 4 after
Lemma 4
Lemma 4. (Equivalence of Problem (9) with Unbiased Estimator). The problem (9) is equivalent to
the following optimization problem:

min
w̃,M̃

1

T

∑
(m,l)∈Ω

˜̀(w̃T (xm − xl) + xTmM̃xm − xTl M̃xl, õml)

s.t. ‖w̃‖2 ≤ w, ‖M̃‖∗ ≤M,

(10)

where ˜̀(t, y) is an unviased estimator of squared loss from noisy comparisons defined by:

˜̀(t, y) =
(1− ρf )(t− y)2 − ρf (t+ y)2

1− 2ρf

14



Furthermore, the optimal solution of the problem (10), denoted as θ̃∗, satisfies:

θ∗ = (1− 2ρf )θ̃∗ (11)
where θ∗ is the optimal solution of the problem (9).

With Lemma 4, we will give proof of Theorem 4 in the following part. Proof of Lemma 4 is provided
at the end.

Proof (of Theorem 4). Let θ̃∗/f̃∗ denote the optimal parameter/function of problem (10). Then from
Theorem 3 of [15], we can guarantee that with probability at least 1− δ, the risk of f̃∗ w.r.t. clean
distribution is bounded by:

R`(f̃
∗) ≤ min

f∈FΘ

R`(f) +
8L`

1− 2ρf
EΩ[R(FΘ)] + 2

√
log 1

δ

2T
. (12)

From Lemma 4 we know that θ∗ = (1−2ρf )θ̃∗, so the scores learned will be scaled by a 1−2ρf factor,
but the relative scores and the comparison result will remain the same. This implies R(f∗) = R(f̃∗).
Finally, by applying Lemma 1 and Lemma 3 to (12), the claim of Theorem 4 can be obtained as:

R(f̃∗) ≤ Ψ(R`(f̃
∗)−R∗` )

≤ LΨ

(
min
f∈FΘ

R`(f)−R∗` +
8L`

1− 2ρf
min

{
4w

√
L

T
+

8L`ML

√
log(2n)

T
,

√
144c3L`B

√
L(w +

√
nLM)

√
N

T

+ B

√
log 1

δ

2T


= O

(
min
f∈FΘ

R` −R∗`
)

+ min

{
O

(
1

1− 2ρf
(
w√
T

+M
√

log(2n)

T
)

)
,

O

√ (w +
√
nLM)

√
N

(1− 2ρf )T

+O

√ log 1
δ

T


Proof (of Lemma 4). First off, we rewrite the unbiased estimator of squared loss ˜̀(t, y) as:

˜̀(t, y) = t2 − 2t

1− 2ρf
y + y2

=

(
t− y

1− 2ρf

)2

+

(
y2 − 1

1− 2ρf
y2

)
Therefore, problem (10) can be rewritten as:

min
w̃,M̃

1

T

∑
(m,l)∈Ω

˜̀(w̃T (xm − xl) + xTmM̃xm − xTl M̃xl, õml)

≡min
w̃,M̃

1

T

∑
(m,l)∈Ω

(
w̃T (xm − xl) + xTmM̃xm − xTl M̃xl −

õml
1− 2ρf

)2

s.t. ‖w̃‖2 ≤ w, ‖M̃‖∗ ≤M,

(13)

Now define two new variables as:
w = (1− 2ρf )w̃

M = (1− 2ρf )M̃
(14)

and substitute (14) to the problem (13). We can further derive an equivalent optimization problem
w.r.t. w and M as:

min
w,M

1

T

∑
(m,l)∈Ω

(
wT (xm − xl) + xTmMxm − xTl Mxl − õml

)2
s.t. ‖w‖2 ≤ (1− 2ρf )w, ‖M‖∗ ≤ (1− 2ρf )M,
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Table 5: PI denotes percentage of pairs includes, and PA denotes prediction accuracy. Performance of logistic
regression with selected pairs on HotS tournament (Hero) data. We first include the most important pairs (top
tier and bottom tier) into the model, then less important pairs. In the end, we include all pairs with enough
dominance information.

PI (%) 0 5.03 12.23 20.48 32.22 37.88
PA (%) 59.73 62.28 64.00 64.93 65.24 67.27

which is the problem (9) as claimed. In addition, from (14), the optimal solutions between two
problems satisfy:

θ∗ = [w∗,M∗] = (1− 2ρf )[w̃∗, M̃∗] = (1− 2ρf )θ̃∗

and the proof is thus completed.

9 Appendix: Another way to discover important higher order terms

In addition to Factorization HOI, another practical way to apply our basic logistic regression model (2)
is to pre-select important pairwise parameters and eliminate the rest (LR-select). Intuitively, we want
to identify the pairs of players that work significantly better or worse with each other. To achieve this,
we may construct a tiered ranking of all possible pairs as follows.

Each game between I+
t and I−t is “expanded” into

(
|I+
t |
2

)
·
(
|I−t |

2

)
subgames, where every

pair of players from I+
t is assigned a win over every pair of players from I−t . The results are placed

into an Np × Np win-loss matrix, where Np is the number of observed player pairs. Winning
probabilities between player pairs are now estimated using Percolation and Conductance [6], which
takes advantage of transitivity of dominance information in order to infer the relationship between
player pairs who may not have competed directly.

A ranking of player pairs may be obtained by applying a permutation ρ∗ to the rows and columns of
the estimated winning probability matrix P such that the cost function

Cost(P [ρ]) =

Np∑
i=2

i−1∑
j=1

max(0,− log[2(1− pρ,ij)])e
(Np+1−j)(i−j)

N2
p (15)

is minimized, as in [8]. Such a ranking can be seen in the left panel of Figure 2, in which the upper
triangle of P mostly consists of values above 0.5. As a result of this reordering, any deviation from
ρ∗ incurs additional cost from cost equation (15). In particular, switching the position of a pair of
entries in ρ∗ increases the cost by an amount dependent on their relative positions. A cost matrix
C = [cij ] may be constructed where cij is the cost incurred by swapping the ith and jth entries in ρ∗,
an example of which is shown in the middle panel of Figure 2. By treating C as a distance matrix,
tiers of player pairs can then be identified via any common clustering method, such as hierarchical
clustering or Data Cloud Geometry [7].

From the tiers of player pairs, we can then determine those pairs that work together much better than
others (top tier) and those that work together much worse (bottom tier). We then choose to include in
our model only those player pairs with very clear dominance information over other pairs, as seen in
the right panel of Figure 2. Players involved in these pairs are likely to have significant relationships
that make them much better or worse teammates for each other.

From Table 5 we can see that after including the most important pairs, which is only a small fraction
of all pairs, the model performance improves a lot. Comparing the results with those of individual
models in Table 2, we can see that by including only 12.23% of pairs, LR-select is able to outperform
all the other individual models on Heroes of Storm tournament data (HotS Tournament (H)).
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Figure 2: Each row/column of these matrices corresponds to a pair of heroes of HotS tournament data. The
estimated winning probability matrix computed via Percolation and Conductance is shown in left, and the cost
incurred by swapping entries in ρ∗ is shown in middle. After constructing tiers of player pairs and removing
pairs with little dominance information, a clearer dominance hierarchy remains regarding winning probabilities
(right).
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