CS260: Machine Learning Algorithms
Lecture 1: Overview

Cho-Jui Hsieh
UCLA

Jan 7, 2019
Course Information

- My office: EVI 284
- Office hours: Wednesday 11am–noon
- Online office hour: TBD
- TA: Patrick Chen (patrickchen@g.ucla.edu)
- TA for online course: Minhao Cheng (mhcheng@ucla.edu)
Course Information

- There is no textbook. Most of the topics are covered in “Deep Learning” (by Goodfellow, Bengio, Courville)
Course Information

- There is no textbook. Most of the topics are covered in “Deep Learning” (by Goodfellow, Bengio, Courville)

- Part I (basic concepts):
 - Linear models (regression, classification, clustering, dimension reduction)
 - Basic learning theory (overfitting, regularization)

- Part II (Nonlinear models):
 - Kernel methods
 - Tree-based methods
 - Deep networks
 - Applications in computer vision and NLP
Grading Policy

- Midterm exam (30%)
- Homework (30%)
 - 3 homeworks
- Final project (40%)
Final project

- Group of \(\leq 4 \) students.
- Work on some research projects:
 - Solve an interesting problem
 - Develop a new algorithm
 - Compare state-of-the-art algorithms on some problems
 - …
- I’ll recommend some topics in the course. Feel free to discuss with me in advance.
Machine Learning: Overview
From learning to machine learning

- What is learning?

 observations → Learning → **Skill**

- **Skill**: how to make decision (action)
 - Classify an image
 - Translate a sentence from one language to another
 - …
From learning to machine learning

- What is learning?

 observations → Learning → Skill

- Skill: how to make decision (action)
 - Classify an image
 - Translate a sentence from one language to another
 - ...

- Machine learning:

 data → Machine Learning → Skill (decision rules)

Automatic the learning process!
Credit Approval Problem

- Customer record (features):

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>age</td>
<td>23 years</td>
</tr>
<tr>
<td>gender</td>
<td>female</td>
</tr>
<tr>
<td>annual salary</td>
<td>NTD 1,000,000</td>
</tr>
<tr>
<td>year in residence</td>
<td>1 year</td>
</tr>
<tr>
<td>year in job</td>
<td>0.5 year</td>
</tr>
<tr>
<td>current debt</td>
<td>200,000</td>
</tr>
</tbody>
</table>

- To be learned:

 “Should we approve the credit card application?”
Credit Approval Problem

- Customer record (features):

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>age</td>
<td>23 years</td>
</tr>
<tr>
<td>gender</td>
<td>female</td>
</tr>
<tr>
<td>annual salary</td>
<td>NTD 1,000,000</td>
</tr>
<tr>
<td>year in residence</td>
<td>1 year</td>
</tr>
<tr>
<td>year in job</td>
<td>0.5 year</td>
</tr>
<tr>
<td>current debt</td>
<td>200,000</td>
</tr>
</tbody>
</table>

- To be learned:

 “Should we approve the credit card application?”

- Data: A collection of feature-label pairs:

 (customer1 feature, Yes), (customer2 feature, No), …
Credit Approval Problem

- Customer record (features):

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>age</td>
<td>23 years</td>
</tr>
<tr>
<td>gender</td>
<td>female</td>
</tr>
<tr>
<td>annual salary</td>
<td>NTD 1,000,000</td>
</tr>
<tr>
<td>year in residence</td>
<td>1 year</td>
</tr>
<tr>
<td>year in job</td>
<td>0.5 year</td>
</tr>
<tr>
<td>current debt</td>
<td>200,000</td>
</tr>
</tbody>
</table>

- To be learned:

 "Should we approve the credit card application?"

- Data: A collection of feature-label pairs:

 (customer1 feature, Yes), (customer2 feature, No), …

- Learned model: Some decision rule

 e.g., salary > 1M
Formalize the Learning Problem

- **Input:** $x \in \mathcal{X}$ (customer application)

 e.g., $x = [23, 1, 1000000, 1, 0.5, 200000]$

- **Output:** $y \in \mathcal{Y}$ (approve/disapprove)

- **Target function to be learned:**

 $f : \mathcal{X} \to \mathcal{Y}$ (ideal credit approval formula)

- **Data (historical records in bank):**

 $\mathcal{D} = \{(x_1, y_1), (x_2, y_2), \cdots, (x_N, y_N)\}$

- **Hypothesis (model):**

 $g : \mathcal{X} \to \mathcal{Y}$ (learned formula to be used)
Basic Setup of Learning Problem

(Figure from “Learning from Data”)

UNKNOWN TARGET FUNCTION
\(f: X \rightarrow Y \)

(ideal credit approval function)

TRAINING EXAMPLES
\((x_1, y_1), \ldots, (x_N, y_N)\)

(historical records of credit customers)

LEARNING ALGORITHM
\(A \)

HYPOTHESIS SET
\(\mathcal{H} \)

(set of candidate formulas)

FINAL HYPOTHESIS
\(g \approx f \)

(final credit approval formula)
A learning model has two components:

- The hypothesis set \mathcal{H}:
 - Set of candidate hypothesis (functions)
- The learning algorithm:
 - To pick a hypothesis (function) from the \mathcal{H}
 - Usually optimization algorithm (choose the best function to minimize the training error)
Perceptron

- Our first ML model: perceptron (1957)
 - Learning a linear function
 - Single layer neural network
- Next, we introduce two components of perceptron:
 - What’s the hypothesis space?
 - What’s the learning algorithm?
Define the hypothesis set \mathcal{H}

- For input $x = (x_1, \ldots, x_d)$ “attributes of a customer”

 Approve credit if $\sum_{i=1}^{d} w_i x_i > \text{threshold}$,

 Deny credit if $\sum_{i=1}^{d} w_i x_i < \text{threshold}$

- Define $\mathcal{Y} = \{+1(\text{good}), -1(\text{bad})\}$

- Linear hypothesis space \mathcal{H}: all the h with the following form

 $$h(x) = \text{sign}\left(\sum_{i=1}^{d} w_i x_i - \text{threshold}\right)$$

 (perceptron hypothesis)
Introduce an artificial coordinate \(x_0 = -1 \) and set \(w_0 = \text{threshold} \)

\[
h(x) = \text{sign}\left(\sum_{i=1}^{d} w_i x_i - \text{threshold}\right) = \text{sign}\left(\sum_{i=0}^{d} w_i x_i\right) = \text{sign}(w^T x)
\]

(vector form)

Customer features \(x \): points on \(\mathbb{R}^d \) \((d \text{ dimensional space}) \)

Labels \(y \): +1 or −1

Hypothesis \(h \): linear hyperplanes
Select the best one from \mathcal{H}

- \mathcal{H}: all possible linear hyperplanes
- How to select the best one?

\mathcal{H}: all possible linear hyperplanes

How to select the best one?
Select the best one from \mathcal{H}

- \mathcal{H}: all possible linear hyperplanes
- How to select the best one?

Find g such that $g(x_n) \approx f(x_n) = y_n$ for $n = 1, \cdots, N$
Select the best one from \mathcal{H}

- \mathcal{H}: all possible linear hyperplanes
- How to select the best one?

Find g such that $g(x_n) \approx f(x_n) = y_n$ for $n = 1, \cdots, N$

- Naive approach:
 Test all $h \in \mathcal{H}$ and choose the best one minimizing the "training error"

$$
\text{training error} = \frac{1}{N} \sum_{n=1}^{N} I(h(x_n) \neq y_n)
$$

($I(\cdot)$: indicator)

- Difficult: \mathcal{H} is of infinite size
Perceptron Learning Algorithm

Initial from some \mathbf{w} (e.g., $\mathbf{w} = \mathbf{0}$)
For $t = 1, 2, \ldots$

 - Find a **misclassified** point $n(t)$:

 $$\text{sign} (\mathbf{w}^T \mathbf{x}_{n(t)}) \neq y_{n(t)}$$

 - Update the weight vector:

 $$\mathbf{w} \leftarrow \mathbf{w} + y_{n(t)} \mathbf{x}_{n(t)}$$

Perceptron Learning Algorithm (PLA)

Initial from some \mathbf{w} (e.g., $\mathbf{w} = \mathbf{0}$)
For $t = 1, 2, \ldots$

 - Find a **misclassified** point $n(t)$:

 $$\text{sign} (\mathbf{w}^T \mathbf{x}_{n(t)}) \neq y_{n(t)}$$

 - Update the weight vector:

 $$\mathbf{w} \leftarrow \mathbf{w} + y_{n(t)} \mathbf{x}_{n(t)}$$
Iteratively

- Find a misclassified point
- Rotate the hyperplane according to the misclassified point
Perceptron Learning Algorithm

- Converge for “linearly separable” case:
 - Linearly separable: there exists a perceptron (linear) hypothesis f with 0 training error
 - PLA is guaranteed to obtain f
 (Stop when no more misclassified point)

![Diagram](image-url)

(linear separable) (not linear separable) (not linear separable)
Binary classification

- **Data:**
 - Features for each training example: \(\{x_n\}_{n=1}^{N} \), each \(x_n \in \mathbb{R}^d \)
 - Labels for each training example: \(y_n \in \{+1, -1\} \)

- **Goal:** Learn a function \(f : \mathbb{R}^d \rightarrow \{+1, -1\} \)

- **Examples:**
 - Credit approve/disapprove
 - Email spam/not-scam
 - Patient sick/not sick
 - ...
Other types of output space - Regression

Regression: \(y_n \in \mathbb{R} \) (output is a real number)

Example:

- Stock price prediction
- Movie rating prediction
- ...
Multi-class classification:

- \(y_n \in \{1, \cdots, C\} \) (C-way classification)
- Example: Coin recognition
 - Classify coins by two features (size, mass) \((x_n \in \mathbb{R}^2)\)
 - \(y_n \in \mathcal{Y} = \{1c, 5c, 10c, 25c\} \)
 \((\mathcal{Y} = \{1, 2, 3, 4\})\)
- Other examples: hand-written digits, \cdots
Other types of output space - Multi-label prediction

- Multi-class problem: Each sample only has one label
- Multi-label problem: Each sample can have multiple labels

Examples:
- Document categorization (news/sports/economy/···)
- Document/image tagging
- Extreme classification (large output space problems): Millions of billions of labels (but usually each sample only has few labels)
- Recommendation systems: Predict a subset of preferred items for each user
- Document retrieval or search: Predict a subset of related articles for a query
Multi-class problem: Each sample only has one label
Multi-label problem: Each sample can have multiple labels

Example:
- Document categorization (news/sports/economy/⋯)
- Document/image tagging
- ⋅⋅⋅
Multi-class problem: Each sample only has one label
Multi-label problem: Each sample can have multiple labels

Example:
- Document categorization (news/sports/economy/⋯)
- Document/image tagging
- ⋮

Extreme classification (large output space problems):
- Millions of billions of labels (but usually each sample only has few labels)
- Recommendation systems: Predict a subset of preferred items for each user
- Document retrieval or search: Predict a subset of related articles for a query
Other types of output space - structure predict

- Output as exponential

 ![Diagram of pronoun, verb, noun labels]

- Multiclass classification for each word (word ⇒ word class)
 (not using information of the whole sentence)

- Structure prediction problem:
 sentence ⇒ structure (class of each word)

- Other examples: speech recognition, image captioning, machine translation, ...
Machine Learning Problems

Machine learning problems can usually be categorized into

- **Supervised learning**: every x_n comes with y_n (label)

 (semi-supervised learning)

- **Unsupervised learning**: only x_n, no y_n

- **Reinforcement learning**:

 Examples contain (input, some output, grade for this output)
Unsupervised Learning (no y_n)

- Clustering: given examples x_1, \ldots, x_N, classify them into K classes
- Other unsupervised learning:
 - Outlier detection: $\{x_n\} \Rightarrow \text{unusual}(x)$
 - Dimensional reduction
 - ...
Semi-supervised learning

- Only some (few) x_n has y_n
- Labeled data is much more expensive than unlabeled data
Reinforcement Learning

- Used a lot in game AI, robotic controls
 - Agent observe state S_t
 - Agent conduct action A_t
 (ML model, based on input S_t)
 - Environment gives agent reward R_t
 - Environment gives agent next state S_{t+1}
- Only observe “grade” for a certain action (best action is not revealed)
- Ads system: (customer, ad choice, click or not)
Conclusions

- Basic concept of learning:
 - Set up a hypothesis space (potential functions)
 - Define an error measurement (define the quality of each function based on data)
 - Develop an algorithm to choose a good hypothesis based on the error measurement (optimization)
- A perceptron algorithm (linear classification)
- Binary classification, multiclass, multilabel, structural prediction
- Supervised vs unsupervised learning

Questions?