Reducing M to finite number
Where did the M come from?

- The Bad events B_m:

 \[|E_{\text{tr}}(h_m) - E(h_m)| > \epsilon \]
 with probability \(\leq 2e^{-2\epsilon^2 N} \)
Where did the M come from?

- The Bad events B_m:

 \[\left| E_{tr}(h_m) - E(h_m) \right| > \epsilon \]
 with probability $\leq 2e^{-2\epsilon^2 N}$

- The union bound:

 \[
 P[B_1 \text{ or } B_2 \text{ or } \cdots \text{ or } B_M]
 \leq P[B_1] + P[B_2] + \cdots + P[B_M]
 \leq 2M e^{-2\epsilon^2 N}
 \]

 consider worst case: no overlaps

Diagram:

- No overlap: bound is tight
- Large overlap
Can we improve on M?

The event that $|E_{tr}(h_1) - E(h_1)| > \epsilon$ and $|E_{tr}(h_2) - E(h_2)| > \epsilon$ are largely overlapped.
What can we replace M with?

Instead of the whole input space
What can we replace M with?

Instead of the whole input space
Let’s consider a finite set of input points
What can we replace M with?

Instead of the whole input space
Let’s consider a finite set of input points
How many patterns of colors can you get?
Dichotomies: mini-hypotheses

- A hypothesis: $h : \mathcal{X} \rightarrow \{-1, +1\}$
- A dichotomy: $h : \{x_1, x_2, \cdots, x_N\} \rightarrow \{-1, +1\}$

Number of hypotheses $|H|$ can be infinite
Number of dichotomies $|H(x_1, x_2, \cdots, x_N)|$:

\Rightarrow Candidate for replacing M
Dichotomies: mini-hypotheses

- A hypothesis: \(h : \mathcal{X} \rightarrow \{-1, +1\} \)
- A dichotomy: \(h : \{x_1, x_2, \cdots, x_N\} \rightarrow \{-1, +1\} \)
- Number of hypotheses \(|\mathcal{H}|\) can be infinite
- Number of dichotomies \(|\mathcal{H}(x_1, x_2, \cdots, x_N)|\):
 at most \(2^N\)
Dichotomies: mini-hypotheses

- A hypothesis: \(h : \mathcal{X} \rightarrow \{-1, +1\} \)
- A dichotomy: \(h : \{x_1, x_2, \cdots, x_N\} \rightarrow \{-1, +1\} \)
- Number of hypotheses \(|\mathcal{H}| \) can be infinite
- Number of dichotomies \(|\mathcal{H}(x_1, x_2, \cdots, x_N)| \): at most \(2^N \)
 \(\Rightarrow \) Candidate for replacing \(M \)
The growth function

The growth function counts the most dichotomies on any N points:

$$m_{\mathcal{H}}(N) = \max_{x_1, \ldots, x_N \in \mathcal{X}} |\mathcal{H}(x_1, \ldots, x_N)|$$
The growth function

- The growth function counts the most dichotomies on any N points:

$$m_{\mathcal{H}}(N) = \max_{x_1, \ldots, x_N \in \mathcal{X}} |\mathcal{H}(x_1, \ldots, x_N)|$$

- The growth function satisfies:

$$m_{\mathcal{H}}(N) \leq 2^N$$
Growth function for linear classifiers

Compute $m_{\mathcal{H}}(3)$ in 2-D space

What's $|\mathcal{H}(x_1, x_2, x_3)|$?
Growth function for linear classifiers

Compute $m_{\mathcal{H}}(3)$ in 2-D space when \mathcal{H} is perceptron (linear hyperplanes)

\[m_{\mathcal{H}}(3) = 8 \]
Growth function for linear classifiers

Compute $m_{\mathcal{H}}(3)$ in 2-D space when \mathcal{H} is perceptron (linear hyperplanes)
Growth function for linear classifiers

Compute $m_{\mathcal{H}}(3)$ in 2-D space when \mathcal{H} is perceptron (linear hyperplanes)

Doesn’t matter because we only counts the most dichotomies
Growth function for linear classifiers

- What’s $m_\mathcal{H}(4)$?
Growth function for linear classifiers

- What’s $m_{\mathcal{H}}(4)$?
- (At least) **missing** two dichotomies:
Growth function for linear classifiers

- What's $m_{\mathcal{H}}(4)$?
- (At least) missing two dichotomies:

 \[m_{\mathcal{H}}(4) = 14 < 2^4 \]
Example I: positive rays

$h(x) = -1$

$x_1 \ x_2 \ x_3 \ \ldots$

a \hfill $h(x) = +1$

x_N

\mathcal{H} is set of $h: \mathbb{R} \rightarrow \{-1, +1\}$

$h(x) = \text{sign}(x - a)$

$m_{\mathcal{H}}(N) = N + 1$
Example II: positive intervals

\[h(x) = -1 \quad h(x) = +1 \quad h(x) = -1 \]

\[x_1 \quad x_2 \quad x_3 \quad \ldots \quad x_N \]

\[\mathcal{H} \] is set of \(h: \mathbb{R} \rightarrow \{-1, +1\} \)

Place interval ends in two of \(N + 1 \) spots

\[m_{\mathcal{H}}(N) = \binom{N+1}{2} + 1 = \frac{1}{2}N^2 + \frac{1}{2}N + 1 \]
Example III: convex sets

- \mathcal{H} is set of $h : \mathbb{R}^2 \to \{-1, +1\}$

 $h(x) = +1$ is convex

- How many dichotomies can we generate?
Example III: convex sets

- \mathcal{H} is set of $h : \mathbb{R}^2 \to \{-1, +1\}$

 $h(x) = +1$ is convex

- How many dichotomies can we generate?
Example III: convex sets

- \mathcal{H} is set of $h : \mathbb{R}^2 \to \{-1, +1\}$

 $h(x) = +1$ is convex

- How many dichotomies can we generate?
Example III: convex sets

- \mathcal{H} is set of $h : \mathbb{R}^2 \rightarrow \{-1, +1\}$

 $h(x) = +1$ is convex

- $m_\mathcal{H}(N) = 2^N$ for any N

 \Rightarrow We say the N points are “shattered” by h
The 3 growth functions

- \mathcal{H} is positive rays:
 \[m_{\mathcal{H}}(N) = N + 1 \]

- \mathcal{H} is positive intervals:
 \[m_{\mathcal{H}}(N) = \frac{1}{2}N^2 + \frac{1}{2}N + 1 \]

- \mathcal{H} is convex sets:
 \[m_{\mathcal{H}}(N) = 2^N \]
What’s next?

- Remember the inequality

\[\mathbb{P}[|E_{in} - E_{out}| > \epsilon] \leq 2M e^{-2\epsilon^2 N} \]
What’s next?

• Remember the inequality

\[\mathbb{P}[|E_{\text{in}} - E_{\text{out}}| > \epsilon] \leq 2Me^{-2\epsilon^2N} \]

• What happens if we replace \(M \) by \(m_H(N) \)?
 \(m_H(N) \) polynomial \(\Rightarrow \) Good!
What’s next?

- Remember the inequality

\[\mathbb{P}[|E_{\text{in}} - E_{\text{out}}| > \epsilon] \leq 2M e^{-2\epsilon^2 N} \]

- What happens if we replace \(M \) by \(m_{\mathcal{H}}(N) \)?

 \(m_{\mathcal{H}}(N) \) polynomial \(\Rightarrow \) Good!

- How to show \(m_{\mathcal{H}}(N) \) is polynomial?
When will $m_H(N)$ be polynomial
Break point of \mathcal{H}

- If no data set of size k can be shattered by \mathcal{H}, then k is a break point for \mathcal{H}
 \[m_{\mathcal{H}}(k) < 2^k \]

- VC dimension of \mathcal{H}: $k - 1$ (the most points \mathcal{H} can shatter)
Break point of \mathcal{H}

- If no data set of size k can be shattered by \mathcal{H}, then k is a break point for \mathcal{H}

 $$m_{\mathcal{H}}(k) < 2^k$$

- VC dimension of \mathcal{H}: $k - 1$ (the most points \mathcal{H} can shatter)

- For 2-D perceptron: $k = 4$, VC dimension = 3
Break point - examples

- Positive rays: $m_\mathcal{H}(N) = N + 1$

 Break point $k = 2$, $d_{VC} = 1$
Break point - examples

- **Positive rays:** $m_{\mathcal{H}}(N) = N + 1$

 Break point $k = 2$, $d_{VC} = 1$

- **Positive intervals:** $m_{\mathcal{H}}(N) = \frac{1}{2} N^2 + \frac{1}{2} N + 1$

 Break point $k = 3$, $d_{VC} = 2$
Break point - examples

- Positive rays: \(m_\mathcal{H}(N) = N + 1 \)
 Break point \(k = 2, \ d_{VC} = 1 \)
- Positive intervals: \(m_\mathcal{H}(N) = \frac{1}{2} N^2 + \frac{1}{2} N + 1 \)
 Break point \(k = 3, \ d_{VC} = 2 \)
- Convex set: \(m_\mathcal{H}(N) = 2^N \)
 Break point \(k = \infty, \ d_{VC} = \infty \)
We will show

No break point $\Rightarrow m_{\mathcal{H}}(N) = 2^N$

Any break point $\Rightarrow m_{\mathcal{H}}(N)$ is polynomial in N
Puzzle

- Break point is $k = 2$
Break point is $k = 2$
Puzzle

- Break point is \(k = 2 \)

<table>
<thead>
<tr>
<th></th>
<th>(x_i)</th>
<th>(x_j)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1)</td>
<td>(x_2)</td>
<td>(x_3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- The graph on the left shows an incorrect pairing, indicated by the red X.
- The table on the right correctly assigns the values for \(x_1, x_2, \) and \(x_3 \).
Puzzle

- Break point is $k = 2$
Break point is $k = 2$
Bounding $m_{\mathcal{H}}(N)$

- Key quantity:

 $B(N, k)$: Maximum number of dichotomies on N points, with break point k
Bounding $m_{\mathcal{H}}(N)$

- Key quantity:
 \[B(N, k) \]: Maximum number of dichotomies on N points, with break point k
- If the hypothesis space has break point k, then
 \[m_{\mathcal{H}}(N) \leq B(N, k) \]
Recursive bound on $B(N, k)$

- For any “valid” set of dichotomies, reorganize rows by
 - S_1: pattern of x_1, \cdots, x_{N-1} only appears once
 - S_2^+, S_2^-: pattern of x_1, \cdots, x_{N-1} appears twice

<table>
<thead>
<tr>
<th># of rows</th>
<th>S_1</th>
<th>S_2^+</th>
<th>S_2</th>
<th>S_2^-</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td></td>
<td>-1</td>
<td>+1</td>
<td>+1</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td></td>
<td>+1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
</tr>
</tbody>
</table>

$B(N, k) = \alpha + 2\beta$
Recursive bound on $B(N, k)$

- Focus on $x_1, x_2, \ldots, x_{N-1}$ columns:

 $\alpha + \beta \leq B(N - 1, k)$

<table>
<thead>
<tr>
<th></th>
<th># of rows</th>
<th>x_1</th>
<th>x_2</th>
<th>$x_N - 1$</th>
<th>x_N</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>α</td>
<td>+1</td>
<td>+1</td>
<td>\ldots</td>
<td>+1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>−1</td>
<td>+1</td>
<td>\ldots</td>
<td>+1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+1</td>
<td>−1</td>
<td>\ldots</td>
<td>−1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>−1</td>
<td>+1</td>
<td>\ldots</td>
<td>−1</td>
</tr>
</tbody>
</table>

S_2^+	β	+1	−1	\ldots	+1	+1
		−1	−1	\ldots	+1	+1
		\vdots	\vdots	\vdots	\vdots	\vdots
		+1	−1	\ldots	+1	+1
		−1	−1	\ldots	−1	+1

S_2^-	β	+1	−1	\ldots	+1	−1
		−1	−1	\ldots	+1	−1
		\vdots	\vdots	\vdots	\vdots	\vdots
		+1	−1	\ldots	−1	−1
		−1	−1	\ldots	−1	−1
Recursive bound on $B(N, k)$

- Now focus on the $S_2 = S^+_2 \cup S^- + 2$ rows
 $\beta \leq B(N - 1, k - 1)$

<table>
<thead>
<tr>
<th></th>
<th># of rows</th>
<th>x_1</th>
<th>x_2</th>
<th>...</th>
<th>x_{N-1}</th>
<th>x_N</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>α</td>
<td>+1</td>
<td>+1</td>
<td>...</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1</td>
<td>+1</td>
<td>...</td>
<td>+1</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>:</td>
<td>:</td>
<td></td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+1</td>
<td>-1</td>
<td>...</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1</td>
<td>+1</td>
<td>...</td>
<td>-1</td>
<td>+1</td>
</tr>
<tr>
<td>S^+_2</td>
<td>β</td>
<td>+1</td>
<td>-1</td>
<td>...</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1</td>
<td>-1</td>
<td>...</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>:</td>
<td>:</td>
<td></td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+1</td>
<td>-1</td>
<td>...</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1</td>
<td>-1</td>
<td>...</td>
<td>-1</td>
<td>+1</td>
</tr>
<tr>
<td>S^-_2</td>
<td>β</td>
<td>+1</td>
<td>-1</td>
<td>...</td>
<td>+1</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1</td>
<td>-1</td>
<td>...</td>
<td>+1</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>:</td>
<td>:</td>
<td></td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+1</td>
<td>-1</td>
<td>...</td>
<td>+1</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1</td>
<td>-1</td>
<td>...</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>
Recursive bound on $B(N, k)$

$$B(N, k) = \alpha + \beta + \beta$$

$$\leq B(N - 1, k) + B(N - 1, k - 1)$$

What’s the upper bound for $B(N, k)$?
Recursive bound on $B(N, k)$

$$B(N, k) = \alpha + \beta + \beta \leq B(N - 1, k) + B(N - 1, k - 1)$$
Recursive bound on $B(N, k)$

\[B(N, k) = \alpha + \beta + \beta \leq B(N - 1, k) + B(N - 1, k - 1) \]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>......</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Recursive bound on $B(N, k)$

$$B(N, k) = \alpha + \beta + \beta$$

$$\leq B(N - 1, k) + B(N - 1, k - 1)$$
Recursive bound on $B(N, k)$

\[
B(N, k) = \alpha + \beta + \beta \\
\leq B(N - 1, k) + B(N - 1, k - 1)
\]

<table>
<thead>
<tr>
<th>N</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>......</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>......</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>..</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Recursive bound on $B(N, k)$

\[
B(N, k) = \alpha + \beta + \beta \\
\leq B(N - 1, k) + B(N - 1, k - 1)
\]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>......</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>......</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>......</td>
</tr>
<tr>
<td>N</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Recursive bound on $B(N, k)$

\[B(N, k) = \alpha + \beta + \beta \leq B(N - 1, k) + B(N - 1, k - 1) \]
Analytic solution for $B(N, k)$ bound

$B(N, k)$ is upper bounded by $C(N, k)$:

\[C(N, 1) = 1, \quad N = 1, 2, \cdots \]
\[C(1, k) = 2, \quad k = 2, 3, \cdots \]
\[C(N, k) = C(N - 1, k) + C(N - 1, k - 1) \]

- Theorem: $C(N, k) = \sum_{i=0}^{k-1} \binom{N}{i}$
Analytic solution for $B(N, k)$ bound

$B(N, k)$ is upper bounded by $C(N, k)$:

\[
C(N, 1) = 1, \quad N = 1, 2, \cdots \\
C(1, k) = 2, \quad k = 2, 3, \cdots \\
C(N, k) = C(N - 1, k) + C(N - 1, k - 1)
\]

- Theorem: $C(N, k) = \sum_{i=0}^{k-1} \binom{N}{i}$
- Boundary conditions: (easy to check)
Analytic solution for $B(N, k)$ bound

$B(N, k)$ is upper bounded by $C(N, k)$:

$$C(N, 1) = 1, \ N = 1, 2, \cdots$$

$$C(1, k) = 2, \ k = 2, 3, \cdots$$

$$C(N, k) = C(N - 1, k) + C(N - 1, k - 1)$$

- **Theorem:** $C(N, k) = \sum_{i=0}^{k-1} \binom{N}{i}$
- **Boundary conditions:** (easy to check)
- **Induction:**

\[
\sum_{i=0}^{k-1} \binom{N}{i} = \sum_{i=0}^{k-1} \binom{N - 1}{i} + \sum_{i=0}^{k-2} \binom{N - 1}{i}
\]

- select $< k$ from N items
- N-th item not chosen
- N-th item chosen
It is polynomial!

For a given \mathcal{H}, the break point k is fixed:

$$m_{\mathcal{H}}(N) \leq \sum_{i=0}^{k-1} \binom{N}{i}$$

Polynomial with degree $k - 1$
It is polynomial!

- For a given \mathcal{H}, the break point k is fixed:

$$m_{\mathcal{H}}(N) \leq \sum_{i=0}^{k-1} \binom{N}{i}$$

Polynomial with degree k

- \mathcal{H} is positive rays: (break point $k = 2$)

$$m_{\mathcal{H}}(N) = N + 1$$
It is polynomial!

- For a given \mathcal{H}, the break point k is fixed:

\[m_{\mathcal{H}}(N) \leq \sum_{i=0}^{k-1} \binom{N}{i} \]

Polynomial with degree k

- \mathcal{H} is 2D perceptrons: (break point $k = 4$)

\[m_{\mathcal{H}}(N) =? \]
For a given \mathcal{H}, the break point k is fixed:

$$m_{\mathcal{H}}(N) \leq \sum_{i=0}^{k-1} \binom{N}{i}$$

Polynomial with degree k

\mathcal{H} is 2D perceptrons: (break point $k = 4$)

$$m_{\mathcal{H}}(N) \leq \frac{1}{6}N^3 + \frac{5}{6}N + 1$$
Replace M by $m_\mathcal{H}(N)$

- Original bound:
\[
P[\exists h \in \mathcal{H} \text{ s.t. } |E_{tr}(h) - E(h)| > \epsilon] \leq 2M e^{-2\epsilon^2N}
\]

- Replace M by $m_\mathcal{H}(N)$
\[
P[\exists h \in \mathcal{H} \text{ s.t. } |E_{tr}(h) - E(h)| > \epsilon] \leq 2 \cdot 2m_\mathcal{H}(2N) \cdot e^{-\frac{1}{8} \epsilon^2 N}
\]

Vapnik-Chervonenkis (VC) bound
VC Dimension
The VC dimension of a hypothesis set \mathcal{H}, denoted by $d_{\text{VC}}(\mathcal{H})$, is the largest value of N for which $m_\mathcal{H}(N) = 2^N$

“the most points \mathcal{H} can shatter”
Definition

- The VC dimension of a hypothesis set \mathcal{H}, denoted by $d_{VC}(\mathcal{H})$, is the largest value of N for which $m_\mathcal{H}(N) = 2^N$

 "the most points \mathcal{H} can shatter"

- $N \leq d_{VC}(\mathcal{H}) \Rightarrow \mathcal{H}$ can shatter N points
Definition

- The VC dimension of a hypothesis set \mathcal{H}, denoted by $d_{VC}(\mathcal{H})$, is the largest value of N for which $m_{\mathcal{H}}(N) = 2^N$

 "the most points \mathcal{H} can shatter"

- $N \leq d_{VC}(\mathcal{H}) \Rightarrow \mathcal{H}$ can shatter N points
- $k > d_{VC}(\mathcal{H}) \Rightarrow \mathcal{H}$ cannot be shattered
- The smallest **break point** is 1 above VC-dimension
The growth function

- In terms of a break point k:
 \[m_{\mathcal{H}}(N) \leq \sum_{i=0}^{k-1} \binom{N}{i} \]

- In terms of the VC dimension d_{VC}:
 \[m_{\mathcal{H}}(N) \leq \sum_{i=0}^{d_{\text{VC}}} \binom{N}{i} \]
VC dimension of linear classifiers

- For $d = 2$, $d_{VC} = 3$
VC dimension of linear classifiers

- For $d = 2$, $d_{VC} = 3$
- What if $d > 2$?
VC dimension of linear classifiers

- For $d = 2$, $d_{VC} = 3$
- What if $d > 2$?

In general,

$$d_{VC} = d + 1$$
For $d = 2$, $d_{VC} = 3$

What if $d > 2$?

In general,

$$d_{VC} = d + 1$$

We will prove $d_{VC} \geq d + 1$ and $d_{VC} \leq d + 1$
VC dimension of linear classifiers

To prove $d_{VC} \geq d + 1$
VC dimension of linear classifiers

- To prove $d_{VC} \geq d + 1$
- A set of $N = d + 1$ points in \mathbb{R}^d shattered by the linear hyperplane

\[
X = \begin{bmatrix}
- x_1^T \\
- x_2^T \\
- x_3^T \\
\vdots \\
- x_{d+1}^T
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 0 & \ldots & 0 \\
1 & 1 & 0 & \ldots & 0 \\
1 & 0 & 1 & 0 \\
\vdots & \vdots & \vdots & 0 \\
1 & 0 & \ldots & 0 & 1
\end{bmatrix}
\]
VC dimension of linear classifiers

- To prove $d_{VC} \geq d + 1$
- A set of $N = d + 1$ points in \mathbb{R}^d shattered by the linear hyperplane

$$X = \begin{bmatrix}
-x_1^T \\
-x_2^T \\
-x_3^T \\
\vdots \\
-x_{d+1}^T
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 0 & \ldots & 0 \\
1 & 1 & 0 & \ldots & 0 \\
1 & 0 & 1 & & 0 \\
\vdots & & \ddots & \ddots & \ddots \\
1 & 0 & \ldots & 0 & 1
\end{bmatrix}$$

- X is invertible!
Can we shatter the dataset?

For any \(y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_{d+1} \end{bmatrix} = \begin{bmatrix} \pm 1 \\ \pm 1 \\ \vdots \\ \pm 1 \end{bmatrix} \), can we find \(w \) satisfying

\[
\text{sign}(Xw) = y
\]
Can we shatter the dataset?

For any \(y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_{d+1} \end{bmatrix} = \begin{bmatrix} \pm 1 \\ \pm 1 \\ \vdots \\ \pm 1 \end{bmatrix} \), can we find \(w \) satisfying

\[
\text{sign}(Xw) = y
\]

Easy! Just set \(w = X^{-1}y \)
Can we shatter the dataset?

For any \(y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_{d+1} \end{bmatrix} = \begin{bmatrix} \pm 1 \\ \pm 1 \\ \vdots \\ \pm 1 \end{bmatrix} \), can we find \(w \) satisfying

\[
\text{sign}(Xw) = y
\]

Easy! Just set \(w = X^{-1}y \)

So, \(d_{VC} \geq d + 1 \)
VC dimension of linear classifiers

To show $d_{VC} \leq d + 1$, we need to show

We cannot shatter any set of $d + 2$ points
VC dimension of linear classifiers

• To show $d_{VC} \leq d + 1$, we need to show

 We cannot shatter any set of $d + 2$ points

• For any $d + 2$ points

 \[x_1, x_2, \ldots, x_{d+1}, x_{d+2} \]

• More points than dimensions \Rightarrow linear dependent

 \[x_j = \sum_{i \neq j} a_i x_i \]

 where not all a_i’s are zeros
VC dimension of linear classifiers

\[x_j = \sum_{i \neq j} a_i x_i \]

Now we construct a dichotomy that cannot be generated:

\[y_i = \begin{cases}
\text{sign}(a_i) & \text{if } i \neq j \\
-1 & \text{if } i = j
\end{cases} \]
VC dimension of linear classifiers

\[x_j = \sum_{i \neq j} a_i x_i \]

- Now we construct a dichotomy that cannot be generated:
 \[y_i = \begin{cases}
 \text{sign}(a_i) & \text{if } i \neq j \\
 -1 & \text{if } i = j
 \end{cases} \]

- For all \(i \neq j \), assume the labels are correct: \(\text{sign}(a_i) = \text{sign}(w^T x_i) \)
 \[\Rightarrow a_i w^T x_i > 0 \]
VC dimension of linear classifiers

\[x_j = \sum_{i \neq j} a_i x_i \]

- Now we construct a dichotomy that cannot be generated:

\[y_i = \begin{cases}
\text{sign}(a_i) & \text{if } i \neq j \\
-1 & \text{if } i = j
\end{cases} \]

- For all \(i \neq j \), assume the labels are correct: \(\text{sign}(a_i) = \text{sign}(w^T x_i) \)
 \[\Rightarrow a_i w^T x_i > 0 \]

- For \(j \)-th data,

\[w^T x_j = \sum_{i \neq j} a_i w^T x_i > 0 \]

- Therefore, \(y_j = \text{sign}(w^T x_j) = +1 \) (cannot be \(-1\))
We proved for d-dimensional linear hyperplane

\[d_{VC} \leq d + 1 \text{ and } d_{VC} \geq d + 1 \implies d_{VC} = d + 1 \]
Putting it together

- We proved for d-dimensional linear hyperplane

\[d_{VC} \leq d + 1 \quad \text{and} \quad d_{VC} \geq d + 1 \Rightarrow \quad d_{VC} = d + 1 \]

- Number of parameters w_0, \cdots, w_d

 $d + 1$ parameters!
Putting it together

- We proved for \(d \)-dimensional linear hyperplane

\[
d_{VC} \leq d + 1 \text{ and } d_{VC} \geq d + 1 \Rightarrow d_{VC} = d + 1
\]

- Number of parameters \(w_0, \cdots, w_d \)

\(d + 1 \) parameters!

- Parameters create degrees of freedom
Examples

- Positive rays: 1 parameters, $d_{\text{VC}} = 1$

\[h(x) = -1 \quad a \quad h(x) = +1 \]
Examples

- **Positive rays:** 1 parameters, $d_{\text{VC}} = 1$

 $h(x) = -1$ \hspace{1cm} \hspace{1cm} $h(x) = +1$

 \hspace{1cm} \hspace{1cm} a

- **Positive intervals:** 2 parameters, $d_{\text{VC}} = 2$

 $h(x) = -1$ \hspace{1cm} $h(x) = +1$ \hspace{1cm} $h(x) = -1$
Examples

- Positive rays: 1 parameters, $d_{VC} = 1$

- Positive intervals: 2 parameters, $d_{VC} = 2$

- Not always true • • •

 d_{VC} measures the effective number of parameters
Number of data points needed

\[\Pr[|E_{\text{in}}(g) - E_{\text{out}}(g)| > \epsilon] \leq 4m_H(2N)e^{-\frac{1}{8}\epsilon^2N^2} \]

- If we want certain \(\epsilon \) and \(\delta \), how does \(N \) depend on \(d_{VC} \)?
Number of data points needed

\[P[|E_{\text{in}}(g) - E_{\text{out}}(g)| > \epsilon] \leq 4m_H(2N)e^{-\frac{1}{8}\epsilon^2N} \]

- If we want certain \(\epsilon \) and \(\delta \), how does \(N \) depend on \(d_{\text{VC}} \)?
- Need \(N^d e^{-N} = \text{small value} \)
Number of data points needed

\[P[|E_{in}(g) - E_{out}(g)| > \epsilon] \leq 4m_{\mathcal{H}}(2N)e^{-\frac{1}{8}\epsilon^2N} \]

- If we want certain \(\epsilon \) and \(\delta \), how does \(N \) depend on \(d_{\text{VC}} \)?
- Need \(N^d e^{-N} = \text{small value} \)

\(N \) is almost linear with \(d_{\text{VC}} \)
Regularization
The polynomial model

- \mathcal{H}_Q: polynomials of order Q

$$\mathcal{H}_Q = \{ \sum_{q=0}^{Q} w_q L_q(x) \}$$

- Linear regression in the \mathcal{Z} space with

$$z = [1, L_1(x), \cdots, L_Q(x)]$$
Unconstrained solution

- Input \((x_1, y_1), \cdots, (x_N, y_N) \rightarrow (z_1, y_1), \cdots, (z_N, y_N)\)
- Linear regression:

\[
\text{Minimize } E_{tr}(w) = \frac{1}{N} \sum_{n=1}^{N} (w^T z_n - y_n)^2
\]

\[
\text{Minimize } \frac{1}{N} (Zw - y)^T (Zw - y)
\]

- Solution \(w_{tr} = (Z^T Z)^{-1} Z^T y\)
Constraining the weights

- Hard constraint: \mathcal{H}_2 is constrained version of \mathcal{H}_{10}
 (with $w_q = 0$ for $q > 2$)
Constraining the weights

- **Hard constraint:** \mathcal{H}_2 is constrained version of \mathcal{H}_{10}

 (with $w_q = 0$ for $q > 2$)

- **Soft-order constraint:** $\sum_{q=0}^{Q} w_q^2 \leq C$

The problem given soft-order constraint:

$$\text{Minimize } 1_N (Zw - y)^T (Zw - y) \text{ s.t. } w^T w \leq C$$
Constraining the weights

- Hard constraint: \mathcal{H}_2 is constrained version of \mathcal{H}_{10}
 (with $w_q = 0$ for $q > 2$)
- Soft-order constraint: $\sum_{q=0}^{Q} w_q^2 \leq C$
- The problem given soft-order constraint:

 $\min_{w} \frac{1}{N} (Zw - y)^T (Zw - y)$ s.t. $w^T w \leq C$

 smaller hypothesis space

- Solution w_{reg} instead of w_{tr}
Equivalent to the unconstrained version

- Constrained version:

\[
\min_w E_{tr}(w) = \frac{1}{N}(Zw - y)^T(Zw - y) \quad \text{s.t.} \quad w^T w \leq C
\]

- Optimal when

\[
\nabla E_{tr}(w_{\text{reg}}) \propto -w_{\text{reg}}
\]

Why? If \(-\nabla E_{tr}(w)\) and \(w\) are not parallel, can decrease \(E_{tr}(w)\) without violating the constraint
Equivalent to the unconstrained version

Constrained version:

\[
\min_w E_{\text{tr}}(w) = \frac{1}{N} (Zw - y)^T(Zw - y) \text{ s.t. } w^T w \leq C
\]

Optimal when

\[
\nabla E_{\text{tr}}(w_{\text{reg}}) \propto -w_{\text{reg}}
\]

Assume \(\nabla E_{\text{tr}}(w_{\text{reg}}) = -2 \frac{1}{N} w_{\text{reg}} \)

\[\Rightarrow \nabla E_{\text{tr}}(w_{\text{reg}}) + 2 \frac{1}{N} w_{\text{reg}} = 0 \]
Equivalent to the unconstrained version

- **Constrained version:**
 \[
 \min_w E_{\text{tr}}(w) = \frac{1}{N} (Zw - y)^T (Zw - y) \quad \text{s.t.} \quad w^T w \leq C
 \]

- **Optimal when**
 \[
 \nabla E_{\text{tr}}(w_{\text{reg}}) \propto -w_{\text{reg}}
 \]

- **Assume** \(\nabla E_{\text{tr}}(w_{\text{reg}}) = -2 \frac{1}{N} w_{\text{reg}} \)
 \[
 \Rightarrow \nabla E_{\text{tr}}(w_{\text{reg}}) + 2 \frac{1}{N} w_{\text{reg}} = 0
 \]

- **\(w_{\text{reg}} \) is also the solution of unconstrained problem**
 \[
 \min_w E_{\text{tr}}(w) + \frac{\lambda}{N} w^T w
 \]

(Ridge regression!)
Equivalent to the unconstrained version

- Constrained version:
 \[
 \min_w E_{\text{tr}}(w) = \frac{1}{N}(Zw - y)^T(Zw - y) \quad \text{s.t.} \quad w^T w \leq C
 \]

- Optimal when
 \[
 \nabla E_{\text{tr}}(w_{\text{reg}}) \propto -w_{\text{reg}}
 \]

- Assume \(\nabla E_{\text{tr}}(w_{\text{reg}}) = -2\frac{\lambda}{N}w_{\text{reg}} \)
 \[
 \Rightarrow \nabla E_{\text{tr}}(w_{\text{reg}}) + 2\frac{\lambda}{N}w_{\text{reg}} = 0
 \]

- \(w_{\text{reg}} \) is also the solution of unconstrained problem
 \[
 \min_w E_{\text{tr}}(w) + \frac{\lambda}{N}w^T w
 \]

(Ridge regression!)

\(C \uparrow \lambda \downarrow \)
Ridge regression solution

\[
\min_w E_{\text{reg}}(w) = \frac{1}{N} \left((Zw - y)^T (Zw - y) + \lambda w^T w \right)
\]

\[\nabla E_{\text{reg}}(w) = 0 \implies Z^T Z(w - y) + \lambda w = 0
\]
Ridge regression solution

\[
\min_w E_{\text{reg}}(w) = \frac{1}{N} \left((Zw - y)^T (Zw - y) + \lambda w^T w \right)
\]

\[
\nabla E_{\text{reg}}(w) = 0 \Rightarrow Z^T Z (w - y) + \lambda w = 0
\]

So, \(w_{\text{reg}} = (Z^T Z + \lambda I)^{-1} Z^T y \) (with regularization)
as opposed to \(w_{\text{tr}} = (Z^T Z)^{-1} Z^T y \) (without regularization)
The result

\[\min_w E_{\text{tr}}(w) + \frac{\lambda}{N} w^T w \]

\(\lambda = 0 \) \hspace{1cm} \(\lambda = 0.0001 \) \hspace{1cm} \(\lambda = 0.01 \) \hspace{1cm} \(\lambda = 1 \)

overfitting \hspace{1cm} \rightarrow \hspace{1cm} \rightarrow \hspace{1cm} \rightarrow \hspace{1cm} \rightarrow \hspace{1cm} \text{underfitting}
Equivalent to “weight decay”

Consider the general case

\[
\min_w E_{tr}(w) + \frac{\lambda}{N} w^T w
\]
Equivalent to “weight decay”

- Consider the general case

\[
\min_w E_{tr}(w) + \frac{\lambda}{N} w^T w
\]

- Gradient descent:

\[
w_{t+1} = w_t - \eta \left(\nabla E_{tr}(w_t) + 2\frac{\lambda}{N} w_t \right)
\]

\[
= w_t \left(1 - 2\eta \frac{\lambda}{N} \right) - \eta \nabla E_{tr}(w_t)
\]

\[\text{weight decay}\]
Variations of weight decay

- Emphasis of certain weights:

\[
\sum_{q=0}^{Q} \gamma_q w_q^2
\]

- Example 1: \(\gamma_q = 2^q \Rightarrow \text{low-order fit} \)
- Example 2: \(\gamma_q = 2^{-q} \Rightarrow \text{high-order fit} \)
Variations of weight decay

- Emphasis of certain weights:

\[
\sum_{q=0}^{Q} \gamma_q w_q^2
\]

- Example 1: \(\gamma_q = 2^q\) \(\Rightarrow\) low-order fit
- Example 2: \(\gamma_q = 2^{-q}\) \(\Rightarrow\) high-order fit

- General Tikhonov regularizer:

\[
w^T H w
\]

with a positive semi-definite \(H\)
General form of regularizer

- Calling the regularizer $\Omega = \Omega(h)$, we minimize

$$E_{\text{reg}}(h) = E_{\text{tr}}(h) + \frac{\lambda}{N} \Omega(h)$$

- In general, $\Omega(h)$ can be any measurement for the “size” of h
L1-regularizer: $\Omega(w) = \|w\|_1 = \sum_q |w_q|$

- Usually leads to a **sparse solution**
 - (only few w_q will be nonzero)
Conclusions

- VC dimension
- Regularization

Questions?