CS260: Machine Learning Algorithms
Lecture 9: Tree-based Methods

Cho-Jui Hsieh
UCLA

Feb 11, 2019
Outline

- Decision Tree
- Random Forest
- Gradient Boosted Decision Tree (GBDT)
Decision Tree

- Each node checks one feature \(x_i \):
 - Go left if \(x_i < \text{threshold} \)
 - Go right if \(x_i \geq \text{threshold} \)
A real example

Play tennis or not

- **Outlook**
 - Sunny
 - Rain
 - Overcast
 - Yes
 - High
 - No
 - Normal
 - Yes
- **Humidity**
 - Strong
 - No
 - Weak
 - Yes
- **Wind**
 - Yes
Decision Tree

- **Strength:**
 - It’s a *nonlinear* classifier
 - Better *interpretability*
 - Can naturally handle *categorical* features
Decision Tree

- **Strength:**
 - It’s a *nonlinear* classifier
 - Better *interpretability*
 - Can naturally handle *categorical* features

- **Computation:**
 - Training: *slow*
 - Prediction: *fast*

 \[h \text{ operations (} h: \text{ depth of the tree, usually } \leq 15) \]
Splitting the node

- Classification tree: Split the node to maximize entropy
- Let S be set of data points in a node, $c = 1, \cdots, C$ are labels:

$$
\text{Entropy} : H(S) = - \sum_{c=1}^{C} p(c) \log p(c),
$$

where $p(c)$ is the proportion of the data belong to class c.

- Entropy=0 if all samples are in the same class
- Entropy is large if $p(1) = \cdots = p(C)$

![Entropies](image)

Bad split

\[-(1/3) \log(1/3) - (1/3) \log(1/3) - (1/3) \log(1/3) = 1.58\]

Good split

\[-1 \log*(1) = 0\]
Information Gain

- The averaged entropy of a split $S \rightarrow S_1, S_2$
 $$\frac{|S_1|}{|S|} H(S_1) + \frac{|S_2|}{|S|} H(S_2)$$

- Information gain: measure how good is the split
 $$H(S) - \left(\left(\frac{|S_1|}{|S|}\right) H(S_1) + \left(\frac{|S_2|}{|S|}\right) H(S_2) \right)$$
Information Gain

Entropy = 1.58

Entropy = 1

Entropy = 0

Averaged entropy: \(\frac{2}{3} \times 1 + \frac{1}{3} \times 0 = 0.67 \)

Information gain: \(1.58 - 0.67 = 0.91 \)
Information Gain

Entropy = 1.58

Entropy = 1.52

Entropy = 1.5

Averaged entropy: 1.51

Information gain: 1.58 – 1.51 = 0.07
Splitting the node

Given the current note, how to find the best split?
Splitting the node

- Given the current note, how to find the best split?
- For all the features and all the threshold

 Compute the information gain after the split

 Choose the best one (maximal information gain)
Splitting the node

- Given the current note, how to find the best split?
- For all the features and all the threshold
 - Compute the information gain after the split
 - Choose the best one (maximal information gain)
- For n samples and d features: need $O(nd)$ time
Regression Tree

- Assign a real number for each leaf
- Usually *averaged y values* for each leaf
 (minimize square error)

```
\begin{itemize}
\item y_1=1 \ y_5=2 \ y_6=3
\item y_2=4
\item y_4=1
\item y_3=100 \ y_7=200
\end{itemize}
```
Regression Tree

- Objective function:

\[
\min_F \frac{1}{n} \sum_{i=1}^{n} (y_i - F(x_i))^2 + \text{(Regularization)}
\]

- The quality of partition \(S = S_1 \cup S_2 \) can be computed by the objective function:

\[
\sum_{i \in S_1} (y_i - y^{(1)})^2 + \sum_{i \in S_2} (y_i - y^{(2)})^2,
\]

where \(y^{(1)} = \frac{1}{|S_1|} \sum_{i \in S_1} y_i \), \(y^{(2)} = \frac{1}{|S_2|} \sum_{i \in S_2} y_i \)
Objective function:

\[
\min_F \frac{1}{n} \sum_{i=1}^{n} (y_i - F(x_i))^2 + \text{(Regularization)}
\]

The quality of partition \(S = S_1 \cup S_2 \) can be computed by the objective function:

\[
\sum_{i \in S_1} (y_i - y^{(1)})^2 + \sum_{i \in S_2} (y_i - y^{(2)})^2,
\]

where \(y^{(1)} = \frac{1}{|S_1|} \sum_{i \in S_1} y_i \), \(y^{(2)} = \frac{1}{|S_2|} \sum_{i \in S_2} y_i \)

Find the best split:

Try all the features & thresholds and find the one with \text{minimal} objective function
Parameters

- Maximum depth: (usually ~ 10)
- Minimum number of nodes in each node: (10, 50, 100)
Parameters

- Maximum depth: (usually ~ 10)
- Minimum number of nodes in each node: (10, 50, 100)
- Single decision tree is not very powerful
- Can we build multiple decision trees and ensemble them together?
Random Forest
Random Forest

- Random Forest (Bootstrap ensemble for decision trees):
 - Create T trees
 - Learn each tree using a subsampled dataset S_i and subsampled feature set D_i
 - Prediction: Average the results from all the T trees

- Benefit:
 - Avoid over-fitting
 - Improve stability and accuracy

- Good software available:
 - R: “randomForest” package
 - Python: sklearn
Random Forest
Gradient Boosted Decision Tree
Boosted Decision Tree

- Minimize loss $\ell(y, F(x))$ with $F(\cdot)$ being ensemble trees

$$F^* = \arg\min_F \sum_{i=1}^n \ell(y_i, F(x_i)) \quad \text{with} \quad F(x) = \sum_{m=1}^T f_m(x)$$

(each f_m is a decision tree)
Boosted Decision Tree

- Minimize loss $\ell(y, F(x))$ with $F(\cdot)$ being ensemble trees

$$F^* = \arg\min_F \sum_{i=1}^{n} \ell(y_i, F(x_i)) \quad \text{with} \quad F(x) = \sum_{m=1}^{T} f_m(x)$$

(each f_m is a decision tree)

- Direct loss minimization: at each stage m, find the best function to minimize loss

 - solve $f_m = \arg\min_{f_m} \sum_{i=1}^{N} \ell(y_i, F_{m-1}(x_i) + f_m(x_i))$

 - update $F_m \leftarrow F_{m-1} + f_m$

- $F_m(x) = \sum_{j=1}^{m} f_j(x)$ is the prediction of x after m iterations.
Boosted Decision Tree

- Minimize loss $\ell(y, F(x))$ with $F(\cdot)$ being ensemble trees

$$F^* = \arg\min_F \sum_{i=1}^{n} \ell(y_i, F(x_i)) \quad \text{with} \quad F(x) = \sum_{m=1}^{T} f_m(x)$$

(each f_m is a decision tree)

- Direct loss minimization: at each stage m, find the best function to minimize loss
 - solve $f_m = \arg\min_{f_m} \sum_{i=1}^{N} \ell(y_i, F_{m-1}(x_i) + f_m(x_i))$
 - update $F_m \leftarrow F_{m-1} + f_m$

$F_m(x) = \sum_{j=1}^{m} f_j(x)$ is the prediction of x after m iterations.

- Two problems:
 - Hard to implement for general loss
 - Tend to overfit training data
Gradient Boosted Decision Tree (GBDT)

- Approximate the current loss function by a quadratic approximation:

\[
\sum_{i=1}^{n} \ell_i(\hat{y}_i + f_m(x_i)) \approx \sum_{i=1}^{n} \left(\ell_i(\hat{y}_i) + g_i f_m(x_i) + \frac{1}{2} h_i f_m(x_i)^2 \right) \\
= \sum_{i=1}^{n} \frac{h_i}{2} \| f_m(x_i) - g_i / h_i \|^2 + \text{constant}
\]

where \(g_i = \partial_{\hat{y}_i} \ell_i(\hat{y}_i) \) is gradient, \(h_i = \partial_{\hat{y}_i}^{2} \ell_i(\hat{y}_i) \) is second order derivative
Gradient Boosted Decision Tree

• Finding \(f_m(x, \theta_m) \) by minimizing the loss function:

\[
\argmin_{f_m} \sum_{i=1}^{N} \left[f_m(x_i, \theta) - g_i/h_i \right]^2 + R(f_m)
\]

• Reduce the training of any loss function to regression tree (just need to compute \(g_i \) for different functions)
• \(h_i = \alpha \) (fixed step size) for original GBDT.
• XGboost shows computing second order derivative yields better performance.
Gradient Boosted Decision Tree

- Finding $f_m(x, \theta_m)$ by minimizing the loss function:

$$\argmin_{f_m} \sum_{i=1}^{N} \left[f_m(x_i, \theta) - g_i/h_i \right]^2 + R(f_m)$$

- Reduce the training of any loss function to regression tree (just need to compute g_i for different functions)
- $h_i = \alpha$ (fixed step size) for original GBDT.
- XGBoost shows computing second order derivative yields better performance

Algorithm:
- Computing the current gradient for each \hat{y}_i.
- Building a base learner (decision tree) to fit the gradient.
- Updating current prediction $\hat{y}_i = F_m(x_i)$ for all i.

Gradient Boosted Decision Trees (GBDT)

Key idea:
- Each base learner is a decision tree
- Each regression tree approximates the functional gradient \(\frac{\partial \ell}{\partial F} \)
Gradient Boosted Decision Trees (GBDT)

Key idea:
- Each base learner is a decision tree
- Each regression tree approximates the functional gradient $\frac{\partial \ell}{\partial F}$

\[
F_{m-1}(x_i) = \sum_{j=1}^{m-1} f_j(x_i) \quad g_m(x_i) = \frac{\partial \ell(y_i, F(x_i))}{\partial F(x_i)} \bigg|_{F(x_i)=F_{m-1}(x_i)}
\]
Gradient Boosted Decision Trees (GBDT)

- **Key idea:**
 - Each base learner is a decision tree.
 - Each regression tree approximates the functional gradient \(\frac{\partial \ell}{\partial F} \).

\[
F_m(x_i) = \sum_{j=1}^{m-1} f_j(x_i) \quad \text{and} \quad g_m(x_i) = \frac{\partial \ell(y_i,F(x_i))}{\partial F(x_i)} \bigg|_{F(x_i)=F_{m-1}(x_i)}
\]
Gradient Boosted Decision Trees (GBDT)

- **Key idea:**
 - Each base learner is a decision tree
 - Each regression tree approximates the functional gradient $\frac{\partial \ell}{\partial F}$

\[
F_{m-1}(x_i) = \sum_{j=1}^{m-1} f_j(x_i) \quad g_m(x_i) = \left. \frac{\partial \ell(y_i, F(x_i))}{\partial F(x_i)} \right|_{F(x_i) = F_{m-1}(x_i)}
\]
Gradient Boosted Decision Trees (GBDT)

Key idea:
- Each base learner is a decision tree
- Each regression tree approximates the functional gradient $\frac{\partial \ell}{\partial f}$

\[f_1(x) \quad \text{update} \quad F(x_i) \quad f_2(x) \quad \text{... update} \quad F(x_i) \quad f_T(x) \]

Final prediction
\[F(x_i) = \sum_{j=1}^{T} f_j(x_i) \]
Open Source Packages

- **XGBoost**: the first widely used tree-boosting software
- **LightGBM**: released by Microsoft
 - Histogram-based training approach—much faster than finding the best split
 - Good GPU support
Conclusions

- Building a single decision tree
- Tree boosting and random forest

Questions?