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Abstract. A randomized encoding of a function f(x) is a randomized
function f̂(x, r), such that the “encoding” f̂(x, r) reveals f(x) and es-
sentially no additional information about x. Randomized encodings of
functions have found many applications in different areas of cryptography,
including secure multiparty computation, efficient parallel cryptography,
and verifiable computation.
We initiate a complexity-theoretic study of the class SRE of languages
(or boolean functions) that admit an efficient statistical randomized
encoding. That is, f̂(x, r) can be computed in time poly(|x|), and its
output distribution on input x can be sampled in time poly(|x|) given
f(x), up to a small statistical distance.
We obtain the following main results.
◦ Separating SRE from efficient computation: We give the first

examples of promise problems and languages in SRE that are widely
conjectured to lie outside P/poly. Our candidate promise problems
and languages are based on the standard Learning with Errors (LWE)
assumption, a non-standard variant of the Decisional Diffie Hellman
(DDH) assumption and the “Abelian Subgroup Membership problem”
(which generalizes Quadratic-Residuosity and a variant of DDH).
◦ Separating SZK from SRE: We explore the relationship of SRE

with the class SZK of problems possessing statistical zero knowledge
proofs. It is known that SRE ⊆ SZK. We present an oracle separation
which demonstrates that a containment of SZK in SRE cannot be
proved via relativizing techniques.

1 Introduction

A randomized encoding (RE) of a function [13,5] allows one to represent a

complex function f(x) by a “simpler” randomized function, f̂(x, r), such that

the “encoding” f̂(x, r) reveals f(x) but no other information about x1. More
specifically, there should exist an (unbounded) decoder that computes f(x) given

f̂(x, r), and an efficient randomized simulator that simulates the output of
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the encoder f̂(x, r), only given |x| and f(x). We refer to the former decoding
requirement as correctness and to the latter simulation requirement as privacy.
Privacy can either be perfect, statistical, or computational, depending on the
required notion of “closeness” between the simulated distribution and the output
distribution of f̂ . The complexity class SRE (resp. PRE, CRE) is defined to be
the class of boolean functions f : {0, 1}∗ → {0, 1}, or equivalently languages,

admitting a randomized encoding f̂ that can be computed in polynomial time
and having statistical (resp. perfect, computational) privacy. In this paper, we
initiate the study of the class SRE of functions admitting a statistical randomized
encoding (SRE).

As a cryptographic primitive, randomized encodings were first studied explic-
itly by Ishai and Kushilevitz [13], although they were used implicitly in prior
work in the context of secure multiparty computation [19,16,11]. They have found
application in different areas of cryptography, such as parallel implementations
of cryptographic primitives [5], verifiable computation and secure delegation
of computations [6], secure multiparty computation [8,9,13,14,4], and even in
algorithm design [15]. We refer the reader to [3] for a survey of such applications.

The parallel complexity of randomized encodings was studied by Applebaum et
al. [5], who demonstrated that all functions in the complexity class NC1 (and even
certain functions that are conjectured not to be in NC [2]) admit an SRE in NC0.
This establishes a provable speedup in the context of parallel time complexity. It
is natural to ask a similar question in the context of sequential time complexity.
For which functions (if any) can an SRE enable a super-polynomial speedup?
This question is the focus of our work.

Characterizing the class SRE. Let us consider the power of the class SRE of
all functions admitting a polynomial-time computable statistical randomized
encoding. It is evident that P ⊆ SRE, where f̂(x, r) simply outputs f(x). This
satisfies both the correctness and privacy requirements. But is SRE ⊆ P?

◦ SRE for trivial hard languages. First, we consider unary languages, i.e.,
languages L ⊆ {0}∗. These languages admit the trivial SRE defined by

f̂(x) = x. Indeed, the decoder can be defined by D(z) = f(z) and the
simulator, on input (1n, b), can output 0n. Privacy holds since there is only
one input of every length. However, such unary languages may not even be
decidable, as illustrated for example by the language UHP - the unary encoding
of the halting problem, which admits an SRE but is not decidable. This
example also extends to “trivial” binary languages such that for a given input
length, all inputs are either in the language or not. However, note that such
trivial languages are always contained in the class P/poly, namely the class
of functions admitting polynomial-size (but possibly non-uniform) circuits.
This demonstrates that getting a candidate separation between SRE and P
or even PSPACE is not enough; to demonstrate the power of randomized
encodings over efficient computation in a meaningful way, we must separate
the class SRE from P/poly.



◦ Is SRE more powerful that P/poly? Let us now examine the relationship
of SRE and P/poly. To begin, observe that for functions with long outputs,
it is easy to find candidate functions that are not known to be efficiently
computable by non-uniform circuits, but admit an efficient SRE. For example,
assume there exists a family of one way permutations {fn}n∈N secure against
non-uniform adversaries. Then the seemingly hard function f−1(x) can be

encoded by the identity f̂−1(x) = x. As f−1 is also a permutation, this
encoding is both private and correct. However, for boolean functions, the
question looks much more interesting. To the best of our knowledge, no
previous candidates for languages or promise problems that are conjectured
to lie outside P/poly but admit efficient SRE have been proposed. This is
one of the questions we study in this work.

◦ Is SZK more powerful that SRE? Another natural question about random-
ized encodings is their relationship with the class SZK of languages admitting
statistical zero knowledge proofs. It is not hard to show that SRE ⊆ SZK [2].2

This implies that SRE is unlikely to contain NP. Based on current exam-
ples for SZK languages it seems likely that the containment SRE ⊆ SZK is
strict, but no formal evidence was given in this direction. This motivates the
question of finding an oracle relative to which SZK is not contained in SRE.

Why is the class SRE interesting? As has been pointed out already, for functions
that are efficiently computable, the SRE can just compute the function itself.
Therefore, the class SRE is interesting only when the functions themselves are not
efficiently computable, in which case the complexity of the decoder must inherently
be super-polynomial. While most known applications of randomized encodings of
functions require the decoder to be efficient, there are some applications that do
not (see [3]). Moreover, even in cases where the decoder is required to be efficient,
SRE functions can be “scaled down” so that decoding takes a feasible time T
whereas encoding time is sub-polynomial in T . For instance, the computation of
an SRE function can be delegated from a weak client to a powerful but untrusted
server by directly applying an SRE on instances of a small size n, such that the
server may be allowed to run in time exp(n) while the client is only required to
run in time poly(n). Indeed, many real-life problems require exponential time to
solve using the best known algorithms.

1.1 Our Results

Our results can be summarized as follows.

1. Separating SRE from P/poly:
We provide three candidates to separate SRE from efficient computation.

2 Here and in the following, when writing SRE ⊆ SZK we restrict SRE to only contain
languages L that are non-trivial in the sense that for every sufficiently large input
length n there are inputs x0, x1 of length n such that x0 ∈ L and x1 6∈ L. This
excludes languages such as the unary undecidable language mentioned earlier. The
containment proof in [2] implicitly assumes non-triviality.



◦ We give a candidate language, for which we conjecture hardness based on
a non-standard variant of the DDH assumption. We give an efficient SRE
for this language which builds on the random self reduction for DDH
demonstrated by Naor and Reingold [17].

◦ Next, we give a candidate (dense) promise problem, the hardness of
which follows from the hardness of the standard Learning with Errors
assumption. We devise an efficient SRE for this promise problem.

◦ Last, we design a non-uniform SRE for the Abelian subgroup membership
ASM family of promise problems. This problem generalizes quadratic
residuosity and (an instance of an augmented) co-DDH problem. We also
give a specific instance of this promise problem, which is a language, and
conjecture that this language is outside of P/poly based on a variant of
co-DDH, an assumption introduced in [12].

2. Separating SZK from SRE: We show the existence of an oracle, relative
to which SZK 6⊂ SRE. This oracle separation implies that the containment
SZK ⊆ SRE (if true) cannot be proved via relativizing proof techniques.

1.2 Overview of Main Techniques

We now give an overview of the main techniques used for our separations.

Separating SRE from P/poly. We provide several SRE constructions for problems
that are conjectured to lie outside P/poly. It may be helpful to point out here, that
problems in SRE also admit an SZK proof, and the existence of hard problems in
SZK implies the existence of one-way functions. Therefore, we cannot hope to
get an unconditional result, or even one based on P 6= NP. We have the following
candidates based on various assumptions, which we later summarize in Table 1.

◦ Candidate language related to DDH.
Our first candidate is a language, which we call DDH′, whose hardness is
related to the Decisional Diffie Hellman (DDH) assumption. We consider
inputs of the form 〈g, ga, gb, gc〉 where g is any generator of a fixed DDH
group per input length. Roughly, the input is in the language iff it corresponds
to a DDH tuple, that is, if gc = gab in a fixed group generated by g.
Our SRE for this problem builds on the random self-reduction given by Naor
and Reingold [17] for DDH. However, not only do we randomize the DDH
exponents following [17], but also randomize the generator of the DDH group.
Finally, in order to devise a candidate language, we must fix the description
of the group and its generator, given just the length of the input. We achieve
this by suggesting an efficient, deterministic procedure to generate a DDH
group and other parameters required by the encoding algorithm, given the
input length. However, note that the hardness of DDH′ cannot be reduced
to the standard DDH. This is because DDH is an average case assumption,
where the public parameters are chosen randomly. In our case, we must fix the
public parameters per input length, and DDH does not guarantee that this
restriction preserves hardness. We conjecture however, that DDH′ remains
infeasible for fixed parameters.



◦ Dense promise problem based on LWE.
Our second example is a (dense) promise problem DLWE′, whose hardness
reduces to the hardness of the standard LWE problem. DLWE′ approximately
classifies noisy codewords (A,b = As+e) into Yes and No instances, depend-
ing upon on the size of the error vector e. Roughly speaking, Yes instances
correspond to small errors and No instances to large errors.
Note that, an SRE encoding of input (A,b = As + e) must be oblivi-
ous of all information about A, s, e except the relative size of the error
vector e. We begin by using the additive homomorphism of the LWE se-
cret to mask s. Specifically, we choose a random vector t and compute
b′ = b + At = A(s + t) + e. Now, b′ no longer retains information about s.
To hide A, we multiply (A,b) by a random low norm matrix R and invoke the
leftover hash lemma to argue that RA looks random even when R’s entries
are chosen from a relatively small range. For No instances, e is large enough
that Re also hides e via LHL, but to hide the smaller e of Yes instances, we
must add additional noise r0. This extra noise is large enough to hide e but
not large enough to affect correctness. For more details, please see Section 3.1.

◦ Generalizing QR, and candidate language related to co-DDH.
Our final candidate is the Abelian Subgroup Membership (promise) problem
ASM, which generalizes the quadratic residuosity problem QRN for composite
modulus N . ASM is specified by an abelian group G, and a subgroup H of
G, such that I(G/H) = Ztq for prime q, integer t and some isomorphism I.
We define Yes instances to be well-formed x ∈ H, and No instances to be
well-formed x ∈ G \H. We note that QRN ∈ P/poly, and therefore is not a
candidate for separation. However, we present a different candidate language,
which is an instance of ASM, and which we conjecture to lie outside P/poly
based on a variant of the co-DDH assumption in [12].
At a high level, our SRE for the generalized ASM promise problem is con-
structed as follows. Given input x,

• Compute y = x · h for random h
$←H.

• Pick random elements (x1, x2, . . . xt−1)
$←G.

Define X = [I(x1), . . . , I(xt−1), I(y)].

• Pick R
$← Zt×tq . Output R ·X.

The first step randomizes x within its coset3, erasing all information except
the coset of x. Next, observe that membership of x in the subgroup H is
encoded by the rank of X – if x ∈ H then X is singular, whereas if x 6∈ H,
then X is non-singular with high probability. Thus, randomizing X via RX
hides everything except the rank of X, effectively erasing coset information
about x. The decoder learns whether x ∈ H by computing the rank of RX.
Finally, we amplify the privacy and correctness parameters by applying a
generic masking technique, that may be of independent interest.

3 This step is similar to the classic SRE for QRp which encodes x by x · r2 for randomly
chosen r. However, this is insufficient even for QRN where N is composite (hence for
ASM), as it leaks coset information of x.



Candidate Language Hardness
DDH′ Language Non-Std DDH
DLWE′ (Dense) Promise Problem Std LWE
ASM(co-DDH) Language* Non-Std co-DDH

Table 1. Our Candidates. The SREs are uniform and private against non-uniform
adversaries. If not a language, we exhibit a promise problem. The * denotes that a
specific instance of ASM is a language, though ASM is in general a promise problem.

Separating SZK from SRE Applebaum [2] showed that any language that admits
an SRE encoding also admits an SZK proof. This was done by reducing SRE
to the statistical distance problem [18] which admits a two-round SZK protocol.
The question of whether this containment is strict is still open.

We give an oracle separation between the classes SZK and SRE. We diagonalize
over oracle SRE encoders to obtain a language that is not in oracle-SRE, but
admits an oracle-SZK proof. Our technique involves generalizing the method
of [1] that separates oracle-SZK machines from oracle-BPP machines, with the
oracle being determined during diagonalization. This technique is reminiscent of
the one in [7] showing that any proof for P=NP does not relativize. However,
our setting diverges from that of [1] in two ways.

First, we diagonalize over SRE encoders such that decoders are unbounded.
However, in the presence of unbounded machines, an oracle similar to [1] would
be only as powerful as the plain model. To deal with this, we derive an alternate
definition for SRE, where the output of PPT encoders falls into two distinct
distributions over a polynomially large support (unlike binary output BPP ma-
chines). In order to derive an outlying language via diagonalization in this new
setting, we must account for the size of the support. We stress here that our
separation does not reduce to the SZK− BPP separation in [1], and can in fact,
be viewed as a generalization of their result.

1.3 Related Work

The classes PREN, SREN and CREN have been defined by Applebaum, Ishai
and Kushilevitz [6] as the class of functions that admit perfect (resp. statistical,
computational) randomized encodings in NC0 with a polynomial-time decoder.
In contrast, in this work we do not restrict the complexity of decoding the
output. Applebaum [2] observed that QRp ∈ SREN while not known to be in NC,
suggesting a separation between these classes.

Aiello and H̊astad[1] gave a technique for the oracle separation of SZK from
BPP, by diagonalizing over oracle-BPP machines. Our technique for the oracle
separation of SZK from uniform SRE follows in their broad outline, but must
be adapted to oracle-SRE machines whose outputs are over a large support.
Also, note that SRE has been used in the past for reducing the complexity of
complete problems for a subclass of SZK (more specifically, the class SZKPL of
problems having statistical zero-knowledge proofs where the honest verifier and
its simulator are computable in logarithmic space) [10].



2 Preliminaries

In this section, we define basic notation and recall some definitions which will be
used in our paper. Given a vector x, |x| denotes its size. We let size(C) denote the
size of a circuit C and size(f) denote the size of the smallest circuit computing
f . The statistical distance between two distributions X and Y over space Ω, is
defined as ∆(X ,Y) ≡ 1

2Σu∈Ω |PrX∼X [X = u]− PrY∼Y [Y = u]|.
The definition of a promise problem, the class P/poly (extended to also include

promise problems) and the class SZK, are mostly standard in the literature.
We now formally define the notion of a statistical randomized encoding of

a function, language or promise problem. Similarly to the previous definition
from [5], our definition requires the encoding to be uniform by default.

Definition 1 (Statistical randomized encodings ((ε, δ)-SRE))). [5] Let
f : {0, 1}∗ → {0, 1}∗ be a function and l(n) an output length function such that

|f(x)| = l(|x|) for every x ∈ {0, 1}∗. We say that f̂ : {0, 1}∗ × {0, 1}∗ → {0, 1}∗
is a ε(n)-private δ(n)-correct (uniform) statistical randomized encoding of f
(abbreviated (ε, δ)-SRE), if the following holds:

◦ Length regularity. There exist polynomially-bounded and efficiently com-
putable length functions m(n), s(n) such that for every x ∈ {0, 1}n and

r ∈ {0, 1}m(n)
, we have |f̂(x, r)| = s(n).

◦ Efficient encoding. There exists a polynomial-time encoding algorithm

denoted by enc(·, ·) that, given x ∈ {0, 1}∗ and r ∈ {0, 1}m(|x|)
, outputs

f̂(x, r).
◦ δ-correctness. There exists an unbounded decoder dec, such that for every
x ∈ {0, 1}n we have Pr[dec(1n, f̂(x, Um(n))) 6= f(x)] ≤ δ(n).
◦ ε-privacy. There exists a probabilistic polynomial-time simulator S, such

that for every x ∈ {0, 1}n we have ∆(S(1n, f(x)), f̂(x, Um(n))) ≤ ε(n).

An (ε, δ)-SRE of a language L ⊂ {0, 1}∗ is an (ε, δ)-SRE of the corresponding
boolean function f : {0, 1}∗ → {0, 1}. When ε and δ are omitted, they are
understood to be negligible functions.

Extensions. A non-uniform (ε, δ)-SRE of f is defined similarly, except that the
encoding algorithm is implemented by a family of polynomial-size circuits. For a
partial function f , defined over a subset X ⊆ {0, 1}∗, the correctness and privacy
requirements should only hold for every x ∈ X. An (ε, δ)-SRE of a promise
problem (Yes,No) is an (ε, δ)-SRE of the corresponding partial boolean function.

Definition 2 (The class SRE4). The class SRE is defined to be the set of all
languages that admit an SRE (namely, an (ε, δ)-SRE for some negligible ε, δ). For
concrete functions ε(n), δ(n), we use (ε, δ)-SRE to denote the class of languages
admitting an (ε, δ)-SRE.

4 The difference between the class SRE and the class SREN defined in [5] is that SRE
allows the encoding algorithm to run in polynomial time whereas SREN restricts the
encoding algorithm to be in NC0.



3 Separating SRE from Efficient Computation

We devise three candidates for separating SRE from efficient computation. In
this section, we outline one candidate promise problem, that belongs to SRE and
is unlikely to be in P/poly based on the standard LWE assumption.

We also devise a candidate language based on a non-standard, but plausible,
hardness assumption related to DDH. The final candidate is based on the Abelian
Subgroup Membership problem. Please refer to the full version for details on
these candidates.

3.1 Learning With Errors (LWE)-based promise problem.

In this section, we devise a candidate promise problem DLWE′ based on the
hardness of the Learning with Errors (LWE) assumption.

Definition 3. DLWE′ = {Yes,No} where Yes and No are defined as follows.

Yes =
⋃
n

Yesn, No =
⋃
n

Non

The parameters m, p, ε are set per input length n as m = n2, p = n40, δ = 0.05.

Yesn
∆
=
{

(A,As + e) | A ∈ Zm×np , s ∈ Znp , e ∈ [−pδ, pδ]m, ∆(RA,Um×n ) ≤ p−0.16m
}

Non
∆
=
{

(A,As + e) | A ∈ Zm×np , s ∈ Znp , e ∈ Zmp \ [−p2/3, p2/3]m,

∆
(
(RA,Re), (Um×n,Um)

)
≤ p−0.16m

}
\ Yesn

Here, RA denotes the distribution RA(mod p) induced by choosing R uniformly
in [−p2/3, p2/3]m×m. Similarly, Re denotes the distribution Re(mod p) induced
by choosing R (same as before) uniformly in [−p2/3, p2/3]m×m. Um×n and Um
denote the uniform distribution in Zm×np and Zmp respectively.

We must explicitly subtract Yesn from Non because there may exist s, e and
s̃, ẽ such that As + e = As̃ + ẽ and ẽ ∈ (Zp \ [−p2/3, p2/3])m but e ∈ [−pδ, pδ]m,
resulting in an overlap between the sets Yesn and Non. The condition involving
the statistical distance is a technicality required for using the leftover hash lemma
in the construction. The value p−0.16m in the definition is a representative inverse
polynomial function in the input size n. We also define a new promise problem
DLWE′′ which is exactly the same as DLWE′, except setting p = 2n for each input
length n. The analysis of DLWE′′ is the same except p−0.16m is negl(n).

It is easy to show that the hardness of DLWE′ and DLWE′′ against P/poly
follows from the hardness of the standard decisional Learning with Errors problem
DLWE for the same parameters.

Theorem 1. DLWE′ ∈ (1/poly, 1/poly)-SRE and DLWE′′ ∈ (negl, negl)-SRE.

Proof. We construct an SRE for DLWE′ here. On input an instance of size n, the
encoder, decoder, simulator compute parameters m, ε, δ, p as functions of n.



Encoding. The algorithm encSRE(1n,A,b) is defined as follows.

1. Pick R
$← [−p2/3, p2/3]m×m, r0

$← [−p2/3+3δ, p2/3+3δ]m, t
$← Znp .

2. Set A′ = RA and b′ = r0 + Rb.
3. Output (A′′,b′′) = (A′,A′t + b′).

Decoding. The algorithm decSRE(1n,A′′,b′′) accepts if and only if there exist
x ∈ Znp , e ∈ Zmp , such that b′′ = A′′x + e′′, and e′′ ∈ [−p2/3+4δ, p2/3+4δ].

Simulation. On input 1n and a bit b where b = 0/1 represents membership in
Yes/No respectively, the simulator does the following.

◦ If b = 0, pick U
$←Zm×np , t

$←Znp , e
$←[−p2/3+3δ, p2/3+3δ]m. Output (U,Ut+e).

◦ If b = 1, pick U
$← Zm×np and u

$← Zmp . Output (U,u).

Analysis. We give a brief overview of the correctness and privacy arguments.
Recall that,

encSRE(1n,A,As + e) =
(
RA, RA(s + t) + (Re + r0)

)
where

t
$← Znp , R

$← [−p2/3, p2/3]m×m, r0
$← [−p2/3+3δ, p2/3+3δ]m.

Thus, the secret in b′′, namely s + t, is distributed uniformly in Znp .

◦ Case 1: (A,As + e) ∈ Yesn. In this case, e ∈ [−pδ, pδ]m.

Then, for R
$← [−p2/3, p2/3]m, Re ∈ [−p2/3+2δ, p2/3+2δ]m.

Moreover, by choice of r0, we have Re << r0, thus ∆
(
Re + r0, r0

)
≤ p−δm.

By definition of the promise problem, we have that ∆(RA,Um×n) ≤ p−0.16m.
Then the following hold:

• Correctness. Re + r0 ∈ [−p2/3+4δ, p2/3+4δ]. Thus, correctness is perfect.
• Privacy. By the above arguments on the distribution of (RA), (s + t)

and (Re + r0), and by the simulator’s choice of (U, t, e), we can argue
that the output distribution is at most p−0.16m-far from the distribution
induced by SRE.enc on an instance of Yesn.

◦ Case 2: (A,As + e) ∈ Non. We have that e ∈ (Zp \ [−p2/3, p2/3])
m

and
∆((RA, Re), (Um×n, um)) ≤ p−0.16m. Then the following hold:
• Correctness. Standard averaging arguments prove that all entries of

Re+r0 are larger than p2/3+4δ with probability ≥ 1−p−0.13m. Moreover,
the probability that randomizing an instance in Non results in an encoding
that corresponds to some ‘small’ error vector5, ≤ p−δm. Overall, we obtain
p−0.1m-correctness.

• Privacy. We show that a random sample (A,b)
$←Zm×np ×Zmp (simulator

output) is (1− p−0.1m) close to the distribution induced by SRE.enc on
a Non instance. First, we show that randomly chosen (A,b) are such
that, w.h.p. there exist no (s, small5 e) such that b = As + e. We also
prove that w.h.p. A, e corresponding to random (A,b) are such that the
distributions RA and Re are close to uniform.

5 Here, ‘small’ denotes error of magnitude less than p2/3+4δ, such that the instance
wrongly decodes to Yes. However, in the rest of the paper, ‘small’ denotes error ≤ pδ.



4 Oracle Separation Between SRE and SZK

In this section, we crucially use the following Lemma about the class (ε, δ)-SRE.
This Lemma follows directly from the definition of (ε, δ)-SRE.

Lemma 1. Let Ex denote the distribution enc(x, r) for the algorithm enc(·, ·) of a
language L admitting an (ε, δ)-SRE, induced for any input x by picking r uniformly
at random in {0, 1}∗. Then, ∆(Ex, Ex′) ≤ 2ε iff f(x) = f(x′) (equivalently, both
x, x′ ∈ L or both x, x′ 6∈ L). Moreover, ∆(Ex, Ex′) ≥ 1 − 2δ iff f(x) 6= f(x′)
(equivalently, either x ∈ L, x′ 6∈ L or x 6∈ L, x′ ∈ L).

In this section, we study the relation between the classes SRE and SZK. We
recall the following theorem from [2].

Imported Theorem 1. [2] Any non-trivial language that admits an (ε, δ)-SRE
such that (1− 2δ)2 > 2ε, also admits an SZK proof.

Here, we explore whether the containment SRE ⊆ SZK/poly is strict. We give
an oracle separation between the classes SZK (more precisely, the class SZK[2]
of languages that admit a 2-round SZK proof - note that this is the strongest
separation) and SRE, but restricted to the uniform setting. For any oracle A, we
denote by SREA the class SRE where encoders have oracle access to A. Similarly,
we denote by SZKA the class SZK where verifiers have oracle access to A.

Theorem 2. There exists an oracle A, such that SZK[2]A 6⊂ SREA.

Proof Overview. Broadly, we diagonalize over all oracle SRE-encoder machines
to obtain a language which does not have any SRE encoding. We construct this
language in rounds, one for each input length. Specifically, we will ensure that for
every input length n, the output of the encoder on inputs 0n and 1n is either less
than (1− 2δ) or more than ε, violating the definition of SRE from Lemma 16.

This is done via classifying the characteristic vector of the language into
unique and redundant sets, such that it is impossible for any encoder with
polynomially many oracle queries to distinguish between unique versus redundant
characteristic. Moreover, a contrived language is set such that 0n is never in the
language, and 1n is in the language iff the characteristic vector is unique.

Intuitively, since encoders cannot distinguish between a unique versus redun-
dant characteristic, one of the following cases will always occur. Either, there
exists a redundant characteristic (implying that both 0n and 1n are not in the
language) such that the encodings of 0n and 1n are more than ε-apart; or, there
exists a unique characteristic (implying that 1n is in the language while 0n is
not) such that the encodings of 0n and 1n are less than (1− 2δ)-apart. We set
the language according to whichever of these cases is true. This ensures that the
output of the encoders is not an SRE for this language.

6 It is interesting to note that unlike the BPP-SZK [1] separation, a unary language is
not helpful for separation since such a language will always have an SRE. Thus, our
contrived language will be non-trivial and binary.



However, proving either of the two cases is true is significantly more involved
than in the BPP setting of [1] (refer to the full version for details). Finally, we
can show that this language has an SZK proof, this follows in a similar manner
as [1].

5 Conclusion and Open Problems

In this paper, we study the class SRE of languages and promise problems that
admit efficient statistical randomized encodings. We present the first candidates
for SRE problems that are not in P/poly. These include a candidate promise
problem based on the hardness of standard LWE, as well as candidate languages
based on variants of the DDH assumption and the co-DDH assumption of [12].

Then, we explore the relationship of the class SRE with the class SZK of
languages admitting statistical zero knowledge proofs. While it is known that
all non-trivial languages in SRE are also in SZK [2], whether the converse holds
is open. However, we exhibit an oracle and a (non-trivial) language that has an
oracle-based SZK proof but does not have an oracle-based SRE. This shows that
a containment of SZK in SRE cannot be proved via relativizing techniques.

Several natural questions remain open. The first is to identify a complete
language in SRE, thereby obtaining a better characterization of this class. A second
is to better understand the relation between statistical randomized encodings
and random self-reductions (RSR). An RSR for a language or a promise problem
can be viewed as a restricted form of SRE where the decoder just decides the
problem itself. Our LWE-based language is a candidate for a problem in SRE
which is not in RSR, thus supporting the conjecture that RSR ⊂ SRE. Is there an
oracle separating these classes? Finally, it would be interesting to find additional
(and preferably “useful”) candidates for intractable problems in SRE, as well
as natural polynomial-time solvable problems for which an SRE can provide
polynomial speedup over the best known algorithms.
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