Approximation Algorithms for the Unsplittable Flow Problem on Paths and Trees

Khaled Elbassioni\(^1\), Naveen Garg\(^2\), Divya Gupta\(^3\), Amit Kumar\(^2\), Vishal Narula\(^4\), and Arindam Pal\(^2\)

\(^1\) MPI-Informatik, Germany
\(^2\) IIT Delhi, India
\(^3\) UCLA, USA
\(^4\) Goldman Sachs, India

Abstract

We study the Unsplittable Flow Problem (UFP) and related variants, namely UFP with Bag Constraints and UFP with Rounds, on paths and trees. We provide improved constant factor approximation algorithms for all these problems under the no bottleneck assumption (NBA), which says that the maximum demand for any source-sink pair is at most the minimum capacity of any edge. We obtain these improved results by expressing a feasible solution to a natural LP relaxation of the UFP as a near-convex combination of feasible integral solutions.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Approximation Algorithms, Integer Decomposition, Linear Programming, Scheduling, Unsplittable Flows

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2012.267

1 Introduction

In this paper, we give new results for several variants of the Unsplittable Flow Problem on paths and trees. The setting for all of these problems is as follows: we are given a graph \(G = (V, E) \), where \(G \) is either a path or a tree, with edge capacities \(c_e \) for each edge \(e \in E \), a set of demands \(D_1, \ldots, D_m \), where each demand \(D_i \) consists of a source-sink pair \(s_i, t_i \), a bandwidth requirement \(d_i \), and a profit \(w_i \). In order to route a demand \(D_i \), we send \(d_i \) amount of flow from \(s_i \) to \(t_i \) along the (unique) path between them in \(G \). A set of demands is said to be feasible if they can be simultaneously routed without violating any edge capacity. In the Max-UFP problem, we would like to find a feasible subset of demands of maximum total profit. In the Round-UFP problem, we would like to color the demands with minimum number of colors such that demands with a particular color form a feasible subset. Another interesting variant is the Bag-UFP problem, where we are given sets \(D_1, \ldots, D_k \), where each set (or bag) \(D_i \) consists of a set of demands, and has an associated profit (the individual demands in each set do not have profits, though they could have different bandwidth requirements). A solution needs to pick at most one demand from each bag such that these demands are feasible. The goal is to maximize the total profit of bags from which a demand is picked.

All of the above problems are NP-Hard (even for a path), and there has been lot of recent work on obtaining constant factor approximation algorithms for them. An assumption often made in these settings is the so-called no-bottleneck assumption: the maximum bandwidth requirement of any demand is at most the minimum edge capacity, i.e., \(\max_i d_i \leq \min_e c_e \). Obtaining constant factor approximation algorithms for the above problems without the
no-bottleneck assumption remains a challenging task; the only exception being the recent result of Bonsma et al. [4] which gives a constant factor approximation algorithm for MAX-UFP on the line. We will assume that the no-bottleneck assumption holds in subsequent discussions.

MAX-UFP and BAG-UFP are weakly NP-Hard, since they contain the KNAPSACK problem as a special case, where there is just a single edge. Recently, it has been proved that the problem is strongly NP-hard, even for the restricted case where all demands are chosen from \{1, 2, 3\} and all capacities are uniform [4]. However, the problem is not known to be APX-hard, so a polynomial time approximation scheme (PTAS) may still be possible. For the special case of (KNAPSACK), an FPTAS is well-known. When all capacities, demands and profits are 1, MAX-UFP specializes to MAX-EDP, the maximum edge-disjoint paths problem.

Chakrabarti et al. [7] gave the first constant approximation algorithm for MAX-UFP on paths and the approximation ratio was subsequently improved to $2 + \varepsilon$, for any constant $\varepsilon > 0$ by Chekuri et al. [8]. They also gave a constant factor approximation algorithm for MAX-UFP on trees. These algorithms are based on the idea of rounding a natural LP relaxation of the MAX-UFP problem.

ROUND-UFP is NP-Hard, since it contains the Bin Packing problem as a special case, where there is just a single edge. Bin Packing is known to be APX-hard. However, it has an asymptotic polynomial time approximation scheme (APTAS). There are also simple greedy algorithms like first-fit and best-fit, which give constant-factor approximations (see e.g. [1]). When all capacities and demands are 1, ROUND-UFP reduces to the interval coloring problem on paths, for which a simple greedy algorithm gives the optimal coloring.

The ROUND-UFP problem for paths has been well-studied in the context of on-line algorithms as well. Here the intervals arrive in arbitrary order, and we need to assign them a color on their arrival so that all intervals with one color form a feasible packing, i.e. total demand on any edge does not exceed its capacity. When all capacities and demands are 1, i.e. when no two intersecting intervals can be given the same color, the first-fit algorithm achieves a constant competitive ratio ([15, 16, 18]). Kierstead and Trotter [14] gave a different online algorithm which uses at most $3\omega - 2$ colors. They also proved that any deterministic online algorithm in the worst case will require at least $3\omega - 2$ colors. For the case of arbitrary edge capacities and demands with the no-bottleneck assumption (NBA), which is same as ROUND-UFP, Epstein et al. [12] gave a 78-competitive algorithm. Prior to our work, this was the best known result for ROUND-UFP in the off-line setting as well.

The BAG-UFP problem was introduced by Chakaravarthy et al. [6], who gave an $O\left(\log \left(\frac{c_{\text{max}}}{c_{\text{min}}}\right)\right)$-approximation algorithm. Here c_{max} and c_{min} are the maximum and minimum edge capacities of the path respectively. They gave the first constant factor approximation algorithm for the BAG-UFP problem on paths – the approximation ratio is 120. A related problem is the job interval selection problem for which Chuzhoy et al. [11] gave an $\left(\frac{e-1}{e}\right)$-approximation algorithm. See also Erlebach et al. [13] for some additional results.

1.1 Our Contributions

In this paper, we give a unified framework for these problems. We give a simple algorithm for ROUND-UFP on paths. We use this to give a constant factor approximation algorithm for MAX-UFP as well. The idea is to start with a natural LP relaxation for MAX-UFP. We show that using our algorithm for ROUND-UFP, one can express a fractional solution to the LP as a convex combination of integer solutions (up to a constant factor). This
idea generalizes to Bag-UFP as well. This leads to improved approximation algorithms for several of these problems. More specifically, our results are:

- We give a 24-approximation algorithm for Round-UFP on paths. This is much simpler than the 78-competitive algorithm of [12], and gives an improved approximation ratio.
- We give a 65-approximation algorithm for Bag-UFP on paths, thus improving the constant approximation factor of 120 given by Chakaravarthy et al. [5] for this problem.
- For trees, we give the first constant factor approximation algorithm for Round-UFP – the approximation factor is 64.

1.2 Other Related Work

Recently, Bonsma et al. [4] gave the first constant factor approximation algorithm for Max-UFP on a path without assuming NBA. They also proved that the problem is strongly NP-hard, even for the restricted case where all demands are chosen from \{1, 2, 3\} and all capacities are uniform.

The round version of Bag-UFP is hard to approximate, because scheduling jobs with interval constraints is a special case of this problem. In the latter problem, we have a collection of jobs, where each job has a set of intervals associated with it. We can schedule a job in any of the intervals from its set. The goal is to color the jobs with minimum number of colors, such that the set of jobs with a particular color are feasible, i.e., one can pick an interval from the set associated with each job, such that these intervals are disjoint. Chuzhoy et al. [10] proved that it is NP-hard to get better than $O(\log \log n)$-approximation algorithm for this problem. In the continuous version of this problem, the intervals associated with a job form a continuous time segment, described by a release date and a deadline. Chuzhoy and Codenotti [9] gave a constant factor approximation algorithm for the continuous version.

1.3 Organization of the Paper

In Section 2, we define the problems considered in this paper. We give a constant factor approximation algorithm for Round-UFP on paths in Section 3. In Section 4, we use the ideas developed in Section 3 to get a constant factor approximation algorithm for Max-UFP on paths, which we then extend to Bag-UFP on paths in Section 5. In Section 6 we give a constant factor approximation algorithm for Round-UFP on trees.

2 Preliminaries

We formally define the problems considered in this paper. In all of these problems, an instance will consist of a graph $G = (V, E)$, which is either a path or a tree, with edge capacities c_e for all edges $e \in E$. In case of Round-UFP and Max-UFP, we are also given a set of demands D_1, \ldots, D_m. Demand D_i has an associated source-sink pair, (s_i, t_i), a bandwidth requirement d_i and a profit w_i. We shall use I_i to denote the associated unique path between s_i and t_i in G (in case of a path, we shall also call this an interval). A subset of demands will be called feasible if they can be routed without violating the edge capacities. In Max-UFP, the goal is to find a feasible subset of demands of maximum total profit. In Round-UFP, the goal is to partition the set of demands into minimum number of colors, such that demands with a particular color are feasible.

Finally, we define the Bag-UFP problem. We will consider this problem for the case of paths only. Here, we are given sets, which we will call bags, D_1, \ldots, D_k, where each set
\(\mathcal{D}^j \) consists of a set of demands \(D^j_1, \ldots, D^j_{n_j} \). As before, each demand \(D^j_i \) is specified by an interval \(I^j_i \) and a bandwidth requirement \(d^j_i \). We are also given profits \(p^j \) associated with each of the bags \(\mathcal{D}^j \). A feasible solution to such an instance picks at most one demand from each of the bags – the selected demands should form a feasible set of routable demands. The profit of such a solution is the total profit of the bags from which we select a demand. The goal is to maximize the total profit.

We require our instances to satisfy the so called no-bottleneck assumption. This assumption states that \(\max_i d_i \leq \min_e c_e \), where \(i \) varies over all the demands, and \(e \) varies over all the edges in \(G \). We now give some definitions which will be used by all the algorithms. We will divide the set of demands into two classes – large and small demands.

\[\text{Definition 1.} \] The bottleneck capacity \(b_i \) of a demand \(D_i \) is the smallest capacity of an edge in the (unique) path between \(s_i \) and \(t_i \) – such an edge is called the bottleneck edge for demand \(D_i \). A demand \(D_i \) is said to be small if \(d_i \leq \frac{1}{4} b_i \), else it is a large demand.

\[\text{3 Approximation Algorithm for Round-UFP} \]

We consider an instance \(\mathcal{I} \) of the Round-UFP problem given by a path \(G \) on \(n \) points, and a set of demands \(D_1, \ldots, D_m \) as described in Section 2. Let \(\mathcal{O} \) denote an optimal solution, and \(\text{col}(\mathcal{O}) \) denote the number of colors used by \(\mathcal{O} \). We begin with a few definitions.

\[\text{Definition 2.} \] The congestion of an edge \(e \), \(r_e \), is defined as \(\left\lceil \frac{\sum_{i: e \in I_i} d_i}{c_e} \right\rceil \), i.e., the ratio of the total demand through the edge \(e \) to its capacity. Let \(r_{\text{max}} = \max_e r_e \) be the maximum congestion on the path.

\[\text{Definition 3.} \] The clique size on an edge \(e \), \(L_e \), is defined as the number of large demands containing the edge \(e \). Let \(L_{\text{max}} = \max_e L_e \) be the maximum clique size on the path.

Clearly, \(\text{col}(\mathcal{O}) \geq r_{\text{max}} \). We give an algorithm \(\mathcal{A} \) which uses \(O(r_{\text{max}}) \) colors. This will give a constant factor approximation algorithm for this problem. We first consider the case of large demands.

\[\text{Lemma 4.} \] We can color all large demands with at most \(L_{\text{max}} \) colors. Further, \(L_{\text{max}} \leq 8\text{col}(\mathcal{O}) \).

\[\text{Proof.} \] We will use the following result of Nomikos et al. [17].

\[\text{Lemma 5.} \] [17] Consider an instance of Round-UFP where all capacities are integers and all demands \(D_i \) have bandwidth requirement \(d_i = 1 \). Then, one can color these demands with \(r_{\text{max}} \) colors.

We first scale all capacities and demand requirements such that \(c_{\text{min}} \) becomes equal to 1. Now, we round all capacities down to the nearest integer, and we scale all the demand requirements \(d_i \) to 1. Note that this will affect the congestion of an edge \(e \) by a factor of at most 8 – since \(c_e \) was at least 1, rounding it down to the nearest integer will reduce it by a factor of at most 1/2. Since all demands were of size at least 1/4 (because they are large demands), we may increase the requirement of a demand by factor of at most 4. Thus, the value of \(r_{\text{max}} \) will increase by factor of at most 8. Now, we invoke the result in Lemma 5. This proves the lemma.
We now consider the more non-trivial case of small demands. We divide the edges into classes based on their capacities. We say that an edge e is of class l if $2^l \leq c_e < 2^{l+1}$. We use $c_1(e)$ to denote the class of e. For a demand D_j, let l_j be the smallest class such that the interval I_j contains an edge of class l_j. The critical edge of demand D_j is defined as the first edge (as we go from left to right from s_j to t_j) in I_j of class l_j. Note that the critical edge could be different from the bottleneck edge, though both of them would be of class l_j.

Lemma 6. The small demands can be colored with at most $16r_{\text{max}}$ colors.

Proof. We maintain $16r_{\text{max}}$ different solutions to the instance I, where a solution routes a subset of the demands. We will be done if we can assign each demand to one of these solutions. Let us call these solutions S_1, \ldots, S_{K}, where $K = 16r_{\text{max}}$. We first describe the routing algorithm and then show that it has the desired properties.

We arrange the demands in order of their left-end-points – let this ordering be D_1, \ldots, D_m. Let e_j be the critical edge of D_j. When we consider D_j, we send it to a solution S_i for which the total requirements of demands containing e_j is at most $c_{e_j}/16$. At least one such solution must exist, otherwise $r_e > \frac{16r_{\text{max}} c_{e_j}/16}{c_{e_j}} = r_{\text{max}}$, a contradiction. This completes the description of how we assign each demand to one of the solutions. We now prove that each of the solutions S_i is feasible.

Fix a solution S_i and an edge e. Suppose e is of class i. Let $D(S_i)$ be the demands routed in S_i which contain the edge e. Among such demands, let D_a be the last demand for which the critical edge is to the left of e (including e) – let e' be such an edge. Clearly, $c_1(e') \geq i$. For an integer $i' \leq i$, let $e(i')$ be the first edge of class i' to the right of e (so, $e(i')$ is same as e).

First consider the demands in $D(S_i)$ which are considered before (and including D_a). All of these demands go through e' (because all such demands begin before D_a does and contain e). So, the total requirement of such demands, excluding D_a, is at most $c_{e'}/16$ – otherwise we would not have assigned D_a to this solution. Because D_a is a small demand and $c_1(e') \geq i$, the total requirements of such demands (including D_a) is at most

$$\frac{2^{i+1}}{16} + \frac{c_e}{4} \leq \frac{c_e}{8} + \frac{c_e}{4} = \frac{3c_e}{8}.$$

Now consider the demands in $D(S_i)$ whose critical edges are to the right of e – note that, such an edge must be one of $e(i')$ for some $i' < i$. Similar to the argument above, the total requirements of such demands is at most

$$\sum_{i' < i} \left(\frac{2^{i'+1}}{16} + \frac{2^{i'+1}}{4} \right) \leq \frac{5 \cdot 2^{i+1}}{16} \leq \frac{5c_e}{8}.$$

Thus, we see that the total requirements of demands in $D(S_i)$ is at most

$$\frac{5c_e}{8} + \frac{3c_e}{8} \leq c_e.$$

Hence the solution is feasible. This proves the lemma.

Theorem 7. Given an instance of Round-UFP, there is an algorithm for this problem which uses at most $24 \cdot \text{col}(\mathcal{O})$ colors, and hence it is a 24-approximation algorithm. Further, if all demands are small, then one can color the demands using at most $16 \cdot \text{col}(\mathcal{O})$ colors.
In this section we show how ideas from Round-UFP can be used to derive a constant factor approximation algorithm for Max-UFP. Consider an instance I of Max-UFP. As before, we divide the demands into small and large demands. For large demands, Chakrabarti et al. [7] showed that one can find the optimal solution by dynamic programming.

Lemma 8. [7] The number of δ-large demands crossing any edge in a feasible solution is at most $2 \left(\frac{1}{\delta} - 1 \right)$. Hence, an optimum solution can be found in $n^{O(1/\delta^2)}$ time using dynamic programming.

Note that, according to our definition, large demands are $\frac{1}{4}$-large. Now we consider the small demands. The following lemma gives an approximation algorithm for small demands.

Lemma 9. If there are only small jobs, then there is a $\frac{16}{17}$-approximation algorithm for Max-UFP.

Proof. We write the following natural LP relaxation for this problem – a variable x_i for demand D_i which is 1 if we include it in our solution, and 0 otherwise.

\[
\begin{align*}
& \max \sum_i w_i x_i \\
& \sum_{i \in I} d_i x_i \leq c_e \text{ for all edges } e \\
& 0 \leq x_i \leq 1 \text{ for all demands } i
\end{align*}
\]

Let x^* be an optimal solution to the LP relaxation. Let K be an integer such that all the variables x^*_i can be written as $\alpha_i K$ for some integer α_i. Now we construct an instance I' of Round-UFP as follows. For each (small) demand D_i in I, we create α_i copies of it. Rest of the parameters are same as those in I. First observe that inequality (1) implies that $\sum_{i \in I} d_i x^*_i \leq Kc_e, \forall e \in E$. Thus, the congestion of each edge in I' is at most K. Using Lemma 6 for small demands, we can color the demands with at most $16K$ colors. It follows that the best solution among these $16K$ solutions will have profit at least $\frac{16}{17} \cdot \sum_i w_i x^*_i$.

Thus, we get the following theorem.

Theorem 10. There is a $\frac{17}{16}$-approximation algorithm for the Max-UFP problem.

Proof. Given an instance I, we divide the demands into large and small demands. For large demands, we compute the optimal solution using Lemma 8, whereas for small demands we compute a solution with approximation ratio $\frac{16}{17}$ using Lemma 9. Then we pick the better of the two solutions.

Consider an optimal solution O with profit $\text{profit}(O)$. Let $\text{profit}^l(O)$ be the profit for large demands and $\text{profit}^s(O)$ be the profit for small demands. If $\text{profit}^l(O) \geq \frac{1}{17} \cdot \text{profit}(O)$, then our solution for large demands will also be at least $\frac{1}{17} \cdot \text{profit}(O)$. Otherwise, $\text{profit}^s(O) \geq \frac{16}{17} \cdot \text{profit}(O)$. In this case, our solution for small demands will have value at least $\frac{1}{16} \cdot \frac{16}{17} \cdot \text{profit}(O) = \frac{1}{17} \cdot \text{profit}(O)$.

5 Approximation Algorithms for Bag-UFP

We now extend the above algorithm to the Bag-UFP problem. Consider an instance I of this problem. As before, we classify each of the demands D_i as either large or small.

For each bag, D^l, let $D^{l,1}$ be the set of large demands in D^l and $D^{l,s}$ be the set of small demands in D^l. Again, we have two different strategies for large and small demands.
Lemma 11. If there are only large jobs, then there is a 48-approximation algorithm for Bag-UFP.

Proof. Suppose we have the further restriction that the selected intervals need to be disjoint. Lemma 8 implies that this will worsen the objective value by a factor of at most 24. However, for the latter problem, we can use the 2-approximation algorithm of Berman et al. [3] and Bar-Noy et al. [2]. This gives a 48-approximation algorithm.

Lemma 12. If there are only small jobs, then there is a 17-approximation algorithm for Bag-UFP.

Proof. As in the case of Max-UFP problem, we first write an LP relaxation, and then use an algorithm similar to the one used for the Round-UFP problem. We have a variable x^j_i for demand D^j_i, which is 1 if we include it in our solution and 0 otherwise, and a variable y^j which is 1 if we choose a demand from the bag D^j and 0 otherwise. The LP relaxation is as follows.

$$\max \sum_j p^j y^j$$

$$\sum_{i \in I^j} d^j_i x^j_i \leq c_e \quad \text{for all edges } e$$

$$\sum_i x^j_i \leq y^j \quad \text{for all bags } D^j$$

$$0 \leq x^j_i \leq 1 \quad \text{for all demands } i$$

$$0 \leq y^j \leq 1 \quad \text{for all bags } D^j$$

Let x, y be an optimal solution to the LP above. Again, let K be a large enough integer such that $y^j = \frac{\alpha^j}{K}, x^j_i = \frac{\beta^j_i}{K}$, where α^j and β^j_i are integers for all j and i. Now we consider an instance of Round-UFP where we have β^j_i copies of the demand D^j_i. The only further restriction is that no two demands from the same bag can get the same color. Inequality (2) implies that $\sum_{i \in I^j} d^j_i \beta^j_i \leq Kc_e, \forall e \in E$. So the congestion bound is K. We proceed as in the proof of Lemma 6, except that now we have $17K$ different solutions. When we consider the demand D^j_i, we ignore the solutions which contain a demand from the bag D^j. Inequality (3) implies that $\sum_i \beta^j_i \leq \alpha^j \leq K, \forall j$. Hence, there will be at most K such solutions. For the remaining $16K$ solutions, we argue as in the proof of Lemma 6.

Theorem 13. There is a 65-approximation algorithm for the Bag-UFP problem.

Proof. This follows from the two previous lemmas. We argue as in the proof of Theorem 10.

6 Approximation Algorithms for Round-UFP on Trees

We now consider the Round-UFP problem on trees. Consider an instance I of this problem as described in Section 2. We consider the case of large and small demands separately. Let D^1 be the set of large demands and D^0 be the set of small demands.

Lemma 14. There is a 32-approximation algorithm for the above instance when we only have demands in D^1.

FSTTCS 2012
Proof. Chekuri et al. [8] gave a 4-approximation algorithm for coloring a set of demands when all demands have requirement 1, and the capacities are integers. In fact, their algorithm uses at most $4r_{\max}$ colors. We can reduce our problem to this case by losing an extra factor of 8 in r_{\max}—we proceed exactly as in the proof of Lemma 4.

Lemma 15. There is a 32-approximation algorithm for the above instance when we only have demands in D^α.

Proof. The proof is very similar to that of Lemma 6. We maintain $16r_{\max}$ solutions. For a demand D_i, let a_i denote the least common ancestor of s_i and t_i. We consider the demands in a bottom-up order of a_i. For a demand D_i, we define two critical edges: the s_i-critical edge is the critical edge on the $a_i - s_i$ path, and the t_i-critical edge is the critical edge on the $a_i - t_i$-path. We send D_i to the solution in which both these critical edges have been used till $\frac{1}{16}$ of their total capacity only. Again it is easy to check that such a solution will exist. The rest of the argument now follows as in the proof of Lemma 6.

Combining the above two lemmas, we get

Theorem 16. There is a 64-approximation algorithm for the ROUND-UFP problem on trees.

7 Conclusion and Open Problems

In this paper, we studied the UNSPLITTABLE FLOW PROBLEM and some of its variants, such as UFP WITH BAG CONSTRAINTS and UFP WITH ROUNDS. We gave improved constant factor approximation algorithms for all these problems under the no bottleneck assumption. One important open question is, can we improve the approximation factors further? A related question is, are there lower bounds (hardness results, bad examples or integrality gap examples) for these problems matching these upper bounds? Another important open problem is the approximability of these problems without NBA. For MAX-UFP on paths, a $(7 + \varepsilon)$-approximation is known, but for the other problems the question is not settled.

References