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1 Abstract

In this course we present an overview of the concepts and current techniques in facial modeling and
animation. We introduce this research area by its history and applications. As a necessary prerequisite
for facial modeling, data acquisition is discussed in detail. We describe basic concepts of facial an-
imation and present different approaches including parametric models, performance-, physics-, and
learning-based methods. State-of-the-art techniques such as muscle-based facial animation, mass-
spring networks for skin models, and morphable models are part of these approaches. We further-
more discuss texturing of head models and rendering of skin, addressing problems related to texture
synthesis and bump mapping with graphics hardware. Typical applications for facial modeling and
animation such as medical and forensic applications (craniofacial surgery simulation, facial recon-
struction from skull data, virtual aging) and animation techniques for movie production (case study
of The Matrix sequels) are presented and explained.

2 Syllabus

The course will be organized according to the following time schedule:

time length topic presenter

08:30–08:35 5 min outline of the tutorial

08:35–09:05 30 min history & applications F. Parke

09:05–09:20 15 min anatomy of the human head J. Haber

09:20–10:00 40 min data acquisition for facial modeling L. Williams

10:00–10:15 15 min overview: facial animation techniques V. Blanz

10:30–11:10 40 min parametric models F. Parke

11:10–11:35 25 min performance-based facial modeling/animation L. Williams

11:35–12:15 40 min physically based facial modeling/animation D. Terzopoulos

13:45–14:30 45 min learning-based approaches V. Blanz

14:30–15:00 30 min rendering techniques J. Haber

15:00–15:30 30 min forensic applications J. Haber

15:45–16:45 60 min movie production G. Borshukov

16:45–17:15 30 min medical applications and behavioral models D. Terzopoulos

17:15–17:30 15 min questions, discussion all



3 Contents

The tutorial notes contain both the slides from the tutorial presentation and some selected publica-
tions, which serve as additional background information.

1. Slides: Facial Animation: History & Applications

2. Slides: Anatomy of the Human Head

3. Slides: Overview: Facial Animation Techniques

4. Slides: Parameterized Face Models

5. Slides: Facial Performance Capture (Data Acquisition + Performance-based Approaches)
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7. Paper: Y. Lee, D. Terzopoulos, K. Waters: Realistic Modeling for Facial Animations, Proc.
SIGGRAPH ’95, 55–62, Aug. 1995.

8. Slides: Learning-based Approaches

9. Paper: V. Blanz, T. Vetter: A Morphable Model for the Synthesis of 3D Faces, Proc. SIG-
GRAPH ’99, 187–194, Aug. 1999.

10. Slides: Rendering Techniques for Facial Animation

11. Paper: M. Tarini, H. Yamauchi, J. Haber, H.-P. Seidel: Texturing Faces, Proc. Graphics Inter-
face 2002, 89–98, May 2002.

12. Slides: Forensic Applications

13. Paper: K. Kähler, J. Haber, H. Yamauchi, H.-P. Seidel: Reanimating the Dead: Reconstruction
of Expressive Faces from Skull Data, ACM Trans. Graphics (Proc. SIGGRAPH 2003), 22(3),
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14. Slides: Image-based Facial Animation and Rendering for The Matrix Sequels

15. Slides: Medical Applications & Behavioral Models



Facial Animation:
History and Applications

Fred Parke
Texas A&M University

Fred ParkeFred Parke
Texas A&M UniversityTexas A&M University

Applications of 
Facial Modeling and Animation

Entertainment animation and VFXEntertainment animation and VFX
Interactive gamesInteractive games
HumanHuman--computer interfacescomputer interfaces

TelepresenceTelepresence

Perception researchPerception research

Medical and educationalMedical and educational

Facial Animation:
History and Applications

A look back over the last 35 years A look back over the last 35 years 

A Look Ahead A Look Ahead –– Future HistoryFuture History

Convincing ‘Realistic’ Faces

•• The challenge has been the synthesis The challenge has been the synthesis 
of artificial faces that look and act like of artificial faces that look and act like 
your mother, brother, friend, or some your mother, brother, friend, or some 
well know celebritywell know celebrity

•• A huge challenge because of A huge challenge because of 
familiarityfamiliarity

•• The ‘closer’ you get the harder it isThe ‘closer’ you get the harder it is

Facial Animation:  
Historical Perspective

Pre-history

Facial representation has been a major focus of art 
forms from ancient times up to the present

– archeological artifacts
– sculpture
– drawing 
– painting
– and traditional animation

PrePre--historyhistory

Facial representation has been a major focus of art Facial representation has been a major focus of art 
forms from ancient times up to the presentforms from ancient times up to the present

–– archeological artifactsarcheological artifacts
–– sculpturesculpture
–– drawing drawing 
–– paintingpainting
–– andand traditional animationtraditional animation

Facial Animation:  
Historical Perspective

1600’s
First published investigations of facial expression 

– John Bulwer, London, 1648 and 1649

1800’s
‘The mechanism of human facial expression’

– G. Duchenne, Paris, 1862

‘Expression of the emotions in man and animals’
– C. Darwin, London, 1872

1600’s1600’s
First published investigations of facial expression First published investigations of facial expression 

–– John Bulwer, London, 1648 and 1649John Bulwer, London, 1648 and 1649

1800’s1800’s
‘The mechanism of human facial expression’‘The mechanism of human facial expression’

–– G.G. DuchenneDuchenne, Paris, 1862, Paris, 1862

‘Expression of the emotions in man and animals’‘Expression of the emotions in man and animals’
–– C. Darwin, London, 1872C. Darwin, London, 1872



Broad Trends/Themes

• Exponential increase in computer power 
~1000x every 15 years

• Steady development of new and refinement 
of existing techniques, interspersed with 
flashes of insight
• Better and better tools
• Ever increasing expectations 

– speed, complexity, realism

•• Exponential increase in computer power Exponential increase in computer power 
~1000x every 15 years~1000x every 15 years

•• Steady development of new and refinement Steady development of new and refinement 
of existing techniques, interspersed with of existing techniques, interspersed with 
flashes of insightflashes of insight
•• Better and better toolsBetter and better tools
•• Ever increasing expectations Ever increasing expectations 

–– speed, complexity, realismspeed, complexity, realism

Technique Categories

• Sources of geometric data
• Modeling primitives
• Animation control
• Rendering
• Tools

•• Sources of geometric dataSources of geometric data
•• Modeling primitivesModeling primitives
•• Animation controlAnimation control
•• RenderingRendering
•• ToolsTools

Sources of Geometric Data

• Graph paper
• Direct surface measurement
• Photographic
• Laser scanners
• Structured light
• Interactive surface ‘sculpting’ systems

•• Graph paperGraph paper
•• Direct surface measurementDirect surface measurement
•• PhotographicPhotographic
•• Laser scannersLaser scanners
•• Structured lightStructured light
•• Interactive surface ‘sculpting’ systemsInteractive surface ‘sculpting’ systems

Geometric Modeling

• Vectors
• Polygonal surfaces
• Bi-cubic parametric surfaces

– B-Splines, NURBS, …

• Subdivision surfaces

Development of interactive modeling tools

•• VectorsVectors
•• Polygonal surfacesPolygonal surfaces
•• BiBi--cubic parametric surfacescubic parametric surfaces

–– BB--Splines, NURBS, …Splines, NURBS, …

•• Subdivision surfacesSubdivision surfaces

Development of interactive modeling toolsDevelopment of interactive modeling tools

Animation Control

• Shape interpolation
• Direct parameterizations
• Muscle-based parameterizations
• Expression/Viseme level parameterizations
• Dynamic simulations
• Facial ‘rigs’ based on ‘skeletons’, 
deformers, blend shapes, …

•• Shape interpolationShape interpolation
•• Direct parameterizationsDirect parameterizations
•• MuscleMuscle--based parameterizationsbased parameterizations
•• Expression/Viseme level parameterizationsExpression/Viseme level parameterizations
•• Dynamic simulationsDynamic simulations
•• Facial ‘rigs’ based on ‘skeletons’, Facial ‘rigs’ based on ‘skeletons’, 
deformers, blend shapes, …deformers, blend shapes, …

Animation Control Handles

Scripted or interactive control of: 
• Interpolation coefficients

• Interpolation of parameter values
– direct or muscle based parameters

• Dynamic forces

• Facial rig ‘handles’

Key frame values, interactive curve editors

Scripted or interactive control of: Scripted or interactive control of: 
•• Interpolation coefficientsInterpolation coefficients

•• Interpolation of parameter valuesInterpolation of parameter values
–– direct or muscle based parametersdirect or muscle based parameters

•• Dynamic forcesDynamic forces

•• Facial rig ‘handles’Facial rig ‘handles’

Key frame values, interactive curve editorsKey frame values, interactive curve editors



Rendering Techniques

• Vectors, flat shaded polygons
• Gouraud, Phong, Blinn shading
• Texture mapping
• Bump/displacement mapping
• Shader languages – Renderman, …
• Global illumination techniques
• Video resolution        Theatrical resolution

•• Vectors, flat shaded polygonsVectors, flat shaded polygons
•• Gouraud, Phong, Blinn shadingGouraud, Phong, Blinn shading
•• Texture mappingTexture mapping
•• Bump/displacement mappingBump/displacement mapping
•• Shader languages Shader languages –– Renderman, …Renderman, …
•• Global illumination techniquesGlobal illumination techniques
•• Video resolution        Theatrical resolutionVideo resolution        Theatrical resolution

Facial Animation:  
Historical Perspective

Early 1970’sEarly 1970’s
•• Utah Graphics Class Project 1971Utah Graphics Class Project 1971

•• Henri Gouraud’s dissertation face 1971Henri Gouraud’s dissertation face 1971

•• Chernoff’s work  1971 Chernoff’s work  1971 

•• Interpolated Faces at Utah 1972 and 1973Interpolated Faces at Utah 1972 and 1973

•• Gillenson at Ohio State 1973Gillenson at Ohio State 1973

•• Parameterized Face Model at Utah 1974Parameterized Face Model at Utah 1974

Initial 3D Faces - 1971

F. Parke, University of Utah
Less than 100 polygons
F. Parke, University of UtahF. Parke, University of Utah
Less than 100 polygonsLess than 100 polygons

Initial Parametric Model - 1971

‘Parameters’ for eyes, eyelids, mouth

Used to create a ‘flipbook’ animation

‘Parameters’ for eyes, eyelids, mouth‘Parameters’ for eyes, eyelids, mouth

Used to create a ‘flipbook’ animationUsed to create a ‘flipbook’ animation

Chernoff’s work - 1971

Used faces to present n-dimensional dataUsed faces to present nUsed faces to present n--dimensional datadimensional data

Interpolated Faces - 1972

Facial Expression Interpolation

F. Parke – University of Utah

Facial Expression InterpolationFacial Expression Interpolation

F. Parke F. Parke –– University of UtahUniversity of Utah



Interpolated Faces - 1972

Data Collection TechniqueData Collection TechniqueData Collection Technique

Interpolated Faces - 1972

Interpolated Face Data AnimationInterpolated Face Data AnimationInterpolated Face Data Animation

Interpolated Faces - 1972

Face Components
Facial mask, eyes, eyebrows, teeth, hair

Face ComponentsFace Components
Facial mask, eyes, eyebrows, teeth, hairFacial mask, eyes, eyebrows, teeth, hair

Interpolated Faces - 1972

Interpolated expression animationInterpolated expression animationInterpolated expression animation

Interpolated Faces - 1973

Interpolation between individual facesInterpolation between individual facesInterpolation between individual faces

Interpolated Faces - 1973

Data Collection TechniqueData Collection TechniqueData Collection Technique



Interpolated Faces - 1973

Animation between individual facesAnimation between individual facesAnimation between individual faces

Parameterized Model - 1974

Expression and Conformation Control

F. Parke – University of Utah

Expression Expression andand Conformation ControlConformation Control

F. Parke F. Parke –– University of UtahUniversity of Utah

Parameterized Model - 1974

Speech Synchronized AnimationSpeech Synchronized AnimationSpeech Synchronized Animation

Facial Animation:  
Historical Perspective

Late 1970’s and Early 1980’sLate 1970’s and Early 1980’s
•• Facial Action Coding System (FACS)Facial Action Coding System (FACS)

–– Ekman and Friesen Ekman and Friesen -- 19771977

•• Interactive Parameterized Model  Interactive Parameterized Model  -- 19791979
–– Implemented on E&S CTImplemented on E&S CT--1 at Case Western1 at Case Western

•• Parametric Model ‘transported’ to NYIT Parametric Model ‘transported’ to NYIT -- 19801980
–– Later to U. Calgary and UCSCLater to U. Calgary and UCSC
–– Evolved into ‘Baldi’Evolved into ‘Baldi’

•• Muscle Based Expression Model Muscle Based Expression Model -- 19811981
–– Platt and Badler Platt and Badler –– University of PennsylvaniaUniversity of Pennsylvania

1980’s

Rise of the production studios
• Many started, a few survive

Bifurcation of development efforts
• Academic research

Goals –knowledge, understanding, new methods, 
grants, publications…

• Production studio development
Goals – get the job, get the job done – on time, make 

money, survive!

Rise of the production studiosRise of the production studios
•• Many started, a few surviveMany started, a few survive

Bifurcation of development effortsBifurcation of development efforts
•• Academic researchAcademic research

Goals Goals ––knowledge, understanding, new methods, knowledge, understanding, new methods, 
grants, publications…grants, publications…

•• Production studio developmentProduction studio development
Goals Goals –– get the job, get the job done get the job, get the job done –– on time, make on time, make 

money, survive!money, survive!

Facial Animation:  
Historical Perspective

Early to Mid 1980’s
• 1981 – PC introduced, Wavefront software

• 1982 – SGI graphic workstations, Alias Research

• ‘Caricature’ Faces – 1982
S. Brennan - MIT

• ‘Tony de Peltrie’ – 1985

• Softimage -1986

Early to Mid 1980’sEarly to Mid 1980’s
•• 1981 1981 –– PC introduced, Wavefront softwarePC introduced, Wavefront software

•• 1982 1982 –– SGI graphic workstations, Alias ResearchSGI graphic workstations, Alias Research

•• ‘Caricature’ Faces ‘Caricature’ Faces –– 19821982
S. Brennan S. Brennan -- MITMIT

• ‘Tony de Peltrie’ – 1985

• Softimage -1986



Facial Animation:  
Historical Perspective

Late 1980’sLate 1980’s
•• Automatic Speech SynchronizationAutomatic Speech Synchronization

–– Lewis and Parke, NYIT 1987Lewis and Parke, NYIT 1987
–– Hill, et al, U. Calgary 1988Hill, et al, U. Calgary 1988

•• New Muscle ModelsNew Muscle Models
–– K. Waters K. Waters -- 19871987
–– ThalmannThalmann, et al , et al ––19881988
–– Waters andWaters and TerzopoulosTerzopoulos -- 19901990

Facial Animation:  
Historical Perspective

Late 1980’sLate 1980’s
•• ‘Rendezvous in Montreal’ ‘Rendezvous in Montreal’ –– Thalmann 1987Thalmann 1987

•• ‘Tin Toy’ baby ‘Tin Toy’ baby –– Pixar 1988Pixar 1988

•• ‘The Abyss’ water pseudopod face ‘The Abyss’ water pseudopod face –– 19891989

•• ‘Don’t Touch Me’ ‘Don’t Touch Me’ –– Kleiser/Walczak Kleiser/Walczak -- 19891989

•• Siggraph Facial Animation tutorials Siggraph Facial Animation tutorials -- 1989/901989/90
–– Simple parameterized model put in ‘public domain’Simple parameterized model put in ‘public domain’

Facial Animation:  
Historical Perspective

Early 1990’s Early 1990’s –– increasing activityincreasing activity
•• Performance based Facial AnimationPerformance based Facial Animation

•• SMILE multiSMILE multi--level animation system level animation system 
•• KalraKalra, et al, 1991, et al, 1991

•• NSF Workshop on NSF Workshop on 

Facial Expression Understanding Facial Expression Understanding –– 19921992

•• NSF Workshop on NSF Workshop on 

Facial Animation Standards Facial Animation Standards –– 19941994

Facial Animation:  
Historical Perspective
Mid 1990’sMid 1990’s

•• Real time speech synchronizationReal time speech synchronization
Parke at IBM, Waters at DECParke at IBM, Waters at DEC

•• Use in interfaces Use in interfaces –– agents/avatarsagents/avatars
•• Much activity in support of low bandwidth Much activity in support of low bandwidth 

video conferencing video conferencing 
•• ‘Babe’, ‘Toy Story’, ‘The End’’ ‘Babe’, ‘Toy Story’, ‘The End’’ -- 19951995
•• First book on facial animation First book on facial animation –– 19961996
•• Speech CoSpeech Co--articulation articulation –– PelachaudPelachaud, et al, 1996, et al, 1996

Facial Animation:  
Historical Perspective

Late 1990’sLate 1990’s
•• Use in feature films  Use in feature films  

Dragonheart Dragonheart -- 19961996
Geri’s game Geri’s game –– 1997 (subdivision surfaces)1997 (subdivision surfaces)
A Bugs Life, ANTZ A Bugs Life, ANTZ –– 19981998
Stuart Little Stuart Little –– 19991999
Star Wars Episode I Star Wars Episode I –– 19991999

•• ‘Principle Component’ Face Model‘Principle Component’ Face Model
–– BlanzBlanz and Vetter, 1999and Vetter, 1999

•• ‘Voice Puppetry’ ‘Voice Puppetry’ –– Brand 1999Brand 1999

•• MPEGMPEG--4 Facial Model Coding4 Facial Model Coding

Facial Animation:  
Historical Perspective

2000’s2000’s
•• Commercially Successful!Commercially Successful!

•• Synthetic characters in leading rolesSynthetic characters in leading roles
•• 2001 2001 -- Final Fantasy, Shrek, Jimmy Neutron, LORFinal Fantasy, Shrek, Jimmy Neutron, LOR

•• 2002 2002 –– LOR, Star Wars Episode IILOR, Star Wars Episode II

•• 2003 2003 –– LOR (Gollum), The Hulk, The Matrix: RevolutionsLOR (Gollum), The Hulk, The Matrix: Revolutions

•• Exponential Growth!Exponential Growth!



Applications of Facial Modeling 
and Animation

Entertainment animation and VFXEntertainment animation and VFX
Interactive gamesInteractive games
HumanHuman--computer interfacescomputer interfaces
TelepresenceTelepresence
Perception researchPerception research
Medical and educationalMedical and educational

Entertainment animation/VFX

• Currently the major application and 
driving force
• Synthetic characters in leading and 
support roles
• Digital stand-ins
• Crowd simulation

•• Currently Currently thethe major application and major application and 
driving forcedriving force
•• Synthetic characters in leading and Synthetic characters in leading and 
support rolessupport roles
•• Digital standDigital stand--insins
•• Crowd simulationCrowd simulation

Interactive games

• Another major application and 
driving force
• Quality expectations approaching 
those for entertainment animation

• Real-time performance required

• ‘Behavior’ modeling important

•• Another major application and Another major application and 
driving forcedriving force
•• Quality expectations approaching Quality expectations approaching 
those for entertainment animationthose for entertainment animation

•• RealReal--time performance requiredtime performance required

•• ‘Behavior’ modeling important‘Behavior’ modeling important

Human-computer interfaces

• Requires interactive models
• Applications

– Software agents
– Social agents
– Conversational interfaces
– Kiosks
– Stage shows, …

•• Requires interactive modelsRequires interactive models
•• ApplicationsApplications

–– Software agentsSoftware agents
–– Social agentsSocial agents
–– Conversational interfacesConversational interfaces
–– KiosksKiosks
–– Stage shows, …Stage shows, …

Agent Applications

• Provides screen presence for agent 
software
•Provides an interaction ‘focus’
•Conversational interfaces

– Two way speech
– Speech recognition
– Synchronized speech animation response

•• Provides screen presence for agent Provides screen presence for agent 
softwaresoftware
••Provides an interaction ‘focus’Provides an interaction ‘focus’
••Conversational interfacesConversational interfaces

–– Two way speechTwo way speech
–– Speech recognitionSpeech recognition
–– Synchronized speech animation responseSynchronized speech animation response

Kiosk Applications

Attracts attention
• Initial ‘patter’

• Solicits user query interaction

Provides response information
• Guides query interaction

• Spoken query feedback

Attracts attentionAttracts attention
•• Initial ‘patter’Initial ‘patter’

•• Solicits user query interactionSolicits user query interaction

Provides response informationProvides response information
•• Guides query interactionGuides query interaction

•• Spoken query feedbackSpoken query feedback



Stage Show Applications

• As emcee or host
– Introduces show elements
– Interacts with audience

• As ‘sidekick’ for a real host
– Dialog with real host

•• As emcee or hostAs emcee or host
–– Introduces show elementsIntroduces show elements
–– Interacts with audienceInteracts with audience

•• As ‘sidekick’ for a real hostAs ‘sidekick’ for a real host
–– Dialog with real hostDialog with real host

Interactive Model Attributes

• Expressive
– able to assume an appropriate range of 

expressions
• Responsive and ‘alive’

– synchronized speech and expression
• ‘Intelligent Behavior’

– ‘appropriate’ behaviors
• Visual realism vs. behavioral realism?

– these need to ‘match’

•• ExpressiveExpressive
–– able to assume an appropriate range of able to assume an appropriate range of 

expressionsexpressions

•• Responsive and ‘alive’Responsive and ‘alive’
–– synchronized speech and expressionsynchronized speech and expression

•• ‘Intelligent Behavior’‘Intelligent Behavior’
–– ‘appropriate’ behaviors‘appropriate’ behaviors

•• Visual realism vs. behavioral realism?Visual realism vs. behavioral realism?
–– these need to ‘match’these need to ‘match’

Need to keep it ‘Alive’

• Believable eyes and eye motion
– Eyes are always moving, if just a little
– Eye ‘tracking’
– Eye ‘blinks’

• Head motion
– Always moving, head ‘follows’ the eyes

• Appropriate expressions
• ‘Good’ synchronized speech

•• Believable eyes and eye motionBelievable eyes and eye motion
–– Eyes are always moving, if just a littleEyes are always moving, if just a little
–– Eye ‘tracking’Eye ‘tracking’
–– Eye ‘blinks’Eye ‘blinks’

•• Head motionHead motion
–– Always moving, head ‘follows’ the eyesAlways moving, head ‘follows’ the eyes

•• Appropriate expressionsAppropriate expressions
•• ‘Good’ synchronized speech‘Good’ synchronized speech

Real Time Model 
Screen shot - synchronized to real speech

Fred Parke ~ 1995

Screen shot Screen shot -- synchronized to real speechsynchronized to real speech

Fred Fred Parke Parke ~ 1995~ 1995

Telepresence

Low bandwidth ‘video’ conferencing
• Model based compression

• Model parameters extracted for transmission

• Only parameters sent over communication channel

• For reception, parameters drive model to recreate 
the facial images

Part of the MPEG-4 standard

Low bandwidth ‘video’ conferencingLow bandwidth ‘video’ conferencing
•• Model based compressionModel based compression

•• Model parameters extracted for transmissionModel parameters extracted for transmission

•• Only parameters sent over communication channelOnly parameters sent over communication channel

•• For reception, parameters drive model to recreate For reception, parameters drive model to recreate 
the facial imagesthe facial images

Part of the MPEGPart of the MPEG--4 standard4 standard

Perception Research

• Carefully controlled visual stimuli
– must to be ‘correct’

• Bi-Modal visual speech example
Massaro & Cohen, UCSC

– visual perception and aural perception work 
together

– conflicts in visual and aural can induce 
misperceptions – McGurk effect

– what you see can influence what you ‘hear’

•• Carefully controlled visual stimuliCarefully controlled visual stimuli
–– must to be ‘correct’must to be ‘correct’

•• BiBi--Modal visual speech exampleModal visual speech example
Massaro & Cohen, UCSCMassaro & Cohen, UCSC

–– visual perception and aural perception work visual perception and aural perception work 
togethertogether

–– conflicts in visual and aural can induce conflicts in visual and aural can induce 
misperceptions misperceptions –– McGurk effectMcGurk effect

–– what you see can influence what you ‘hear’what you see can influence what you ‘hear’



Medical and Educational

Medical
• Teaching anatomy

• Surgical simulation

• Model must be physically correct

Educational
• ‘Tutor’

• Face must be interactive and engaging

MedicalMedical
•• Teaching anatomyTeaching anatomy

•• Surgical simulationSurgical simulation

•• Model must be physically correctModel must be physically correct

EducationalEducational
•• ‘Tutor’‘Tutor’

•• Face must be interactive and engagingFace must be interactive and engaging

Good Enough?

When will facial animation be good enough?When will facial animation be good enough?
•• Any face, any age, any expression, dramatic Any face, any age, any expression, dramatic 

nuances, wide range of facial styles,’nuances, wide range of facial styles,’easyeasy’…’…
•• Visual and behavioral realism balancedVisual and behavioral realism balanced

Appearance is getting very good, but not Appearance is getting very good, but not 
quite there yet quite there yet –– still hard to do wellstill hard to do well

Behavior modeling has a long way to goBehavior modeling has a long way to go

Facial ‘Turing’ testFacial ‘Turing’ test

Future History

Looking ahead…Looking ahead…
Just the Beginning!Just the Beginning!

•• Animation only last 100 yearsAnimation only last 100 years
•• Computer facial animation only last 35 yearsComputer facial animation only last 35 years
•• Most work in the last 10 yearsMost work in the last 10 years

Computation CapabilitiesComputation Capabilities
•• 1,000 fold increase every 15 years!1,000 fold increase every 15 years!

Directions

•• Much, much better models & toolsMuch, much better models & tools
•• Subtle, more realistic detail and control Subtle, more realistic detail and control 
•• Behaviors, motivations Behaviors, motivations 
•• Idiosyncratic personality modelsIdiosyncratic personality models
•• ‘Director’ level interfaces ‘Director’ level interfaces 

•• Something new Something new –– unexpected!unexpected!

‘Motivated’ Facial Models

Action and expressions motivated by Action and expressions motivated by 
the character model, the situation, the character model, the situation, 
and the ‘director’ rather than and the ‘director’ rather than 
manipulated by an animatormanipulated by an animator

Fully Functional ‘Actors’

Facial animation fully integrated Facial animation fully integrated 

Anatomically ‘correct’Anatomically ‘correct’
Behavior drivenBehavior driven

with personality, motivationwith personality, motivation
‘Directable’‘Directable’
‘Easy’ to use‘Easy’ to use



Anatomy of the Human Head

Jörg Haber
MPI Informatik

Jörg HaberJörg Haber

MPI InformatikMPI Informatik

Terminology
• positions of body parts are 

described relative to:
•• positions of body parts are positions of body parts are 

described relative to:described relative to:
– median (sagittal) plane: 

vertical plane that divides  the 
body into equal left and right 
halves; medial / lateral ⇔
closer to / further away from 
median plane

–– median (sagittal) planemedian (sagittal) plane: : 
vertical plane that divides  the vertical plane that divides  the 
body into equal left and right body into equal left and right 
halves; halves; medialmedial / / laterallateral ⇔⇔
closer to / further away from closer to / further away from 
median planemedian plane

– transverse (horizontal) plane: 
any plane perpendicular to both 
median and coronal planes

–– transverse (horizontal) planetransverse (horizontal) plane: : 
any plane perpendicular to both any plane perpendicular to both 
median and coronal planesmedian and coronal planes

– coronal plane: vertical plane 
that divides the body into front 
and back halves; (anterior / 
posterior) 

–– coronal planecoronal plane: vertical plane : vertical plane 
that divides the body into front that divides the body into front 
and back halves; (and back halves; (anterioranterior / / 
posteriorposterior) ) 

The Human Head

Components of the human head:
• skull (lat. cranium)

• facial muscles (lat. m. faciales et masticatores)

• skin (lat. integumentum commune)

• eyes (lat. oculi)

• teeth (lat. dentes)

• tongue (lat. lingua)

Components of the human head:Components of the human head:
•• skullskull (lat. (lat. craniumcranium))

•• facial musclesfacial muscles (lat. (lat. m.m. facialesfaciales etet masticatoresmasticatores))

•• skinskin (lat.(lat. integumentumintegumentum communecommune))

•• eyeseyes (lat.(lat. oculioculi))

•• teethteeth (lat.(lat. dentesdentes))

•• tonguetongue (lat. (lat. lingualingua))

Skull

Images: www.humanmuscles.8k.com

Skull
• cranium (lat. neurocranium): 

– 7 bones; rigidly connected; lodges and protects 
brain and eyeballs; consists of calvaria and cranial 
base

• facial skeleton (lat. viscerocranium):
– 15 small bones that surround nasal and oral cavity 

mosaic-like; only the mandible (lat. mandibula) is 
movable

• bones of the skull are relocatable during birth, 
ossification completed at the age of 18 ⇒
proportions & shape of the skull change during growth

•• craniumcranium (lat. (lat. neurocraniumneurocranium): ): 
–– 7 bones; rigidly connected; lodges and protects 7 bones; rigidly connected; lodges and protects 

brain and brain and eyeballs; consistseyeballs; consists ofof calvariacalvaria and and cranial cranial 
basebase

•• facial skeletonfacial skeleton (lat. (lat. viscerocraniumviscerocranium):):
–– 15 15 smallsmall bones that surround nasal and oral cavity bones that surround nasal and oral cavity 

mosaicmosaic--like; only the like; only the mandiblemandible (lat. (lat. mandibulamandibula) is ) is 
movablemovable

•• bones of the skull are relocatable during birth, bones of the skull are relocatable during birth, 
ossification completed at the age of 18ossification completed at the age of 18 ⇒⇒
proportions & shape of the skull change during growthproportions & shape of the skull change during growth

Facial Muscles
Three groups:
• m. of facial expression: 

two layers (superficial   
and deep)

• m. of mastication: 
movement of the 
mandible

• epicranius:                  
tension / relaxation of 
facial skin

Three groups:Three groups:
•• m. of facial expressionm. of facial expression: : 

two layers (superficial   two layers (superficial   
and deep)and deep)

•• m. of masticationm. of mastication: : 
movement of the movement of the 
mandiblemandible

•• epicraniusepicranius:                  :                  
tension / relaxation of tension / relaxation of 
facial skinfacial skin

Image: Gray: “Anatomy of the Human Body” (1918)



Facial Muscles

muscles connect a) two bones, b) bone and skin / muscle, 
or c) two different skin / muscle regions
muscles connect a) two bones, b) bone and skin / muscle, muscles connect a) two bones, b) bone and skin / muscle, 
or c) two different skin / muscle regionsor c) two different skin / muscle regions

Images: Parke/Waters: “Computer Facial Animation” (1996)

Types of Facial Muscles

• sphincters: contract radially 
towards a center point, e.g. 
orbicularis oris, orbicularis 
oculi

•• sphincterssphincters: contract radially : contract radially 
towards a center point, e.g. towards a center point, e.g. 
orbicularis orisorbicularis oris, , orbicularis orbicularis 
oculioculi

Image: www.humanmuscles.8k.com

• sheet muscles: composed 
of several linear muscles 
side-by-side, e.g. frontalis

•• sheet musclessheet muscles: composed : composed 
of several linear muscles of several linear muscles 
sideside--byby--side, e.g. side, e.g. frontalisfrontalis

• linear (parallel) muscles: 
contract longitudinally 
towards their origin, e.g. 
levator labii sup., 
zygomaticus minor/major

•• linear (parallel) muscleslinear (parallel) muscles: : 
contract longitudinally contract longitudinally 
towards their origin, e.g. towards their origin, e.g. 
levator labii sup.levator labii sup., , 
zygomaticus minor/majorzygomaticus minor/major

Skin
• epidermis: 0.02 mm thick, 

no vessels / glands, 5 
layers of keratin 

• dermis: 0.3-2.4 mm thick, 
2 layers of soft 
connective tissue 
containing elastin fibers, 
blood and lymphatic 
vessels, and nerves 

• hypodermis (subcutis): 
adipose tissue built from 
collagen / fat cells, blood 
vessels, and nerves

•• epidermisepidermis: 0.02 mm thick, : 0.02 mm thick, 
no vessels / glands, 5 no vessels / glands, 5 
layers of keratin layers of keratin 

•• dermisdermis: 0.3: 0.3--2.4 mm thick, 2.4 mm thick, 
2 layers of soft 2 layers of soft 
connective tissue connective tissue 
containing elastin fibers, containing elastin fibers, 
blood and lymphatic blood and lymphatic 
vessels, and nerves vessels, and nerves 

•• hypodermis (subcutis)hypodermis (subcutis): : 
adipose tissue built from adipose tissue built from 
collagen / fat cells, blood collagen / fat cells, blood 
vessels, and nervesvessels, and nerves

Image: www.humanmuscles.8k.com

Mechanical Properties of Skin
• skin composed of various layers with different elastic 

and viscous characteristics  ⇒
skin exhibits significant visco-elastic properties (e.g. 
hysteresis, creep)

• skin has highly non-linear stress-strain curve: 
– low stress  ⇒ low resistance                                   

against deformation (collagen                               
fibers unroll and stretch)

– high stress  ⇒ sharp increase                                      
in resistance (collagen fibers                                  
are completely stretched)

•• skin composed of various layers with different elastic skin composed of various layers with different elastic 
and viscous characteristics  and viscous characteristics  ⇒⇒
skin exhibits significant skin exhibits significant viscovisco--elastic propertieselastic properties (e.g. (e.g. 
hysteresis, creep)hysteresis, creep)

•• skin has highly skin has highly nonnon--linear stresslinear stress--strainstrain curve: curve: 
–– low stress  low stress  ⇒⇒ low resistance                                   low resistance                                   

against deformation (collagen                               against deformation (collagen                               
fibers unroll and stretch)fibers unroll and stretch)

–– high stress  high stress  ⇒⇒ sharp increase                                      sharp increase                                      
in resistance (collagen fibers                                  in resistance (collagen fibers                                  
are completely stretched)are completely stretched)

Eyes

• complex organ consisting of eyeball (lat. bulbus oculi) 
and optic nerve, embedded into the sceletal 

• eyeball composed from lens and viterous body (lat. 
corpus vitreum), enclosed by three concentric layers: 
sclera / cornea, choroidea / iris, and retina

•• complex organ consisting of complex organ consisting of eyeballeyeball (lat.(lat. bulbus oculibulbus oculi) ) 
and and optic nerveoptic nerve, embedded into the , embedded into the sceletal sceletal 

•• eyeballeyeball composed from composed from lenslens andand viterous bodyviterous body (lat. (lat. 
corpuscorpus vitreumvitreum),), enclosed by three concentric layers: enclosed by three concentric layers: 
sclerasclera / / corneacornea, , choroideachoroidea / / irisiris,, andand retinaretina

Images: www.humanmuscles.8k.com

Eyes

• eye muscles: alignment of optical axis (external), 
focussing and adaptation to brightness (internal)

• eyelids, connective tissue: protect from contaminants
• lachrymal: secretion of tears to smooth the cornea, 

facilitate the motion of the eyeball, and wash away 
dust particles

•• eye muscleseye muscles: alignment of optical axis (external), : alignment of optical axis (external), 
focussing and adaptation to brightness (internal)focussing and adaptation to brightness (internal)

•• eyelids, connective tissueeyelids, connective tissue:: protect from contaminantsprotect from contaminants
•• lachrymallachrymal:: secretion of tears to smooth the cornea, secretion of tears to smooth the cornea, 

facilitate the motion of the eyeball, and wash away facilitate the motion of the eyeball, and wash away 
dust particlesdust particles Images: www.humanmuscles.8k.com



Teeth

• embedded into upper jaw (lat. maxilla) and lower jaw
(lat. mandibula)

• 20 milk teeth are replaced gradually with                    
32 permanent teeth starting at the age of about six 

• are used to chop up and squelch food, and for 
articulation

•• embedded into upper jawembedded into upper jaw (lat. (lat. maxillamaxilla) ) andand lower jawlower jaw
(lat.(lat. mandibulamandibula))

•• 2020 milk teethmilk teeth are replaced gradually with                    are replaced gradually with                    
32 32 permanent teethpermanent teeth starting at the age of about six starting at the age of about six 

•• are used to chop up and squelch food, and for are used to chop up and squelch food, and for 
articulationarticulation Images: www.humanmuscles.8k.com

Tongue
• consists of muscle tissue, 

nerves, blood vessels, and 
sensory cells (embedded 
in mucous membrane)

• can alter its shape and 
position in many ways

• most important sense 
organ for taste: sweet (tip),
salty (front sides), bitter 
(back)

• support during chewing 
and swallowing

• use for articulation is learnt

•• consists of muscle tissue, consists of muscle tissue, 
nerves, blood vessels, and nerves, blood vessels, and 
sensory cellssensory cells ((embedded embedded 
in mucous membrane)in mucous membrane)

•• can alter its shape and can alter its shape and 
position in many waysposition in many ways

•• most important sense most important sense 
organ for taste:organ for taste: sweetsweet ((tip),tip),
saltysalty ((front sides),front sides), bitter bitter 
((back)back)

•• support during chewing support during chewing 
and swallowingand swallowing

•• use for articulation is learntuse for articulation is learntImage: www.humanmuscles.8k.com

All that stuff…

Is it necessary to know all those details?
• it depends on the desired quality / realism of the head 

model:
– the more realism you want,                                    

the more precisely you have to simulate anatomy 
• at least: we need to know about the shape / structure / 

position of facial components and their interactions

• … so don’t be afraid to spend some money on 
medical textbooks or atlases 

Is it necessary to know all those details?Is it necessary to know all those details?
•• it depends on the desired quality / realism of the head it depends on the desired quality / realism of the head 

model:model:
–– the more realism you want,                                    the more realism you want,                                    

the more precisely you have to simulate anatomy the more precisely you have to simulate anatomy 
•• at least: we need to know about the shape / structure / at least: we need to know about the shape / structure / 

position of facial components and their interactionsposition of facial components and their interactions

•• … so don’t be afraid to spend some money on … so don’t be afraid to spend some money on 
medical textbooks or atlases medical textbooks or atlases 



Overview
Facial Animation Techniques

Volker Blanz
MPI Informatik
Volker BlanzVolker Blanz

MPIMPI InformatikInformatik

Facial Animation

Performance Driven
• Transfer performance of human actor to synthetic face 

model

Synthetic Motion
• From Text, Audio or defined by an Artist

Complete Script vs. Interactive Animation

Performance DrivenPerformance Driven
•• Transfer performance of human actor to synthetic face Transfer performance of human actor to synthetic face 

modelmodel

Synthetic MotionSynthetic Motion
•• From Text, Audio or defined by an ArtistFrom Text, Audio or defined by an Artist

Complete Script vs. Interactive AnimationComplete Script vs. Interactive Animation

Facial Animation:
Two Levels

1. Dynamics of motion (temporal domain)
• Feature point coordinates

• Muscle contractions

• Action Units (AU, Ekman and Friesen 78)

2. Surface Deformation (spatial domain)
• Displacements of vertices of a high-resolution mesh

• Generate wrinkles

• May be solved statically at each moment t.

1.1. Dynamics of motion (temporal domain)Dynamics of motion (temporal domain)
•• Feature point coordinatesFeature point coordinates

•• Muscle contractionsMuscle contractions

•• Action Units (AU, Action Units (AU, Ekman Ekman and Friesen 78)and Friesen 78)

2.2. Surface Deformation (spatial domain)Surface Deformation (spatial domain)
•• Displacements of vertices of a highDisplacements of vertices of a high--resolution meshresolution mesh

•• Generate wrinklesGenerate wrinkles

•• May be solved statically at each moment May be solved statically at each moment t.t.

)(tix )(tix
)(tci )(tci

)(tai )(tai

Performance of an Actor

• Tracking of marker points attached to skin

• Tracking of facial features

Feature Point i: 

Performance of an ActorPerformance of an Actor

•• Tracking of marker points attached to skinTracking of marker points attached to skin

•• Tracking of facial featuresTracking of facial features

Feature Point Feature Point ii: : 

Dynamics of Motion:
Performance Driven Animation

)(tix )(tix

Performance-driven Animation
Acquisition of animation parameters

- specialized hardware (mechanical / electrical) 
transfers “deformation” of the human face to a 
synthetic face model

Acquisition of animation parametersAcquisition of animation parameters
-- specialized hardware (mechanical / electrical) specialized hardware (mechanical / electrical) 

transfers transfers “deformation” of the human face to a “deformation” of the human face to a 
synthetic face modelsynthetic face model

Movie: www.his.atr.co.jp/~kuratate/movie/Virtual Actor system by SimGraphics (1994)

Performance Driven Animation
Acquisition of animation parameters:

– video camera + software  (→ computer vision)
– capture head movements, identify eyes and mouth, detect 

viewing direction and mouth configuration, control synthetic 
head model with these parameters

Acquisition of animation parameters:Acquisition of animation parameters:
–– video camera + software  (video camera + software  (→→ computer visioncomputer vision))
–– capture head movements, identify eyes and mouth, detect capture head movements, identify eyes and mouth, detect 

viewing direction and mouth configuration, control synthetic viewing direction and mouth configuration, control synthetic 
head model with these parametershead model with these parameters

Movies: baback.www.media.mit.edu/~irfan/DFACE.demo/tracking.html



Dynamics of Motion:
Voice Puppetry

Brand, Siggraph99

Audio

• Hidden Markov Model
– Trained from Video & Audio data

26 Feature Points i: 

Brand, SiggBrand, Siggraph99raph99

AudioAudio

•• Hidden Markov ModelHidden Markov Model
–– Trained from Video & Audio dataTrained from Video & Audio data

26 Feature Points 26 Feature Points ii: : )(tix )(tix

Dynamics of Motion:
Key-Frame Animation

Text-To-Speech     Expression Models              Artist

Key-Frames (Morph Targets)

Blending for Coarticulation Simple Linear            Smooth

(Cohen, Massaro)           Transition              Trajectory

Feature points or Muscle contractions or AU

TextText--ToTo--Speech     Expression Models              ArtistSpeech     Expression Models              Artist

KeyKey--Frames (Morph Targets)Frames (Morph Targets)

Blending for Blending for Coarticulation Coarticulation Simple Linear            SmoothSimple Linear            Smooth

(Cohen, (Cohen, MassaroMassaro)           )           Transition              TrajectoryTransition              Trajectory

Feature points or Muscle contractions or AUFeature points or Muscle contractions or AU

Key Frame Animation

Types of interpolation:
• convex combination (linear int., blending, morphing):                      

v : scalar or vector (position, color,…)

• non-linear interpolation: e.g. trigonometric functions, splines, …; 
useful for displaying dynamics (acceleration, slow-down)

• segmental interpolation: different interpolation values / types for 
independent regions (e.g. eyes, mouth);

⇒ decoupling of emotion and speech animation

Types of interpolation:Types of interpolation:
•• convex combinationconvex combination ((linear int., blendinglinear int., blending, , morphingmorphing):                      ):                      

vv : scalar or vector (position, color,…): scalar or vector (position, color,…)

•• nonnon--linear interpolationlinear interpolation: e.g. trigonometric functions, splines, …; : e.g. trigonometric functions, splines, …; 
useful for displaying dynamics (acceleration, slowuseful for displaying dynamics (acceleration, slow--down)down)

•• segmental interpolationsegmental interpolation: different interpolation values / types for : different interpolation values / types for 
independent regions (e.g. eyes, mouth);independent regions (e.g. eyes, mouth);

⇒⇒ decoupling of emotion and speech animationdecoupling of emotion and speech animation

)()( 101 21 ≤α≤⋅α−+⋅α= vvv )()( 101 21 ≤α≤⋅α−+⋅α= vvv

Surface Deformations
Main Approaches

1. Parametric Models

2. Physics-based Animation

3. Learning-Based Animation
• Image-Based

• 3D Models

1.1. Parametric ModelsParametric Models

2.2. PhysicsPhysics--based Animationbased Animation

3.3. LearningLearning--Based AnimationBased Animation
•• ImageImage--BasedBased

•• 3D Models3D Models

Direct Parameterization

Idea:
• perform facial animation using a set of control 

parameters that manipulate (local) regions / features

What parameterization should be used?
• ideal universal parameterization:

– small set of intuitive control parameters
– any possible face with any possible expression can 

be specified 

Idea:Idea:
•• perform facial animation using a perform facial animation using a set of control set of control 

parametersparameters that manipulate (local) regions / featuresthat manipulate (local) regions / features

What parameterization should be used?What parameterization should be used?
•• ideal universal parameterization:ideal universal parameterization:

–– small set of intuitive control parameterssmall set of intuitive control parameters
–– any possible face with any possible expression can any possible face with any possible expression can 

be specified be specified 

Parametric Models I
• F. I. Parke: “Parameterized Models for Facial 

Animation”, IEEE CGA, 2(9):61-68, Nov. 1982
– 10 control parameters for facial expressions
– ~20 parameters for definition of facial conformation

• K. Waters: “A Muscle Model for Animating Three-
Dimensional Facial Expression”, SIGGRAPH ’87,     
pp. 17-24, July 1987
– deforms skin using “muscle vectors”

•• F. I.F. I. ParkeParke: “: “Parameterized Models for Facial Parameterized Models for Facial 
AnimationAnimation”, IEEE CGA, 2(9):61”, IEEE CGA, 2(9):61--68, Nov. 198268, Nov. 1982
–– 10 control parameters for facial expressions10 control parameters for facial expressions
–– ~20 parameters for definition of facial conformation~20 parameters for definition of facial conformation

•• K. Waters: “K. Waters: “A Muscle Model for Animating ThreeA Muscle Model for Animating Three--
Dimensional Facial ExpressionDimensional Facial Expression”, SIGGRAPH ’87,     ”, SIGGRAPH ’87,     
pp. 17pp. 17--24, July 198724, July 1987
–– deforms skin using “muscle vectors”deforms skin using “muscle vectors”



Parametric Models II
• N. Magnenat-Thalmann et al.: “Abstract Muscle Action 

Procedures for Human Face Animation”, The Visual 
Computer, 3(5):290-297, March 1988
– pseudo muscles based on empirical models
– muscle actions are (complex) combinations of 

FACS action units

• J. E. Chadwick et al.: “Layered Construction for 
Deformable Animated Characters”, SIGGRAPH ‘89, 
pp. 243-252, July 1989
– freeform deformations (FFD), pseudo muscles 

•• N.N. MagnenatMagnenat--ThalmannThalmann et al.: “et al.: “Abstract Muscle Action Abstract Muscle Action 
Procedures for Human Face AnimationProcedures for Human Face Animation”, The Visual ”, The Visual 
Computer, 3(5):290Computer, 3(5):290--297, March 1988297, March 1988
–– pseudo muscles based on empirical modelspseudo muscles based on empirical models
–– muscle actions are (complex) combinations of muscle actions are (complex) combinations of 

FACS action unitsFACS action units

•• J. E. Chadwick et al.: “J. E. Chadwick et al.: “Layered Construction for Layered Construction for 
Deformable Animated CharactersDeformable Animated Characters”, SIGGRAPH ‘89, ”, SIGGRAPH ‘89, 
pp. 243pp. 243--252, July 1989252, July 1989
–– freeform deformations (FFD), pseudo muscles freeform deformations (FFD), pseudo muscles 

Parke’s Parametric Face Model

•• polygonal face mesh  (~300 polygonal face mesh  (~300 
triangles + quads), symmetrical, triangles + quads), symmetrical, 
edges aligned to facial feature edges aligned to facial feature 
lineslines

•• two types of parameters:two types of parameters:
–– 10 expression parameters10 expression parameters
–– about 20 conformation about 20 conformation 

parametersparameters
•• five different ways how five different ways how 

parameters modify facial parameters modify facial 
geometrygeometry

Parke: 
Expression Parameters
• eyes:

– dilation of pupils, opening / closing of eyelids, 
position and shape of eyebrows, viewing direction

• mouth:
– rotation of mandible, width and shape of the mouth, 

position of upper lip, position of mouth corners
• additional parameters (suggested):

– head rotation, size of nostrils

•• eyes:eyes:
–– dilation of pupilsdilation of pupils, opening / closing of eyelids, , opening / closing of eyelids, 

position and shape of eyebrows, viewing directionposition and shape of eyebrows, viewing direction

•• mouth:mouth:
–– rotation of mandible, width and shape of the mouth, rotation of mandible, width and shape of the mouth, 

position of upper lip, position of mouth cornersposition of upper lip, position of mouth corners

•• additional parameters (suggested):additional parameters (suggested):
–– head rotation, size of nostrilshead rotation, size of nostrils

Parke: 
Conformation Parameters
• aspect ratio of the face

• length and shape of the neck

• shape (= relative position of assigned vertices) of chin, 
forehead, cheeks, and cheekbones

• size of eyelids, eyeballs, iris; position of the eyes

• jaw width

• length of the nose; width of nose bridge and nostril

• relative size of chin, forehead, and mouth-nose-eyes-part w.r.t. 
remaining face parts

• color of skin, eyebrows, iris, and lips

•• aspect ratio of the faceaspect ratio of the face

•• length and shape of the necklength and shape of the neck

•• shape (= relative position of assigned vertices) of chin, shape (= relative position of assigned vertices) of chin, 
forehead, cheeks, and cheekbonesforehead, cheeks, and cheekbones

•• size of eyelids, eyeballs, iris; position of the eyessize of eyelids, eyeballs, iris; position of the eyes

•• jaw widthjaw width

•• length of the nose; width of nose bridge and nostrillength of the nose; width of nose bridge and nostril

•• relative size of chin, forehead, and mouthrelative size of chin, forehead, and mouth--nosenose--eyeseyes--part w.r.t. part w.r.t. 
remaining face partsremaining face parts

•• color of skin, eyebrows, iris, and lipscolor of skin, eyebrows, iris, and lips

Parke:
Results The Face Model by Waters

•• polygonal face mesh:           polygonal face mesh:           

•• 201 quads + 35 triangles201 quads + 35 triangles

•• 10 different muscles:10 different muscles:
–– 9 linear muscles (symmetrical 9 linear muscles (symmetrical 

left/right)left/right)
–– 1 sphincter (1 sphincter (orbicularis orisorbicularis oris))

•• additional parameters:additional parameters:
–– jaw rotationjaw rotation
–– viewing directionviewing direction
–– opening of eyelidsopening of eyelids



•• muscles are represented by muscles are represented by muscle vectorsmuscle vectors, which , which 
describe the effect of muscle contraction on the geometry describe the effect of muscle contraction on the geometry 
of the skin surfaceof the skin surface

Images: Waters: “A Muscle Model for Animating Three-Dimensional Facial Expression” (1987)

•• muscle vectors are composed of:muscle vectors are composed of:

–– a point of attachment and                                       a point of attachment and                                       a a 
direction (for linear muscles)direction (for linear muscles)

–– a line of attachment and                                        a line of attachment and                                        
a direction (for sheet muscles)a direction (for sheet muscles)

–– a center point and two                                          a center point and two                                          
semisemi--axes defining an ellipse                                        axes defining an ellipse                                        
(for sphincters)(for sphincters)

Waters: Muscle Vectors Physics-based Models

Idea:
• represent and manipulate expressions based on physical 

characteristics of skin tissue and muscles

Real anatomy is too complex!
• no facial animation system has represented and simulated the 

complete, detailed anatomy of the human head yet.

• reduce complexity to obtain animatable model

• need to build appropriate models for muscles and skin tissue 

Idea:Idea:
•• represent and manipulate expressions based on represent and manipulate expressions based on physical physical 

characteristicscharacteristics of skin tissue and musclesof skin tissue and muscles

Real anatomy is too complex!Real anatomy is too complex!
•• no facial animation system has represented and simulated the no facial animation system has represented and simulated the 

complete, detailed anatomy of the human head yet.complete, detailed anatomy of the human head yet.

•• reduce complexity to obtain animatable modelreduce complexity to obtain animatable model

•• need to build appropriate models for muscles and skin tissue need to build appropriate models for muscles and skin tissue 

Skin Tissue Mechanics

Viscoelastic response to stress / strain

• Elastic properties: 
– returns to rest shape when load is removed. 
– Non-linear relationship
– Model: spring

• Viscous Properties
– Energy is absorbed
– Model: damper

Viscoelastic Viscoelastic response to stress / strainresponse to stress / strain

•• Elastic properties: Elastic properties: 
–– returns to rest shape when load is removed. returns to rest shape when load is removed. 
–– NonNon--linear relationshiplinear relationship
–– Model: springModel: spring

•• Viscous PropertiesViscous Properties
–– Energy is absorbedEnergy is absorbed
–– Model: damperModel: damper

Mass-Spring Networks
• common technique for simulating dynamics of skin

• vertices = mass points, edges = springs

• Lagrangian equations of motion are integrated over 
time using numerical algorithms

• several variants with multiple layers of mass-spring 
networks (2D or 3D)

•• common technique for simulating dynamics of skincommon technique for simulating dynamics of skin

•• vertices = vertices = mass pointsmass points, edges = , edges = springssprings

•• Lagrangian equations of motion are integrated over Lagrangian equations of motion are integrated over 
time using numerical algorithmstime using numerical algorithms

•• several variants with multiple layers of massseveral variants with multiple layers of mass--spring spring 
networks (2D or 3D)networks (2D or 3D)

2D:2D:

3D:       tetrahedron                  cube3D:       tetrahedron                  cube

Finite Element Method
• numerical technique for simulating deformation and 

flow processes (crash tests, weather forecast, ...); 
frequently used for surgery planning

• partitioning into 3D elements (tetrahedra, cubes, 
prisms,...)

• continuity conditions between elements are collected  
in global stiffness matrix M
⇒ time-consuming solution for high dimensional M

•• numerical technique for simulating deformation and numerical technique for simulating deformation and 
flow processes (crash tests, weather forecast, ...); flow processes (crash tests, weather forecast, ...); 
frequently used for surgery planningfrequently used for surgery planning

•• partitioning into 3D elements (tetrahedra, cubespartitioning into 3D elements (tetrahedra, cubes, , 
prisms,prisms,...)...)

•• continuity conditions between elementscontinuity conditions between elements are collected  are collected  
in global stiffness matrix in global stiffness matrix MM
⇒⇒ timetime--consuming solution for high dimensional consuming solution for high dimensional MM

Learning-based Techniques

Observe facial deformations, 
Ignore underlying mechanisms
• Record keyframe shapes from

– Images or Video (Multiple Views)
– 3D Scans

• Keyframes reproduce natural appearance in a 
photorealistic way
– Use morphing for smooth transitions between 

keyframes.

Observe facial deformations, Observe facial deformations, 

Ignore underlying mechanismsIgnore underlying mechanisms
•• Record Record keyframekeyframe shapes fromshapes from

–– Images or Video (Multiple Views)Images or Video (Multiple Views)
–– 3D Scans3D Scans

•• Keyframes Keyframes reproduce natural appearance in a reproduce natural appearance in a 
photorealistic photorealistic wayway
–– Use morphing for smooth transitions between Use morphing for smooth transitions between 

keyframeskeyframes..



Parameterized Face Models

Fred Parke
Texas A&M University

Fred ParkeFred Parke
Texas A&M UniversityTexas A&M University

What's the Goal?

All possible faces?All possible faces?
A specific face?A specific face?
Realistic faces?Realistic faces?
Caricature faces?Caricature faces?
Fantasy faces?Fantasy faces?

Facial Attributes

Facial conformation
Facial expression posture – shape
Head orientation, eye gaze
Skin texture, shading
Hair characteristics
Mouth/speech attributes

jaw rotation, lip and tongue shape, teeth,…

Facial conformationFacial conformation
Facial expression posture Facial expression posture –– shapeshape
Head orientation, eye gazeHead orientation, eye gaze
Skin texture, shadingSkin texture, shading
Hair characteristicsHair characteristics
Mouth/speech attributesMouth/speech attributes

jaw rotation, lip and tongue shape, teeth,…jaw rotation, lip and tongue shape, teeth,…

Facial Animation Control

We can view all facial control systems as 
parameterizations

Parameters

Facial Attributes

We can view all facial control systems as We can view all facial control systems as 
parameterizationsparameterizations

ParametersParameters

Facial AttributesFacial Attributes

Some
Functional Mapping

Direct Parameterizations
Parameters

Facial Attributes

Where the functional mapping primarily consists of 
interpolations, affine transformations, translations, and 
generative procedures applied to subsets of the 
surface control points

ParametersParameters

Facial AttributesFacial Attributes

Where the functional mapping primarily consists of Where the functional mapping primarily consists of 
interpolations, affine transformations, translations, and interpolations, affine transformations, translations, and 
generative procedures applied to subsets of the generative procedures applied to subsets of the 
surface control pointssurface control points

Direct
Functional Mapping

Second Level 
Parameterizations

•Higher level parameters which allow 
specification and control of expressions, 
visemes, …
•Built on top of lower level parameterizations
•Speech animation one example
Viseme parameters

low level control face attributes

Emotion parameters

••Higher level parameters which allow Higher level parameters which allow 
specification and control of expressions, specification and control of expressions, 
visemes, …visemes, …
••Built on top of lower level parameterizationsBuilt on top of lower level parameterizations
••Speech animation one exampleSpeech animation one example
Viseme parametersViseme parameters

low level controllow level control face attributesface attributes

Emotion parametersEmotion parameters



Universal Parameterization

Allows specification of any expression and 
facial attribute set, for any possible face
Don’t exist yet
A lot of work on expression parameters

– FACS provides one basis

Not much work on conformation parameters
– Anthropometry, principle component analysis

Allows specification of any expression and Allows specification of any expression and 
facial attribute set, for any possible facefacial attribute set, for any possible face
Don’t exist yetDon’t exist yet
A lot of work on expression parametersA lot of work on expression parameters

–– FACS provides one basisFACS provides one basis

Not much work on conformation parametersNot much work on conformation parameters
–– Anthropometry, principle component analysisAnthropometry, principle component analysis

Parameter Orthogonality

Expression parameters control expression for a 
given face

Conformation parameters select or specify a 
specific face from the universe of possible face

Should be orthogonal 
• Manipulating expression should not effect conformation

• Manipulating conformation should not effect expression

Expression parameters control expression for a Expression parameters control expression for a 
given facegiven face

Conformation parameters select or specify a Conformation parameters select or specify a 
specific face from the universe of possible facespecific face from the universe of possible face

Should be orthogonal Should be orthogonal 
•• Manipulating expression should not effect conformationManipulating expression should not effect conformation

•• Manipulating conformation should not effect expressionManipulating conformation should not effect expression

Facial Expressions

Capable facial models allow wide range of Capable facial models allow wide range of 
expressionexpression

Including the universal expressionsIncluding the universal expressions
•• anger, fear, surprise, disgust, happiness, anger, fear, surprise, disgust, happiness, 

sadnesssadness

Capable facial animation are able to Capable facial animation are able to 
express and convey ‘emotion’express and convey ‘emotion’

Posture and expression display emotionPosture and expression display emotion

FACS

Facial Action Coding System

Developed by Ekman and Friesen to study and 
quantify facial expression across cultures

Consists of about 66 ‘facial actions’

While not intended, has been adopted by the facial 
animation community as an effective expression 
parameterization scheme

Facial Action Coding SystemFacial Action Coding System

Developed by Ekman and Friesen to study and Developed by Ekman and Friesen to study and 
quantify facial expression across culturesquantify facial expression across cultures

Consists of about 66 ‘facial actions’Consists of about 66 ‘facial actions’

While not intended, has been adopted by the facial While not intended, has been adopted by the facial 
animation community as an effective expression animation community as an effective expression 
parameterization schemeparameterization scheme

Animation Control Methods

•• Interpolation of expression posesInterpolation of expression poses
•• Interpolation of control parameters to drive Interpolation of control parameters to drive 

a parameterized modela parameterized model
•• Emulation of muscle actions based on Emulation of muscle actions based on 

interpolated muscle parametersinterpolated muscle parameters

Shape Interpolation

Earliest (simplest) Animation Technique 
Simple interpolation of entire face
• earliest animation technique

Interpolation of ‘independent’ facial regions
• upper face, lower face - Kleiser 1989

Interpolation in n-dimensional face spaces

Earliest (simplest) Animation Technique Earliest (simplest) Animation Technique 
Simple interpolation of entire faceSimple interpolation of entire face
•• earliest animation techniqueearliest animation technique

Interpolation of ‘independent’ facial regionsInterpolation of ‘independent’ facial regions
•• upper face, lower face upper face, lower face -- Kleiser 1989Kleiser 1989

Interpolation in nInterpolation in n--dimensional face spacesdimensional face spaces



Expression 
Interpolation

Various
expression
poses
between
two
extremes

1 dimensional
space,
3 parameters

VariousVarious
expressionexpression
posesposes
betweenbetween
twotwo
extremesextremes

1 dimensional1 dimensional
space,space,
3 parameters3 parameters

2 dimensional pose space

6 parameters6 parameters6 parameters

Poses within a 2 dimensional 
interpolation space Extrapolation in pose space

Interpolated Faces - 1973

Interpolation between individual facesInterpolation between individual facesInterpolation between individual faces

Parameterized Model - 1974
– F. Parke – University of Utah

Example Images

Expression and Conformation Control

–– F. Parke F. Parke –– University of UtahUniversity of Utah

Example ImagesExample Images

Expression Expression andand Conformation ControlConformation Control



Starting Point Parameterized Model - 1974

About 50 parameters, ~10 most useful
Speech ‘enabled’
About 50 parameters, ~10 most usefulAbout 50 parameters, ~10 most useful
Speech ‘enabled’Speech ‘enabled’

Facial Features

Eyes, eyelashes
Lips, tongue, teeth and mouth interior
Skin, Hair
Nose, Ears
Most important features?

Eyes, eyelashesEyes, eyelashes
Lips, tongue, teeth and mouth interiorLips, tongue, teeth and mouth interior
Skin, HairSkin, Hair
Nose, EarsNose, Ears
Most important features?Most important features?

Expression Parameters
Eye region
• Eyebrow arch, separation
• Eyelid opening
• Eyeball size, eye gaze
• Pupil size, iris size

Mouth region
• Jaw rotation
• Mouth expression, width
• Upper lip position
• Control of mouth corners

Eye regionEye region
•• Eyebrow arch, separationEyebrow arch, separation
•• Eyelid openingEyelid opening
•• Eyeball size, eye gazeEyeball size, eye gaze
•• Pupil size, iris sizePupil size, iris size

Mouth regionMouth region
•• Jaw rotationJaw rotation
•• Mouth expression, widthMouth expression, width
•• Upper lip positionUpper lip position
•• Control of mouth cornersControl of mouth corners

Expression parameters Expression parameters



Conformation Parameters
Shape 
• Forehead, cheek, neck

Color – skin, eye, lips, teeth
Scaling
• Head scaling, eyelid scaling
• Widths of jaw, cheek, nose

Facial proportions
• Eye to forehead, chin to mouth, chin to eye

Offset 
• Eyebrows, chin, end of nose, teeth

Shape Shape 
•• Forehead, cheek, neckForehead, cheek, neck

Color Color –– skin, eye, lips, teethskin, eye, lips, teeth
ScalingScaling
•• Head scaling, eyelid scalingHead scaling, eyelid scaling
•• Widths of jaw, cheek, noseWidths of jaw, cheek, nose

Facial proportionsFacial proportions
•• Eye to forehead, chin to mouth, chin to eyeEye to forehead, chin to mouth, chin to eye

Offset Offset 
•• Eyebrows, chin, end of nose, teethEyebrows, chin, end of nose, teeth

Conformation parameters

Conformation parameters Implementation Techniques
Generative procedures
• Eyeballs, eyelids, eye gaze

Shape interpolation
• Forehead, cheeks, eyebrows, mouth expression

Transformations
• Aspect ratio and proportions of head and features 

such as nose, jaw, chin
Translation
• Chin, end of nose, eyebrows

Generative proceduresGenerative procedures
•• Eyeballs, eyelids, eye gazeEyeballs, eyelids, eye gaze

Shape interpolationShape interpolation
•• Forehead, cheeks, eyebrows, mouth expressionForehead, cheeks, eyebrows, mouth expression

TransformationsTransformations
•• Aspect ratio and proportions of head and features Aspect ratio and proportions of head and features 

such as nose, jaw, chinsuch as nose, jaw, chin

TranslationTranslation
•• Chin, end of nose, eyebrowsChin, end of nose, eyebrows

Parameterized Model - 1974

Example AnimationExample AnimationExample Animation

Interactive parameterized model

~1990 on SGI with GL – F. Parke~1990 on SGI with GL ~1990 on SGI with GL –– F. ParkeF. Parke



Range of expression Range of expression

Speech Animation

Support speech posturesSupport speech postures
•• About 45 English phonemesAbout 45 English phonemes

•• 18 or so visually distinct speech 18 or so visually distinct speech 
posturespostures

Synchronize postures to speech trackSynchronize postures to speech track
With With ccoarticulationoarticulation and and expression expression 

overlaysoverlays

Parameterized Model - 1974

Speech Synchronized Animation – F. ParkeSpeech Synchronized Animation Speech Synchronized Animation –– F. ParkeF. Parke

Most Useful Speech 
Parameters

Lip Animation
• Jaw rotation
• Upper lip position
• Mouth width

Expression Animation
• Mouth expression, eye tracking
• Eyebrow arch, separation
• Eyelid opening, pupil size

Lip AnimationLip Animation
•• Jaw rotationJaw rotation
•• Upper lip positionUpper lip position
•• Mouth widthMouth width

Expression AnimationExpression Animation
•• Mouth expression, eye trackingMouth expression, eye tracking
•• Eyebrow arch, separationEyebrow arch, separation
•• Eyelid opening, pupil sizeEyelid opening, pupil size

Parameterized Model - 1974

Speech with a little more expressionSpeech with a little more expressionSpeech with a little more expression



Parameterized Model - 1982

Speech animation for a specific character
Expression and speech only – F. Parke

Speech animation for a specific characterSpeech animation for a specific character
Expression and speech only Expression and speech only –– F. ParkeF. Parke

Coarticulation

Mouth posture influenced by phonemes 
prior to and after current phoneme
Mouth shape blends across phonemes
Due to dynamic motion limits
May span up to five phonemes

– see Pelachaud, et al - 1991

Mouth posture influenced by phonemes Mouth posture influenced by phonemes 
prior to and after current phonemeprior to and after current phoneme
Mouth shape blends across phonemesMouth shape blends across phonemes
Due to dynamic motion limitsDue to dynamic motion limits
May span up to five phonemesMay span up to five phonemes

–– see see PelachaudPelachaud, et al , et al -- 19911991

Eye Actions
Eye blinks

– keep eye wet
– synchronized with speech
– follow pause in speech
– listener blinks also synced to speaker

Eye gaze
– eye contact - allowed contact culturally dependent, 

degree of intimacy
– can communicate intention, ...

Pupil size
– reflects attitude, emotional state

Eye blinksEye blinks
–– keep eye wetkeep eye wet
–– synchronized with speechsynchronized with speech
–– follow pause in speechfollow pause in speech
–– listener blinks also synced to speakerlistener blinks also synced to speaker

Eye gazeEye gaze
–– eye contact eye contact -- allowed contact culturally dependent, allowed contact culturally dependent, 

degree of intimacydegree of intimacy
–– can communicate intention, ...can communicate intention, ...

Pupil sizePupil size
–– reflects attitude, emotional statereflects attitude, emotional state

Dialogue Mouth Action 
(Disney)

Action Leading Dialogue
• accent eyes lead sound by 2 to 5 frames -

stronger accents have longer lead
• sync eye blinks should lead by 3 to 4 frames
• anticipate initial slow moves by 3 to 8 frames

Holds
• at end of phrase, retain mouth expression
• use “moving hold” on long mouth pose

Action Leading DialogueAction Leading Dialogue
•• accent eyes lead sound by 2 to 5 frames accent eyes lead sound by 2 to 5 frames --

stronger accents have longer leadstronger accents have longer lead
•• sync eye blinks should lead by 3 to 4 framessync eye blinks should lead by 3 to 4 frames
•• anticipate initial slow moves by 3 to 8 framesanticipate initial slow moves by 3 to 8 frames

HoldsHolds
•• at end of phrase, retain mouth expressionat end of phrase, retain mouth expression
•• use “moving hold” on long mouth poseuse “moving hold” on long mouth pose

Dialogue Mouth Action 
(Disney)

• The vowel sounds A, E, I, O, U always require 
some mouth opening

• The consonants B, M, P are all closed mouth

• T and G can also pucker like a U; Y and W can go 
into a very small O or U shape

• F and V lower lip under upper teeth

• E sounds generally show teeth

• ‘White’ teeth flash 

•• The vowel sounds A, E, I, O, U always require The vowel sounds A, E, I, O, U always require 
some mouth openingsome mouth opening

•• The consonants B, M, P are all closed mouthThe consonants B, M, P are all closed mouth

•• T and G can also pucker like a U; Y and W can go T and G can also pucker like a U; Y and W can go 
into a very small O or U shapeinto a very small O or U shape

•• F and V lower lip under upper teethF and V lower lip under upper teeth

•• E sounds generally show teethE sounds generally show teeth

•• ‘White’ teeth flash ‘White’ teeth flash 

Lip Sync (Madsen)

analyze speech track
• determine overall length, pauses, etc.

identify ‘key frames’
• look for accented syllables, the b’s, m’s, and p’s
• look for phonemes with distinctive shapes; oval o’s 

and w’s
• Consonants are the accents, need to be accurate
• locate frames where the lips meet

approximate the rest

analyze speech trackanalyze speech track
•• determine overall length, pauses, etc.determine overall length, pauses, etc.

identify ‘key frames’identify ‘key frames’
•• look for accented syllables, the b’s, m’s, and p’slook for accented syllables, the b’s, m’s, and p’s
•• look for phonemes with distinctive shapes; oval o’s look for phonemes with distinctive shapes; oval o’s 

and w’sand w’s
•• Consonants are the accents, need to be accurateConsonants are the accents, need to be accurate
•• locate frames where the lips meetlocate frames where the lips meet

approximate the restapproximate the rest



Lip Movements (Madsen)

Realistic characters are the greatest 
challenge
• invite comparison with real people

For cartoon characters
• simplicity is secret of success 

• attempts at extreme accuracy appear forced and 
unnatural

Realistic characters are the greatest Realistic characters are the greatest 
challengechallenge
•• invite comparison with real peopleinvite comparison with real people

For cartoon charactersFor cartoon characters
•• simplicity is secret of success simplicity is secret of success 

•• attempts at extreme accuracy appear forced and attempts at extreme accuracy appear forced and 
unnaturalunnatural

Head Tilt Angle (Blair)

Head angle, direction of ‘look’, and head motion 
relative to body all contribute to expression

Example - a hand puppet depends mostly on head 
tilt and body posture without any phonetic 
mouthing or facial action

Changes in head tilt or head turns convey different 
emotions
• affirmative ‘nod’, negative sideways shake, …

Head angle, direction of ‘look’, and head motion Head angle, direction of ‘look’, and head motion 
relative to body all contribute to expressionrelative to body all contribute to expression

Example Example -- a hand puppet depends mostly on head a hand puppet depends mostly on head 
tilt and body posture without any phonetic tilt and body posture without any phonetic 
mouthing or facial actionmouthing or facial action

Changes in head tilt or head turns convey different Changes in head tilt or head turns convey different 
emotionsemotions
•• affirmative ‘nod’, negative sideways shake, …affirmative ‘nod’, negative sideways shake, …

Automated Synchronization

Text Driven
• Synthesize speech audio and face images together

• Based on text-to-speech systems

Speech Driven
• Analysis of speech audio track for pauses, visemes

– Simple energy tracking
– Speech recognition acoustic preprocessor
– LPC analysis – speech classification
– Neural nets

Text DrivenText Driven
•• Synthesize speech audio and face images togetherSynthesize speech audio and face images together

•• Based on textBased on text--toto--speech systemsspeech systems

Speech DrivenSpeech Driven
•• Analysis of speech audio track for pauses, visemesAnalysis of speech audio track for pauses, visemes

–– Simple energy trackingSimple energy tracking
–– Speech recognition acoustic preprocessorSpeech recognition acoustic preprocessor
–– LPC analysis LPC analysis –– speech classificationspeech classification
–– Neural netsNeural nets

Automatic Lip Sync - 1987

Lewis and ParkeLewis and ParkeLewis and Parke

Emotional Overlays

Conversation always has emotional content
Facial expressions of emotion 

• ‘affect displays’

Emotion includes visceral and muscular 
physiological responses
• muscle tension

• variations in vocal tract

Conversation always has emotional contentConversation always has emotional content
Facial expressions of emotion Facial expressions of emotion 

•• ‘affect displays’‘affect displays’

Emotion includes visceral and muscular Emotion includes visceral and muscular 
physiological responsesphysiological responses
•• muscle tensionmuscle tension

•• variations in vocal tractvariations in vocal tract

Non-Emotional Overlays

Conversation Signals - illustrators - punctuate 
speech

– eyebrows

Punctuators - movements that occur at pauses
– correspond to commas, periods, exclamation points

Regulators - control speaker turn taking
– speaker-turn-signals
– speaker state signals
– speaker within turn
– speaker continuation

Conversation Signals Conversation Signals -- illustrators illustrators -- punctuate punctuate 
speechspeech

–– eyebrowseyebrows

Punctuators Punctuators -- movements that occur at pausesmovements that occur at pauses
–– correspond to commas, periods, exclamation pointscorrespond to commas, periods, exclamation points

Regulators Regulators -- control speaker turn takingcontrol speaker turn taking
–– speakerspeaker--turnturn--signalssignals
–– speaker state signalsspeaker state signals
–– speaker within turnspeaker within turn
–– speaker continuationspeaker continuation



Muscle Based 
Parameterizations

Parameters control the face through 
functions which emulate or simulate 
muscle actions

K. Waters – 1987
Thalmann, et al – 1988

and many others since

Parameters control the face through Parameters control the face through 
functions which emulate or simulate functions which emulate or simulate 
muscle actionsmuscle actions

K. Waters K. Waters –– 19871987
Thalmann, et al Thalmann, et al –– 19881988

and many others sinceand many others since

Waters’ Muscle Model  - 1987

Models muscle induced displacement with 
geometric distortion functions which include 
first order elastic tissue properties
Three kinds of muscle functions

– Linear, sphincter, and sheet

The muscle functions are located and 
aligned independently of the skin geometry
They have defined regions of influence

Models muscle induced displacement with Models muscle induced displacement with 
geometric distortion functions which include geometric distortion functions which include 
first order elastic tissue propertiesfirst order elastic tissue properties
Three kinds of muscle functionsThree kinds of muscle functions

–– Linear, sphincter, and sheetLinear, sphincter, and sheet

The muscle functions are located and The muscle functions are located and 
aligned independently of the skin geometryaligned independently of the skin geometry
They have defined regions of influenceThey have defined regions of influence

Abstract Muscle Action Model
– Thalmann, et al, 1988

Empirical pseudomuscle action procedures
Each works on a specific region of the face
Each emulates a muscle or group of closely 
related muscles
Loosely patterned after FACS actions
Groups of ‘actions’ form ‘expressions’
• such as ‘emotions’ and phonemes

–– Thalmann, et al, 1988Thalmann, et al, 1988

Empirical pseudomuscle action proceduresEmpirical pseudomuscle action procedures
Each works on a specific region of the faceEach works on a specific region of the face
Each emulates a muscle or group of closely Each emulates a muscle or group of closely 
related musclesrelated muscles
Loosely patterned after FACS actionsLoosely patterned after FACS actions
Groups of ‘actions’ form ‘expressions’Groups of ‘actions’ form ‘expressions’
•• such as ‘emotions’ and phonemessuch as ‘emotions’ and phonemes

Principle Component Analysis

Use of principle component analysis to 
extract ‘conformation parameters’ from a 
data base of digitized real faces.

– Blanz and Vetter – 1999

The principle components become the 
parameters to specify a specific face
• Not an ‘intuitive’ parameter space

• Requires an optimizing search to match a face

Use of principle component analysis to Use of principle component analysis to 
extract ‘conformation parameters’ from a extract ‘conformation parameters’ from a 
data base of digitized real faces.data base of digitized real faces.

–– Blanz and Vetter Blanz and Vetter –– 19991999

The principle components become the The principle components become the 
parameters to specify a specific faceparameters to specify a specific face
•• Not an ‘intuitive’ parameter spaceNot an ‘intuitive’ parameter space

•• Requires an optimizing search to match a faceRequires an optimizing search to match a face



Facial Performance Capture

Lance Williams
Walt Disney Feature Animation

Lance WilliamsLance Williams

Walt Disney Feature AnimationWalt Disney Feature Animation

Laser-scanned facial expressions

Laser-scanned facial expressions
NURBS models
sculpted from scan data

NURBS models 
sculpted from scan data

NURBS model 
sculpted from scan data



Model muscle blendshapes
to fit scanned expressions

Expression: a linear superposition of shapes
• Approximately 60 blendshapes in facial model

– Jaw and eyelid rotations are piecewise linear
– Some “multitarget” blendshapes are used

• Generic muscles are posed to match expressions

• Differences are mapped by back propagation

• Process iterates through expressions repeatedly.

Expression: a linear superposition of shapesExpression: a linear superposition of shapes
•• Approximately 60 Approximately 60 blendshapes blendshapes in facial modelin facial model

–– Jaw and eyelid rotations are piecewise linearJaw and eyelid rotations are piecewise linear
–– Some “Some “multitargetmultitarget” ” blendshapes blendshapes are usedare used

•• Generic muscles are posed to match expressionsGeneric muscles are posed to match expressions

•• Differences are mapped by back propagationDifferences are mapped by back propagation

•• Process iterates through expressions repeatedly.Process iterates through expressions repeatedly.

Linear regime for skin

Life mask scan data Mapping detail from lifemask scan

NURBS model conformed to scan data
• Approximately 3.5 million polygons in life mask scan

• NURBS model matched to rigid-body transformation

• Muscle blendshapes are posed to match expression

• NURBS CVs are sculpted to match model to scan

• Difference is extracted as a displacement map

NURBS model conformed to scan dataNURBS model conformed to scan data
•• Approximately 3.5 million polygons in life mask scanApproximately 3.5 million polygons in life mask scan

•• NURBS model matched to rigidNURBS model matched to rigid--body transformationbody transformation

•• MuscleMuscle blendshapesblendshapes are posed to match expressionare posed to match expression

•• NURBS CVs are sculpted to match model to scanNURBS CVs are sculpted to match model to scan

•• Difference is extracted as a displacement mapDifference is extracted as a displacement map

Model and image Fine hairs



Pores and wrinkles Modulated wrinkles

Modulated wrinkles Modulated wrinkles

Modulated wrinkles Modulated wrinkles



Marschner et. al. 
BRDF skin model

Marschner et. al. 
BRDF skin model

Marschner et. al. 
BRDF skin model Environment mapping

Environment mapping Environment mapping



Bone constraints Eye tracking

Eye tracking Eye tracking

Eye tracking Eye tracking



Eye tracking Image and model

Model and image Tracking registration

Together at last Double take



Cross mapping performance
Next:  automatic modeling, 

markerless tracking

Modeling

Hiroki Itokazu

“Hirokimation” 

Hiroki Hiroki ItokazuItokazu

““HirokimationHirokimation” ” 

Tracking

Xinmin Zhao

Numerical Optimization

Xinmin Xinmin ZhaoZhao

Numerical OptimizationNumerical Optimization

Motion and Emotion
Flash capture:
texture and model



Captured model Captured model

Captured model Captured model

Captured model Captured model



NURBS model Tracking cameras

Matching images with model Matching images with model

Voiceover camera setup Performing with marks



Driving facial animation
Automatic modeling, 
markerless tracking.

Driving facial animation Tracking cameras

Servo camera on head marker
• Most pixels on face

• Reduces motion blur

Servo camera on head markerServo camera on head marker
•• Most pixels on faceMost pixels on face

•• Reduces motion blurReduces motion blur

Tracking cameras

Servo camera on head marker 
Ross Lamm, Perceptivu Inc.

• Most pixels on face

• Reduces motion blur

• Azimuth / elevation:

Servo camera on head marker Servo camera on head marker 

Ross Ross LammLamm, , Perceptivu Perceptivu Inc.Inc.
•• Most pixels on faceMost pixels on face

•• Reduces motion blurReduces motion blur

•• Azimuth / elevation:Azimuth / elevation:

Helmet cameras

2-camera helmetcam
• All pixels on face

• Eliminates motion blur

• Reduced room lights OR camera-mounted ring lights

22--camera camera helmetcamhelmetcam
•• All pixels on faceAll pixels on face

•• Eliminates motion blurEliminates motion blur

•• Reduced room lights OR cameraReduced room lights OR camera--mounted ring lightsmounted ring lights



Helmet cameras

2-camera helmetcam
• All pixels on face

• Eliminates motion blur

• Reduced room lights OR camera-mounted ring lights

22--camera camera helmetcamhelmetcam
•• All pixels on faceAll pixels on face

•• Eliminates motion blurEliminates motion blur

•• Reduced room lights OR cameraReduced room lights OR camera--mounted ring lightsmounted ring lights

Helmet cameras

2-camera helmetcam
• All pixels on face

• Eliminates motion blur

• Reduced room lights OR camera-mounted ring lights

22--camera camera helmetcamhelmetcam
•• All pixels on faceAll pixels on face

•• Eliminates motion blurEliminates motion blur

•• Reduced room lights OR cameraReduced room lights OR camera--mounted ring lightsmounted ring lights



Demetri Terzopoulos
New York University
University of Toronto

Demetri TerzopoulosDemetri Terzopoulos
New York UniversityNew York University
University of TorontoUniversity of Toronto

Physics-Based 
Facial Modeling and Animation

Pseudo-physical approach
• Muscle represented as group of fiber

• Contraction displaces muscle point

• Distribute “forces” → displace skin nodes

• Skin as an infinitesimally thin surface

PseudoPseudo--physical approachphysical approach
•• Muscle represented as group of fiberMuscle represented as group of fiber

•• Contraction displaces muscle pointContraction displaces muscle point

•• Distribute “forces” Distribute “forces” →→ displace skin nodesdisplace skin nodes

•• Skin as an infinitesimally thin surfaceSkin as an infinitesimally thin surface

Platt & Badler, 1981
“Animating Facial Expression”

bonebone
pointpoint

muscle
point

skin: tension netskin: tension net

A Physics-Based Face Model
[Terzopoulos & Waters 1990]

A Physics-Based Face Model
(Terzopoulos & Waters 1990)

Hierarchical structure
• Expression: Facial action coding system (FACS)

• Control: Coordinated facial actuator commands

• Muscles: Contractile muscle fibers exert forces

• Physics: Muscle forces deform 3D synthetic tissue

• Geometry: Expressive facial deformations

• Images: Rendering by graphics pipeline

Hierarchical structureHierarchical structure
•• Expression: Expression: Facial action coding system (FACS)Facial action coding system (FACS)

•• Control: Control: Coordinated facial actuator commandsCoordinated facial actuator commands

•• Muscles: Muscles: Contractile muscle fibers exert forcesContractile muscle fibers exert forces

•• Physics: Physics: Muscle forces deform 3D synthetic tissueMuscle forces deform 3D synthetic tissue

•• Geometry: Geometry: Expressive facial deformationsExpressive facial deformations

•• Images: Images: Rendering by graphics pipelineRendering by graphics pipeline

Physics-Based Facial Modeling
(Terzopoulos & Waters 1990)                 (Lee & Terzopoulos 2002)((TerzopoulosTerzopoulos & Waters 1990)                 (Lee & & Waters 1990)                 (Lee & TerzopoulosTerzopoulos 2002)2002)

Artificial Humans          
Scanned Data        Synthetic Faces

Cyberware
Data

Synthesized
Expressions

Range Image Texture Image



Raw Input Dataset (“Heidi”)

From CyberWare 3D Color DigitizerFrom From CyberWareCyberWare 3D Color Digitizer3D Color Digitizer

Range Image RGB Texture Image

Generic Facial Mesh

Processed range image

RGB texture image

Fitting the Generic Mesh

Feature-based image matching algorithm
localizes facial

features in:

FeatureFeature--based image matching algorithmbased image matching algorithm
localizes faciallocalizes facial

features in:features in:

Sampling Facial Shape

Fitted mesh nodes sample range dataFitted mesh nodes sample range dataFitted mesh nodes sample range data

Textured 3D Geometric Model

Texture map 
coordinates
• Positions of fitted 

mesh nodes in RGB 
texture image

Texture map Texture map 
coordinatescoordinates
•• Positions of fitted Positions of fitted 

mesh nodes in RGB mesh nodes in RGB 
texture imagetexture image

Auxiliary Geometric Models

Eyelid Texture Interpolation



Complete Geometric Model

Neutral expression 
is estimated
Neutral expression Neutral expression 
is estimatedis estimated

Facial Histology

A complex, multilayer structureA complex, multilayer structureA complex, multilayer structure

Deformable tissue elementDeformable tissue elementDeformable tissue element

Biomechanical Skin Model

Epidermis

Dermis

Muscle Layer

Single Element

Viscoelastic uniaxial primitiveViscoelasticViscoelastic uniaxialuniaxial primitiveprimitive

Biomechanical Skin Model

Epidermis

Dermis

Muscle Layer

Single Element
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Biomechanical Skin Model

Epidermis

Dermis

Muscle Layer

Single Element
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• Can represent  c(e)  as a lookup table•• Can represent  Can represent  c(ec(e)  as a lookup table)  as a lookup table



Langer’s Lines

Non-isotropic stress-strain characteristicsNonNon--isotropic stressisotropic stress--strain characteristicsstrain characteristics Element dynamicsElement dynamicsElement dynamics

Biomechanical Skin Model

Epidermis

Dermis

Muscle Layer

Single Element
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Biomechanical Skin Model
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Volume Preservation Constraint

Non-Interpenetration Constraint

Deformable tissue element and patchDeformable tissue element and patchDeformable tissue element and patch

Biomechanical Skin Model

Epidermis

Dermis

Muscle Layer

Single Element

Muscle

Skin Patch
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Explicit Euler 
Time Integration Method

Efficient near stability limit for moderately 
deformable biomechanical skin model
Efficient near stability limit for moderately Efficient near stability limit for moderately 
deformable biomechanical skin modeldeformable biomechanical skin model

Facial
Musculature



Muscle
Insertions

35 Muscles
• Levator Oculii
• Corrugators
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Realistic Modeling for Facial Animation

Yuencheng Lee1, Demetri Terzopoulos1, and Keith Waters2

University of Toronto1 and Digital Equipment Corporation2

Abstract

A major unsolved problem in computer graphics is the construc-
tion and animation of realistic human facial models. Traditionally,
facial models have been built painstakingly by manual digitization
and animated by ad hoc parametrically controlled facial mesh defor-
mations or kinematic approximation of muscle actions. Fortunately,
animators are now able to digitize facial geometries through the use
of scanning range sensors and animate them through the dynamic
simulation of facial tissues and muscles. However, these techniques
require considerableuser input to construct facial models of individ-
uals suitable for animation. In this paper, we present a methodology
for automating this challenging task. Starting with a structured fa-
cial mesh, we develop algorithms that automatically construct func-
tional models of the heads of human subjects from laser-scanned
range and reflectance data. These algorithms automatically insert
contractile muscles at anatomically correct positions within a dy-
namic skin model and root them in an estimated skull structure with
a hinged jaw. They also synthesize functional eyes, eyelids, teeth,
and a neck and fit them to the final model. The constructed face
may be animated via muscle actuations. In this way, we create the
most authentic and functional facial models of individuals available
to date and demonstrate their use in facial animation.

CR Categories: I.3.5 [Computer Graphics]: Physically based
modeling; I.3.7 [Computer Graphics]: Animation.

Additional Keywords: Physics-based Facial Modeling, Facial
Animation, RGB/Range Scanners, Feature-Based Facial Adapta-
tion, Texture Mapping, Discrete Deformable Models.

1 Introduction

Two decades have passed since Parke’s pioneering work in ani-
mating faces [13]. In the span of time, significant effort has been
devoted to the development of computational models of the human
face for applications in such diverse areas as entertainment, low
bandwidth teleconferencing, surgical facial planning, and virtual
reality. However, the task of accurately modeling the expressive
human face by computer remains a major challenge.

Traditionally, computer facial animation follows three basic pro-
cedures: (1) design a 3D facial mesh, (2) digitize the 3D mesh, and
(3) animate the 3D mesh in a controlled fashion to simulate facial
actions.

In procedure (1), it is desirable to have a refined topological
mesh that captures the facial geometry. Often this entails digitizing
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as many nodes as possible. Care must be taken not to oversample the
surface because there is a trade-off between the number of nodes
and the computational cost of the model. Consequently, meshes
developed to date capture the salient features of the face with as few
nodes as possible (see [17, 14, 21, 9, 23] for several different mesh
designs).

In procedure (2), a general 3D digitization technique uses pho-
togrammetry of several images of the face taken from different
angles. A common technique is to place markers on the face that
can be seen from two or more cameras. An alternative technique is
to manually digitize a plaster cast of the face using manual 3D dig-
itization devices such as orthogonal magnetic fields sound captors
[9], or one to two photographs [9, 7, 1]. More recently, automated
laser range finders can digitize on the order of 105 3D points from
a solid object such as a person’s head and shoulders in just a few
seconds [23].

In procedure (3), an animator must decide which mesh nodes
to articulate and how much they should be displaced in order to
produce a specific facial expression. Various approaches have been
proposed for deforming a facial mesh to produce facial expres-
sions; for example, parameterized models [14, 15], control-point
models [12, 7], kinematic muscle models [21, 9], a texture-map-
assembly model [25], a spline model [11], feature-tracking mod-
els [24, 16], a finite element model [6], and dynamic muscle mod-
els [17, 20, 8, 3].

1.1 Our Approach

The goal of our work is to automate the challenging task of cre-
ating realistic facial models of individuals suitable for animation.
We develop an algorithm that begins with cylindrical range and re-
flectance data acquired by a Cyberware scanner and automatically
constructs an efficient and fully functional model of the subject’s
head, as shown in Plate 1. The algorithm is applicable to various
individuals (Plate 2 shows the raw scans of several individuals). It
proceeds in two steps:

In step 1, the algorithm adapts a well-structured face mesh from
[21] to the range and reflectance data acquired by scanning the sub-
ject, thereby capturing the shape of the subject’s face. This approach
has significant advantages because it avoids repeated manual modifi-
cation of control parameters to compensate for geometric variations
in the facial features from person to person. More specifically, it
allows the automatic placement of facial muscles and enables the
use of a single control process across different facial models.

The generic face mesh is adapted automatically through an im-
age analysis technique that searches for salient local minima and
maxima in the range image of the subject. The search is directed
according to the known relative positions of the nose, eyes, chin,
ears, and other facial features with respect to the generic mesh.
Facial muscle emergence and attachment points are also known rel-
ative to the generic mesh and are adapted automatically as the mesh
is conformed to the scanned data.

In step 2, the algorithm elaborates the geometric model con-
structed in step 1 into a functional, physics-based model of the
subject’s face which is capable of facial expression, as shown in the
lower portion of Plate 1.

We follow the physics-basedfacial modeling approachproposed



by Terzopoulos and Waters [20]. Its basic features are that it ani-
mates facial expressions by contracting synthetic muscles embed-
ded in an anatomically motivated model of skin composed of three
spring-mass layers. The physical simulation propagates the muscle
forces through the physics-based synthetic skin thereby deforming
the skin to produce facial expressions. Among the advantagesof the
physics-based approach are that it greatly enhances the degree of
realism over purely geometric facial modeling approaches, while re-
ducing the amount of work that must be done by the animator. It can
be computationally efficient. It is also amenable to improvement,
with an increase in computational expense, through the use of more
sophisticated biomechanical models and more accurate numerical
simulation methods.

We propose a more accurate biomechanical model for facial
animation compared to previous models. We develop a new biome-
chanical facial skin model which is simpler and better than the one
proposed in [20]. Furthermore, we argue that the skull is an impor-
tant biomechanical structure with regard to facial expression [22].
To date, the skin-skull interface has been underemphasizedin facial
animation despite its importance in the vicinity of the articulate jaw;
therefore we improve upon previous facial models by developing
an algorithm to estimate the skull structure from the acquired range
data, and prevent the synthesized facial skin from penetrating the
skull.

Finally, our algorithm includes an articulated neck and synthe-
sizes subsidiary organs, including eyes, eyelids, and teeth, which
cannot be adequately imaged or resolved in the scanned data, but
which are nonetheless crucial for realistic facial animation.

2 Generic Face Mesh and Mesh Adaptation

The first step of our approach to constructing functional facial mod-
els of individuals is to scan a subject using a Cyberware Color
DigitizerTM. The scanner rotates 360 degrees around the subject,
who sits motionless on a stool as a laser stripe is projected onto
the head and shoulders. Once the scan is complete, the device
has acquired two registered images of the subject: a range image
(Figure 1) — a topographic map that records the distance from the
sensor to points on the facial surface, and a reflectance(RGB) image
(Figure 2) — which registers the color of the surface at those points.
The images are in cylindrical coordinates, with longitude (0–360)
degrees along the x axis and vertical height along the y axis. The
resolution of the images is typically 512� 256 pixels (cf. Plate 1)

The remainder of this section describes an algorithm which re-
duces the acquired geometric and photometric data to an efficient
geometric model of the subject’s head. The algorithm is a two-part
process which repairs defects in the acquired images and conforms
a generic facial mesh to the processed images using a feature-based
matching scheme. The resulting mesh captures the facial geometry
as a polygonal surface that can be texture mapped with the full res-
olution reflectance image, thereby maintaining a realistic facsimile
of the subject’s face.

2.1 Image Processing

One of the problems of range data digitization is illustrated in Fig-
ure 1(a). In the hair area, in the chin area, nostril area, and even
in the pupils, laser beams tend to disperse and the sensor observes
no range value for these corresponding 3D surface points. We must
correct for missing range and texture information.

We use a relaxation method to interpolate the range data. In
particular, we apply a membrane interpolation method described in
[18]. The relaxation interpolates values for the missing points so as
to bring them into successively closer agreement with surrounding
points by repeatedly indexing nearest neighbor values. Intuitively,
it stretches an elastic membrane over the gaps in the surface. The
images interpolated through relaxation are shown in Figure 1(b) and

(a) (b)

Figure 1: (a) Range data of “Grace” from a Cyberware scanner. (b)
Recovered plain data.

illustrate improvements in the hair area and chin area. Relaxation
works effectively when the range surface is smooth, and particularly
in the case of human head range data, the smoothness requirement
of the solutions is satisfied quite effectively.

Figure 2(a) shows two 512 � 256 reflectance (RGB) texture
maps as monochrome images. Each reflectance value represents
the surface color of the object in cylindrical coordinates with cor-
responding longitude (0–360 degrees) and latitude. Like range im-
ages, the acquired reflectance images are lacking color information
at certain points. This situation is especially obvious in the hair area
and the shoulder area (see Figure 2(a)). We employ the membrane
relaxation approach to interpolate the texture image by repeated av-
eraging of neighboring known colors. The original texture image in
Figure 2(a) can be compared with the interpolated texture image in
Figure 2(b).

(a) (b)

Figure 2: (a) Texture data of “George” with void points displayed
in white and (b) texture image interpolated using relaxation method.

The method is somewhat problematic in the hair area where
range variations may be large and there is a relatively high percent-
age of missing surface points. A thin-plate relaxation algorithm
[18] may be more effective in these regions because it would fill in
the larger gaps with less “flattening” than a membrane [10].

Although the head structure in the cylindrical laser range data is
distorted along the longitudinal direction, important features such
as the slope changes of the nose, forehead, chin, and the contours of
the mouth, eyes, and nose are still discernible. In order to locate the
contours of those facial features for use in adaptation (see below),
we use a modified Laplacian operator (applied to the discrete image
through local pixel differencing) to detect edges from the range map
shown in Figure 3(a) and produce the field function in Fig. 3(b).
For details about the operator, see [8]. The field function highlights
important features of interest. For example, the local maxima of
the modified Laplacian reveals the boundaries of the lips, eyes, and
chin.

2.2 Generic Face Mesh and Mesh Adaptation

The next step is to reduce the large arrays of data acquired by the
scanner into a parsimonious geometric model of the face that can
eventually be animated efficiently. Motivated by the adaptive mesh-
ing techniques [19] that were employed in [23], we significantly



(a) (b)

Figure 3: (a) Original range map. (b) Modified Laplacian field
function of (a).

improved the technique by adapting a generic face mesh to the data.
Figure 4 shows the planar generic mesh which we obtain through
a cylindrical projection of the 3D face mesh from [21]. One of the
advantages of the generic mesh is that it has well-defined features
which form the basis for accurate feature based adaptation to the
scanned data and automatic scaling and positioning of facial mus-
cles as the mesh is deformed to fit the images. Another advantage is
that it automatically produces an efficient triangulation, with finer
triangles over the highly curved and/or highly articulate regions of
the face, such as the eyes and mouth, and larger triangles elsewhere.

Figure 4: Facial portion of generic mesh in 2D cylindrical coordi-
nates. Dark lines are features for adaptation.

We label all facial feature nodes in the generic face prior to
the adaptation step. The feature nodes include eye contours, nose
contours, mouth contours, and chin contours.

For any specific range image and its positive Laplacian field
function (Figure 3), the generic mesh adaptation procedureperforms
the following steps to locate feature points in the range data (see [8]
for details):

Mesh Adaptation Procedures

1. Locate nose tip

2. Locate chin tip

3. Locate mouth contour

4. Locate chin contour

5. Locate ears

6. Locate eyes

7. Activate spring forces

8. Adapt hair mesh

9. Adapt body mesh

10. Store texture coordinates

Once the mesh has been fitted by the above feature based match-
ing technique (see Plate 3), the algorithm samples the range image
at the location of the nodes of the face mesh to capture the facial
geometry, as is illustrated in Figure 5.

The node positions also provide texture map coordinates that
are used to map the full resolution color image onto the triangles
(see Plate 3).

2.3 Estimation of Relaxed Face Model

Ideally, the subject’s face should be in a neutral, relaxed expression
when he or she is being scanned. However, the scanned woman in

(a) (b)

Figure 5: (a) Generic geometric model conformed to Cyberware
scan of “Heidi”. (b) Same as (a). Note that “Heidi’s” mouth is now
closed, subsequent to estimation of the relaxed face geometry.

the “Heidi” dataset is smiling and her mouth is open (see Plate 2).
We have made our algorithm tolerant of these situations. To con-
struct a functional model, it is important to first estimate the relaxed
geometry. That is, we must infer what the “Heidi” subject would
look like had her face been in a relaxed pose while she was be-
ing scanned. We therefore estimate the range values of the closed
mouth contour from the range values of the open mouth contour by
the following steps:

1. Perform adaptation procedures in Sec. 2.2 without step 3.

2. Store nodal longitude/latitude into adapted face model.

3. Perform lip adaptation in step 3 in sec. 2.2

4. Store nodal range values into adapted face model.

As a result, the final reconstructed face model in Figure 5(b) will
have a relaxed mouth because the longitude and latitude recorded
is the default shape of our closed mouth model (see Figure 4).
Moreover, the shape of the final reconstructed face is still faithful
to the head data because the range value at each facial nodal point
is obtained correctly after the lip adaptation procedure has been
performed. Relaxing the face shown in Figure 5(a) results in the
image in Figure 5(b) (with eyelids inserted — see below).

3 The Dynamic Skin and Muscle Model

This section describes how our system proceeds with the construc-
tion of a fully functional model of the subject’s face from the facial
mesh produced by the adaptation algorithm described in the previ-
ous section. To this end, we automatically create a dynamic model
of facial tissue, estimate a skull surface, and insert the major muscles
of facial expression into the model. The following sections describe
each of these components. We also describe our high-performance
parallel, numerical simulation of the dynamic facial tissue model.

3.1 Layered Synthetic Tissue Model

The skull is covered by deformable tissue which has five distinct
layers [4]. Four layers—epidermis, dermis, sub-cutaneous connec-
tive tissue, and fascia—comprise the skin, and the fifth consists of
the muscles of facial expression. Following [20], and in accordance
with the structure of real skin [5], we have designed a new, synthetic
tissue model (Figure 6(a)).

The tissue model is composed of triangular prism elements (see
Figure 6(a)) which match the triangles in the adapted facial mesh.
The epidermal surface is defined by nodes 1, 2, and 3, which are
connected by epidermal springs. The epidermis nodes are also
connected by dermal-fatty layer springs to nodes 4, 5, and 6, which
define the fascia surface. Fascia nodes are interconnected by fascia
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Figure 6: (a) Triangular skin tissue prism element. (b) Close-up
view of right side of an individual with conformed elements.

springs. They are also connected by muscle layer springs to skull
surface nodes 7, 8, 9.

Figure 9(b) shows 684 such skin elements assembled into an
extended skin patch. Several synthetic muscles are embedded into
the muscle layer of the skin patch and the figure shows the skin
deformation due to muscle contraction. Muscles are fixed in an
estimated bony subsurface at their point of emergence and are at-
tached to fascia nodes as they run through several tissue elements.
Figure 6(b) shows a close-up view of the right half of the facial
tissue model adapted to an individual’s face which consists of 432
elements.

3.2 Discrete Deformable Models (DDMs)

A discrete deformable model has a node-spring-node structure,
which is a uniaxial finite element. The data structure for the node
consists of the nodal massmi, positionxi(t) = [xi(t); yi(t); zi(t)]0,
velocity vi = dxi=dt, acceleration ai = d2xi=dt

2, and net nodal
forces fn

i (t). The data structure for the spring in this DDM consists
of pointers to the head node i and the tail node j which the spring
interconnects, the natural or rest length lk of the spring, and the
spring stiffness ck.

3.3 Tissue Model Spring Forces

By assembling the discrete deformable model according to histolog-
ical knowledge of skin (see Figure 6(a)), we are able to construct an
anatomically consistent, albeit simplified, tissue model. Figure 6(b)
shows a close-up view of the tissue model around its eye and nose
parts of a face which is automatically assembled by following the
above approach.

� The force spring j exerts on node i is

gj = cj(lj � lrj )sj

– each layer has its own stress-strain relationship cj and
the dermal-fatty layer uses biphasic springs (non-constant
cj) [20]

– lrj and lj = jjxj � xijj are the rest and current lengths
for spring j

– sj = (xj � xi)=lj is the spring direction vector for
spring j

3.4 Linear Muscle Forces

The muscles of facial expression, or the muscular plate, spreads out
below the facial tissue. The facial musculature is attached to the
skin tissue by short elastic tendons at many places in the fascia, but
is fixed to the facial skeleton only at a few points. Contractions of
the facial muscles cause movement of the facial tissue. We model

28 of the primary facial muscles, including the zygomatic major and
minor, frontalis, nasii, corrugator, mentalis, buccinator, and angulii
depressor groups. Plate 4 illustrates the effects of automatic scaling
and positioning of facial muscle vectors as the generic mesh adapts
to different faces.

To better emulate the facial muscle attachments to the fascia
layer in our model, a group of fascia nodes situated along the muscle
path—i.e., within a predetermined distance from a central muscle
vector, in accordance with the muscle width—experience forces
from the contraction of the muscle. The face construction algorithm
determines the nodes affected by each muscle in a precomputation
step.

To apply muscle forces to the fascia nodes, we calculate a force
for each node by multiplying the muscle vector with a force length
scaling factor and a force width scaling factor (see Figure 7(a)).
Function Θ1 (Figure 8(a)) scales the muscle force according to the
length ratio "j;i, while Θ2 (Figure 8(b)) scales it according to the
width !j;i at node i of muscle j:

"j;i = ((mF
j � xi) �mj)=(km

A
j �m

F
j k)

!j;i = kpi � (pi � nj)njk

� The force muscle j exerts on node i is

f
j
i = Θ1("j;i)Θ2(!j;i)mj

– Θ1 scales the force according to the distance ratio "j;i,
where "j;i = �j;i=dj , with dj the muscle j length.

– Θ2 scales the force according to the width ratio !j;i=wj ,
with wj the muscle j width.

– mj is the normalized muscle vector for muscle j

Note that the muscle force is scaled to zero at the root of the
muscle fiber in the bone and reaches its full strength near the end
of the muscle fiber. Figure 9(b) shows an example of the effect of
muscle forces applied to a synthetic skin patch.
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Figure 7: (a) Linear muscle fiber. (b) Piecewise linear muscle fiber.
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Figure 8: (a) Muscle force scaling function Θ1 wrt "j;i, (b) Muscle
force scaling function Θ2 wrt !j;i=wj

3.5 Piecewise Linear Muscle Forces

In addition to using linear muscle fibers in section 3.4 to simulate
sheet facial muscles like the frontalis and the zygomatics, we also
model sphincter muscles, such as the orbicularis oris circling the
mouth, by generalizing the linear muscle fibers to be piecewise



linear and allowing them to attach to fascia at each end of the
segments. Figure 7(b) illustrates two segments of an N -segment
piecewise linear muscle j showing three nodes m l

j , ml+1
j , and

ml+2
j . The unit vectors mj;l, mj;l+1 and nj;l, nj;l+1 are parallel

and normal to the segments, respectively. The figure indicates fascia
node i at xi , as well as the distance �j;i = a + b, the width !j;i,
and the perpendicular vector pi from fascia node i to the nearest
segment of the muscle. The length ratio "j;i for fascia node i in
muscle fiber j is

"j;i =
(ml+1

j � xi) �mj;l +
PN

k=l+1 k mk+1
j �mk

j kPN

k=1
k mk+1

j �mk
j k

The width !j;i calculation is the same as for linear muscles.
The remaining muscle force computations are the same as in sec-
tion 3.4. Plate 4 shows all the linear muscles and the piecewise
linear sphincter muscles around the mouth.

3.6 Volume Preservation Forces

In order to faithfully exhibit the incompressibility [2] of real human
skin in our model, a volume constraint force based on the change of
volume (see Figure 9(a)) and displacements of nodes is calculated
and applied to nodes. In Figure 9(b) the expected effect of volume
preservation is demonstrated. For example, near the origin of the
muscle fiber, the epidermal skin is bulging out, and near the end of
the muscle fiber, the epidermal skin is depressed.

� The volume preservation force element e exerts on nodes i in
element e is

qei = k1(V e � Ṽ e)nei + k2(pei � p̃ei )

– Ṽ e and V e are the rest and current volumes for e
– ne

i is the epidermal normal for epidermal node i
– p̃ei and pe

i are the rest and current nodal coordinates for
node i with respect to the center of mass of e

– k1; k2 are force scaling constants
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Figure 9: (a) Volume preservation and skull nonpenetration ele-
ment. (b) Assembled layered tissue elements under multiple muscle
forces.

3.7 Skull Penetration Constraint Forces

Because of the underlying impenetrable skull of a human head, the
facial tissue during a facial expression will slide over the underlying
bony structure. With this in mind, for each individual’s face model
reconstructed from the laser range data,we estimate the skull surface
normals to be the surface normals in the range data image. The
skull is then computed as an offset surface. To prevent nodes from
penetrating the estimated skull (see Figure 9(a)), we apply a skull
non-penetration constraint to cancel out the force component on the
fascia node which points into the skull; therefore, the resulting force
will make the nodes slide over the skull.

� The force to penalize fascia node i during motion is:

si =

�
�(fni � ni)ni when fni � ni < 0
0 otherwise

– fni is the net force on fascia node i
– ni is the nodal normal of node i

3.8 Equations of Motion for Tissue Model

Newton’s law of motion governs the response of the tissue model to
forces. This leads to a system of coupled second order ODEs that
relate the node positions, velocities, and accelerations to the nodal
forces. The equation for node i is

mi
d2xi

dt2
+ 
i

dxi
dt

+ g̃i + q̃i + s̃i + h̃i = f̃i

– mi is the nodal mass,
– 
i is the damping coefficient,
– g̃i is the total spring force at node i,
– q̃i is the total volume preservation force at node i,
– s̃i is the total skull penetration force at node i,
– h̃i is the total nodal restoration force at node i,
– f̃i is the total applied muscle force at node i,

3.9 Numerical Simulation

The solution to the above system of ODEs is approximated by using
the well-known, explicit Euler method. At each iteration, the nodal
acceleration at time t is computed by dividing the net force by nodal
mass. The nodal velocity is then calculated by integrating once, and
another integration is done to compute the nodal positions at the
next time step t+ ∆t, as follows:

a
t
i =

1
mi

(f̃ ti � 
iv
t
i � g̃

t
i � q̃

t
i � s̃

t
i � h̃

t
i)

v
t+∆t
i = v

t
i + ∆tati

x
t+∆t
i = x

t
i + ∆tvt+∆t

i

3.10 Default Parameters

The default parameters for the physical/numerical simulation and
the spring stiffness values of different layers are as follows:

Mass (m) Time step (∆t) Damping (
)
0.5 0.01 30

Epid Derm-fat 1 Derm-fat 2 Fascia Muscle
c 60 30 70 80 10

3.11 Parallel Processing for Facial Animation

The explicit Euler method allows us to easily carry out the numerical
simulation of the dynamic skin/muscle model in parallel. This is
becauseat each time step all the calculations are based on the results
from the previous time step. Therefore, parallelization is achieved
by evenly distributing calculations at each time step to all available
processors. This parallel approach increases the animation speed
to allow us to simulate facial expressions at interactive rates on our
Silicon Graphics multiprocessor workstation.

4 Geometry Models for Other Head Components

To complete our physics-based face model, additional geometric
models are combined along with the skin/muscle/skull models de-
veloped in the previous section. These include the eyes, eyelids,
teeth, neck, hair, and bust (Figure 10). See Plate 5 for an example
of a complete model.



(a)

(b) (c)

Figure 10: (a) Geometric models of eyes, eyelids, and teeth (b)
Incisor, canine, and molar teeth. (c) hair and neck.

4.1 Eyes

Eyes are constructed from spheres with adjustable irises and ad-
justable pupils (Figure 10(a)). The eyes are automatically scaled
to fit the facial model and are positioned into it. The eyes rotate
kinematically in a coordinated fashion so that they will always con-
verge on a specified fixation point in three-dimensional space that
defines the field of view. Through a simple illumination computa-
tion, the eyes can automatically dilate and contract the pupil size in
accordance with the amount of light entering the eye.

4.2 Eyelids

The eyelids are polygonal models which can blink kinematically
during animation (see Figure 10(a)). Note that the eyelids are open
in Figure 10(a).

If the subject is scanned with open eyes, the sensor will not
observe the eyelid texture. An eyelid texture is synthesized by a
relaxation based interpolation algorithm similar to the one described
in section 2.1. The relaxation algorithm interpolates a suitable eyelid
texture from the immediately surrounding texture map. Figure 11
shows the results of the eyelid texture interpolation.

(a) (b)

Figure 11: (a) Face texture image with adapted mesh before eyelid
texture synthesis (b) after eyelid texture synthesis.

4.3 Teeth

We have constructed a full set of generic teeth based on dental
images. Each tooth is a NURBS surfaces of degree 2. Three
different teeth shapes, the incisor, canine, and molar, are modeled
(Figure 10(b)). We use different orientations and scalings of these
basic shapes to model the full set of upper and lower teeth shown in
Figure 10(a). The dentures are automatically scaled to fit in length,
curvature, etc., and are positioned behind the mouth of the facial
model.

4.4 Hair, Neck, and Bust Geometry

The hair and bust are both rigid polygonal models (see Figure 10(c)).
They are modeled from the range data directly, by extending the

facial mesh in a predetermined fashion to the boundaries of the
range and reflectance data, and sampling the images as before.

The neck can be twisted, bent and rotated with three degrees
of freedom. See Figure 12 for illustrations of the possible neck
articulations.

Figure 12: articulation of neck.

5 Animation Examples

Plate 1 illustrates several examples of animating the physics-based
face model after conformation to the “Heidi” scanned data (see
Plate 2).

� The surprise expression results from contraction of the outer
frontalis, major frontalis, inner frontalis, zygomatics major,
zygomatics minor, depressor labii, and mentalis, and rotation
of the jaw.

� The anger expression results from contraction of the corruga-
tor, lateral corrugator, levator labii, levator labii nasi, anguli
depressor, depressor labii, and mentalis.

� The quizzical look results from an asymmetric contraction of
the major frontalis, outer frontalis, corrugator, lateral corru-
gator, levator labii, and buccinator.

� The sadnessexpression results from a contraction of the inner
frontalis, corrugator, lateral corrugator, anguli depressor, and
depressor labii.

Plate 6 demonstrates the performance of our face model con-
struction algorithm on two male individuals (“Giovanni” and “Mick”).
Note that the algorithm is tolerant of some amount of facial hair.

Plate 7 shows a third individual “George.” Note the image at the
lower left, which shows two additional expression effects—cheek
puffing, and lip puckering—that combine to simulate the vigorous
blowing of air through the lips. The cheek puffing was created by
applying outwardly directed radial forces to “inflate” the deformable
cheeks. The puckered lips were created by applying radial pursing
forces and forward protruding forces to simulate the action of the
orbicularis oris sphincter muscle which circles the mouth.

Finally, Plate 8 shows several frames from a two-minute ani-
mation “Bureaucrat Too” (a second-generation version of the 1990
“Bureaucrat” which was animated using the generic facial model in
[20]). Here “George” tries to read landmark papers on facial mod-
eling and deformable models in the SIGGRAPH ’87 proceedings,
only to realize that he doesn’t yet have a brain!

6 Conclusion and Future Work

The human face consists of a biological tissue layer with nonlin-
ear deformation properties, a muscle layer knit together under the
skin, and an impenetrable skull structure beneath the muscle layer.
We have presented a physics-based model of the face which takes
all of these structures into account. Furthermore, we have demon-
strated a new technique for automatically constructing face models
of this sort and conforming them to individuals by exploiting high-
resolution laser scanner data. The conformation process is carried
out by a feature matching algorithm based on a reusable generic



mesh. The conformation process, efficiently captures facial geom-
etry and photometry, positions and scales facial muscles, and also
estimates the skull structure over which the new synthetic facial
tissue model can slide. Our facial modeling approach achieves an
unprecedented level of realism and fidelity to any specific individ-
ual. It also achieves a good compromise between the complete
emulation of the complex biomechanical structures and function-
ality of the human face and real-time simulation performance on
state-of-the-art computer graphics and animation hardware.

Although we formulate the synthetic facial skin as a layered tis-
sue model, our work does not yet exploit knowledge of the variable
thickness of the layers in different areas of the face. This issue
will in all likelihood be addressed in the future by incorporating
additional input data about the subject acquired using noninvasive
medical scanners such as CT or MR.
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Plate 1: Objective. Input: Range map in 3D and texture map (top).
Output: Functional face model for animation.

Plate 2: Raw 512� 256 digitized data for Heidi (top left), George
(top right), Giovanni (bottom left), Mick (bottom right).



Plate 3: Adapted face mesh overlaying texture map and Laplacian
filtered range map of Heidi.

Plate 4: Muscle fiber vector embedded in generic face model and
two adapted faces of Heidi and George.

Plate 5: Complete, functional head model of Heidi with physics-
based face and geometric eyes, teeth, hair, neck, and shoulders (in
Monument Valley).

Plate 6: Animation examples of Giovanni and Mick.

Plate 7: Animation example of George.

Plate 8: George in four scenes from “Bureaucrat Too”.
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2D Morphing
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Statistics
Faces are Points in Face SpaceFaces are Points in Face SpaceFaces are Points in Face Space

Principal Component Analysis
PCA

• Estimate of Probability Density Function

• Order dimensions of face space according to the 
variance found in data 
– Data compression
– Coarse-to-fine strategies

•• Estimate of Probability Density FunctionEstimate of Probability Density Function

•• Order dimensions of face space according to the Order dimensions of face space according to the 
variance found in data variance found in data 
–– Data compressionData compression
–– CoarseCoarse--toto--fine strategiesfine strategies

Principal Component Analysis 
PCA
Estimate Probability:  Normal Distribution Estimate Probability:  Normal Distribution 

Principal Component Analysis
PCA

1. Principal Component1. Principal Component

2. Principal Component2. Principal Component

Estimate Probability:  Normal Distribution Estimate Probability:  Normal Distribution 
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PCA of Shapes

1. PC.1. PC.

2. PC.2. PC.

PCA of Textures

1. PC.1. PC.

2. PC.2. PC.



Statistical Analysis

Find directions that are suited for describing and 
manipulating faces and facial expressions
• Unsupervised Methods (unlabeled data-points):

– PCA
• Directions are, in general, not meaningful for manipulations.

– Independent Component Analysis
• Statistically independent directions in face space
• For Facial Animation: Kalberer et al. 2001:

• Supervised Learning:
– From labeled examples

Find directions that are suited for describing and Find directions that are suited for describing and 
manipulating faces and facial expressionsmanipulating faces and facial expressions
•• Unsupervised Methods (unlabeled dataUnsupervised Methods (unlabeled data--points):points):

–– PCAPCA
•• Directions are, in general, not meaningful for manipulations.Directions are, in general, not meaningful for manipulations.

–– Independent Component AnalysisIndependent Component Analysis
•• Statistically independent directions in face spaceStatistically independent directions in face space
•• For Facial Animation: For Facial Animation: Kalberer Kalberer et al. 2001:et al. 2001:

•• Supervised Learning:Supervised Learning:
–– From labeled examplesFrom labeled examples

Facial Attributes

• Learn from labeled examples

• Fit a linear function to input data
– Use Linear Regression or Discriminant Analysis or 

Support Vector Machine.
• Follow gradient to manipulate faces

Goal:
• Manipulate attribute, but leave individual 

characteristics unchanged: same person.

•• Learn from labeled examplesLearn from labeled examples

•• Fit a linear function to input dataFit a linear function to input data
–– Use Linear Regression or Use Linear Regression or DiscriminantDiscriminant Analysis or Analysis or 

Support Vector Machine.Support Vector Machine.
•• Follow gradient to manipulate facesFollow gradient to manipulate faces

Goal:Goal:
•• Manipulate attribute, but leave individual Manipulate attribute, but leave individual 

characteristics unchanged: same person.characteristics unchanged: same person.

Learning from
Labeled Examples Facial Attributes

OriginalOriginal

WeightWeight

GenderGender
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Facial Attributes

WeightWeightWeight

GenderGenderGender

OriginalOriginalOriginal
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Facial Attributes

Subjective 
Attractiveness

Subjective Subjective 
AttractivenessAttractiveness

Hooked 
Nose

Hooked Hooked 
NoseNose

OriginalOriginalOriginal
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Example-Based Animation

Transfer 3D displacements of vertices to novel face.

• Requires correspondence of vertices 

(corners of the eyes, mouth…)

• Expressions differ across individuals. Still:
• Simple transfer of 3D vertex displacements causes 

no obvious artifacts. 
• More sophisticated methods may improve results.

Transfer 3D displacements of vertices to novel face.Transfer 3D displacements of vertices to novel face.

•• Requires correspondence of vertices Requires correspondence of vertices 

(corners of the eyes, mouth…)(corners of the eyes, mouth…)

•• Expressions differ across individuals. Still:Expressions differ across individuals. Still:
•• Simple transfer of 3D vertex displacements causes Simple transfer of 3D vertex displacements causes 

no obvious artifacts. no obvious artifacts. 
•• More sophisticated methods may improve results.More sophisticated methods may improve results.

Identity and Expression

IdentityIdentityIdentity

ExpressionExpressionExpression

= smile== smilesmile---

+ smile =+ + smilesmile ==
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Scans of VisemesScans of Visemes Strategy
• Mouth poses are learned from static scans.

• New reference scan with open mouth and teeth.
Closing the mouth will occlude teeth in 3D.

• Upper jaw teeth remain fixed relative to the head.
• Lower jaw teeth move with tip of chin.
• Face and Lips: 3D Morphing.

•• Mouth poses are learned from static scans.Mouth poses are learned from static scans.

•• New reference scan with open mouth and teeth.New reference scan with open mouth and teeth.

Closing the mouth will occlude teeth in 3D.Closing the mouth will occlude teeth in 3D.

•• Upper jaw teeth remain fixed relative to the head.Upper jaw teeth remain fixed relative to the head.

•• Lower jaw teeth move with tip of chin.Lower jaw teeth move with tip of chin.

•• Face and Lips: 3D Morphing.Face and Lips: 3D Morphing.

Teeth
Upper: fixed to head

Lower: move with chin

Same teeth for  

• all expressions

• all persons

Inserted automatically

Upper:Upper: fixed to headfixed to head

Lower:Lower: move with chinmove with chin

Same teeth for  Same teeth for  

•• all expressionsall expressions

•• all personsall persons

Inserted automaticallyInserted automatically

Occlusions

Occlusions make correspondence more difficult for optical 
flow than with neutral faces.

Use Bootstrapping: 

• Start with set of similar expressions

• Extend vector space step-by-step

Occlusions make correspondence more difficult for optical Occlusions make correspondence more difficult for optical 
flow than with neutral faces.flow than with neutral faces.

Use Bootstrapping: Use Bootstrapping: 

•• Start with set of similar expressionsStart with set of similar expressions

•• Extend vector space stepExtend vector space step--byby--stepstep



Mouth-Modeler based on PCA
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3D Animation applied to Images

Versatility of 3D Animation
• Works for any pose and illumination

• No video footage of animated face required

Photo-realism of 2D methods
• Animation in given scene context

Versatility of 3D AnimationVersatility of 3D Animation
•• Works for any pose and illuminationWorks for any pose and illumination

•• No video footage of animated face requiredNo video footage of animated face required

PhotoPhoto--realism of 2D methodsrealism of 2D methods
•• Animation in given scene contextAnimation in given scene context

Reanimation
in Images and Video

Animate

• unknown faces

• in given images or video

• at any pose and illumination

AnimateAnimate

•• unknown facesunknown faces

•• in given images or videoin given images or video

•• at any pose and illuminationat any pose and illumination
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Approach
1. Reconstruct 3D shape1. Reconstruct 3D shape1. Reconstruct 3D shape

3D3D3D
+ smile  =+ smile  =+ smile  =

2. Add 3D deformation2. Add 3D deformation2. Add 3D deformation

head angle, position, illumination, …head angle, position, illumination, …head angle, position, illumination, …

3. Draw 3D face into the image3. Draw 3D face into the image3. Draw 3D face into the image
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Facial Animation in Images

= smile= smile= smile---

+ smile  =+ smile  =+ smile  =3D3D3D

Fitting the Model to an Image

1β ⋅1β ⋅ 4β+ ⋅4β+ ⋅

2α+ ⋅2α+ ⋅ 3α+ ⋅3α+ ⋅ 4α+ ⋅4α+ ⋅

3β+ ⋅3β+ ⋅
2β+ ⋅2β+ ⋅

1α ⋅1α ⋅ +K+K

+K+K

R  = Rendering (Perspective Projection, Phong Illumination, Cast Shadows)

ρ = Pose, Illumination, ...

R  = Rendering (Perspective Projection, Phong Illumination, Cast Shadows)

ρ = Pose, Illumination, ...

Rρ



=




Rρ



=


















modelImodelIinputIinputI

Find optimal α, β, ρ Find optimal α, β, ρ 

Minimize Image Difference with Stochastic Newton Optimization.Minimize Image Difference with Stochastic Newton Optimization.Minimize Image Difference with Stochastic Newton Optimization.
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Automated
Parameter Estimation

Ambient:   intensity, color 
Parallel:    intensity, color, direction
Color:       contrast, gains, offsets

Ambient:   intensity, color Ambient:   intensity, color 
Parallel:    intensity, color, Parallel:    intensity, color, directiondirection
Color:       contrast, gains, offsetsColor:       contrast, gains, offsets

• Face Parameters•• Face ParametersFace Parameters

• Light and Color•• Light and ColorLight and Color

shape coefficients  αi

texture coefficients  βi

shape coefficients  shape coefficients  ααii

texture coefficients  texture coefficients  ββii

• 3D Geometry•• 3D Geometry3D Geometry head position
head orientation
focal length

head positionhead position
head orientationhead orientation
focal lengthfocal length

Error Function
• Image difference•• Image differenceImage difference
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priorimage EEE += priorimage EEE +=
• Minimize•• MinimizeMinimize

prior log( ( , ,...) )i iE p α β= −prior log( ( , ,...) )i iE p α β= −
• Plausibility based on PCA•• Plausibility based on PCAPlausibility based on PCA
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Mona Lisa
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Speech Animation

Audio + TextAudio + TextAudio + Text

Phoneme (t) CMU-SPHINXPhoneme (t)Phoneme (t) CMUCMU--SPHINXSPHINX

Keyframe Animation soft accelerationsKeyframe Keyframe AnimationAnimation soft accelerationssoft accelerations



Reanimation of Video

• 3D shape from 1 – 3 frames

• Track 3D motion

• Apply speech in 3D

• Draw into frames 

•• 3D shape from 1 3D shape from 1 –– 3 frames3 frames

•• Track 3D motionTrack 3D motion

•• Apply speech in 3DApply speech in 3D

•• Draw into frames Draw into frames 

Goal: Movie dubbing.  Goal: Movie dubbing.  Goal: Movie dubbing.  

Reanimation of Video
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Conclusion

• Learning-based methods have a large potential for 
achieving photo-realistic results.

• Development of scanning technology is crucial for 
extensive datasets of high-quality scans. 

•• LearningLearning--based methods have a large potential for based methods have a large potential for 
achieving photoachieving photo--realistic results.realistic results.

•• Development of scanning technology is crucial for Development of scanning technology is crucial for 
extensive datasets of highextensive datasets of high--quality scans. quality scans. 



A Morphable Model For The Synthesis Of 3D Faces

Volker Blanz Thomas Vetter

Max-Planck-Institut f¨ur biologische Kybernetik,
Tübingen, Germany�

Abstract

In this paper, a new technique for modeling textured 3D faces is
introduced. 3D faces can either be generated automatically from
one or more photographs, or modeled directly through an intuitive
user interface. Users are assisted in two key problems of computer
aided face modeling. First, new face images or new 3D face mod-
els can be registered automatically by computing dense one-to-one
correspondence to an internal face model. Second, the approach
regulates the naturalness of modeled faces avoiding faces with an
“unlikely” appearance.

Starting from an example set of 3D face models, we derive a
morphable face model by transforming the shape and texture of the
examples into a vector space representation. New faces and expres-
sions can be modeled by forming linear combinations of the proto-
types. Shape and texture constraints derived from the statistics of
our example faces are used to guide manual modeling or automated
matching algorithms.

We show 3D face reconstructions from single images and their
applications for photo-realistic image manipulations. We also
demonstrate face manipulations according to complex parameters
such as gender, fullness of a face or its distinctiveness.

Keywords: facial modeling, registration, photogrammetry, mor-
phing, facial animation, computer vision

1 Introduction

Computer aided modeling of human faces still requires a great deal
of expertise and manual control to avoid unrealistic, non-face-like
results. Most limitations of automated techniques for face synthe-
sis, face animation or for general changes in the appearance of an
individual face can be described either as the problem of finding
corresponding feature locations in different faces or as the problem
of separating realistic faces from faces that could never appear in
the real world. The correspondence problem is crucial for all mor-
phing techniques, both for the application of motion-capture data
to pictures or 3D face models, and for most 3D face reconstruction
techniques from images. A limited number of labeled feature points
marked in one face, e.g., the tip of the nose, the eye corner and less
prominent points on the cheek, must be located precisely in another
face. The number of manually labeled feature points varies from

�MPI für biol. Kybernetik, Spemannstr. 38, 72076 T¨ubingen, Germany.
E-mail: fvolker.blanz, thomas.vetterg@tuebingen.mpg.de

Modeler

Morphable 
Face Model

Face
Analyzer

3D Database

2D Input 3D Output

Figure 1: Derived from a dataset of prototypical 3D scans of faces,
the morphable face model contributes to two main steps in face
manipulation: (1) deriving a 3D face model from a novel image,
and (2) modifying shape and texture in a natural way.

application to application, but usually ranges from 50 to 300.
Only a correct alignment of all these points allows acceptable in-

termediate morphs, a convincing mapping of motion data from the
reference to a new model, or the adaptation of a 3D face model to
2D images for ‘video cloning’. Human knowledge and experience
is necessary to compensate for the variations between individual
faces and to guarantee a valid location assignment in the different
faces. At present, automated matching techniques can be utilized
only for very prominent feature points such as the corners of eyes
and mouth.

A second type of problem in face modeling is the separation of
natural faces from non faces. For this, human knowledge is even
more critical. Many applications involve the design of completely
new natural looking faces that can occur in the real world but which
have no “real” counterpart. Others require the manipulation of an
existing face according to changes in age, body weight or simply to
emphasize the characteristics of the face. Such tasks usually require
time-consuming manual work combined with the skills of an artist.

In this paper, we present a parametric face modeling technique
that assists in both problems. First, arbitrary human faces can be
created simultaneously controlling the likelihood of the generated
faces. Second, the system is able to compute correspondence be-
tween new faces. Exploiting the statistics of a large dataset of 3D
face scans (geometric and textural data,CyberwareTM ) we built
a morphable face model and recover domain knowledge about face
variations by applying pattern classification methods. The mor-
phable face model is a multidimensional 3D morphing function that
is based on the linear combination of a large number of 3D face
scans. Computing the average face and the main modes of vari-
ation in our dataset, a probability distribution is imposed on the
morphing function to avoid unlikely faces. We also derive paramet-
ric descriptions of face attributes such as gender, distinctiveness,
“hooked” noses or the weight of a person, by evaluating the distri-
bution of exemplar faces for each attribute within our face space.

Having constructed a parametric face model that is able to gener-
ate almost any face, the correspondence problem turns into a mathe-
matical optimization problem. New faces, images or 3D face scans,
can be registered by minimizing the difference between the new
face and its reconstruction by the face model function. We devel-



oped an algorithm that adjusts the model parameters automatically
for an optimal reconstruction of the target, requiring only a mini-
mum of manual initialization. The output of the matching proce-
dure is a high quality 3D face model that is in full correspondence
with our morphable face model. Consequently all face manipula-
tions parameterized in our model function can be mapped to the
target face. The prior knowledge about the shape and texture of
faces in general that is captured in our model function is sufficient
to make reasonable estimates of the full 3D shape and texture of a
face even when only a single picture is available. When applying
the method to several images of a person, the reconstructions reach
almost the quality of laser scans.

1.1 Previous and related work

Modeling human faces has challenged researchers in computer
graphics since its beginning. Since the pioneering work of Parke
[25, 26], various techniques have been reported for modeling the
geometry of faces [10, 11, 22, 34, 21] and for animating them
[28, 14, 19, 32, 22, 38, 29]. A detailed overview can be found in
the book of Parke and Waters [24].

The key part of our approach is a generalized model of human
faces. Similar to the approach of DeCarlos et al. [10], we restrict
the range of allowable faces according to constraints derived from
prototypical human faces. However, instead of using a limited set
of measurements and proportions between a set of facial landmarks,
we directly use the densely sampled geometry of the exemplar faces
obtained by laser scanning (CyberwareTM ). The dense model-
ing of facial geometry (several thousand vertices per face) leads
directly to a triangulation of the surface. Consequently, there is no
need for variational surface interpolation techniques [10, 23, 33].
We also added a model of texture variations between faces. The
morphable 3D face model is a consequent extension of the interpo-
lation technique between face geometries, as introduced by Parke
[26]. Computing correspondence between individual 3D face data
automatically, we are able to increase the number of vertices used
in the face representation from a few hundreds to tens of thousands.
Moreover, we are able to use a higher number of faces, and thus
to interpolate between hundreds of ’basis’ faces rather than just a
few. The goal of such an extended morphable face model is to rep-
resent any face as a linear combination of a limited basis set of face
prototypes. Representing the face of an arbitrary person as a linear
combination (morph) of “prototype” faces was first formulated for
image compression in telecommunications [8]. Image-based linear
2D face models that exploit large data sets of prototype faces were
developed for face recognition and image coding [4, 18, 37].

Different approaches have been taken to automate the match-
ing step necessary for building up morphable models. One class
of techniques is based on optic flow algorithms [5, 4] and another
on an active model matching strategy [12, 16]. Combinations of
both techniques have been applied to the problem of image match-
ing [36]. In this paper we extend this approach to the problem of
matching 3D faces.

The correspondence problem between different three-
dimensional face data has been addressed previously by Lee
et al.[20]. Their shape-matching algorithm differs significantly
from our approach in several respects. First, we compute the
correspondence in high resolution, considering shape and texture
data simultaneously. Second, instead of using a physical tissue
model to constrain the range of allowed mesh deformations, we use
the statistics of our example faces to keep deformations plausible.
Third, we do not rely on routines that are specifically designed to
detect the features exclusively found in faces, e.g., eyes, nose.

Our general matching strategy can be used not only to adapt the
morphable model to a 3D face scan, but also to 2D images of faces.
Unlike a previous approach [35], the morphable 3D face model is
now directly matched to images, avoiding the detour of generat-

ing intermediate 2D morphable image models. As a consequence,
head orientation, illumination conditions and other parameters can
be free variables subject to optimization. It is sufficient to use rough
estimates of their values as a starting point of the automated match-
ing procedure.

Most techniques for ‘face cloning’, the reconstruction of a 3D
face model from one or more images, still rely on manual assistance
for matching a deformable 3D face model to the images [26, 1, 30].
The approach of Pighin et al. [28] demonstrates the high realism
that can be achieved for the synthesis of faces and facial expressions
from photographs where several images of a face are matched to a
single 3D face model. Our automated matching procedure could be
used to replace the manual initialization step, where several corre-
sponding features have to be labeled in the presented images.

For the animation of faces, a variety of methods have been pro-
posed. For a complete overview we again refer to the book of
Parke and Waters [24]. The techniques can be roughly separated
in those that rely on physical modeling of facial muscles [38, 17],
and in those applying previously captured facial expressions to a
face [25, 3]. These performance based animation techniques com-
pute the correspondence between the different facial expressions of
a person by tracking markers glued to the face from image to im-
age. To obtain photo-realistic face animations, up to 182 markers
are used [14]. Working directly on faces without markers, our au-
tomated approach extends this number to its limit. It matches the
full number of vertices available in the face model to images. The
resulting dense correspondence fields can even capture changes in
wrinkles and map these from one face to another.

1.2 Organization of the paper

We start with a description of the database of 3D face scans from
which our morphable model is built.

In Section 3, we introduce the concept of the morphable face
model, assuming a set of 3D face scans that are in full correspon-
dence. Exploiting the statistics of a dataset, we derive a parametric
description of faces, as well as the range of plausible faces. Ad-
ditionally, we define facial attributes, such as gender or fullness of
faces, in the parameter space of the model.

In Section 4, we describe an algorithm for matching our flexible
model to novel images or 3D scans of faces. Along with a 3D re-
construction, the algorithm can compute correspondence, based on
the morphable model.

In Section 5, we introduce an iterative method for building a mor-
phable model automatically from a raw data set of 3D face scans
when no correspondences between the exemplar faces are available.

2 Database

Laser scans (CyberwareTM ) of 200 heads of young adults (100
male and 100 female) were used. The laser scans provide head
structure data in a cylindrical representation, with radiir(h; �) of
surface points sampled at 512 equally-spaced angles�, and at 512
equally spaced vertical stepsh. Additionally, the RGB-color values
R(h; �), G(h; �),andB(h; �), were recorded in the same spatial
resolution and were stored in a texture map with 8 bit per channel.

All faces were without makeup, accessories, and facial hair. The
subjects were scanned wearing bathing caps, that were removed
digitally. Additional automatic pre-processing of the scans, which
for most heads required no human interaction, consisted of a ver-
tical cut behind the ears, a horizontal cut to remove the shoulders,
and a normalization routine that brought each face to a standard
orientation and position in space. The resultant faces were repre-
sented by approximately 70,000 vertices and the same number of
color values.



3 Morphable 3D Face Model
The morphable model is based on a data set of 3D faces. Morphing
between faces requires full correspondence between all of the faces.
In this section, we will assume that all exemplar faces are in full
correspondence. The algorithm for computing correspondence will
be described in Section 5.

We represent the geometry of a face with a shape-vectorS =
(X1; Y1; Z1; X2; :::::; Yn; Zn)

T 2 <3n, that contains theX;Y; Z-
coordinates of itsn vertices. For simplicity, we assume that the
number of valid texture values in the texture map is equal to the
number of vertices. We therefore represent the texture of a face by
a texture-vectorT = (R1; G1; B1; R2; :::::; Gn; Bn)

T 2 <3n, that
contains theR;G;B color values of then corresponding vertices.
A morphable face model was then constructed using a data set ofm
exemplar faces, each represented by its shape-vectorSi and texture-
vectorTi. Since we assume all faces in full correspondence (see
Section 5), new shapesSmodel and new texturesTmodel can be
expressed in barycentric coordinates as a linear combination of the
shapes and textures of them exemplar faces:

Smod =
mP
i=1

aiSi ; Tmod =
mP
i=1

biTi ;
mP
i=1

ai =
mP
i=1

bi = 1:

We define the morphable model as the set of faces(Smod(~a),
Tmod(~b)), parameterized by the coefficients~a = (a1; a2:::am)T

and~b = (b1; b2:::bm)T . 1 Arbitrary new faces can be generated by
varying the parameters~a and~b that control shape and texture.

For a useful face synthesis system, it is important to be able to
quantify the results in terms of their plausibility of being faces. We
therefore estimated the probability distribution for the coefficients
ai andbi from our example set of faces. This distribution enables
us to control the likelihood of the coefficientsai andbi and conse-
quently regulates the likelihood of the appearance of the generated
faces.

We fit a multivariate normal distribution to our data set of 200
faces, based on the averages of shapeS and textureT and the co-
variance matricesCS andCT computed over the shape and texture
differences�Si = Si � S and�T i = Ti � T .

A common technique for data compression known as Principal
Component Analysis (PCA) [15, 31] performs a basis transforma-
tion to an orthogonal coordinate system formed by the eigenvectors
si andti of the covariance matrices (in descending order according
to their eigenvalues)2:

Smodel = S +

m�1X

i=1

�isi ; Tmodel = T +

m�1X

i=1

�iti ; (1)

~�; ~� 2 <m�1. The probability for coefficients~� is given by

p(~�) � exp[�
1

2

m�1X

i=1

(�i=�i)
2]; (2)

with �2i being the eigenvalues of the shape covariance matrixCS .
The probabilityp(~�) is computed similarly.

Segmented morphable model: The morphable model de-
scribed in equation (1), hasm � 1 degrees of freedom for tex-
ture andm � 1 for shape. The expressiveness of the model can

1Standard morphing between two faces (m = 2) is obtained if the pa-
rametersa1; b1 are varied between0 and 1, settinga2 = 1 � a1 and
b2 = 1� b1.

2Due to the subtracted average vectorsS and T , the dimensions of
Spanf�Sig andSpanf�Tig are at mostm� 1.
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Figure 2: A single prototype adds a large variety of new faces to the
morphable model. The deviation of a prototype from the average is
added (+) or subtracted (-) from the average. A standard morph (*)
is located halfway between average and the prototype. Subtracting
the differences from the average yields an ’anti’-face (#). Adding
and subtracting deviations independently for shape (S) and texture
(T) on each of four segments produces a number of distinct faces.

be increased by dividing faces into independent subregions that are
morphed independently, for example into eyes, nose, mouth and a
surrounding region (see Figure 2). Since all faces are assumed to
be in correspondence, it is sufficient to define these regions on a
reference face. This segmentation is equivalent to subdividing the
vector space of faces into independent subspaces. A complete 3D
face is generated by computing linear combinations for each seg-
ment separately and blending them at the borders according to an
algorithm proposed for images by [7] .

3.1 Facial attributes

Shape and texture coefficients�i and �i in our morphable face
model do not correspond to the facial attributes used in human lan-
guage. While some facial attributes can easily be related to biophys-
ical measurements [13, 10], such as the width of the mouth, others
such as facial femininity or being more or less bony can hardly be
described by numbers. In this section, we describe a method for
mapping facial attributes, defined by a hand-labeled set of example
faces, to the parameter space of our morphable model. At each po-
sition in face space (that is for any possible face), we define shape
and texture vectors that, when added to or subtracted from a face,
will manipulate a specific attribute while keeping all other attributes
as constant as possible.

In a performance based technique [25], facial expressions can be
transferred by recording two scans of the same individual with dif-
ferent expressions, and adding the differences�S = Sexpression�
Sneutral, �T = Texpression � Tneutral, to a different individual
in a neutral expression.

Unlike facial expressions, attributes that are invariant for each in-
dividual are more difficult to isolate. The following method allows
us to model facial attributes such as gender, fullness of faces, dark-
ness of eyebrows, double chins, and hooked versus concave noses
(Figure 3). Based on a set of faces(Si; Ti) with manually assigned
labels�i describing the markedness of the attribute, we compute



weighted sums

�S =

mX

i=1

�i(Si � S); �T =

mX

i=1

�i(Ti � T ): (3)

Multiples of (�S;�T ) can now be added to or subtracted from
any individual face. For binary attributes, such as gender, we assign
constant values�A for all mA faces in classA, and�B 6= �A for
all mB faces inB. Affecting only the scaling of�S and�T , the
choice of�A, �B is arbitrary.

To justify this method, let�(S; T ) be the overall function de-
scribing the markedness of the attribute in a face(S; T ). Since
�(S; T ) is not available per se for all(S; T ), the regression prob-
lem of estimating�(S; T ) from a sample set of labeled faces has
to be solved. Our technique assumes that�(S; T ) is a linear func-
tion. Consequently, in order to achieve a change�� of the at-
tribute, there is only a single optimal direction(�S;�T ) for the
whole space of faces. It can be shown that Equation (3) defines
the direction with minimal variance-normalized lengthk�Sk2M =
h�S;C�1S �Si, k�Tk2M = h�T;C�1T �T i.

A different kind of facial attribute is its “distinctiveness”, which
is commonly manipulated in caricatures. The automated produc-
tion of caricatures has been possible for many years [6]. This tech-
nique can easily be extended from 2D images to our morphable face
model. Individual faces are caricatured by increasing their distance
from the average face. In our representation, shape and texture co-
efficients�i; �i are simply multiplied by a constant factor.

ORIGINAL CARICATURE MORE MALE FEMALE

SMILE FROWN HOOKED NOSEWEIGHT

Figure 3: Variation of facial attributes of a single face. The appear-
ance of an original face can be changed by adding or subtracting
shape and texture vectors specific to the attribute.

4 Matching a morphable model to images
A crucial element of our framework is an algorithm for automati-
cally matching the morphable face model to one or more images.
Providing an estimate of the face’s 3D structure (Figure 4), it closes
the gap between the specific manipulations described in Section 3.1,
and the type of data available in typical applications.

Coefficients of the 3D model are optimized along with a set of
rendering parameters such that they produce an image as close as
possible to the input image. In an analysis-by-synthesis loop, the
algorithm creates a texture mapped 3D face from the current model
parameters, renders an image, and updates the parameters accord-
ing to the residual difference. It starts with the average head and
with rendering parameters roughly estimated by the user.

Model Parameters: Facial shape and texture are defined
by coefficients�j and �j , j = 1; :::; m � 1 (Equation 1).
Rendering parameters~� contain camera position (azimuth and
elevation), object scale, image plane rotation and translation,
intensity ir;amb; ig;amb; ib;amb of ambient light, and intensity

Initializing
the 
Morphable Model

rough interactive
alignment of 
3D average head

Automated 3D Shape and Texture Reconstruction

Illumination Corrected Texture Extraction

Detail

Detail

2D Input

Figure 4: Processing steps for reconstructing 3D shape and texture
of a new face from a single image. After a rough manual alignment
of the average 3D head (top row), the automated matching proce-
dure fits the 3D morphable model to the image (center row). In the
right column, the model is rendered on top of the input image. De-
tails in texture can be improved by illumination-corrected texture
extraction from the input (bottom row).

ir;dir; ig;dir; ib;dir of directed light. In order to handle photographs
taken under a wide variety of conditions,~� also includes color con-
trast as well as offset and gain in the red, green, and blue channel.
Other parameters, such as camera distance, light direction, and sur-
face shininess, remain fixed to the values estimated by the user.

From parameters(~�; ~�; ~�), colored images

Imodel(x; y) = (Ir;mod(x; y); Ig;mod(x; y); Ib;mod(x; y))
T (4)

are rendered using perspective projection and the Phong illumina-
tion model. The reconstructed image is supposed to be closest to
the input image in terms of Euclidean distance

EI =
P

x;y
kIinput(x; y)� Imodel(x; y)k

2:

Matching a 3D surface to a given image is an ill-posed problem.
Along with the desired solution, many non-face-like surfaces lead
to the same image. It is therefore essential to impose constraints
on the set of solutions. In our morphable model, shape and texture
vectors are restricted to the vector space spanned by the database.

Within the vector space of faces, solutions can be further re-
stricted by a tradeoff between matching quality and prior proba-
bilities, usingP (~�), P (~�) from Section 3 and an ad-hoc estimate
of P (~�). In terms of Bayes decision theory, the problem is to find
the set of parameters(~�; ~�; ~�) with maximum posterior probabil-
ity, given an imageIinput. While ~�, ~�, and rendering parame-
ters ~� completely determine the predicted imageImodel, the ob-
served imageIinput may vary due to noise. For Gaussian noise



with a standard deviation�N , the likelihood to observeIinput is
p(Iinputj~�; ~�; ~�) � exp[ �1

2�2
N

� EI ]. Maximum posterior probabil-

ity is then achieved by minimizing the cost function

E =
1

�2N
EI +

m�1X

j=1

�2j
�2S;j

+

m�1X

j=1

�2j
�2T;j

+
X

j

(�j � ��j)
2

�2�;j
(5)

The optimization algorithm described below uses an estimate of
E based on a random selection of surface points. Predicted color
valuesImodel are easiest to evaluate in the centers of triangles. In
the center of trianglek, texture( �Rk; �Gk; �Bk)

T and 3D location
( �Xk; �Yk; �Zk)

T are averages of the values at the corners. Perspec-
tive projection maps these points to image locations(�px;k; �py;k)

T .
Surface normalsnk of each trianglek are determined by the 3D lo-
cations of the corners. According to Phong illumination, the color
componentsIr;model, Ig;model andIb;model take the form

Ir;model;k = (ir;amb + ir;dir � (nkl)) �Rk + ir;dirs � (rkvk)
� (6)

wherel is the direction of illumination,vk the normalized differ-
ence of camera position and the position of the triangle’s center, and
rk = 2(nl)n � l the direction of the reflected ray.s denotes sur-
face shininess, and� controls the angular distribution of the spec-
ular reflection. Equation (6) reduces toIr;model;k = ir;amb

�Rk if
a shadow is cast on the center of the triangle, which is tested in a
method described below.

For high resolution 3D meshes, variations inImodel across each
trianglek 2 f1; :::; ntg are small, soEI may be approximated by

EI �

ntX

k=1

ak � kIinput(�px;k; �py;k)� Imodel;kk
2;

whereak is the image area covered by trianglek. If the triangle is
occluded,ak = 0.

In gradient descent, contributions from different triangles of the
mesh would be redundant. In each iteration, we therefore select a
random subsetK � f1; :::; ntg of 40 trianglesk and replaceEI by

EK =
X

k2K

kIinput(�px;k; �py;k)� Imodel;k)k
2: (7)

The probability of selectingk is p(k 2 K) � ak. This method of
stochastic gradient descent [16] is not only more efficient computa-
tionally, but also helps to avoid local minima by adding noise to the
gradient estimate.

Before the first iteration, and once every 1000 steps, the algo-
rithm computes the full 3D shape of the current model, and 2D po-
sitions(px; py)T of all vertices. It then determinesak, and detects
hidden surfaces and cast shadows in a two-pass z-buffer technique.
We assume that occlusions and cast shadows are constant during
each subset of iterations.

Parameters are updated depending on analytical derivatives of
the cost functionE, using�j 7! �j � �j �

@E
@�j

, and similarly for
�j and�j , with suitable factors�j .

Derivatives of texture and shape (Equation 1) yield derivatives
of 2D locations(�px;k; �py;k)T , surface normalsnk, vectorsvk and
rk, andImodel;k (Equation 6) using chain rule. From Equation (7),
partial derivatives@EK

@�j
, @EK
@�j

, and@EK
@�j

can be obtained.
Coarse-to-Fine: In order to avoid local minima, the algorithm fol-
lows a coarse-to-fine strategy in several respects:
a)The first set of iterations is performed on a down-sampled version
of the input image with a low resolution morphable model.
b) We start by optimizing only the first coefficients�j and�j con-
trolling the first principal components, along with all parameters
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Figure 5: Simultaneous reconstruction of 3D shape and texture of a
new face from two images taken under different conditions. In the
center row, the 3D face is rendered on top of the input images.

�j . In subsequent iterations, more and more principal components
are added.
c) Starting with a relatively large�N , which puts a strong weight
on prior probability in equation (5) and ties the optimum towards
the prior expectation value, we later reduce�N to obtain maximum
matching quality.
d) In the last iterations, the face model is broken down into seg-
ments (Section 3). With parameters�j fixed, coefficients�j and
�j are optimized independently for each segment. This increased
number of degrees of freedom significantly improves facial details.
Multiple Images: It is straightforward to extend this technique to
the case where several images of a person are available (Figure 5).
While shape and texture are still described by a common set of�j
and�j , there is now a separate set of�j for each input image.EI

is replaced by a sum of image distances for each pair of input and
model images, and all parameters are optimized simultaneously.
Illumination-Corrected Texture Extraction: Specific features of
individual faces that are not captured by the morphable model, such
as blemishes, are extracted from the image in a subsequent texture
adaptation process. Extracting texture from images is a technique
widely used in constructing 3D models from images (e.g. [28]).
However, in order to be able to change pose and illumination, it
is important to separate pure albedo at any given point from the
influence of shading and cast shadows in the image. In our ap-
proach, this can be achieved because our matching procedure pro-
vides an estimate of 3D shape, pose, and illumination conditions.
Subsequent to matching, we compare the predictionImod;i for each
vertexi with Iinput(px;i; py;i), and compute the change in texture
(Ri; Gi; Bi) that accounts for the difference. In areas occluded in
the image, we rely on the prediction made by the model. Data from
multiple images can be blended using methods similar to [28].

4.1 Matching a morphable model to 3D scans

The method described above can also be applied to register new
3D faces. Analogous to images, where perspective projection



P : R3 ! R2 and an illumination model define a colored im-
ageI(x; y) = (R(x; y); G(x; y); B(x; y))T , laser scans provide
a two-dimensional cylindrical parameterization of the surface by
means of a mappingC : R3 ! R2; (x; y; z) 7! (h; �). Hence,
a scan can be represented as

I(h; �) = (R(h; �); G(h; �); B(h; �); r(h; �))T : (8)

In a face (S,T ), defined by shape and texture coefficients�j and
�j (Equation 1), vertexi with texture values(Ri; Gi; Bi) and
cylindrical coordinates(ri; hi; �i) is mapped toImodel(hi; �i) =
(Ri; Gi; Bi; ri)

T . The matching algorithm from the previous sec-
tion now determines�j and�j minimizing

E =
X

h;�

kIinput(h; �)� Imodel(h; �)k
2:

5 Building a morphable model

In this section, we describe how to build the morphable model from
a set of unregistered 3D prototypes, and to add a new face to the
existing morphable model, increasing its dimensionality.

The key problem is to compute a dense point-to-point correspon-
dence between the vertices of the faces. Since the method described
in Section 4.1 finds the best match of a given face only within the
range of the morphable model, it cannot add new dimensions to the
vector space of faces. To determine residual deviations between a
novel face and the best match within the model, as well as to set
unregistered prototypes in correspondence, we use an optic flow al-
gorithm that computes correspondence between two faces without
the need of a morphable model [35]. The following section sum-
marizes this technique.

5.1 3D Correspondence using Optic Flow

Initially designed to find corresponding points in grey-level images
I(x; y), a gradient-based optic flow algorithm [2] is modified to es-
tablish correspondence between a pair of 3D scansI(h; �) (Equa-
tion 8), taking into account color and radius values simultaneously
[35]. The algorithm computes a flow field(�h(h; �); ��(h; �)) that
minimizes differences ofkI1(h; �)�I2(h+�h; �+��)k in a norm
that weights variations in texture and shape equally. Surface prop-
erties from differential geometry, such as mean curvature, may be
used as additional components inI(h; �).

On facial regions with little structure in texture and shape, such
as forehead and cheeks, the results of the optic flow algorithm are
sometimes spurious. We therefore perform a smooth interpolation
based on simulated relaxation of a system of flow vectors that are
coupled with their neighbors. The quadratic coupling potential is
equal for all flow vectors. On high-contrast areas, components of
flow vectors orthogonal to edges are bound to the result of the pre-
vious optic flow computation. The system is otherwise free to take
on a smooth minimum-energy arrangement. Unlike simple filter-
ing routines, our technique fully retains matching quality wherever
the flow field is reliable. Optic flow and smooth interpolation are
computed on several consecutive levels of resolution.

Constructing a morphable face model from a set of unregistered
3D scans requires the computation of the flow fields between each
face and an arbitrary reference face. Given a definition of shape and
texture vectorsSref andTref for the reference face,S andT for
each face in the database can be obtained by means of the point-to-
point correspondence provided by(�h(h; �); ��(h; �)).

5.2 Bootstrapping the model

Because the optic flow algorithm does not incorporate any con-
straints on the set of solutions, it fails on some of the more unusual
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Figure 6: Matching a morphable model to a single image (1) of a
face results in a 3D shape (2) and a texture map estimate. The tex-
ture estimate can be improved by additional texture extraction (4).
The 3D model is rendered back into the image after changing facial
attributes, such as gaining (3) and loosing weight (5), frowning (6),
or being forced to smile (7).

faces in the database. Therefore, we modified a bootstrapping al-
gorithm to iteratively improve correspondence, a method that has
been used previously to build linear image models [36].

The basic recursive step:Suppose that an existing morphable
model is not powerful enough to match a new face and thereby find
correspondence with it. The idea is first to find rough correspon-
dences to the novel face using the (inadequate) morphable model
and then to improve these correspondences by using an optic flow
algorithm.

Starting from an arbitrary face as the temporary reference, pre-
liminary correspondence between all other faces and this reference
is computed using the optic flow algorithm. On the basis of these
correspondences, shape and texture vectorsS andT can be com-
puted. Their average serves as a new reference face. The first mor-
phable model is then formed by the most significant components
as provided by a standard PCA decomposition. The current mor-
phable model is now matched to each of the 3D faces according
to the method described in Section 4.1. Then, the optic flow algo-
rithm computes correspondence between the 3D face and the ap-
proximation provided by the morphable model. Combined with the
correspondence implied by the matched model, this defines a new
correspondence between the reference face and the example.

Iterating this procedure with increasing expressive power of the
model (by increasing the number of principal components) leads to
reliable correspondences between the reference face and the exam-
ples, and finally to a complete morphable face model.

6 Results

We built a morphable face model by automatically establishing cor-
respondence between all of our 200 exemplar faces. Our interactive
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Figure 7: After manual initialization, the algorithm automatically matches a colored morphable model (color contrast set to zero) to the
image. Rendering the inner part of the 3D face on top of the image, new shadows, facial expressions and poses can be generated.

face modeling system enables human users to create new characters
and to modify facial attributes by varying the model coefficients.
Within the constraints imposed by prior probability, there is a large
variability of possible faces, and all linear combinations of the ex-
emplar faces look natural.

We tested the expressive power of our morphable model by au-
tomatically reconstructing 3D faces from photographs of arbitrary
Caucasian faces of middle age that were not in the database. The
images were either taken by us using a digital camera (Figures 4, 5),
or taken under arbitrary unknown conditions (Figures 6, 7).

In all examples, we matched a morphable model built from the
first 100 shape and the first100 texture principal components that
were derived from the whole dataset of200 faces. Each component
was additionally segmented in 4 parts (see Figure 2). The whole
matching procedure was performed in105 iterations. On an SGI
R10000 processor, computation time was50 minutes.

Reconstructing the true 3D shape and texture of a face from a
single image is an ill-posed problem. However, to human observers
who also know only the input image, the results obtained with our
method look correct. When compared with a real image of the ro-
tated face, differences usually become only visible for large rota-
tions of more than60�.

There is a wide variety of applications for 3D face reconstruction
from 2D images. As demonstrated in Figures 6 and 7, the results
can be used for automatic post-processing of a face within the orig-
inal picture or movie sequence.

Knowing the 3D shape of a face in an image provides a segmen-
tation of the image into face area and background. The face can be
combined with other 3D graphic objects, such as glasses or hats,
and then be rendered in front of the background, computing cast
shadows or new illumination conditions (Fig. 7). Furthermore, we
can change the appearance of the face by adding or subtracting spe-
cific attributes. If previously unseen backgrounds become visible,
we fill the holes with neighboring background pixels (Fig. 6).

We also applied the method to paintings such as Leonardo’s
Mona Lisa (Figure 8). Due to unusual (maybe unrealistic) light-
ing, illumination-corrected texture extraction is difficult here. We
therefore apply a different method for transferring all details of the

painting to novel views. For new illumination, we render two im-
ages of the reconstructed 3D face with different illumination, and
multiply relative changes in pixel values (Figure 8, bottom left) by
the original values in the painting (bottom center). For a new pose
(bottom right), differences in shading are transferred in a similar
way, and the painting is then warped according to the 2D projec-
tions of 3D vertex displacements of the reconstructed shape.

7 Future work
Issues of implementation:We plan to speed up our matching algo-
rithm by implementing a simplified Newton-method for minimizing
the cost function (Equation 5). Instead of the time consuming com-
putation of derivatives for each iteration step, a global mapping of
the matching error into parameter space can be used [9].

Data reduction applied to shape and texture data will reduce
redundancy of our representation, saving additional computation
time.
Extending the database:While the current database is sufficient
to model Caucasian faces of middle age, we would like to extend it
to children, to elderly people as well as to other races.

We also plan to incorporate additional 3D face examples repre-
senting the time course of facial expressions and visemes, the face
variations during speech.

The laser scanning technology we used, unfortunately, does not
allow us to collect dynamical 3D face data, as each scanning cycle
takes at least 10 seconds. Consequently, our current example set
of facial expressions is restricted to those that can be kept static by
the scanned subjects. However, the development of fast optical 3D
digitizers [27] will allow us to apply our method to streams of 3D
data during speech and facial expressions.
Extending the face model: Our current morphable model is re-
stricted to the face area, because a sufficient 3D model of hair can-
not be obtained with our laser scanner. For animation, the missing
part of the head can be automatically replaced by a standard hair
style or a hat, or by hair that is modeled using interactive manual
segmentation and adaptation to a 3D model [30, 28]. Automated
reconstruction of hair styles from images is one of the future chal-
lenges.



Figure 8: Reconstructed 3D face of Mona Lisa (top center and
right). For modifying the illumination, relative changes in color
(bottom left) are computed on the 3D face, and then multiplied by
the color values in the painting (bottom center). Additional warping
generates new orientations (bottom right, see text), while details of
the painting, such as brush strokes or cracks, are retained.
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Rendering Faces
• skin rendering:

– textures for skin and facial components
– bump mapping for skin dimples and wrinkles

• hair modeling and rendering:                                    
→ course #9 :  “Photorealistic Hair Modeling,       

Animation, and Rendering “

•• skin skin renderingrendering::
–– textures for skin and facial componentstextures for skin and facial components
–– bumpbump mapping for skin dimples and wrinklesmapping for skin dimples and wrinkles

•• hair modeling and rendering:                                    hair modeling and rendering:                                    
→→ course #9 :  “Photorealistic Hair Modeling,       course #9 :  “Photorealistic Hair Modeling,       

Animation, and Rendering “Animation, and Rendering “

Textures are...
• a cheap means of conveying realism

• a tool for LoD management

• available both on graphics hardware and in     
modeling / rendering software

• useful for many rendering “tricks”

•• a cheap means of conveying realisma cheap means of conveying realism

•• a tool for LoD managementa tool for LoD management

•• available both on graphics hardware and in     available both on graphics hardware and in     
modeling / rendering softwaremodeling / rendering software

•• useful for many rendering “tricks”useful for many rendering “tricks”

How to create textures from input images?How to create textures from input images?How to create textures from input images?

Cylindrical Textures

Common approach:
• created from input photographs:

– L. Williams: “Performance-Driven Facial Animation”, 
SIGGRAPH ’90, 235-242, Aug. 1990

– F. Pighin et al.: “Synthesizing Realistic Facial 
Expressions from Photographs”, SIGGRAPH ’98,  
75-84, July 1998

• acquired during range scanning process                          
(→ Cyberware scanners)

Common approach:Common approach:
•• created from input photographs:created from input photographs:

–– L. Williams:L. Williams: “Performance“Performance--Driven Facial Animation”, Driven Facial Animation”, 
SIGGRAPH ’90, 235SIGGRAPH ’90, 235--242, Aug. 1990242, Aug. 1990

–– F. Pighin et al.:F. Pighin et al.: “Synthesizing Realistic Facial “Synthesizing Realistic Facial 
Expressions from Photographs”, Expressions from Photographs”, SIGGRAPH ’98,  SIGGRAPH ’98,  
7575--84, July 199884, July 1998

•• acquired during range scanning process                          acquired during range scanning process                          
((→→ Cyberware scanners)Cyberware scanners)

Cylindrical Textures

A head is similar to a cylinderAA head is similar to a cylinderhead is similar to a cylinder ...is it?...is it?

Cylindrical Textures

Problems:
• limited texture resolution (Cyberware)

• need accurate geometry for registration (from photos)

• visual artifacts:
– on top of the head
– behind the ears
– under the chin

• limited animation (eyes, teeth)

Problems:Problems:
•• limited texture resolution (Cyberware)limited texture resolution (Cyberware)

•• need accurate geometry for registration (from photos)need accurate geometry for registration (from photos)

•• visual artifacts:visual artifacts:
–– on top of the headon top of the head
–– behind the earsbehind the ears
–– under the chinunder the chin

•• limited animation (eyes, teeth)limited animation (eyes, teeth)



Textures from Photographs
Given:
• 3D mesh
• uncalibrated images (digitized photographs)

Assumptions:
• mesh represents real object (head) sufficiently precise
• images cover all areas of real object 

Solution:
• register images using Tsai algorithm
• create texture patches

Given:Given:
•• 3D mesh3D mesh
•• uncalibrated images (digitized photographs)uncalibrated images (digitized photographs)

Assumptions:Assumptions:
•• mesh represents real object (head) sufficiently precisemesh represents real object (head) sufficiently precise
•• images cover all areas of real object images cover all areas of real object 

Solution:Solution:
•• register images using Tsai algorithmregister images using Tsai algorithm

•• create texture patchescreate texture patches

Tsai Algorithm

• compute intrinsic camera parameters (effective focal 
length, radial distortion, optical center) once from 
images of calibration pattern for different points of view 
using non-linear optimization

• compute extrinsic camera parameters (rotation & 
translation) for each input image using corresponding 
points (3D geometry ⇔ 2D image) and linear 
optimization

•• compute compute intrinsic camera parametersintrinsic camera parameters (effective focal (effective focal 
length, radial distortion, optical center) length, radial distortion, optical center) onceonce from from 
images of calibration pattern for different points of view images of calibration pattern for different points of view 
using nonusing non--linear optimizationlinear optimization

•• compute compute extrinsic camera parametersextrinsic camera parameters (rotation & (rotation & 
translation) translation) for each input imagefor each input image using corresponding using corresponding 
points (3D geometry points (3D geometry ⇔⇔ 2D image) and linear 2D image) and linear 
optimizationoptimization

R. Y. Tsai: “A Versatile Camera Calibration Technique for 
High-Accuracy 3D Machine Vision Metrology using Off-
the-Shelf TV Cameras and Lenses”, IEEE J. of Robotics 
and Automation, RA-3(4), Aug. 1987

R. Y. Tsai: “R. Y. Tsai: “A Versatile Camera Calibration Technique for A Versatile Camera Calibration Technique for 
HighHigh--Accuracy 3D Machine Vision Metrology using OffAccuracy 3D Machine Vision Metrology using Off--
thethe--Shelf TV Cameras and LensesShelf TV Cameras and Lenses”, IEEE J. of Robotics ”, IEEE J. of Robotics 
and Automation, RAand Automation, RA--3(4), Aug. 19873(4), Aug. 1987

Corresponding Points Texture Binding

Texture Combination

Important aspects:
• optimal packing of individual segments
• smooth transition between segments (blending)

Important aspects:Important aspects:
•• optimal packing of individual segmentsoptimal packing of individual segments
•• smooth transition between segments (smooth transition between segments (blendingblending))

Texture Atlases

Problems:
• not suitable for mip-mapping
• waste of texture space:

– optimal packing of patches is difficult
– patches contain redundant information 

Problems:Problems:
•• not suitable for mipnot suitable for mip--mappingmapping

•• waste ofwaste of texture space:texture space:
–– optimal packing of patches is difficultoptimal packing of patches is difficult
–– patches contain redundant information patches contain redundant information 



A Different Parameterization

A head is topologically similar to a disk:A headA head is is topologicallytopologically similar to a similar to a disk:disk:

harmonic mapharmonic map

Harmonic Maps

Characteristics:
• results in single texture patch suitable for mip-

mapping

• 3D object must be topologically equivalent to a disk 

• need to control distortion, e.g.:
– P. V. Sander et al.: “Texture Mapping Progressive 

Meshes”, SIGGRAPH ’01, 409-416, Aug. 2001
• may introduce additional weights

Characteristics:Characteristics:
•• results in single texture patch suitable for mipresults in single texture patch suitable for mip--

mappingmapping

•• 3D object must be topologically equivalent to a disk 3D object must be topologically equivalent to a disk 

•• need to control distortion, e.g.:need to control distortion, e.g.:
–– P. V. Sander et al.:P. V. Sander et al.: “Texture Mapping Progressive “Texture Mapping Progressive 

Meshes”, Meshes”, SIGGRAPH ’01, 409SIGGRAPH ’01, 409--416, Aug. 2001416, Aug. 2001

•• may introduce additional weightsmay introduce additional weights

Weighted Parameterization

Facial region is most important:
• assign amount of texture space through weights

Facial region is mostFacial region is most important:important:
•• assign amount of texture space through weightsassign amount of texture space through weights

V

• triangles on the face become 
larger in the texture, backfacing 
triangles become smaller

• weights are computed 
automatically using dot product 
of triangle normal and viewing 
direction V of head model

•• triangles on the face become triangles on the face become 
larger in the texture, backfacing larger in the texture, backfacing 
triangles become smallertriangles become smaller

•• weights are computed weights are computed 
automatically using dot product automatically using dot product 
of triangle normal and viewing of triangle normal and viewing 
direction V of head modeldirection V of head model

Process Overview

Texture Resampling:
Resampling
common image for all vertices: resample trianglecommoncommon image for all vertices: resample triangleimage for all vertices: resample triangle

Texture Resampling:
Interpolation
all vertices bound, no common image: interpolateall vertices bound, no common image: interpolateall vertices bound, no common image: interpolate



Texture Resampling:
Filling holes
unbound vertices: apply iterative interpolation schemeunboundunbound vertices: apply iterativevertices: apply iterative interpolation schemeinterpolation scheme

??

Result

++ ==

Uncontrolled Illumination

• different skin color ⇒
discontinuities in the 
resampled texture

•• different skin color different skin color ⇒⇒
discontinuities in the discontinuities in the 
resampled textureresampled texture

Removing Discontinuities
• P. J. Burt, E. H. Adelson: “A Multiresolution Spline 

with Application to Image Mosaics”, ACM TOG, 
2(4):217-236, Oct. 1983

•• P. J. Burt, E. H. Adelson: “P. J. Burt, E. H. Adelson: “A Multiresolution Spline A Multiresolution Spline 
with Application to Image Mosaicswith Application to Image Mosaics”, ACM TOG, ”, ACM TOG, 
2(4):2172(4):217--236, Oct. 1983236, Oct. 1983

Removing Discontinuities
Multiresolution spline:
• removes discontinuities
• keeps fine detail

Multiresolution spline:Multiresolution spline:
•• removesremoves discontinuitiesdiscontinuities
•• keeps fine detailkeeps fine detail

“De-lighting” Textures
• S. Marschner, B. Guenter, S. Raghupathy: “Modeling 

and Rendering for Realistic Facial Animation”, Proc. 
EG Rendering Workshop 2000, 231-242, June 2000

• P. Debevec et al.: “Acquiring the Reflectance Field of a 
Human Head”, SIGGRAPH 2000, 145-156, July 2000

• extract diffuse reflectivity (albedo map) from 
photographs taken under controlled illumination 
conditions (relative position of object, camera, and  
light sources)

• diffuse reflectivity is computed per texel from viewing 
direction, direction of incident light, surface normal and 
radiance (= color from photograph)

•• S.S. MarschnerMarschner, B., B. GuenterGuenter, S., S. RaghupathyRaghupathy: : “Modeling “Modeling 
and Rendering for Realistic Facial Animationand Rendering for Realistic Facial Animation””,, Proc. Proc. 
EG EG Rendering WorkshopRendering Workshop 20002000, , 231231--242, June 2000242, June 2000

•• P.P. DebevecDebevec et al.: et al.: “Acquiring the Reflectance Field of a “Acquiring the Reflectance Field of a 
Human HeadHuman Head””,, SIGGRAPH 2000, SIGGRAPH 2000, 145145--156, July 2000156, July 2000

•• extract diffuse reflectivity (albedo map) from extract diffuse reflectivity (albedo map) from 
photographs taken under controlled illumination photographs taken under controlled illumination 
conditions (relative position of object, camera, and  conditions (relative position of object, camera, and  
light sources)light sources)

•• diffuse reflectivity is computed per texel from viewing diffuse reflectivity is computed per texel from viewing 
direction, direction of incident light, surface normal and direction, direction of incident light, surface normal and 
radiance (= color from photograph)radiance (= color from photograph)



Facial Components

Observations:
• individual facial components (eyes, teeth) are crucial  

for realistic modeling
• difficult to acquire data for modeling these 

components

Solution:
• Tarini et al.: “Texturing Faces”, Proc. Graphics 

Interface 2002, 89-98, May 2002
• use generic models with individual textures
• create individual textures from plain photographs

Observations:Observations:
•• individual facial components (eyes, teeth) are crucial  individual facial components (eyes, teeth) are crucial  

for realistic modelingfor realistic modeling

•• difficult to acquire data for modeling these difficult to acquire data for modeling these 
componentscomponents

Solution:Solution:
•• Tarini et al.: “Tarini et al.: “Texturing FacesTexturing Faces”, Proc. Graphics ”, Proc. Graphics 

Interface 2002, 89Interface 2002, 89--98, May 200298, May 2002
•• use generic models with individual texturesuse generic models with individual textures
•• create individual textures from plain photographscreate individual textures from plain photographs

Eyeball Textures: Problem

Many pixels must be discarded!ManyMany pixelspixels must be must be discarded!discarded!

eyelideyelid

reflectionsreflections shadowshadow

• remove pixels with a color similar to skin
• remove pixels with a color dissimilar to the pixels at 

the same radial distance from the center

•• remove pixels with a color similar to skinremove pixels with a color similar to skin

•• remove pixels with a color dissimilar to the pixels at remove pixels with a color dissimilar to the pixels at 
the same radial distance from the centerthe same radial distance from the center

Eyeball Textures:
Discarding Pixels

Just a small clean part is needed as a seed…JustJust a small clean part is needed as a small clean part is needed as a seed…a seed…

Eyeball Textures:
Texture Synthesis

Texture synthesis in polar coordinates:Texture synthesis in polar coordinates:Texture synthesis in polar coordinates:

small area:
uniform illumination
small area:small area:
uniform illuminationuniform illumination

clean 
sample
clean clean 

samplesample
synthesized 

texture 
synthesized synthesized 

texture texture 

final texturefinalfinal texturetexture

Eyeball Textures: Results Generic Teeth Model

• central part:
– impostor
– individual texture

• side teeth:
– 3D geometry
– generic texture

•• central part:central part:
–– impostorimpostor
–– individual textureindividual texture

•• side teeth:side teeth:
–– 3D geometry3D geometry
–– generic texturegeneric texture

genericgeneric
texturetexture

genericgeneric
texturetexture

transparent (α=0)

personalpersonal texturetexture

3D3D
billboardbillboard



Teeth: Results Skin Rendering
• speed vs. quality trade-off  (i.e. real-time applications 

vs. offline computations)

• different techniques for modeling/rendering skin:
– simple geometry + texture
– simple geometry + bump mapping + texture
– simple geometry + displacement mapping + texture
– complex geometry + texture

•• speed vs. quality tradespeed vs. quality trade--off  (i.e. realoff  (i.e. real--time applications time applications 
vs. offline computations)vs. offline computations)

•• different techniques for modeling/rendering skin:different techniques for modeling/rendering skin:
–– simplesimple geometrygeometry ++ texturetexture
–– simple geometrysimple geometry + bump mapping ++ bump mapping + texturetexture
–– simplesimple geometrygeometry + displacement mapping ++ displacement mapping + texturetexture
–– complex geometry + texturecomplex geometry + texture

Bump Mapping
• simulate complex geometry using coarse geometry 

and “faked” per-pixel surface normals
•• simulate complex geometry using coarse geometry simulate complex geometry using coarse geometry 

and “faked” perand “faked” per--pixel surface normalspixel surface normals

Rendering Wrinkles
• encode surface normals into RGB texture
• use modern graphics hardware for real-time rendering
•• encode surface normals into RGB textureencode surface normals into RGB texture
•• use modern graphics hardware for realuse modern graphics hardware for real--time renderingtime rendering

bump mapbump mapbump map

Rendering Skin
• T. Ishii et al.: “A Generation Model for Human Skin 

Texture”, Proc. CGI ‘93, 39-150, 1993

• presents a method for generating skin structure bump 
maps and an appropriate illumination model for 
rendering skin

• surface normals are computed from recursively 
generated, hierarchical micro-geometry during 
preprocessing 

• illumination model simulates multi-layered skin 
structure taking into account subsurface scattering

•• T. T. Ishii et al.:Ishii et al.: ““A Generation Model for Human Skin A Generation Model for Human Skin 
TextureTexture”, Proc. CGI ‘93, ”, Proc. CGI ‘93, 3939--150, 1993150, 1993

•• presents a method for generating skin structure bump presents a method for generating skin structure bump 
maps and an appropriate illumination model for maps and an appropriate illumination model for 
rendering skinrendering skin

•• surface normals are computed from recursively surface normals are computed from recursively 
generated, hierarchical microgenerated, hierarchical micro--geometry during geometry during 
preprocessing preprocessing 

•• illumination model simulates multiillumination model simulates multi--layered skin layered skin 
structure taking into account subsurface scatteringstructure taking into account subsurface scattering

“Pattern Generation”
• skin cells are represented by Voronoi cells•• skin cells are represented by Voronoi cellsskin cells are represented by Voronoi cells

• every skin cell bulges upwards above its center;    
ridge shape: cubic Bézier curves

•• every skin cell bulges upwards above its center;    every skin cell bulges upwards above its center;    
ridge shape: cubic Bézier curvesridge shape: cubic Bézier curves

Images: Ishii et al.: “A Generation Model for Human Skin Texture”



“Hierarchical Skin Structure”
• recursive Voronoi subdivision of 

skin cells (3 levels)
•• recursive Voronoi subdivision of recursive Voronoi subdivision of 

skinskin cells (3 levels)cells (3 levels)

Images: Ishii et al.: “A Generation Model for Human Skin Texture”

hierarchy level
hierarchy level

“Multiple Light Reflections”
• multi-layered skin structure 

results in complex light 
transport mechanisms

• model: parallel layers; 
reflection & transmission & 
scattering at each layer 
boundary

•• multimulti--layered skin structure layered skin structure 
results in complex light results in complex light 
transport mechanismstransport mechanisms

•• model: parallel layers; model: parallel layers; 
reflection & transmission & reflection & transmission & 
scatteringscattering at each layer at each layer 
boundaryboundary

Images: Parke/Waters: “Computer Facial Animation” (1996)

precompute 
lighting w.r.t. 
angle of incidence
at skin surface

precompute precompute 
lighting w.r.t. lighting w.r.t. 
angle of incidenceangle of incidence
at skin surfaceat skin surface

Ishii et al.: Results 
• generic model for rendering skin
• orientation of skin cells can be aligned to wrinkles
• anisotropic scaling of skin cells (→ wrist)
• skin structure can be rendered in real-time using 

graphics hardware bump mapping; illumination model 
not (yet) suitable for real-time rendering

•• generic model for rendering skingeneric model for rendering skin
•• orientation of skin cells can be aligned to wrinklesorientation of skin cells can be aligned to wrinkles
•• anisotropic scaling of skin cells anisotropic scaling of skin cells ((→→ wrist)wrist)
•• skin structure can be rendered in realskin structure can be rendered in real--time using time using 

graphics hardware bump mapping; illumination model graphics hardware bump mapping; illumination model 
not (yet) suitable for realnot (yet) suitable for real--time renderingtime rendering

Images: Ishii et al.: “A Generation Model for Human Skin Texture”
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Abstract
We present a number of techniques to facilitate the gen-
eration of textures for facial modeling. In particular, we
address the generation of facial skin textures from uncal-
ibrated input photographs as well as the creation of in-
dividual textures for facial components such as eyes or
teeth. Apart from an initial feature point selection for the
skin texturing, all our methods work fully automatically
without any user interaction. The resulting textures show
a high quality and are suitable for both photo-realistic and
real-time facial animation.

Key words: texture mapping, texture synthesis, mesh pa-
rameterization, facial modeling, real-time rendering

1 Introduction

Over the past decades, facial modeling and animation
has achieved a degree of realism close to photo-realism.
Although the trained viewer is still able to detect mi-
nor flaws in both animation and rendering of recent full-
feature movies such as Final Fantasy, the overall quality
and especially the modeling and texturing are quite im-
pressive. However, several man-years went into the mod-
eling of each individual character from that movie. Try-
ing to model a real person becomes even more tricky: the
artistic licence to create geometry and textures that “look
good” is replaced by the demand to create models that
“look real”.

A common approach towards creating models of real
persons for facial animation uses range scanners such as,
for instance, Cyberware scanners to acquire both the head
geometry and texture. Unfortunately, the texture resolu-
tion of such range scanning devices is often low com-
pared to the resolution of digital cameras. In addition,
the textures are typically created using a cylindrical pro-
jection. Such cylindrical textures have the drawback to
introduce visual artifacts, for instance on top of the head,
behind the ears, or under the chin. Finally, there is no
automatic mechanism provided to generate textures for
individual facial components such as eyes and teeth.

In this paper, we present an approach to generate high-
resolution textures for both facial skin and facial compo-

... ...

Figure 1: Overview of our skin texture generation pro-
cess: the 3D face mesh is parameterized over a 2D do-
main and the texture is resampled from several input pho-
tographs.

nents from several uncalibrated photographs. The gener-
ation of these textures is automated to a large extent, and
the resulting textures do not exhibit any patch structures,
i.e. they can be used for mip-mapping. Our approach
combines several standard techniques from texture map-
ping and texture synthesis. In addition, we introduce the
following contributions:

• a view-dependent parameterization of the 2D texture
domain to enhance the visual quality of textures with
a fixed resolution;

• a texture resampling method that includes color
interpolation for non-textured regions and visual
boundary removal using multiresolution splines
with a fully automatic mask generation;

• a radial texture synthesis approach with automatic
center finding, which robustly produces individual
eyeball textures from a single input photograph;

• a technique that uses a single natural teeth photo-
graph to generate a teeth texture, which is applied to
an appropriate 3D model to resemble the appearance
of the subject’s mouth.

appeared originally in Proc. Graphics Interface 2002, pp. 89–98



All of these techniques are fully automated to minimize
the construction time for creating textures for facial mod-
eling. However, we do not address the topic of facial
modeling itself in this paper. We apply the textures gen-
erated by the techniques presented in this paper in our
facial animation system [12], which has been designed to
produce physically based facial animations that perform
in real-time on common PC hardware. Thus the focus of
our texture generation methods is primarily on the appli-
cability of the textures for OpenGL rendering and a sim-
ple but efficient acquisition step, which does not require
sophisticated camera setups and calibration steps.

2 Previous and Related Work

Research on either texturing or facial animation has pro-
vided a large number of techniques and insights over the
years, see the surveys and textbooks in [13, 6] and [25]
for an overview. Texturing in the context of facial ani-
mation is, however, an often neglected issue. Many so-
phisticated facial animation approaches, e.g. [32, 18, 19],
simply use the textures generated by Cyberware scan-
ners. In [35], Williams presents an approach to gen-
erate and register a cylindrical texture map from a pe-
ripheral photograph. This approach is meanwhile super-
seded by the ability of Cyberware scanners to acquire ge-
ometry and texture in one step. The method presented
in [1] generates an individual head geometry and tex-
ture by linear combination of head geometries and tex-
tures from a large database that has been acquired us-
ing a Cyberware scanner in a costly preprocessing step.
Marschner et al. describe a technique that uses several in-
put photographs taken under controlled illumination with
known camera and light source locations to generate an
albedo texture map of the human face along with the
parameters of a BRDF [23]. Several other approaches
such as [26, 11, 16, 17] are image-based and use a small
number of input photographs (or video streams) for the
reconstruction of both geometry and texture. Although
these approaches could potentially yield a higher texture
quality compared to the Cyberware textures, they typi-
cally suffer from a less accurate geometry reconstruction,
limited animation, and reduced texture quality by using
cylindrical texture mapping.

Creating textures from multiple, unregistered pho-
tographs has been addressed in the literature by several
authors [28, 3, 24]. First, they perform a camera cali-
bration for each input photograph based on correspond-
ing feature points. Next, a texture patch is created for
each triangle of the input mesh. The approaches differ
in the way these texture patches are created, blended,
and combined into a common texture. However, the
resulting textures always exhibit some patch structure,

which makes it impossible to generate mip-maps from
these textures. Creating textures that can be mip-mapped
requires to construct a parameterization of the mesh
over a two-dimensional domain. To this end, generic
techniques based on spring meshes have been presented
in [10, 15, 7]. Special parameterizations that minimize
distortion during texture mapping for different kinds of
surfaces have been investigated by several authors, see
for instance [27, 29, 22, 21].

Texture synthesis [9, 33] has become an active area of
research in the last few years. Recent publications focus
on texture synthesis on surfaces [34, 31, 36] or on texture
transfer [8, 14]. All of the methods presented so far use a
Euclidean coordinate system for the synthesis of textures.
In contrast, we use a polar coordinate system to synthe-
size textures that exhibit some kind of radial similarity.

3 Texturing Facial Skin

To generate a skin texture for a head model, we first
take about three to five photographs of the person’s head
from different, uncalibrated camera positions. All pho-
tographs are taken with a high-resolution digital camera
(3040×2008 pixels). The camera positions should be
chosen in such a way that the resulting images roughly
cover the whole head. During the acquisition, no spe-
cial illumination is necessary. However, the quality of
the final texture will benefit from a uniform, diffuse il-
lumination. In addition, we acquire the geometry of the
head using a structured-light range scanner. As a result,
we obtain a triangle mesh that consists of up to a few
hundred thousand triangles. After the texture registration
step, this triangle mesh is reduced to about 1.5k triangles
for real-time rendering using a standard mesh simplifica-
tion technique. Each photograph is registered with the
high-resolution triangle mesh using the camera calibra-
tion technique developed by Tsai [30]. Since the intrinsic
parameters of our camera/lens have been determined with
sub-pixel accuracy in a preprocessing step, we need to
identify about 12–15 corresponding feature points on the
mesh and in the image to robustly compute the extrinsic
camera parameters for each image. This manual selec-
tion of feature points is the only step during our texture
generation process that requires user interaction.

Next, we automatically construct a parameterization
of the 3D input mesh over the unit square [0, 1]2. This
step is described in detail in the following Section 3.1.
Finally, every triangle of the 2D texture mesh is re-
sampled from the input photographs. A multiresolution
spline method is employed to remove visual boundaries
that might arise from uncontrolled illumination condi-
tions during the photo session. Details about this resam-

appeared originally in Proc. Graphics Interface 2002, pp. 89–98



pling and blending step are given in Section 3.2. Figure 1
shows an overview of our texture generation process.

3.1 Mesh Parameterization
We want to parameterize the 3D input mesh over the 2D
domain [0, 1]2 in order to obtain a single texture map for
the whole mesh. To obtain a mip-mappable texture, the
texture should not contain individual patches (texture at-
las) but rather consist of a single patch. Clearly, this goal
cannot be achieved for arbitrary meshes. In our case, the
face mesh is topologically equivalent to a part of a plane,
since is has a boundary around the neck and does not con-
tain any handles. Thus we can “flatten” the face mesh to
a part of a plane that is bounded by its boundary curve
around the neck. We represent the original face mesh
by a spring mesh and use the L2 stretch norm presented
in [29] to minimize texture stretch. In our simulations,
this L2 norm performs better than the L∞ norm that is
recommended by the authors of [29].

By applying the texture stretch norm, texture stretch
is minimized over the whole mesh. In the following step,
we introduce some controlled texture stretch again. Since
the size of textures that can be handled by graphics hard-
ware is typically limited, we would like to use as much
texture space as possible for the “important” regions of a
head model while minimizing the texture space allocated
to “unimportant” regions. Obviously, the face is more
important for the viewer than the ears or even the back of
the head. To accomplish some biased texture stretch, we
have introduced an additional weighting function ω into
the L2 stretch norm presented in [29]:

L2(M) :=

√√√√√√
∑

Ti∈M

(L2(Ti))
2
ω(Ti)A′(Ti)

∑
Ti∈M

ω(Ti)A′(Ti)

with

ω(Ti) :=
1

〈N(Ti), V 〉 + k
,

where M = {Ti} denotes the triangle mesh, A′(Ti) is
the surface area of triangle Ti in 3D, N(Ti) is the tri-
angle normal of Ti, V is the direction into which the
head model looks, and k > 1 is a weighting parameter.
The weighting function ω thus favors the triangles on the
face by diminishing their error while penalizing the tri-
angles on the back of the head by amplifying their error.
As a consequence, triangles on the face become larger
in the texture mesh while backfacing triangles become
smaller. Useful values for k are from within [1.01, 2].

Figure 2: Comparison between a view-independent tex-
ture mesh parameterization according to [29] (left) and
our view-dependent parameterization (right).

Figure 2 shows a view-independent texture mesh param-
eterization obtained with the original L2 stretch norm as
well as a view-dependent parameterization with our mod-
ified stretch norm for k = 1.2.

The difference between our view-dependent texture
mesh parameterization and the view-dependent texture
mapping proposed in [5, 26] is the following: the latter
performs an adaptive blending of several photographs for
each novel view, whereas we create a static texture that
has its texture space adaptively allocated to regions of dif-
ferent visual importance.

3.2 Texture Resampling

After having created the 2D texture mesh from the 3D
face mesh, we resample the texture mesh from the in-
put photographs that have been registered with the face
mesh. First, we perform a vertex-to-image binding for all
vertices of the 3D face mesh. This step is carried out as
suggested in [28]: Each mesh vertex v is assigned a set
of valid photographs, which is defined as that subset of
the input photographs such that v is visible in each pho-
tograph and v is a non-silhouette vertex. A vertex v is
visible in a photograph, if the projection of v on the im-
age plane is contained in the photograph and the normal
vector of v is directed towards the viewpoint and there
are no other intersections of the face mesh with the line
that connects v and the viewpoint. A vertex v is called a
silhouette vertex, if at least one of the triangles in the fan
around v is oriented opposite to the viewpoint. For fur-
ther details see [28]. In contrast to the approach in [28],
we do not require that all vertices of the face mesh are
actually bound to at least one photograph, i.e. the set of
valid photographs for a vertex may be empty.

Let � = {v1, v2, v3} denote a triangle of the face mesh
and �̃ = {ṽ1, ṽ2, ṽ3} be the corresponding triangle in
the texture mesh. For each triangle �, exactly one of the
following situations might occur (see also Figure 3):
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Figure 3: Color-coded triangles of the texture mesh: each
green triangle has at least one common photograph to
which all of its vertices are bound; the vertices of blue
triangles don’t have a common photograph, but they are
all bound; red triangles have at least one unbound vertex.

1. There exists at least one common photograph in
the sets of valid photographs of the three vertices
v1, v2, v3 of � (green triangles).

2. All of the vertices of � are bound to at least one pho-
tograph, but no common photograph can be found
for all three vertices (blue triangles).

3. At least one vertex of � is not bound to any photo-
graph (red triangles).

In the first case, we rasterize �̃ in texture space. For
each texel T , we determine its barycentric coordinates
ρ, σ, τ w.r.t. �̃ and compute the corresponding normal N
by interpolating the vertex normals of �: N = ρN(v1)+
σN(v2)+τN(v3). For each common photograph i in the
sets of valid photographs of all vertices of �, we compute
the dot product between N and the viewing direction Vi

for the pixel Pi that corresponds to T . Finally, we color
T with the color obtained by the weighted sum of pixel
colors

∑
i 〈N,Vi〉 · Color(Pi) /

∑
i 〈N,Vi〉.

In the second case, we color each vertex ṽj of �̃ indi-
vidually by summing up the weighted pixel colors of the
corresponding pixels in all valid photographs i of ṽj sim-
ilarly as in the first case: Color(ṽj) :=

∑
i 〈N(vj), Vi〉 ·

Color(Pi) /
∑

i 〈N(vj), Vi〉. The texels of the rasteriza-
tion of �̃ are then colored by barycentric interpolation
of the colors of the vertices ṽ1, ṽ2, ṽ3. Alternatively, we
tried to use as much information as possible from the

Figure 4: Boundaries in the skin texture (left) are re-
moved using multiresolution spline techniques (right).

input photographs if, for instance, the vertices v1, v2 of
� share a photograph and the vertices v2, v3 share an-
other photograph. However, we found that this second
case does not occur very often (cf. Figure 3) and that the
difference between plain color interpolation and a more
sophisticated approach is almost invisible.

Since we do not require that each vertex of the face
mesh is bound to at least one photograph, there might ex-
ist some vertices that cannot be colored by any of the pre-
viously described schemes. We address this problem in a
two-stage process: First, we iteratively assign an interpo-
lated color to each unbound vertex. Next, we perform the
color interpolation scheme from the second case for the
remaining triangles of �̃ that have not yet been colored.
The first step iteratively loops over all unbound and un-
colored vertices of the face mesh. For each unbound ver-
tex v, we check if at least p = 80 % of the vertices in the
one-ring around v are colored (either by being bound to
a photograph or by having an interpolated color). If this
is true, we assign to v the average color of all the colored
vertices around v, otherwise we continue with the next
unbound vertex. We repeat this procedure until there are
no further vertex updates. Next, we start the same proce-
dure again, but this time we only require p = 60 % of the
vertices in the one-ring around v to be colored. As soon
as there are no more updates, we repeat this step twice
again with p = 40 % and p = 20 %. Finally, we update
each unbound vertex that has at least one colored neigh-
bor. Upon termination of this last step, all vertices of the
face mesh are either bound or colored and the remaining
triangles of �̃ can be colored.

If the input photographs have been taken under uncon-
trolled illumination, the skin color might differ noticeably
between the images. In this case, boundaries might ap-
pear in the resampled texture. We then apply a multires-

appeared originally in Proc. Graphics Interface 2002, pp. 89–98



Figure 5: Multiresolution spline masks: three differ-
ent regions in the texture mesh resampled from different
input photographs (top) and their corresponding masks
shown in red (bottom).

olution spline method as proposed in [2, 17] to remove
visual boundaries. Figure 4 shows a comparison between
a textured head model with and without multiresolution
spline method applied. To smoothly combine texture re-
gions that have been resampled from different input pho-
tographs, we automatically compute a mask for each re-
gion by removing the outmost ring of triangles around
the region, see Figure 5. Such a shrinking is necessary to
ensure that there is still some valid color information on
the outside of the mask boundary, because these adjacent
pixels might contribute to the color of the boundary pixels
during the construction of Gaussian and Laplacian pyra-
mids. In addition to the masks for each input photograph,
we create one more mask that is defined as the comple-
ment of the sum of all the other masks. This mask is
used together with the resampled texture to provide some
color information in those regions that are not covered by
any input photograph (e.g. the inner part of the lips). As
described above, these regions have been filled by color
interpolation in the resampled texture. By blending all of
the masked input photographs and the masked resampled
texture with a multiresolution spline, we obtain a final
texture with no visual boundaries and crispy detail.

4 Texturing Facial Components

Both human eyes and teeth are important for realistic fa-
cial animation while, at the same time, it is difficult to ac-
quire data from a human being to precisely model these
facial components. Thus we use generic models of these
components as shown in Figure 8. The design of our
generic models has been chosen such that they look con-
vincingly realistic when inserted into a face mesh while
still being rendered efficiently using OpenGL hardware.

On the other hand, both eyes and teeth (especially the
more visible middle ones) are crucial features to visu-
ally differentiate one individual from another. Hence, it
would be very desirable to use individual models for each
person. Luckily, texturing can do the trick alone: indeed
it is sufficient to apply a personal texture to a generic
model to get the desired effect. Moreover, it is possi-
ble to automatically and quickly generate these textures
each from a single input photograph of the subject’s eye
and teeth, respectively. Details about this process will be
given in the next two subsections.

4.1 Texturing Eyes
In order to realistically animate our head model, we must
be able to perform rotations of the eyeball and dilation
of the pupil. While the latter can be achieved by trans-
forming the texture coordinates, we need an eye texture
that covers the whole frontal hemisphere of the eyeball
for the rotations.

Our goal to generate such an eyeball texture from a
single input photograph is complicated by several factors
such as the presence of occluding eyelids, shadows of
eyelashes, highlights, etc. Still, all these factors are lo-
cal and can be detected and removed. A new texture can
then be synthesized from an input image consisting of the
surviving pixels. In our current approach, we focus our
effort on the iris, since it is obviously the most character-
istic part of the eye.

Both the detection and the synthesis phase rely on the
simplicity of the eye structure, i.e. an almost perfect point
symmetry about the center, assuming our photograph rep-
resents an eye looking at the camera. To take advantage
of this symmetry, we must first know precisely where the
center of the eye is located. Since this would encumber
the user, the center finding is done automatically by re-
fining a rough estimation to sub-pixel precision using the
following heuristic: we progressively enlarge an initially
point-sized circle while checking the pixels on the circle
at every iteration. If these pixels are too bright, they are
assumed to be outside the iris and we thus move the cen-
ter of the circle away from them. When most of the circle
is composed by too bright pixels, we assume its center is
the eye center and its radius is the iris radius. This ap-
proach runs robustly as long as the initial estimation is
inside the pupil or the iris.

At this point, removal of occluded, shadowed, and
highlighted pixels is done by:

• removing pixels with a color too similar to the skin;

• removing pixels with a color too dissimilar to the
pixels at the same radial distance from the center.

For the second case, we compute the average color and
standard deviation of the pixels at the same radial dis-
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Figure 6: Two input photographs (left) and the resulting
reference patches outlined by red sectors (right). Oc-
cluded, shadowed, highlighted, and skin-colored pixels
(shown in blue) have been removed automatically.

tance and remove those pixels that are at least α times
the standard deviation away from the average. The pa-
rameter α should be chosen within [2, 3]. We typically
use a rather small value of α = 2.3, as it empirically
proved to remove the problematic (occluded, shadowed,
highlighted, etc.) pixels in most cases. In addition, we
remove pixels too close to the skin to better take into ac-
count small shadows cast by eyelids. Actually, the deci-
sion of which pixel to remove does not need excessively
fine tuning: due to the regularity of the eye, we can be
pretty conservative and remove many pixels, since the re-
construction phase requires only a small zone of pixels in
order to synthesize more. Figure 6 shows the remaining
set of pixels for two different input photographs.

For the reconstruction phase it is natural to resort
to some texture synthesis from samples approach like
e.g. [33]. In our case, we need to work in polar coor-
dinates, because the eyeball texture behaves like a texture
as defined in [33] only along the angle axis. This means
that subregions of the eyeball texture are perceived to be
similar if their radius coordinates are the same, cf. Fig-
ure 10. To take this into account, when choosing a candi-
date pixel p in the input image for filling a pixel p′ in the
output texture, we constrain the radius coordinate of p to
be within a small threshold of the radius coordinate of p′.

A robust approach for texture synthesis is to use only
a small patch of the original input image as the reference
image and synthesize the texture from scratch. Although
larger reference images theoretically result in more faith-
ful textures, we obtained very good results with small
reference patches covering a sector of about 30 degrees
around the pupil. Small reference patches have the advan-

tage of being more uniform and thus bypassing problems
related to uneven lighting in the original photograph. In
our approach, we simply use the largest sector of valid
pixels of at most 60 degrees as the reference patch. In the
rare cases where the largest sector is too small, e.g. span-
ning less than 20 degrees, the entire set of valid pixels
with a valid neighborhood is used as the reference image.

Since the detail frequencies of human irises are
roughly the same, it is sufficient to use a texture synthesis
scheme with a fixed neighborhood size rather than a mul-
tiresolution approach. In our case, the size of the neigh-
borhood mask depends only on the resolution of the input
image. For instance, for an image of an iris with a diame-
ter of approximately 80 pixels, we use a 3×6 pixel mask
(radius × angle). For other iris diameters, the pixel mask
is set proportionally. Depending on the value of the ra-
dius coordinate, a neighborhood with a fixed size in polar
coordinates covers areas of different sizes in the input im-
age. Our simulations showed, however, that no correction
is needed, since the human iris usually exhibits higher
frequency detail towards the center. Thus an iris resam-
pled in polar coordinates shows quite uniform frequency
distribution. Figure 9 shows several input photographs
together with the resulting eye textures for various indi-
viduals.

To speed-up the reconstruction step, we use a one-
dimensional texture synthesis approach along the angle
axis alone, modeling the texture as a Markov chain rather
than a Markov random field. Each symbol of the chain
is an entire row of texels at a given angle coordinate. We
output each new row accordingly to the previous rows.
This approach gives similar results (even if it requires
slightly larger reference textures) and is much faster, not
even requiring any vector quantization for finding the best
neighborhood row. If, however, the size of the reference
patch is very small, we apply a two-dimensional texture
synthesis approach as described earlier in this section.

4.2 Texturing Teeth
Geometry and color of teeth are difficult to capture and,
at the same time, crucial to reflect personal appearance.
We address this problem by distinguishing between

• the six middle teeth (incisors and canines) and

• the rest of the teeth (4–5 on each side).

The middle teeth are much more visible than the other
teeth. This means that they account for most of the vi-
sual appearance of an individual person, but also that
it is much easier to reconstruct them from a photo-
graph. In addition, the middle teeth have an almost two-
dimensional structure: they are shaped to have the func-
tion of a blade. Their small width allows us to model
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Figure 7: Teeth arch model using the texture shown in
Figure 11. The wireframe shows the geometry of the
teeth model, which consists of 384 triangles.

them using a billboard (impostor). Being a 2D data struc-
ture, the billboard can be easily extracted directly from
a normal photograph of the subject exposing the teeth in
a similar way as shown in Figure 11 (left). Using local
transparency, it is straightforward to make the texture em-
bed the teeth shape and size including gaps between teeth.
This approach allows us to use the same (billboarded) 3D
model for every face model and just change the texture
from person to person.

The rest of the teeth, while being more voluminous and
less accessible and visible, do not allow this useful short-
cut. But, for the same reason, it is also less important
to model them faithfully and individually for each single
person. Thus it seems reasonable to use a standard 3D
model and a standard texture (up to recoloring, see be-
low) for this part of the teeth arch.

Following these considerations, we have built a generic
3D model for the teeth, which is non-uniformly scaled
according to the individual skull and jaw geometry to fit
into every head model. For each individual head model,
we only need to vary the texture (including the billboard),
which is created fully automatically. The generic teeth
model is constructed such that the transition between the
billboard (in the middle) and the 3D structure (left and
right) is smooth, see Figure 7. The billboard, which is
bent for better realism, could cause undesired artifacts
when seen from above. To avoid this, only the upper part
of the lower teeth and the lower part of the upper ones
is actually modeled as a billboard. The remaining parts
of the upper and lower middle teeth smoothly gain some
width as they go up and down, respectively.

To automatically create a texture for the teeth, we start
from a normal photograph of the subject showing his/her
teeth. Several stages of the whole process of generating

a teeth texture are shown in Figure 11. We color-code
dark parts that represent voids with a blue color, which
is replaced by a transparent alpha value during rendering.
Similarly, we identify and remove gums, lips, and skin,
recoloring it with some standard gums color. To make
this color-coding more robust, we identify the different
regions using threshold values, which are obtained by
finding the biggest jumps in the histograms of the color
distances to the target color (red for gums and black for
voids). In addition, we expand teeth into those parts of
the gums that have been covered by the lips in the input
photograph. We use some simple heuristics to include the
missing part of the tooth roots, cf. Figure 11.

During rendering, our teeth model is shaded using a
Phong shading model, which means that we have to de-
shade our teeth texture. In order to do so for uncontrolled
illumination, we equalize the color of the teeth, suppos-
ing they have approximately the same albedo. First, we
define a target color by computing the average color of
all teeth pixels and setting its brightness (but not the hue)
to a predefined value. Next, we subdivide the texture in
six vertical stripes and compute the average color of each
stripe. We then add to the pixels in each column the dif-
ference between the target color and the stripe average,
taking care of enforcing continuity in this correction by
using a piecewise linear function. Similarly, we use the
target color to correct the color of the “generic” part of
the texture, which is applied to the side teeth. Finally, we
composite the middle teeth texture into our generic tex-
ture using a curved boundary that follows the silhouettes
of the canines.

5 Results

We have created facial textures for several individuals
who have also been range-scanned to acquire their head
geometry. Rendering of our head model is performed in
real-time using OpenGL hardware (about 100 fps on a
1.7 GHz PC with a GeForce3 graphics board). A physics-
based simulation is used to control the facial animation.
Several images of our head models are distributed over
this paper, see for instance Figures 1, 4, 8, and espe-
cially Figure 12. For each skin texture, the only inter-
active step is the initial identification of corresponding
feature points. This step takes about five minutes per in-
put photograph, which sums up to about 15–25 minutes
spent interactively for three to five photographs. Com-
puting an optimized parameterization of the face mesh
(approx. 1600 triangles) takes about 80 minutes on a fast
PC (1.7 GHz Pentium 4). Resampling a 2048×2048 tex-
ture from five input photographs takes about one minute,
additional multiresolution spline blending (if necessary)
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Figure 8: Generic models of eyes, teeth, and tongue are fitted into individual face meshes.

Figure 9: Input photographs and resulting eye textures: the in-
put images have been taken under various illumination condi-
tions with different resolutions. The size of the resulting textures
changes from 128×128 (top left) to 1024×1024 (bottom right).

Figure 10: A detail of the texture from Fig-
ure 9 (bottom right) shown in polar coordinates.
The abscissa represents the radius axis and the
ordinate represents the angle axis.

Figure 11: Teeth texture generation. Left to right: starting from an input photograph, we extract the upper and lower
middle teeth, fill in missing parts and adjust the color, and composite the new image with a generic teeth texture. The
blue pixels in the final texture (right) will be rendered transparently.

Figure 12: Side-by-side comparison of photographs (left) and head models (right) for plain OpenGL rendering.
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takes about ten minutes. Currently, our algorithms are
optimized with respect to robustness but not to speed.

Generating the teeth and eye textures takes only a few
seconds even for large textures using the 1D Markov
chain method for the texture synthesis. If a full Markov
field is used, construction time may go up to several min-
utes, depending on the size of the texture being created.

6 Conclusion and Future Work

We have introduced a number of techniques that help to
minimize the time and effort that goes into the creation
of textures for facial modeling. With the exception of the
initial feature point selection for the skin texturing, our
methods are fully automated and do not require any user
interaction.

For the generation of skin textures from uncalibrated
input photographs, we propose a view-dependent param-
eterization of the texture domain and a texture resampling
method including color interpolation for non-textured re-
gions and multiresolution splining for the removal of vi-
sual boundaries. Using our methods, both eye and teeth
textures can be created fully automatically from single in-
put photographs, adding greatly to a realistic appearance
of individual subjects during facial animation.

One of the main goals of ongoing research is to get
rid of the interactive camera calibration step for skin tex-
turing. Given that the resulting texture should contain
fine detail, this is a tough problem, indeed. Automatic
approaches such as [20] fail simply due to the fact that
the silhouette of a human head looks more or less iden-
tical when viewed from within a cone of viewing direc-
tions from the front or the back. Furthermore, it would
be desirable to account for lighting artifacts in the input
photographs. Although a uniform, diffuse illumination
during the photo session helps a lot, there are still con-
tributions from diffuse and specular lighting in the pho-
tographs. Approaches to overcome these problems have
been suggested [4, 23], but they require sophisticated
camera setups and calibration steps. Finally, it would be
very helpful to speed-up the computation time of the cur-
rent bottleneck, namely the mesh parameterization, using
a hierarchical coarse-to-fine approach.
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Deformable Head Model
Idea: use landmarks for head deformation
• structured, animatable reference head model
• tagged with landmarks
• thin-plate spline interpolation for deformation
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Derive new measurements for age change
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Limitations
It´s only statistics!
• landmarks are sparsely distributed

– lots of source characteristics are maintained
• positioning in normal distribution valid?

– does a child with a big nose have a big nose 
as an adult?

• accuracy depends on physical measurements taken 
decades ago
– could be improved using 3D scanning
– build up a big database of measurements?
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• traditional clay sculpting approach: 
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pegs corresponds to anthropometric data 

– face is modeled using clay (→ artistic licence)

•• traditional clay sculpting approach: traditional clay sculpting approach: 
–– place tissue depth markers on the skull; length of place tissue depth markers on the skull; length of 

pegs corresponds to anthropometric data pegs corresponds to anthropometric data 
–– face is modeled using clay (face is modeled using clay (→→ artistic licence)artistic licence)

Images: Taylor: “Forensic Art and  
Illustration”, 2001

CG Approach 
1. acquisition of skull data (3D range 

scan, computer tomography)
2. interactive placement of 

landmarks on the virtual skull; 
tissue depth values assigned 
automatically from anthropometric 
data tables

3. automatic fitting of the      
reference head model to            
the prescribed skin surface 
positions  ⇒ instantly     
animatable head model
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Results
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⇒ same prediction power

• results show plausible reproduction of facial shape 
and proportions

• advantages: very fast (a few hours instead of weeks),   
does not damage original skull

• need additional editing tools for hair, beards, wrinkles
• most promising: gather lots of data through simulation 

and evaluation; update tissue thickness tables with 
these data 
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Abstract

Facial reconstruction for postmortem identification of humans from
their skeletal remains is a challenging and fascinating part of foren-
sic art. The former look of a face can be approximated by pre-
dicting and modeling the layers of tissue on the skull. This work
is as of today carried out solely by physical sculpting with clay,
where experienced artists invest up to hundreds of hours to craft
a reconstructed face model. Remarkably, one of the most popular
tissue reconstruction methods bears many resemblances with sur-
face fitting techniques used in computer graphics, thus suggesting
the possibility of a transfer of the manual approach to the computer.
In this paper, we present a facial reconstruction approach that fits
an anatomy-based virtual head model, incorporating skin and mus-
cles, to a scanned skull using statistical data on skull / tissue rela-
tionships. The approach has many advantages over the traditional
process: a reconstruction can be completed in about an hour from
acquired skull data; also, variations such as a slender or a more
obese build of the modeled individual are easily created. Last not
least, by matching not only skin geometry but also virtual muscle
layers, an animatable head model is generated that can be used to
form facial expressions beyond the neutral face typically used in
physical reconstructions.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically based modeling I.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism—
Animation G.3 [Probability and Statistics]—Multivariate statistics
G.1.2 [Numerical Analysis]: Approximation—Approximation of
surfaces and contours

Keywords: facial modeling, forensic art, face reconstruction

1 Introduction

1.1 Background

For well over a hundred years, forensic art and science has been
assisting law enforcement. One of the major areas of concern in
this area is facial reconstruction for postmortem identification of
humans from their physical remains. Manual reconstruction and
identification techniques build on the tight shape relationships be-
tween the human skull and skin: for instance, the presumed identity

∗e-mail: kkaehler@acm.org
†e-mail: haberj@acm.org
‡e-mail: hpseidel@mpi-sb.mpg.de

a) b) c) d)

Figure 1: Reconstruction of a face from the skull: a) scanning the
skull; b) skull mesh tagged with landmarks; c) skin mesh with mus-
cles fitted to the skull; d) textured skin mesh, smiling expression.

of a murder victim can be confirmed by superimposing a facial pho-
tograph with a properly aligned and sized image of the skull. If no
photograph is available, the look of the face can be reconstructed to
a certain degree by modeling the missing tissue layers directly onto
the skull or a plaster cast made from it.

The first documented case using three-dimensional facial recon-
struction from the skull dates back to 1935 [Taylor 2001]. A key
experiment was later performed by KROGMAN [1946]: given the
body of a deceased person, he took a picture of the cadaver head
before extracting the skull. The skull was provided to a sculptor
along with information about sex, origin, and age of the late owner,
plus data on the average tissue thicknesses at several positions in
the face. From this material, a reconstruction sculpture was created
that could be compared to the original head. Since that time, three-
dimensional facial reconstruction from the skull has been much
refined, but the method has essentially remained the same. Re-
searchers have examined the skull / skin relationships for different
ethnic groups [Lebedinskaya et al. 1993] and analyzed the corre-
spondences of skull morphology and facial features [Fedosyutkin
and Nainys 1993]. Others found correlations between muscle ac-
tivity and skull shape [Moore and Lavelle 1974; Weijs and Hillen
1986]. In her comprehensive textbook, TAYLOR [2001] describes
the craft in great detail.

Much of the fascination of the topic is due to the combined ef-
forts of science and art, resulting in often astonishingly lifelike re-
constructions, given the little available input (see Fig. 2). Many
parameters of the outward appearance of an individual cannot be
readily derived from the skull, though. The process is thus highly
dependent on rules of thumb, the experience of the artist, and some
guesswork. It is, for instance, next to impossible to reconstruct the
shape of the ears based on scientific reasoning, although empiri-
cally there seems to be a relation of ear height to the length of the
nose.

1.2 The Manual Reconstruction Process

The traditional work process for facial reconstruction begins with
preparation of the skull. Since the skull is often evidence in a crim-
inal case, great care needs to be taken in handling it: some parts
are extremely thin and fragile, especially in the nose and the orbits.
For identification, the teeth often provide a lot of useful informa-
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Figure 2: Comparison of sculpted reconstructions with pho-
tographs. Left: male subject; right: female subject. (Images: Copy-
right c©[Helmer et al. 1993], reprinted by permission of Wiley-Liss,
Inc., a subsidiary of John Wiley & Sons, Inc.)

tion, so a dental analysis is usually performed at this stage. For the
reconstruction of the lower face, the mandible needs to be properly
aligned and secured to the skull. In cooperation with an anthropol-
ogist, and possibly given more information from the remains of the
victim, an estimation of age, ancestry, sex, and stature can now be
obtained.

The actual face reconstruction proceeds with one of two avail-
able approaches: the anatomical method and the tissue depth
method. The anatomical method attempts reconstruction by sculpt-
ing muscles, glands, and cartilage, fleshing out the skull layer by
layer. This technique is more often used in the reconstruction of
fossil faces, where no statistical population data exists [Zollikofer
et al. 1998]. As TAYLOR states, this technique is very time consum-
ing, occupying “many hundreds of hours”. It also requires a great
deal of detailed anatomical knowledge. Therefore, the alternative
tissue depth method has become the more popular reconstruction
technique in law enforcement. Here, standard sets of statistical tis-
sue thickness measurements at specific points on the face are used.
Each measurement describes the total distance from skin surface to
the skull, including fat and muscle layers. The method is thus more
rapid than the anatomical method and does not require as much
anatomical knowledge. Such measurements have been collected for
males and females of several racial groups, using needles, X-rays,
or ultrasound techniques. The tissue depth data most often used by
police artists today was collected primarily by RHINE et al. [Rhine
and Campbell 1980; Rhine and Moore 1984]. The data is sorted
into “slender”, “normal”, and “obese” groups, as well as by sex and
race.

Given the set of measurements, tissue depth markers are now
placed on the skull or a cast made from it, reflecting the tissue
thickness at the sample points. These markers are oriented orthog-
onally to the skull surface, corresponding to the direction of the tis-
sue thickness measurements. Using the markers and other features
on the skull for guidance, the face is modeled on top of the skull
using clay. A snapshot of the beginning stages of a reconstruction
using the tissue depth method is shown in Fig. 3.

1.3 Our approach

Looking at the facial reconstruction process as described above
from a computer graphics perspective, it essentially boils down to
a surface interpolation problem. We thus implement the manual
“dowel placement” method as an interactive procedure, obtaining
position and distance constraints that define the relation between
skin and skull at selected sample positions. The sculpting of the
skin surface is mapped to a volume deformation applied to a head
model template, satisfying these constraints. The deformation ap-
proach has the additional advantage of being applicable to addi-
tional structures attached to the template: in our system, we map
a muscle structure to the fitted head model (see Fig. 1), enabling

animation on the reconstructed head in a physics-based facial ani-
mation framework.

The remainder of this paper is organized as follows: after re-
viewing related work in Section 2, we discuss acquisition of skull
data and interactive landmark placement for setting up surface con-
straints in Section 3. Section 4 describes the structure of our generic
head model and how it is fitted to the skull. Animation and texture
generation for the resulting head model are touched upon in Sec-
tion 5. We present examples in Section 6 and draw conclusions
from our results in Section 7.

2 Previous and Related Work

2.1 Computer-Aided Face Reconstruction

Perhaps due to the lack of rigid taxonomies and hard rules, the use
of computers and computer graphics in this forensic application is
still very limited. The procedures described above cannot be cast
easily into a computer program that produces good results in an au-
tomated manner—the experience and judgment of the practitioner
remain a vital part of the system.

In law enforcement practice, computer-aided techniques re-
strict to relatively simple image and video manipulation: face
photographs are used for skull superimposition [Grüner 1993;
Miyasaka et al. 1995], while image warping and retouching enable
a basic simulation of aging [Taylor 2001, p. 253]. This situation
is unfortunate, since the traditional three-dimensional face recon-
struction process is extremely time-consuming and expensive. It
is hardly feasible to produce a variety of different plausible recon-
structions from one skull, simply due to the effort that has to be put
into the creation of each model. Also, repeated physical handling
of the original skull increases the risk of damage.

One prototypical computer-based face reconstruction system, al-
lowing fitting of a generic hierarchical B-spline head model to a
skull mesh, is described by ARCHER in her Master’s thesis [1997].
The user places dowels on a skull model with prescribed tissue
thickness values, resulting in targets for a B-spline surface fitting
process. The interpolation process is tricky and requires careful
preparation of the template head model.

In the approach presented by MICHAEL and CHEN [1996], a
source head model Hs that includes a skull Ss is deformed using a
volume distortion function V such that the deformed source skull
approximately matches the target skull St : V (Ss) ≈ St . It is as-
sumed that the deformed source head model V (Hs) bears a good
resemblance to the (unknown) target head model. The volume dis-
tortion function V is set up as a field warp using fourty pairs of disc
fields, which are manually placed around the skull. No details are
given about the placement of these control fields.

Figure 3: Modeling the face with clay on top of the skull using the
tissue depth method. (Images [Taylor 2001], reprinted by permis-
sion.)
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A deformation technique similar to the one used in our approach
is employed by VANEZIS et al. [2000]. A facial template chosen
from a database of scanned faces is deformed to match the posi-
tion of target face landmarks, which have been derived from adding
statistical tissue thickness values to the corresponding skull land-
marks. The resulting reconstructed heads are not always complete
(for instance, the top of the head is usually missing). The authors
suggest to export an image of the reconstructed head and to apply a
final image-processing step to add eyes, facial and head hair.

The above methods require a lot of manual assistance in set-
ting up the interpolation function [Archer 1997; Michael and Chen
1996], or rely on a database of head templates [Vanezis et al. 2000].
In contrast, we develop reconstructions from one head template
with relatively few markers, and use additional mechanisms to im-
prove reconstruction results (see Section 4.3). Our approach always
generates complete head models. Instead of using higher-order sur-
faces or point samples, the surface of our deformable head tem-
plate is an arbitrary triangle mesh, simplifying later artistic modifi-
cations of the result using standard modeling tools. To the best of
our knowledge, integration of expressive facial animation is not dis-
cussed by any other computer-aided facial reconstruction approach.

Other than explicit treatment of facial reconstruction, the cre-
ation of virtual head models based on human anatomy is well re-
searched and documented in the computer graphics literature. Ma-
jor developments in this area are discussed in the following section.

2.2 Human Head Modeling

A variety of techniques exists to create a face model from images or
scan data. In the method presented by LEE et al. [1995], animatable
head models are constructed semi-automatically from range scans.
A generic face mesh with embedded muscle vectors is adapted to
range scans of human heads. This process relies on the planar pa-
rameterization of the range scans as delivered, for instance, by the
Cyberware digitizers. PIGHIN et al. [1998] interactively mark cor-
responding facial features in several photographs of an individual
to deform a generic head model using radial basis functions. An-
imation is possible by capturing facial expressions in the process
and blending between them. CARR et al. [2001] use radial ba-
sis functions to generate consistent meshes from incomplete scan
data. Employing a large database of several hundred scanned faces,
BLANZ et al. [1999] are able to create a geometric head model from
only a single photograph. This model has the same resolution as
the range scans in the database and cannot be readily animated. In
the context of medical imaging, SZELISKI et al. [1996] minimize
the distance between two surfaces obtained from volume scans of
human heads by applying local free-form deformations [Sederberg
and Parry 1986] and global polynomial deformations. The method
does not require specification of corresponding features on the ge-
ometries.

Several facial animation systems use an approximation of the
layered anatomical structure. WATERS [1987] represents skin and
muscles as separate entities, where muscle vectors and radial func-
tions derived from linear and sphincter muscles specify deforma-
tions on a skin mesh. In contrast to this purely geometric technique,
physics-based approaches attempt to model the influence of muscle
contraction onto the skin surface by approximating the biomechan-
ical properties of skin. Typically, mass-spring or finite element net-
works are used for numerical simulation [Platt and Badler 1981;
Lee et al. 1995; Koch et al. 1998]. From an initial triangle mesh,
TERZOPOULOS and WATERS [1990] automatically construct a lay-
ered model of the human face. The model structure consists of three
layers representing the muscle layer, dermis, and epidermis. The
skull is approximated as an offset surface from the skin. Free-form
deformations are employed by CHADWICK et al. [1989] to shape
the skin in a multi-layer model, which contains bones, muscles, fat

tissue, and skin. SCHEEPERS et al. [1997] as well as WILHELMS
and VAN GELDER [1997] introduce anatomy-based muscle models
for animating humans and animals, focusing on the skeletal muscu-
lature. Skin tissue is represented only by an implicit surface with
zero thickness [Wilhelms and Van Gelder 1997].

We build our system on the deformable, anatomy-based head
model described by KÄHLER et al. [2002]. There, a generic face
mesh with underlying muscle and bone layers is deformed to match
scanned skin geometry. This process is adopted here to match the
muscle and skin layers to given skull data instead.

3 Preparation of the Skull

Our approach uses three-dimensional skull data acquired, for in-
stance, from volume scans and extraction of the bone layers, or by
range scanning a physical skull. The test data used for the exam-
ples in Section 6 was acquired using both types of scans. To speed
up processing, a triangle mesh of the skull model comprised of 50-
250k polygons is produced by mesh decimation techniques [Gar-
land and Heckbert 1997]. In general, the original data should be
simplified as little as possible since minute details on the skull can
give important clues for the reconstruction. The mesh resolution is
chosen for adequate responsiveness of our interactive skull editor
application. In practice, it is helpful to have the original data set (or
the physical skull) ready as a reference during editing.

In the editor, the skull model is equipped with landmarks, as
shown in Fig. 4. Points on the skull surface are simply picked to
create a landmark, which can then be moved around on the sur-
face for fine positioning. Each landmark is associated with a vector
in surface normal direction, corresponding to the typical direction
of thickness measurements. As can be seen on the right image in
Fig. 4, some skull / skin correspondences are in fact non-orthogonal
to the skull surface in the area of the lips. This is corrected for
at a later step of the fitting process, as described in Section 4.3.
The landmark vector is scaled to the local tissue thickness, which
is looked up automatically by the landmark’s assigned name in a
table based on RHINE’s data (see Section 1.2). The specific set of
landmarks used in our system is listed in Appendix A.

4 Fitting the Deformable Head Model

4.1 Head Model Structure

When the skull is tagged with landmarks, it serves as the target for
deformation of the generic head model shown in Fig. 5. Since the
head model is used in a physics-based animation system, it does

Figure 4: Skull landmark specification in the mouth area. Left:
snapshot from our landmark editor; right: correspondences between
skull and skin markers (Image after [y’Edynak and İşcan 1993])
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a) b) c)

Figure 5: The deformable head model: a) head geometry with land-
marks (blue dots), front view; b) side view; c) underlying muscles
(red) created from layout grids (yellow).

not only consist of the visible outer geometry. The encapsulated
structure includes:

the skin surface represented as a triangle mesh. The mesh resolu-
tion should be high enough to ensure good fitting results. Our
template head mesh consists of 8164 triangles.

virtual muscles to control the animation. Each muscle is speci-
fied by a grid laid out on the skin, the actual muscle shape
being computed automatically to fit underneath the skin sur-
face. Each muscle consists of an array of fibers, which can
contract in a linear or circular fashion. Our model includes
24 facial muscles responsible for facial expressions. Fig. 5(c)
shows the muscle layout on the head template.

a mass-spring system connecting skin, muscles, and skull, built
after the head model is fitted to the skull. For animation, mus-
cles pull at spring nodes attached to their surface, in turn caus-
ing deformation of the spring mesh in the skin surface layer.

landmarks defined on the skin surface, as shown in Fig. 5(a) and
(b). The majority of these landmarks corresponds to the land-
marks interactively specified on the skull. These landmark
pairs control the basic fitting of the head structure as described
in Section 4.2. A few additional landmarks are only defined
on the skin and are used for the final adjustments of the recon-
structed shapes discussed in Section 4.3.

The head model is similar to the one in [Kähler et al. 2002], where
detailed descriptions of the muscle model and animation approach
can also be found.

4.2 Landmark-Based RBF Deformation

Given the deformable head model with n predefined skin landmark
positions pi ∈ R

3 and the corresponding landmarks si ∈ R
3 (i =

1, . . . ,n) specified on the skull, we set up a space deformation that
fits the skin and the muscle layout to the skull.

The target skull landmarks have associated tissue depth vectors
di, so corresponding skin landmark positions qi are defined as

qi = si +di.

The problem can now be treated as one of interpolation: we need to
find a function f that maps the pi to the qi:

qi = f(pi), i = 1, . . . ,n.

The unknown function f can be expressed by a radial basis function,
i.e., a weighted linear combination of n basic functions φi and an
additional explicit affine transformation:

f(p) =
n

∑
i=1

ciφi(p) + Rp + t, (1)

where p ∈ R
3 is a point in the volume, ci ∈ R

3 are (unknown)
weights, R ∈ R

3×3 adds rotation, skew, and scaling, and t ∈ R
3

is a translation component. The φi are defined by the source skin
landmark points. According to BOOKSTEIN [1997], for deforma-
tion of biological solids an approach based on thin-plate splines
is favorable. We thus use the simple biharmonic basic function
φi(p) :=

∥

∥p−pi

∥

∥

2, which minimizes bending energy for the de-
formation [Duchon 1977].

To remove affine contributions from the weighted sum of the
basic functions [Pighin et al. 1998; Carr et al. 2001], we include the
additional constraints

n

∑
i=1

ci = 0 and
n

∑
i=1

cT
i pi = 0.

The resulting system of linear equations is solved for the unknowns
R, t, and ci using a standard LU decomposition with pivoting, to
obtain the final warp function f. This function can now be used
according to Eq. (1) to transform a point p in the volume spanned
by the landmarks. We apply f to the skin and muscle components
of the generic model in the following ways:

• The skin mesh is deformed by direct application of the func-
tion to the vertices of the mesh.

• The muscles are transferred to the new geometry by warping
their layout grid vertices, followed by recomputation of the
shape to fit the deformed skin mesh.

Since our landmark set is comprised of only 40 landmarks (see
Appendix A), the computed deformation doesn’t properly align the
skin to the skull in all places, as can be seen in Fig. 6(a). Interac-
tive specification of more landmarks puts an undesirable additional
burden onto the user, so additional landmark pairs are computed au-
tomatically by interpolation between existing ones on the upper and
back part of the cranium, as well as on the mandible, as shown in
Fig. 6(b). The thickness value of an interpolated skull landmark is
also interpolated, where only such skull areas are chosen for land-
mark interpolation where the tissue thickness is near-constant. Tis-
sue depth interpolation would be problematic, for instance, in the
mid-face area, where thickness values change drastically from the
cheekbone to the mid-face region below.

4.3 Additional Reconstruction Hints

The tissue depth values at the marker positions define the basic
shape of the reconstructed head, assuming depth measurements be-
ing always strictly orthogonal to the skull surface. As mentioned in
Section 3, this assumption is not always valid. A number of rules
are thus used in traditional facial reconstruction to help locate cer-
tain features of the face based on the skull shape, employing empiri-
cal knowledge about shape relations between skin and skull [Taylor

(a) (b) (c)

Figure 6: Fitting stages, shown on the lower face. a) Warp us-
ing only user-specified landmarks (some skull areas still intersect-
ing the skin); b) with automatically interpolated landmarks on the
mandible; c) using additional heuristics for lip and nose shaping.
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Figure 7: Comparison of heuristics used in traditional reconstruc-
tion (left) with our graphical interface (right). (Note: different
skulls are used in the adjoining images.) Top: estimation of nose
width; center: positioning of the nose tip; bottom: setting lip width,
height, and mouth corner position.

2001]. We have translated some of these heuristics for use with the
skull landmark editor: the final fitting result, as shown in Fig. 6(c),
is obtained by including this additional user input.

To keep the user interface uniform, most rules are expressed by
the placement of vertical and horizontal guides in a frontal view of
the skull. From this user input, the placement of a few landmarks
on the skin is adjusted, resulting in a new target landmark configu-
ration. The updated landmark set is used to compute another warp
function, which deforms the pre-fitted head model in the adjusted
regions. Five rules influence the shape of the nose and the shape of
the mouth, as shown in Fig. 7:

• The width of the nose wings corresponds to the width of the
nasal aperture at its widest point, plus 5mm on either side in
Caucasoids. In the editor, the user places two vertical guides
to the left and right of the nasal aperture. From their position,
the displacement of the two al1 skin landmarks placed at the
nose wings is computed (cf. Fig. 7, top row).

• The position of the nose tip depends on the shape of the ante-
rior nasal spine. According to KROGMAN’s formula [Taylor
2001, p. 443], the tip of the nose is in the extension of the nasal
spine. Starting from the z value of the tissue depth marker di-
rectly below the nose (mid-philtrum, see Appendix A), the
line is extended by three times the length of the nasal spine
(cf. the white and yellow lines in the rightmost image of
Fig. 7, middle row). In the editor, begin and end points of
the nasal spine are marked. The prn landmark at the nose tip
is then displaced according to the formula.

1see, e.g., [Farkas 1994] for a definition of standard facial landmarks

• The width of the mouth is determined by measuring the front
six teeth, placing the mouth angles horizontally at the junction
between the canine and the first premolar in a frontal view.
Two vertical guides are used for positioning the ch landmarks
located at the mouth angles (vertical lines in Fig. 7, bottom
row).

• The thickness of the lips is determined by examining the up-
per and lower frontal teeth. Seen from the front, the transi-
tion between the lip and facial skin is placed at the transition
between the enamel and the root part of the teeth. Two hor-
izontal guides are placed by the user at the upper and lower
transition, respectively. This determines the vertical position
of the id and sd landmarks marking the lip boundary (top and
bottom horizontal lines in Fig. 7, bottom row).

• The parting line between the lips is slightly above the blades
of the incisors. This determines the vertical placement of the
ch landmarks (middle horizontal line in Fig. 7, bottom row).

Using these heuristics, a better estimate of the mouth and nose
shapes can be computed. The effect is strongest on the lip margins,
since the assumption of an orthogonal connection between corre-
sponding skin and skull landmarks is in fact not correct at these
sites, as the right part of Fig. 4 shows. The initial deformation thus
gives a good estimate of the tissue thickness of the lips while the
second deformation using the information provided by interactive
guide adjustment refines the vertical placement of the lip margins.

5 Facial Expressions and Rendering

In manual facial reconstruction, a neutral pose of the face is pre-
ferred as the most “generic” facial expression. Other expressions
could be helpful for identification purposes, but the cost of model-
ing separate versions of the head model is prohibitive. In our vir-
tual reconstruction approach, this does not pose a problem. Since
the fitted head model has the animatable structure of skin and mus-
cles, different facial expressions can be assumed by setting mus-
cle contractions, as in other physics-based facial animation sys-
tems [Kähler et al. 2001; Lee et al. 1995]. Fig. 8 shows how muscles
are used to form different facial expressions.

For a completely animatable head model, it is necessary to in-
clude a separately controllable mandible, a tongue, rotatable eye-
balls, and eye lids into the head model. We have decidedly left
them out of the reconstruction approach since these features are
not particularly useful in this application: while a modest change
of expression such as a smile or a frown might aid identification,
rolling of eyes, blinking, and talking would probably not. It is also
nearly impossible to correctly guess details such as a specific way
of speaking—errors in this respect would produce rather mislead-
ing results in a real identification case. The effort of placing tongue,
eye, and potentially teeth models thus does not offset the benefits.

Figure 8: Expressions on the generic head model and the corre-
sponding muscle configurations.
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Figure 9: Examples of facial reconstructions created with our system. Top: model created from a scanned real skull, showing fit of skin
to skull, transferred muscles, and two facial expressions. Middle: Reconstruction from a volume scan of a male, showing the actual face
as contained in the data, superimpositions of the actual and the reconstructed face with the skull, and the reconstruction with neutral and
“worried” expression. Bottom: Reconstruction from volume scan of a female with strong skull deformations. The CT data sets don’t contain
the top and bottom of the heads, thus the source skull and face models are cut off. The actual head height had to be guessed in these cases.

If additional information about the modeled person is available,
for instance, from remnants of hair found with the skull, the re-
sulting mesh can be colored correspondingly. Our system includes
basic capabilities for coloring the parts associated with skin, lip,
and eyebrows in the model’s texture map. Colors can be adjusted
interactively in HSV space on the reconstructed head model. Fi-
nally, the color adjustments are merged into a neutral base texture
and saved as a new texture map. The fitted, texture-mapped trian-
gle mesh can be easily imported into various rendering packages
for display. The examples shown in Fig. 9 show three different skin
colorations created in this way.

6 Results

We have tested our technique on a real skull that was made available
to us by a forensic institute and on two medical volume scans. All
data pertains to individuals of Caucasian type. Each reconstruction
required approximately an hour of interactive work, excluding time
for data acquisition.

The real skull, depicted on the first page of this paper, was un-
earthed on a construction site and belongs to an unidentified male,
approximately 35 years of age. As can be seen from the hole in the
frontal bone, he was killed by a head shot—the owner of this skull

probably was a war victim or a soldier. After scanning the skull, the
resulting mesh was simplified to 100k triangles. Interactive place-
ment of skull landmarks and facial feature guides was relatively
easy in this case since the skull is complete and in good condition.
Due to its war-time origin, we assumed the face to be rather skinny,
so we selected the “slender” tissue thickness table. Fitting results
can be seen in Fig. 9, top row. Since the actual appearance of the in-
dividual is unknown, the accuracy of the reconstruction can only be
guessed. Nonetheless, our reconstruction seems plausible. Notably,
the shape of the chin, which can be predicted from the correspond-
ing region on the skull, has been reproduced well.

To show examples utilizing other data sources, and also for val-
idation, we extracted skull and skin surfaces from medical volume
scans. The first data set, shown in the middle row of Fig. 9, per-
tains to a male subject of roughly 30 years. The subject’s face is
rather bulky, so we chose the “obese” tissue thickness data set (in a
real case, this choice would have to be made based on other avail-
able information such as the size of clothes, if present). Our first
reconstruction attempts showed a consistent emphasis on promi-
nent cheek bones and hollow cheeks: no matter which data set we
picked, the face would become more bulky, but not show the ex-
pected general roundness of the face. This effect is demonstrated
in Fig. 10 on variations of our first model. A closer examination
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Figure 10: Left to right: RHINE’s traditional “slender”, “average”,
and “obese” tissue depth tables (cf. [Taylor 2001, p. 350 ff.]) often
result in hollow cheeks and prominent cheekbones (see also Fig. 9).
Rightmost image: the shape can be improved by “bulging out” the
affected mesh areas.

revealed that the reason lies in the relatively low thickness values
RHINE assigned to the landmarks defining the cheek region (sbm2
and spm2 in Table 1). After excluding these two landmarks, we ob-
tained the results shown in Fig. 9. The rightmost image in Fig. 10
shows how simple mesh modeling techniques could be used at this
point to improve and individualize the reconstruction.

The second volume data set shows a female patient with strong
skull deformations. We produced a reconstruction of this face to
test the method with a decidedly non-average skull shape. The re-
sult can be seen in the bottom row of Fig. 9. Since our automatic
landmark interpolation scheme (see Section 4.2) is designed to han-
dle the normal range of skull variations, the unusual shape of the
mandible resulted in very sparse sampling of the chin area. An-
other prominent feature of the skull data is the protrusion of one
incisor, pushing the upper lip to the front. We modeled this effect
by moving the sd landmark a few millimeters down onto the blade
of the incisor, thus pushing the associated skin landmark forward as
well. This did not impair the positioning of the upper lip boundary
since this is adjusted separately by the mouth guides (cf. Fig. 7).

7 Conclusion and Future Work

The face reconstruction approach presented in this paper mirrors
the manual tissue depth method and thus has essentially the same
prediction power. Our results show overall good reproduction of
facial shape and proportions, and some surprisingly well-matched
details. It should be noted that our examples were produced by
computer scientists with no training in forensic reconstruction.

The advantages of the computerized solution are evident: in-
stead of weeks, it takes less than a day to create a reconstructed
face model, including scanning of the skull. Once the scan data is
marked with landmarks, different varieties such as slimmer or more
obese versions can be produced within seconds at the push of a but-
ton, which is practically impossible with the manual method due to
the vast amount of time needed for production of a single model.
Slight variations in facial expression can also be obtained quite eas-
ily by animating the muscle structure underlying the model.

Since the virtual reconstruction is based on 3D scans, which can
be acquired contact-free, the risk of damage to the original skull
is reduced. On the other hand, the scanning process has inherent
limitations: depending on the maximum resolution of the digital
scanner, much of the finer detail on the skull is lost. The delicate
structure of, for instance, the nasal spine cannot be fully captured
with current scanning technology. For this reason, it is necessary to
consult the original skull from time to time for reference.

In our experiments, we often found that surface normals on the
scanned skull geometry do not always behave the way they should,
reflecting the orientation of the surface only very locally. It might
be useful to consider an average of normals in a larger area around

the landmark position to solve this. Sometimes, it would be desir-
able to adjust the orientation manually.

The interactive system allows for an iterative reconstruction ap-
proach: a model is produced quickly from a given landmark config-
uration, so landmarks can be edited repeatedly until the desired re-
sult is obtained. The emphasis on the interaction component makes
the speed of the fitting process an important issue. While the actual
calculation of the warp function and the deformation of the mesh
are performed instantaneously, about five seconds are needed in our
test setting on a 1.7 GHz Pentium Xeon to examine skull and skin
for potential insertion of additional landmarks. This time is for the
largest part used for ray intersections of the skull and skin meshes,
which are done in a brute force manner. We expect a big speed-up
through the use of space partitioning techniques.

For practical use, the facial reconstruction system should provide
more editing facilities for skin details and hair. Useful additions in-
clude, for instance, a choice of templates for haircuts and facial fea-
tures such as eyebrow shapes, beards, and wrinkles. At this point,
large-scale validation of the system would be necessary to evaluate
the usability of the system.

As TAYLOR writes in her book, the tissue depth values should not
be taken at face value in three-dimensional facial reconstruction,
but rather act as guides for the final facial reconstruction, which
still relies heavily on artistic skills and intuition. Our tests confirm
that strict adherance to RHINE’s data for the solution of the inter-
polation problem is too limiting. This indicates not a weakness in
our method, but reflects the low number of samples (between 3 and
37 in each group) and the technical limitations at the time RHINE
assembled his data tables. Given the current state of technology,
more samples of higher precision could be acquired, resulting in
much more comprehensive and usable data. Ultimately, computer-
based facial reconstruction could then even become superior to the
traditional approach.
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A Landmark Set used for Reconstruction

Table 1 lists the paired landmarks on skin and skull that are used
for the facial reconstruction approach described in this paper. Most
skull landmark names and descriptions are taken from [Taylor 2001,
page 350 ff.]. Short skull landmark names are listed in the id col-
umn. We have tried to adhere to naming conventions used in the
forensic and anthropometric literature as much as possible [Taylor
2001; y’Edynak and İşcan 1993; Farkas 1994]. For simplicity, cor-
responding landmarks on skull and skin have the same short name
in our system, which is not generally the case in the literature. In a
few cases, marked by ∗ in the table, we invented short names. Not
all skull landmarks have an “official” counterpart on the skin, so
we placed the corresponding skin markers using our own judgment.
The mp landmark pair is not part of the standard set. We added it
to improve the alignment of skin to skull in the region behind the
ears, where the mastoid process adds a bulge to the skull.

name id description
Midline

Supraglabella tr Above glabella, identified with the hairline
Glabella g The most prominent point between the supraorbital

ridges in the midsagittal plane
Nasion n The midpoint of the suture between the frontal and the

two nasal bones
End of nasals na The anterior tip or the farthest point out on the nasal

bones
Mid-philtrum a The mid line of the maxilla (east and west), placed as

high as possible before the curvature of the anterior nasal
spine begins

Upper lip margin
(Supradentale)

sd Centered between the maxillary (upper) central incisors
at the level of the Cementum Enamel Junction (CEJ)

Lower lip margin
(Infradentale)

id Centered between the mandibula (lower) central incisors
at the level of the Cementum Enamel Junction (CEJ)

Chin-lip fold
(Supramentale)

b The deepest mid line point of indentation on the
mandible between the teeth and the chin protrusion

Mental eminence
(Pogonion)

pog The most anterior or projecting point in the mid line on
the chin

Beneath chin
(Menton)

me The lowest point on the mandible

Bilateral

Frontal emi-
nence

fe∗ Place on the projections at both sides of the forehead

Supraorbital sci Above the orbit, centered on the upper most margin or
border

Suborbital or Below the orbit, centered on the lower most margin or
border

Endocanthion en point at the inner commissure of the eye fissure; the
landmark on the skin is slightly lateral to the one on the
bone

Exocanthion ex point at the outer commissure of the eye fissure; the
landmark on the skin is slightly medial to the one on
the bone

Inferior malar im The lower portion of the maxilla, still on the cheekbone
Lateral orbit lo Drop a line from the outer margin of the orbit and place

the marker about 10 mm below the orbit
Zygomatic arch,
midway

zy Halfway along the zygomatic arch (generally the most
projecting point on the arch when viewed from above)

Supraglenoid sg above and slightly forward of the external auditory mea-
tus

Gonion go The most lateral point on the mandibular angle
Supra M2 spm2∗ Above the second maxillary molar
Occlusal line ol On the mandible in alignment with the line where the

teeth occlude or bite
Sub M2 sbm2∗ Below the second mandibular molar
Mastoid process mp∗ Most lateral part on the mastoid process behind and be-

low the ear canal

Table 1: Landmark set used for face reconstruction.

8



UniversalUniversal Capture:Capture:
ImageImage--based Facial Animation based Facial Animation 

and Rendering for and Rendering for 
The Matrix The Matrix sequelssequels

George Borshukov,George Borshukov,

DanDan PiponiPiponi, , OysteinOystein Larsen, J.P. Lewis, Larsen, J.P. Lewis, 
ChristinaChristina TempelaarTempelaar--LietzLietz

ESC EntertainmentESC Entertainment

TheThe ChallengeChallenge

•• Our task was to produce Our task was to produce 
photorealistic animated photorealistic animated 
renditions of known renditions of known 
actors:actors:

–– Keanu Reeves, Laurence Keanu Reeves, Laurence 
FishburneFishburne, Hugo Weaving, Hugo Weaving

•• The synthetic The synthetic 
reproductions needed to reproductions needed to 
intercut intercut seamlessly with seamlessly with 
footage of the real actorfootage of the real actor

A Daunting TaskA Daunting Task

•• Photorealistic human faces are the ultimate Photorealistic human faces are the ultimate 
challenge for computer graphicschallenge for computer graphics

•• Faces are particularly scrutinized by human Faces are particularly scrutinized by human 
observersobservers

–– We grow up and then spend most of our lives looking at We grow up and then spend most of our lives looking at 
facesfaces

–– Incredible variety, richness & subtlety of human facial Incredible variety, richness & subtlety of human facial 
movementmovement

–– Human viewerHuman viewer’’s extreme sensitivity to facial nuancess extreme sensitivity to facial nuances

•• No examples of believable human face at the timeNo examples of believable human face at the time

MotivationMotivation

•• Traditional facial animation (Traditional facial animation (blendshapesblendshapes, muscle , muscle 
deformers) would not produce realistic results redeformers) would not produce realistic results re--
creating a real actorcreating a real actor

•• Believable facial rendering requires textures that Believable facial rendering requires textures that 
change over timechange over time

–– Color changesColor changes due to blood flow, skin straindue to blood flow, skin strain

–– Fine wrinkles form and disappearFine wrinkles form and disappear

–– Microscopic selfMicroscopic self--shadowing effectsshadowing effects

Universal CaptureUniversal Capture

•• Our previous experience with imageOur previous experience with image--based and based and 
computer vision approaches (computer vision approaches (What Dreams May What Dreams May 
Come, Matrix ICome, Matrix I) suggested a “non) suggested a “non--traditional” traditional” 
approachapproach

•• Capture a 3Capture a 3--D recording of an actor’s performanceD recording of an actor’s performance

•• Play it back with different camera and lightingPlay it back with different camera and lighting

•• Combine two powerful vision techniques: optical Combine two powerful vision techniques: optical 
flow and photogrammetryflow and photogrammetry

HiHi--Definition CaptureDefinition Capture

•• Five synchronized cameras capture the actor’s Five synchronized cameras capture the actor’s 
performance in ambient lightingperformance in ambient lighting

•• Sony/Sony/PanavisionPanavision HDWHDW--F900 camerasF900 cameras

–– Portrait mode 1080x1920 resolutionPortrait mode 1080x1920 resolution

–– 60i for maximal temporal information60i for maximal temporal information

–– 1/5001/500thth sec shutter sec shutter to minimize motion blurto minimize motion blur

•• RealReal--time capture/storagetime capture/storage

–– Computer workstations with HD capture boardsComputer workstations with HD capture boards

–– 21 terabyte disk arrays 21 terabyte disk arrays 

–– Tape robot for overnight data backupTape robot for overnight data backup



Floor Plan

A

B

A

C
D

E

UCap Setup

UCap Crew Ucappics 1

CameraCamera

tt 11

tt 22

tt 33

AA BB CC DD EE

Captured ImagesCaptured ImagesTimeTime

OpticalOptical Flow + Flow + 
PhotogrammetryPhotogrammetry

•• Optical flow in each camera viewOptical flow in each camera view

•• PhotogrammetricPhotogrammetric reconstruction of reconstruction of 
camera locationscamera locations

•• Core algorithm “warps” a neutral Core algorithm “warps” a neutral 
face model:face model:
–– Project vertices into each cameraProject vertices into each camera
–– Find 2Find 2--D motion of each vertexD motion of each vertex
–– Project back into 3Project back into 3--DD
–– Triangulate to obtain 3Triangulate to obtain 3--D motionD motion

pp11

pp22

PP’’

PP

pp11’’

pp22’’

Camera 1Camera 1

Camera 2Camera 2

Face ModelFace Model

Optical Flow + Optical Flow + 
PhotogrammetryPhotogrammetry

•• Result: Result: markerlessmarkerless capture of the complete capture of the complete 
deforming face geometrydeforming face geometry



Optical Flow + Optical Flow + 
PhotogrammetryPhotogrammetry

•• Result: Result: markerlessmarkerless capture of the complete capture of the complete 
deforming face geometrydeforming face geometry

Optical Flow + Optical Flow + 
PhotogrammetryPhotogrammetry

•• Result: Result: markerlessmarkerless capture of the complete capture of the complete 
deforming face geometrydeforming face geometry

Optical Flow + Optical Flow + 
PhotogrammetryPhotogrammetry

•• Result: Result: markerlessmarkerless capture of the complete capture of the complete 
deforming face geometrydeforming face geometry

Optical Flow + Optical Flow + 
PhotogrammetryPhotogrammetry

•• Result: Result: markerlessmarkerless capture of the complete capture of the complete 
deforming face geometrydeforming face geometry

Optical Flow + Optical Flow + 
PhotogrammetryPhotogrammetry

•• Result: Result: markerlessmarkerless capture of the complete capture of the complete 
deforming face geometrydeforming face geometry

Optical Flow “drift”Optical Flow “drift”

•• Optical flow errors accumulate over timeOptical flow errors accumulate over time

•• Partially address by reverse optical flowPartially address by reverse optical flow

•• After a visible error has accumulatedAfter a visible error has accumulated

–– Manually correct using Manually correct using keyshapeskeyshapes

–– Algorithmically interpolate and propagate the correction back Algorithmically interpolate and propagate the correction back 
through the performancethrough the performance



Rigid vs. Deformable Rigid vs. Deformable 
MotionMotion
•• Underlying rigid (skull) transformationUnderlying rigid (skull) transformation

•• Recovered Recovered 
curves curves 
estimated estimated 
using a least using a least 
squares squares 
procedureprocedure

•• Can apply Can apply 
signal signal 
processing to processing to 
preserve preserve 
nuancenuance

Rigid vs. Deformable Rigid vs. Deformable 
MotionMotion

•• Subtracting Subtracting 
the rigidly the rigidly 
transformed transformed 
neutral face neutral face 
from the 3from the 3--D D 
reconstruction reconstruction 
(left) gives the (left) gives the 
animated animated 
facial facial 
deformation deformation 
(right)(right)

Rigid vs. Deformable Rigid vs. Deformable 
MotionMotion

•• Subtracting Subtracting 
the rigidly the rigidly 
transformed transformed 
neutral face neutral face 
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reconstruction reconstruction 
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animated animated 
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deformation deformation 
(right)(right)
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MotionMotion

•• Subtracting Subtracting 
the rigidly the rigidly 
transformed transformed 
neutral face neutral face 
from the 3from the 3--D D 
reconstruction reconstruction 
(left) gives the (left) gives the 
animated animated 
facial facial 
deformation deformation 
(right)(right)

•• Image reImage re--projectionprojection

Animated Texture Map 
Extraction
Animated Texture Map Animated Texture Map 
ExtractionExtraction

•• Merge ambient Merge ambient 
images from images from 
multiple multiple 
camera views camera views 
over time to over time to 
produce produce 
seamless seamless 
animated UV animated UV 
color mapscolor maps
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•• Image reImage re--projection and blend regionsprojection and blend regions

Animated Texture Map 
Extraction
Animated Texture Map Animated Texture Map 
ExtractionExtraction

A

C
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•• Regions of seamless blend in UV spaceRegions of seamless blend in UV space

Animated Texture Map 
Extraction
Animated Texture Map Animated Texture Map 
ExtractionExtraction Color Map 1

Color Map 2 Color Map 3

EarlyEarly Observations Observations ––
Winter/Spring 2000Winter/Spring 2000

•• Surface detail on the face (of human skin)Surface detail on the face (of human skin)

–– Unique: pores, wrinkles, moles, scars, etc.Unique: pores, wrinkles, moles, scars, etc.

–– Highly variable spatiallyHighly variable spatially

–– Very small scale ~100 micron featuresVery small scale ~100 micron features

–– Has extremely complex patternHas extremely complex pattern
•• Hard to paintHard to paint

•• Even harder to generate procedurallyEven harder to generate procedurally

•• Color texture detail also unique and complexColor texture detail also unique and complex

–– We knew we can address that thanks to our photogrammetry We knew we can address that thanks to our photogrammetry 
and imageand image--based renderingbased rendering

Early Observations Early Observations ––
Winter/Spring 2000Winter/Spring 2000

•• Reflectance Reflectance –– is BRDF enough or …is BRDF enough or …

•• Skin is Skin is translucenttranslucent; conventional shaders will not ; conventional shaders will not 
workwork

•• Lighting is just as important Lighting is just as important 

–– Area lights with ray traced shadowsArea lights with ray traced shadows

–– Lights from every direction of the environmentLights from every direction of the environment

–– Does “global illumination” play are role? Does “global illumination” play are role? 



BRDF CaptureBRDF Capture

•• MarschnerMarschner et. al. et. al. –– ImageImage--based BRDF based BRDF 
measurementmeasurement

•• Had lots of cameras lying around from the Bullet Had lots of cameras lying around from the Bullet 
Time rig and a way to trigger them simultaneouslyTime rig and a way to trigger them simultaneously

•• Capture actor illuminated from various lighting Capture actor illuminated from various lighting 
directions with 30 cameras around the headdirections with 30 cameras around the head

BRDF Capture Collage 1

Light 1 Light 2

Camera 1

Camera 7

BRDFBRDF Image AlignmentImage Alignment

•• Photogrammetry used to reconstruct the camera Photogrammetry used to reconstruct the camera 
positionspositions

•• Color calibrated, image space aligned images from Color calibrated, image space aligned images from 
each camera brought into a common UV space by each camera brought into a common UV space by 
projection onto cyberscan modelprojection onto cyberscan model

•• The registered images implicitly contain skin The registered images implicitly contain skin 
reflectance for various incoming and outgoing light reflectance for various incoming and outgoing light 
directionsdirections

BRDF Capture Reprojection 
1

Light 1

Camera 1

DataData--Derived Analytical Derived Analytical 
BRDFBRDF

•• Due to imperfections in our color calibration, image Due to imperfections in our color calibration, image 
alignment, and cyberscan it was hard to fit a model alignment, and cyberscan it was hard to fit a model 
automaticallyautomatically

•• Parameters for an approximate analytical BRDF are Parameters for an approximate analytical BRDF are 
derived from this data:derived from this data:

–– LambertLambert--like diffuse componentlike diffuse component

–– PhongPhong--like like specular specular with with FresnelFresnel effect (acknowledgement: effect (acknowledgement: 
MatthewMatthew LandauerLandauer))

Surface DetailSurface Detail

•• Applying BRDF to existing model without bump map Applying BRDF to existing model without bump map 
detail detail 

–– Images were disturbingly fakeImages were disturbingly fake

–– Tried procedural cellular texture approach Tried procedural cellular texture approach –– dismal failuredismal failure

–– Tried extracting bump detail from color map (already had Tried extracting bump detail from color map (already had 
access to access to UCap UCap color texture maps) color texture maps) –– better result but hardly better result but hardly 
photorealisticphotorealistic

•• Convinced that we had to scan the real actor’s facial Convinced that we had to scan the real actor’s facial 
detail somehowdetail somehow



Raw Facial GeometryRaw Facial Geometry

•• Plaster casts of the actorsPlaster casts of the actors

–– Acquired through the movie productionAcquired through the movie production

•• Aruis3d scanning technologyAruis3d scanning technology

–– ~$20 million of government funding over 10+ years~$20 million of government funding over 10+ years

–– Service provided by XYZRGBService provided by XYZRGB

–– 100100--micron scan of actors’ faces micron scan of actors’ faces 

–– Highest resolution model: 10 million trianglesHighest resolution model: 10 million triangles

–– Provided multiple resolutionsProvided multiple resolutions

DetailDetail Extraction ApproachExtraction Approach

•• Residual displacement obtained with Residual displacement obtained with 
mental ray mental ray lightmapping lightmapping and custom and custom 
shader shader 

–– Ray trace from the subdivision surface Ray trace from the subdivision surface 
to the raw scanto the raw scan

–– Store distance to intersection in a UV Store distance to intersection in a UV 
mapmap

•• Base resolution quad mesh Base resolution quad mesh 
(constructed with (constructed with ParaformParaform) ) 

•• Use as subdivision surfaceUse as subdivision surface

Agent Smith Detail Agent Smith Detail 
ExtractionExtraction

- =

Smith Bump Map

Agent Smith BumpAgent Smith Bump SubsurfaceSubsurface ScatteringScattering

•• We were very close but the renders looked more like We were very close but the renders looked more like 
granite than skin granite than skin –– Henrik Henrik was right!was right!

–– Existing subsurface models: complex, also not 100% Existing subsurface models: complex, also not 100% 
convincingconvincing

•• Instead, approximately simulate light diffusion in the Instead, approximately simulate light diffusion in the 
image map domainimage map domain

–– Different diffusion length for different colorsDifferent diffusion length for different colors

–– Heavily translucent areas (ears) handled by ray tracingHeavily translucent areas (ears) handled by ray tracing



Light Map Diffusion 1 Light Map Diffusion 2

Light Map Diffusion 3 Light Map Diffusion 4

RenderingRendering
•• LightingLighting ReconstructionReconstruction ToolkitToolkit

–– imageimage--based lighting based lighting 

approach  gaveapproach  gave us the us the 

realistic lightingrealistic lighting from an from an 

environmentenvironment

•• Renderer: mentalRenderer: mental ray ray 

–– LightmappingLightmapping

–– Ray traced shadowsRay traced shadows

•• Reference photo shoot Reference photo shoot withwith the the 
actors to verify actors to verify ourour resultsresults

Real vs. CG Neo



ucsm1040/1280 collage ucmo1050 collage

TheThe Matrix Matrix Reloaded & Reloaded & 
RevolutionsRevolutions
•• (Stills)(Stills)

bb0625

bb1010 VideoVideo
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Universal Capture – Image-based Facial Animation and Rendering  
for “The Matrix” Sequels  

George Borshukov, et. al., ESC Entertainment 
Appendix to SIGGRAPH’2004 course notes on Facial Modeling and Animation  

Introduction  
The VFX R&D stage for The Matrix sequels was kicked off in January 
2000 with the challenge to create realistic human faces. The ultimate 
challenge in photorealistic computer graphics is rendering believable 
human faces. We are trained to study the human face since birth, so 
our brains are intimately familiar with every nuance and detail of what 
human skin is supposed look like. The challenge of rendering the 
appearance of human skin is further complicated by some technical 
issues such as the fact that skin is a highly detailed surface with 
noticeable features in the order of ~100 microns and the fact that skin 
is translucent. For animation, we believed that traditional approaches 
like muscle deformers or blend shapes would simply never work, both 
because of the richness of facial movement and because of the human 
viewer’s extreme sensitivity to facial nuances. Our task was further 
complicated as we had to recreate familiar actors such as Keanu 
Reeves, Laurence Fishburne, and Hugo Weaving. Our team had been 
very successful at applying image-based techniques for photorealistic 
film set/location rendering, so we decided to approach the animation 
problem from the image-based side again. We wanted to produce a 3-d 
recording of the real actor's performance and be able to play it back 
from different angles and under different lighting conditions. Just as 
we can extract geometry, texture, or light from images, we are now 
able to extract movement. Universal Capture combines two powerful 
computer vision techniques: optical flow and photogrammetry.  

HiDef Capture Setup  
We used a carefully placed array of five synchronized cameras that 
captured the actor's performance in ambient lighting.  For the best 
image quality we deployed a sophisticated arrangement of 
Sony/Panavision HDW-F900 cameras and computer workstations 
that captured the images in uncompressed digital format straight to 
hard disks at data rates close to 1G/sec.  

Optical Flow + Photogrammetry  
We use optical flow to track each pixel's motion over time in each 
camera view. The result of this process is then combined with a 
cyberscan model of a neutral expression of the actor and with 
photogrammetric reconstruction of the camera positions. The 
algorithm works by projecting a vertex of the model into each of the 
cameras and then tracking the motion of that vertex in 2-d using the 
optical flow where at each frame the 3-d position is estimated using 
triangulation. The result  is an accurate reconstruction of the path of 
each vertex though 3-d space over time.  

Keyshaping, Adapt, Removing Global Motion  
Optical flow errors can accumulate over time, causing an undesirable 
drift in the 3-d reconstruction. To minimize the drift we make use of 
reverse optical flow. On this production the problem was eliminated 
by introducing a manual keyshaping step: when the flow error 
becomes unacceptably large the geometry is manually corrected and 
the correction is then algorithmically propagated to previous frames.  

The reconstructed motion contains the global "rigid" head 
movement. In order to attach facial performances to CG bodies or 
blend between different performances this movement must be 
removed. We estimate the rigid transformation using a least squares fit 
of a neutral face and then subtract this motion to obtain the non-rigid 
deformation.  

Texture Map Extraction  
No believable facial rendering can be done without varying the face 
texture over time. The fact that we did not use any markers on the face 
to assist feature tracking gave us the important advantage that we could 
combine the images from the multiple camera views over time to 
produce animated seamless UV color maps capturing important textural 
variation across the face, such as the forming of fine wrinkles or 
changes in color due to strain, in high-res detail on each side of the face.  

Facial Surface Detail  
Although the extracted facial animation had most of the motion nuances 
it lacked the small-scale surface detail like pores and wrinkles. The 
geometry used for our rendering was based on a 100-micron resolution 
scan of a plaster cast mold of the actors’ faces. Arius3d provided the 
scanning technology. These scans had extremely high polygonal counts 
(10 million triangles; see Fig. 1). To use these models in production and 
preserve the detail we deployed the following technique. A low-res ~5K 
quad model was constructed using Paraform software. The model was 
given a UV parameterization and then used as a subdivision surface. 
The high resolution detail was extracted using the lightmapping feature 
of the mental ray renderer combined with custom shaders that 
performed ray tracing from the low-res subdivision surface model to the 
high-detailed 10M triangle raw scan; the distance difference is stored in 
a displacement map. We applied the low frequency component of this 
map as displacement; the high frequency component was applied using 
bump mapping. Dynamic wrinkles were identified by image processing 
on the texture maps; these are then isolated and layered over the static 
bump map.   

Image-based Derivation of Skin BRDF  
Our skin BRDF was derived using an image-based approach. In 
Summer 2000 as part of the early stages of Matrix Reloaded R&D we 
had a setup, which consisted of 30 still cameras arranged around the 
actor’s head. Actors were photographed illuminated with a series of 
light sources from different directions (see Fig. 2). The setup was 
carefully color calibrated and photogrammetry was used to precisely 
reconstruct the camera positions and head placement with respect to 
each camera for each image. The collected image data from each camera 
was brought into a common UV space through reprojection using a 
cyberscan model of the actor. This convenient space (see Fig. 3) 
allowed us to analyze the skin reflectance properties for many incident 
and outgoing light directions. We derived parameters for an 
approximate analytical BRDF that consisted of a Lambertian diffuse 
component and a modified Phong-like specular component with a 
Fresnel-like effect.  

Subsurface Scattering of Skin  
As production progressed it became increasingly clear that realistic skin 
rendering couldn’t be achieved without subsurface scattering 
simulation. There are a number of published methods for rendering 
translucent materials however they are all fairly complex, require large 
amounts of CPU power and produce somewhat disappointing results. To 
address this we developed a technique for producing the appearance of 
subsurface scattering in skin that is computationally inexpensive and 
fairly easy to implement. The result of the diffuse illumination reflecting 
off the face in the camera direction is stored in a 2-d light map (see Fig. 



4). We then approximately simulate light diffusion in the image 
domain. To simulate the different mean free path for different light 
colors we vary the diffusion parameters for each color channel. For 
animations the lightmap needs to be computed at every frame, so our 
technique computes an appropriate lightmap resolution depending on 
the size of the head in frame. For objects like ears where light can pass 
directly through, we employed a more traditional ray tracing approach 
to achieve the desired translucency effect.  

Results  
The above components are combined with our real world Lighting 
Reconstruction technology, and a ray tracer such as mental ray to 
produce the highly realistic synthetic images in Fig. 5 and 6. For 
comparison Fig. 7 shows a photograph of Keanu Reeves (Neo). The 
bottom image is a fully virtual frame from The Matrix Reloaded.  

  

The first two rows of images in the next group show captured views 
from two of the five HiDef cameras, the recovered model, and color 
texture maps for two different moments in time for a performance by 
Laurence Fishburne. The next row shows a rendering of this 
performance from novel viewpoints and under different lighting 
conditions. The last row shows renderings of a performance captured 
from Hugo Weaving and a frame for The Matrix Reloaded.  
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Medical Applications & 
Behavioral Models

Craniofacial Surgery:
Face Lift  (Rhytidectomy)

Craniofacial Surgery:
Cleft Lip and Palate

PreOp

PostOp

Facial Modeling for Surgery 
Simulation    [Girod et al.]  [Gross et al.] …

PreOp Simulation PostOp

Mandibular Hypoplastia
From [Gladilin 2002], Zuse Institute BerlinFrom [From [GladilinGladilin 2002], 2002], ZuseZuse Institute BerlinInstitute Berlin

Simulation of Mandible Distraction



Simulation of Mandible Distraction

Maxillary Retrognatism
Mandibular Prognatism
From [Gladilin 2002], Zuse Institute BerlinFrom [From [GladilinGladilin 2002], 2002], ZuseZuse Institute BerlinInstitute Berlin

Simulation of Bimaxillary
Osteotomy
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Towards fully autonomous facial models
• Behavioral animation methods

– An ethological approach

• Part of an “Artificial Life” modeling framework
– Previously useful for modeling biological systems

• Plants
• Animals

– Humans  faces

Towards fully autonomous facial modelsTowards fully autonomous facial models
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–– An ethological approachAn ethological approach
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–– Previously useful for modeling biological systemsPreviously useful for modeling biological systems

•• PlantsPlants
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–– Humans  Humans  facesfaces
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From geometry to intelligenceFrom geometry to intelligence

•• CognitionCognition
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•• KinematicsKinematics
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Biomechanics

Perceptual Modeling

Head-Eye-Gaze Kinematics
• Gaze-holding movements

– Optokinetic reflex (OKR)
– Vesitibulo-ocular reflex (VOR)

• Gaze-shifting movements
– Saccades

• Fixation movements
– Slow drift
– Rapid, low-amplitude tremor
– Micro-saccades

HeadHead--EyeEye--Gaze KinematicsGaze Kinematics
•• GazeGaze--holding movementsholding movements

–– OptokineticOptokinetic reflex (OKR)reflex (OKR)
–– VesitibuloVesitibulo--ocular reflex (VOR)ocular reflex (VOR)

•• GazeGaze--shifting movementsshifting movements
–– SaccadesSaccades

•• Fixation movementsFixation movements
–– Slow driftSlow drift
–– Rapid, lowRapid, low--amplitude tremoramplitude tremor
–– MicroMicro--saccadessaccades

From [Freedman & Sparks 2000]

Distributed Face Simulation

Server-client architecture
• Face simulation clients

• Rendering server

• Communication between 
server and clients
– Supports perception 

between faces

ServerServer--client architectureclient architecture
•• Face simulation clientsFace simulation clients

•• Rendering serverRendering server

•• Communication between Communication between 
server and clientsserver and clients
–– Supports perception Supports perception 

between facesbetween faces

TCP/IP Server-Client 
Communication



Distributed Simulation 
Performance Data

Dual PIII 1GHz CPUs,  nVIDIA GeForce 3Dual PIII 1GHz CPUs,  Dual PIII 1GHz CPUs,  nVIDIAnVIDIA GeForceGeForce 33

Autonomous Expressive Behavior

Initial behavioral repertoire
• Attentive behavior routine
• Snubbing behavior routine
• Visual search behavior routine
• Expressive behavior routine
• Mimicking behavior routine
• Interactive behavior routine

Mental state
• “Leader” or “follower”
• Fatigue

Initial behavioral repertoireInitial behavioral repertoire
•• Attentive behavior routineAttentive behavior routine
•• Snubbing behavior routineSnubbing behavior routine
•• Visual search behavior routineVisual search behavior routine
•• Expressive behavior routineExpressive behavior routine
•• Mimicking behavior routineMimicking behavior routine
•• Interactive behavior routineInteractive behavior routine

Mental stateMental state
•• “Leader” or “follower”“Leader” or “follower”
•• FatigueFatigue

Autonomous, Interacting Faces Autonomous, Interacting Faces
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Abstract
Facial animation has a lengthy history in computer graphics. To date, most efforts have concentrated either on
labor-intensive keyframe schemes, on manually animated parameterized methods using FACS-inspired expression
control schemes, or on performance-based animation where facial motions are captured from human actors. As
an alternative, we propose the fully automated animation of faces using behavioral animation methods. To this
end, we employ a physics-based model of the face, which includes synthetic facial soft tissues with embedded mus-
cle actuators. Despite its technical sophistication, this biomechanical face model can nonetheless be simulated
in real time on a high-end personal computer. The model incorporates a motor control layer that automatically
coordinates eye and head movements, as well as muscle contractions to produce natural expressions. Utilizing
principles from artificial life, we augment the synthetic face with a perception model that affords it a visual aware-
ness of its environment, and we provide a sensorimotor response mechanism that links percepts to meaningful
actions (i.e., head/eye movement and facial expression). The latter is implemented as an ethologically inspired be-
havioral repertoire, which includes a rudimentary emotion model. We demonstrate a networked, multi-computer
implementation of our behavioral facial animation framework. Each of several faces is computed in real time by a
separate server PC which transmits its simulation results to a client PC dedicated to rendering the animated faces
in a common virtual space. Performing the appropriate head/eye/face movements, the autonomous faces look at
one another and respond in a natural manner to each other’s expressions.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Three-Dimensional Graphics and Realism]:
Animation I.3.5 [Computational Geometry and Object Modeling]: Physically based modeling

1. Introduction

Facial modeling and animation has a lengthy history
in computer graphics. The area was pioneered over
thirty years ago by Frederic Parke at the University
of Utah [Par72]. A survey of the field is presented
in the volume [PW96]. Briefly, realistic facial mod-
els have progressed from keyframe (blend-shape) mod-
els [Par72], to parameterized geometric models [Par74], to
muscle-based geometric models [Wat87], to anatomically-
based biomechanical models [TW90, LTW95, KHYS02].
In parallel with the model-based approaches, a variety
of successful facial data driven technologies have re-
cently been developed for facial modeling and anima-
tion [WT91, GGW∗98, PHL∗98, BV99, BBPV03]. To date,
most efforts in production facial animation have con-

centrated either on labor-intensive (blendshape) keyframe
schemes often involving manually-animated parameter-
ized schemes [Pix88], or on performance-based anima-
tion where facial motions are captured from human ac-
tors [Wil90, fac04]. With regard to facial motion capture, it
remains a challenge to modify the captured facial motions.

As an alternative, it would be desirable to have a fully au-
tomated face/head model that can synthesize realistic facial
animation. Such a model would be of value both for the pro-
duction animation and especially in the interactive computer
games industries. Ultimately, this model should be an intel-
ligent one, which would possess both nonverbal and verbal
facial communications skills and would be able to interact
autonomously in a virtual environment with other such intel-
ligent face/head models. To this end, we have been inspired



D. Terzopoulos & Y. Lee / Behavioral Animation of Faces

by the Artificial Life framework advocated by Terzopoulos
and his group [Ter99], which prescribes biomechanical, per-
ceptual, behavioral and, ultimately, learning and cognitive
modeling layers. In this paper, we begin to tackle the chal-
lenge of applying this framework to the modeling and ani-
mation of the human face.

1.1. Background and Contributions

As an initial step, we propose the goal of fully automated
facial animation synthesis through the use of behavioral an-
imation methods. We achieve this goal through an ethologi-
cally inspired behavioral repertoire for human faces, which
includes a rudimentary emotion model. Behavioral anima-
tion was introduced to computer graphics by Reynolds in
his seminal work on “boids” [Rey87]. It was further devel-
oped and applied to artificial animals by Tu and Terzopou-
los [TT94]. In the context of character animation, Cassell
et al. [CVB01] presented a behavior toolkit which converts
from typed sentences to synthesized speech and synchro-
nized nonverbal behaviors, including gestures and some fa-
cial expressions.

Behavior ties perception to action in meaningful ways.
Our approach is focused on behavior-controlled dynamics of
all aspects of the human head and face. We employ a biome-
chanical model of the face, which includes synthetic facial
soft tissues with embedded muscle actuators. Our model is a
significantly improved version of the one published by Lee et
al. [LTW95]. Despite its technical sophistication, our biome-
chanical face model has been optimized such that it may be
simulated in real time on a high-end personal computer.

An important component of our work is the simula-
tion of head-eye movements. The role of eye movements
in conversational characters is discussed by Vertegaal et
al.[VSDVN01] who present interesting empirical obser-
vations about gaze control during conversations. Lee et
al. [LBB02] describe a statistical model that, from tracked
eye movements in video, can synthesize believable ocular
motion for an animated face. Our model incorporates a novel
motor control layer that automatically coordinates synthetic
eye and head movements, as well as muscle contractions to
produce natural expressions.

Our work builds a repertoire of facial behaviors that are
driven by perception. Utilizing principles from artificial life,
we augment the synthetic face with a perception model that
affords it a visual awareness of its environment, and we pro-
vide a sensorimotor response mechanism that links percepts
to sensible reactions (i.e., head/eye movement and facial ex-
pression). Active, foveated perceptual modeling for virtual
humans using computer vision techniques was discussed by
Terzopoulos and Rabie (see, e.g., [Ter99]). Although the use
of computer vision techniques may be the ultimate goal of
our work, for the sake of efficiency we currently employ a
“synthetic vision” scheme [Rey87, RMTT90, TT94].

As a final contribution, we demonstrate a networked,
multi-computer implementation of our behavioral facial ani-
mation framework. Each of several faces is computed in real
time by a separate server PC which transmits its simulation
results to a client PC dedicated to rendering the animated
faces in a common virtual space. Performing the appropriate
head/eye/face movements, the autonomous faces look at one
another and respond naturally to each other’s expressions in
a multiway nonverbal communication scenario.

1.2. Overview

The remainder of this paper is organized as follows: Sec-
tion 2 summarizes our human face model. Section 3 de-
scribes how this model is simulated in real time in paral-
lel on multiple processors. In Section 4 we details the dis-
tributed simulation of multiple faces on multiple networked
computers, as well as the mechanism for exchanging percep-
tual information between multiple heads. Section 5 presents
the head/eye movement coordination model. Section 6 de-
velops our behavioral model for human faces and presents an
experiment demonstrating the autonomous behavioral inter-
action among multiple heads. Section 7 concludes the paper
and presents an outlook on our future work.

2. A Functional Facial Model

We have developed a sophisticated, functional model of the
human face and head that is efficient enough to run at inter-
active rates on high-end PCs. Conceptually, the model de-
composes hierarchically into several levels of abstraction,
which represent essential aspects related to the psychology
of human behavior and facial expression, the anatomy of fa-
cial muscle structures, the histology and biomechanics of
facial tissues, facial geometry and skeletal kinematics, and
graphical visualization:

1. Behavior. At the highest level of abstraction, the synthetic
face model has a repertoire of autonomous behaviors,
including reactive and intentional expressive behaviors
with coordinated head/eye movements.

2. Expression. At the next level, the face model executes in-
dividual expression commands. It can synthesize any of
the six primary expressions (joy, sadness, anger, fear, sur-
prise and disgust) within a specific duration and degree
of emphasis away from the neutral face. A muscle con-
trol process based on Ekman and Friesen’s FACS [EF86]
translates expression instructions into the appropriately
coordinated activation of actuator groups in the soft-
tissue model. This coordination offers a semantically rich
set of control parameters which reflect the natural con-
straints of real faces.

3. Muscle Actuation. As in real faces, muscles comprise the
basic actuation mechanism of the face model. Each mus-
cle submodel consists of a bundle of muscle fibers. The
action of the contractile fibers is modeled in terms of a
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(a) (b)

Figure 1: Panels for manually adjusting expressions, muscle contractions, and stress-strain curves at the expression, muscle
actuation, and tissue biomechanics levels of the facial model. (a) Adjusting the muscle panel. (b) Adjusting the expression panel.

(a) (b)

Figure 2: Skin model with interactively adjustable stress-
strain curves. (a) Normal epidermal/dermal stress-strain
curve. (b) Curve adjusted to simulate looser skin, resulting
in an aged appearance.

force profile longitudinally along the central vector of the
muscle and laterally from the vector (see [LTW95] for the
details). In our model, there are 42 muscles of facial ex-
pression in the synthetic face, which augments the mus-
culature of its predecessor model described in [LTW95].

4. Biomechanics. When muscles contract, they displace
their points of attachment in the facial tissue or the articu-
lated jaw. The face model incorporates a physical approx-
imation to human facial tissue, a nonhomogeneous and
nonisotropic layered structure consisting of the epider-
mis, dermis, subcutaneous fatty tissue, fascia, and mus-
cle layers. The tissue model [LTW95] is a lattice of point

masses connected by nonlinear viscoelastic springs, ar-
ranged as layered prismatic elements that are constrained
to slide over an impenetrable skull substructure. Large-
scale synthetic tissue deformations are numerically sim-
ulated by continuously computing the response of the as-
sembly of volume-preserving elements to the stresses in-
duced by activated muscle fibers.

5. Geometry/Kinematics. The geometric representation of
the facial model is a non-uniform mesh of polyhedral el-
ements whose sizes depend on the curvature of the neu-
tral face. Muscle-induced synthetic tissue deformations
distort the neutral geometry into an expressive geometry.
The epidermal display model is a smoothly-curved sub-
division surface [DKT98] (in our case a Loop subdivi-
sion surface [Loo87]) that deforms in accordance with the
simulated tissue elements. In addition, the complete head
model includes functional subsidiary models, including a
skull with articulated jaw, teeth, tongue/palate, eyes, and
eyelids.

6. Rendering. After each simulation time step, standard vi-
sualization algorithms implemented in the PC OpenGL
graphics pipeline render the deforming facial geome-
try in accordance with viewpoint, light source, and skin
reflectance (texture) information to produce the lowest
level representation in the modeling hierarchy, a continu-
ous stream of facial images.

The hierarchical structure of the model appropriately en-
capsulates the complexities of the underlying representa-
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Figure 3: Cross section through the biomechanical face
model, showing multilayer skin and underlying muscle ac-
tuators (represented as red-blue vectors). The epidermal tri-
angles indicate the triangular prism element mesh.

tions, relegating the details of their simulation to automatic
procedures.

3. Parallel, Real-Time Simulation of the Face Model

The biomechanical simulation of our face model yields real-
istic tissue deformations, but it is computationally expensive
relative to conventional geometric facial models. We have
made significant effort to make our model computable in real
time, as we describe in this section.

3.1. Biomechanical Soft Tissue Model

The biomechanical soft tissue model has five layers. Four
layers—epidermis, dermis, sub-cutaneous fatty tissue, and
fascia—comprise the skin, and the fifth consists of the mus-
cles of facial expression [FH91]. In accordance with the
structure of real skin, and following [LTW95], we have de-
signed a synthetic tissue model composed of the triangular
prism elements which match the triangles in the adapted
facial mesh. The elements are constructed from lumped
masses interconnected by uniaxial, viscoelastic units. Each
uniaxial unit comprises a spring and damper connected in
parallel. The springs have associated stress-strain curves
which can be manually adjusted from interactive panels.

The individual muscle model is the same as that
in [LTW95]. Fig. 3 shows the face model in cross-section,
revealing the muscle actuators underlying the multilayer,
biomechanical skin model. Fig. 1 illustrates various inter-
active panels that a user can employ to make manual ad-
justments at the expression, muscle actuation, and biome-
chanics levels of the model. As a point of interest, Fig. 2

Number of Number of threads Frame rates Memory CPU
face models per face model per second in MB Utilization %

1 2 50.80 17.4 93.4

1 1 42.90 17.3 58.6

2 1 33.58 27.2 100.0

3 1 21.48 37.1 100.0

4 1 16.20 47.0 100.0

5 1 12.45 57.9 100.0

6 1 10.31 66.9 100.0

7 1 8.59 76.9 100.0

8 1 7.44 86.8 100.0

9 1 6.50 96.8 100.0

10 1 5.76 106.8 100.0

15 1 2.40 156.5 86.9 l

20 1 1.42 206.0 80.0

25 1 1.03 255.7 76.2

30 1 0.80 305.2 75.5

40 1 0.56 404.5 73.3

50 1 0.43 503.7 72.4

Table 1: Simulation rates of the physics based face model
with 1078 nodes, 7398 springs, 42 muscles, 1042 elements,
and 1042 facets using 4 iterations of numerical computation
per rendered frame (with base level surface subdivision at
each frame) on a dual Intel Pentium III 1 GHz CPU sys-
tem with 1 GB of PC133 memory and an nVIDIA GeForce3
AGP2X graphics card with 64 MB of graphics memory.

shows two different settings of the epidermal/dermal stress-
strain curves, the first is normal, while the second has a neg-
ative residual strain which simulates looser skin, giving the
face an aged appearance. Note, however, that although these
various interactive panels are available, it is unnecessary to
make any adjustments whatsoever through them during nor-
mal operation of the facial model, as automatic controllers at
the behavior, expression, muscle actuation, and biomechan-
ics modeling levels control the various parameters.

3.2. Parallel Simulation

In general, a physics-based simulation model makes inten-
sive CPU usage for numerical computations to simulate dy-
namics. The biomechanical tissue model is simulated nu-
merically using an explicit Euler time-integration method.
As described in [LTW95], the method computes the veloc-
ities and positions of each nodal mass at the next time step
from quantities that are computed at the current time step.
This enables us to perform the numerical simulation of the
tissue model in parallel. Parallelization is achieved by evenly
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Figure 4: Facial simulation performance.

distributing calculations at each time step to all available
processors using multiple execution threads. This increases
the simulation speed, enabling our system to animate facial
expressions at real-time rates on a dual Intel Pentium-III 1
GHz CPU computer workstation with an nVIDIA GeForce3
graphics card. Table 1 and Fig. 4 document the performance
figures on this system. Note that it can simulate and ren-
der no more than two face models simultaneously in real
time. We have also verified that our approach enables the
face model to evenly distribute its numerical computations
on a quad Intel Xeon 2.4 GHz CPU system.

We conclude that in order to simulate and render a greater
number of faces in real time, we must resort to distributed
facial simulation on multiple computers.

4. Distributed Face Simulation and Rendering

Our approach to distributed facial simulation is to simulate
multiple instances of the face models on multiple computers
(face simulation clients) networked to a dedicated graphics
workstation (the rendering server) whose task is to render the
updated geometric face models together in a common virtual
space. For sensory perception, any client can sense the state
of any other client only via the server. Fig. 5 illustrates the
architecture and perceptual data flow. In accordance with our
goal to separate the numerical computation from the graph-
ics rendering, Table 2 compares the responsibility of the ren-
dering server and simulation client when sharing the single
computer simulation/rendering workload.

To maximize flexibility across different computing plat-
forms, we decided to use the TCP/IP (Transmission Con-
trol Protocol / Internet Protocol) standard to support the dis-
tributed computation of our face models. An IP comprises
a packet header which contains the originating address and

 Cli
ent
 #2

..R
unn
ing
..

eyes position,
mouth position,
body position,
body angles,
neck angles,

view xyz,
view object,
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skin nodes xyz.
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 attention IDs,
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Face-ID #2,
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SERVER

Client #1
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SERVER

Server to Client #1
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 Client #1
..Running..

Client #1 Client #2

Figure 5: Data exchange in the distributed face simulation
system between the server and two clients.

Single Computer Face-Server Face-Client

Acting Alone + + -

Direct User Interaction + + -

3D Skin Rendering + + -

3D Tissue Rendering + - -

3D Force Rendering + - -

Surface Subdivision + / - + / - -

Numerical Computation + - +

Control Events Handling + - +

Networking - + +

Peers Interaction - - +

Table 2: Comparison between our face model modules.

the destination address, and a packet body consisting of data.
The TCP is a connection-oriented 3-way handshaking com-
munication protocol using sync, sync/ack, and ack. With
TCP/IP, both the sender and the receiver can be synchro-
nized to ensure the successful arrival of each IP using its ad-
dress information of host names and port numbers. Figure 6
outlines the 3-way handshaking scheme of our client/server
processes using TCP/IP. The face rendering computer acts as
the server. Face simulation clients connect to this server via
the internet. Once the server accepts a connection request
from a client, it continuously sends and receives data with
the client until this client-server connection is closed either
by the client or server.

After the rendering server has received an initial connec-
tion request from a new simulation client, it will start a new
thread to handle all communications with this new client (see
Figure 7). This new thread will wait for the client to send the
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Figure 6: Connection scheme of TCP/IP sockets and data
exchange between a faces rendering server and face simula-
tion client.

name of the face model, the number of nodes in the face
model, and the number of different emotion templates in the
face model. After it receives this information, it will use the
name of the face model to load the geometry structure def-
inition files of this face model from its local storage into its
system memory. After this face model is successfully loaded
into memory, its number of nodes and number of emotion
templates will be verified with the information sent from the
client.

On the other hand, after a simulation client has re-
ceived the handshaking acknowledgement from the render-
ing server, it will send the server the aforementioned infor-
mation and start an animation thread to handle all the numer-
ical calculations within the client. It will also handle all the
communications with the server.

For our current face model of 539 surface nodes, at each
rendering frame, each simulation client will send to the ren-
dering 539 x, y, z floating point values, approximately 30
more geometry related floating point values, and 6 emotion
related floating point values. The size of the total commu-
nicated data is roughly 8600 bytes. On the other hand, the
server will send to the clients 1 integer value to identify the
client, 9 geometry related floating point values, and 6 emo-
tion related floating point values, multiplied by the number
of active clients (See Fig. 5).
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Figure 7: The multi-threads scheme within the server and
the clients of our distributed face models system

4.1. Sensory Perception Between Simulated Faces

With our data exchange loop between the server and the
clients in Fig. 6, at every simulation step each simulated face
can sense perceptually relevant information about other sim-
ulated faces that share the same space.

The perceptual information available includes the position
of a face and the locations of its relevant parts, such as the
eyes and mouth, as well as the emotional state of the face.
The emotional state is represented as a point in “expression
space”, a 6-dimensional unit hypercube, each of whose di-
mensions is associated with a primary expression (joy, sad-
ness, anger, fear, surprise and disgust). The neutral expres-
sion is at the origin of expression space. For a symbolic in-
terpretation of expression, the continuous expression space
is partitioned into a number of subregions that define qual-
itative “emotion templates”, which are recognizable by the
observer.

5. Eye-Head Coordination

The oculomotor system, whose output is the position of the
eyes relative to the head, has been the subject of much re-
search (see, e.g., the treatise [Car88]), because it is a closed,
well-defined system that is amenable to precise, quantitative
study. The direction of the eye in space is called the gaze.
There are three types of eye movements:

• Gaze-holding movements. Because gaze is the sum of
head position and eye position, these eye movements
compensate for the movement of the head (and body)
in order to maximize the stability of the retinal image.
Gaze-holding movements are either optokinetic reflexes
(OKR), which are driven by retinal image motion (a.k.a.
optical flow), or vestibulo-ocular reflexes (VOR), which
are driven by the balance organs in the inner ear.
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Figure 8: Typical head/eye/gaze kinematics (from [FS00]).
Head, eye, and gaze position are plotted as functions of time
during a 60◦ gaze shift composed of coordinated movements
of the eyes and head. The head contributed approximately
10◦ to the overall change in gaze direction during this move-
ment. The remaining 50◦ of the gaze shift were accomplished
by the saccadic eye movement. Note that when the line of
sight achieves the desired gaze, the head continues to move,
but gaze remains constant due to equal and opposite eye
counter-rotation mediated through the VOR.

• Gaze-shifting movements. Human vision is foveated. The
foveal region, which spans roughly 2 degrees of visual
arc, is specialized for high-acuity, color vision. To see an
object clearly, gaze-shifting movements deliberately shift,
directing the eye to the target. Since the resulting eye mo-
tion disrupts vision, these movements are as fast as pos-
sible and are called saccades. As a target object moves
closer, the two eyes must converge onto the target; these
are called vergence movements.

• Fixation movements. Even when fixating a stationary ob-
ject, the eyes are making continual micro-movements of
three types: Slow drift, rapid small-amplitude tremor, and
micro-saccades that recover the gaze when the drift has
moved it too far off target.

In view of the significantly greater mass of the head rela-
tive to the eye, head dynamics are much more sluggish than
eye dynamics. As is documented in [Car88], when a subject
voluntarily moves the head and eye(s) to acquire an off-axis
visual target in the horizontal plane, the eye movement con-
sists of an initial saccade in the direction of the head move-
ment, presumably to facilitate rapid search and visual target
localization, followed by a slower return to orbital center,
which compensates for the remaining head movement. Dur-
ing target acquisition, head velocity is normally correlated
with the amplitude of the visual target offset.

Typical head/eye/gaze kinematics are plotted in Fig. 8. We
have implemented a head-eye coordination behavior that ac-
counts for the observed phenomena as reported in the liter-
ature. Our scheme uses exponential functions with different
time constants for the head and eye to approximate the em-
pirically observed kinematic curves shown in the figure. The
model which supports gaze-shifting and gaze-holding func-
tionalities, implements the head-eye motor control layer of
our synthetic face. In order to prevent the head from remain-
ing absolutely still in an unnatural manner, we perturb the
head rotation angles with some low-level Perlin noise.

6. Autonomous Expressive Behavior

As stated earlier, behavior ties perception to action. Our rel-
atively modest goal in this initial effort is to demonstrate
autonomous nonverbal behavior of a basic sort. Following
the approach of [TT94], we have implemented the rudiments
of a behavioral subsystem for our synthetic face model that
comprises mental state variables and a repertoire of behav-
ioral routines mediated by an action selection mechanism.
The thus far rather limited repertoire includes the following
behavior routines, which are ordered in terms of increasing
complexity:

1. Attentive Behavior Routine. The face will gaze at a spe-
cific face.

2. Snubbing Behavior Routine. The face will not gaze at a
specific face or faces.

3. Visual Search Behavior Routine. The autonomous face
will visually scan nearby faces to acquire relevant per-
ceptual information about them.

4. Expressive Behavior Routine. The face will attempt to
lead an expressive exchange by deliberatively perform-
ing a sequence of random expressions of some random
magnitude and duration.

5. Mimicking Behavior Routine. The face will attempt to
follow an expressive exchange by sensing the expres-
sion of a target face and mimicking that expression. This
makes use of attentive behavior.

6. Interactive Behavior Routine. The face will take turns en-
gaging one or more other faces in an expressive inter-
change. This behavior potentially makes use of all the
other behaviors.

The mental state so far contains a single variable that de-
termines whether a face will behave as a “leader” or a “fol-
lower”. The action selection mechanism includes timers that
monitor how long a particular behavior is engaged. The in-
tention generator is programmed not to sustain any particu-
lar behavior for too long a time, thus exhibiting a behavior
“fatigue” effect.

6.1. Experiment

Fig. 9 illustrates our real-time, self-animating faces engaged
in a 3-way interchange involving expression mimicking. In
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Figure 9: Autonomous behavioral-based interaction between three face simulation clients

this experiment, the first face simulation client that estab-
lishes contact with the rendering server will behave as a
leader and engage Visual Search Behavior until it detects the
presence of another face, then switch to Attentive Behav-
ior and Expressive Behavior. Other face clients joining the
interactive exchange behave as followers, engaging in Vi-
sual Search Behavior and Attentive Behavior with the leader
when the leader attends to them. Once a follower has the
leader’s attention the follower will engage in Mimicking Be-
havior. Eventually, behavior fatigue will compel the follower
to disengage the leader and attend to a different face. When
confronted by more than one face, the leader engages in In-
teractive Behavior with the various faces. This autonomous
behavioral animation results in a highly dynamic exchange,
with the server acting as a medium for the transmission of
perceptual information between the multiple face simulation
clients.

7. Conclusion

We have introduced a behavioral animation approach for
faces. Although rudimentary, the ethologically inspired
model can support basic non-verbal, expressive behav-
iors among multiple interacting faces. This capability was
demonstrated using a biomechanical model of the face ex-
hibiting muscle-induced dynamic expressions mediated by a
FACS muscle control and coordination layer. A subsidiary
kinematic model provides the requisite head and eye move-
ments in accordance with empirically measured head/eye
curves reported in the literature. Finally, the self-animating,
multi-head/face simulation is computed in real time in a
distributed manner on multiple, dedicated face simulation
clients networked to a rendering server. Using TCP/IP, the
clients supply the server with dynamically updated facial ge-
ometry data for rendering and exchange the perceptual infor-
mation needed to sustain the interactive behavior model.

In future work, we plan to implement a dynamic model
of head/eye movements to replace the current kinematic one
and to expand the breadth of the currently limited behav-
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ioral repertoire. As was indicated in the introdution, our ul-
timate goal is to implement learning and cognitive modeling
layers, thereby realizing an intelligent model of the human
face/head.
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4 References

This section contains a list of publications, which are useful to learn more about facial modeling and
animation. The selection of these publications represents the authors’ point of view and might not be
complete.
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