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1 Abstract

In this course we present an overview of the concepts and current techniques in facial modeling and
animation. We introduce this research area by its history and applications. As a necessary prerequisite
for facial modeling, data acquisition is discussed in detail. We describe basic concepts of facial an-
imation and present different approaches including parametric models, performance-, physics-, and
learning-based methods. State-of-the-art techniques such as muscle-based facial animation, mass-
spring networks for skin models, and morphable models are part of these approaches. We further-
more discuss texturing of head models and rendering of skin, addressing problems related to texture
synthesis and bump mapping with graphics hardware. Typical applications for facial modeling and
animation such as medical and forensic applications (craniofacial surgery simulation, facial recon-
struction from skull data, virtual aging) and animation techniques for movie production (case study
of The Matrix sequels) are presented and explained.

2 Syllabus

The course will be organized according to the following time schedule:
time length  topic presenter
08:30-08:35 5 min outline of the tutorial
08:35-09:05 30 min history & applications F. Parke
09:05-09:20 15 min anatomy of the human head J. Haber
09:20-10:00 40 min data acquisition for facial modeling L. Williams
10:00-10:15 15min overview: facial animation techniques V. Blanz
10:30-11:10 40 min  parametric models F. Parke
11:10-11:35 25 min performance-based facial modeling/animation L. Williams
11:35-12:15 40 min physically based facial modeling/animation D. Terzopoulos
13:45-14:30 45 min learning-based approaches V. Blanz
14:30-15:00 30 min  rendering techniques J. Haber
15:00-15:30 30 min forensic applications J. Haber
15:45-16:45 60 min  movie production G. Borshukov
16:45-17:15 30 min  medical applications and behavioral models D. Terzopoulos
17:15-17:30 15 min questions, discussion all



3 Contents

The tutorial notes contain both the slides from the tutorial presentation and some selected publica-
tions, which serve as additional background information.
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. Slides: Facial Animation: History & Applications

Slides: Anatomy of the Human Head

Slides: Overview: Facial Animation Techniques

Slides: Parameterized Face M odels

Slides: Facial Performance Capture (Data Acquisition + Performance-based Approaches)
Slides: Physically based Facial Modeling and Animation

Paper: Y. Lee, D. Terzopoulos, K. Waters: Realistic Modeling for Facial Animations, Proc.
SIGGRAPH ’95, 55-62, Aug. 1995.

Slides: L earning-based Approaches

Paper: V. Blanz, T. Vetter: A Morphable Model for the Synthesis of 3D Faces, Proc. SIG-
GRAPH ’99, 187-194, Aug. 1999.

Slides: Rendering Techniques for Facial Animation

Paper: M. Tarini, H. Yamauchi, J. Haber, H.-P. Seidel: Texturing Faces, Proc. Graphics Inter-
face 2002, 89-98, May 2002.

Slides: Forensic Applications

Paper: K. Kéhler, J. Haber, H. Yamauchi, H.-P. Seidel: Reanimating the Dead: Reconstruction
of Expressive Faces from Skull Data, ACM Trans. Graphics (Proc. SIGGRAPH 2003), 22(3),
554-561, July 2003.

Slides: Image-based Facial Animation and Rendering for The Matrix Sequels
Slides: Medical Applications & Behavioral Models



Applications of
Facial Modeling and Animation

Facial Animation: Entertainment animation and VFX
History and Applications Interactive games

Human-computer interfaces
Fred Parke

Texas A&M University

Telepresence
Perception research

Medical and educational

Facial Animation:
History and Applications I Convincing ‘Realistic’ Faces

» The challenge has been the synthesis
of artificial faces that look and act like
your mother, brother, friend, or some

A Look Ahead — Future History well know celebrity
* A huge challenge because of
familiarity

A look back over the last 35 years

» The ‘closer’ you get the harder it is

Facial Animation: ' /' Facial Animation: ' /'
Historical Perspective . Historical Perspective .

Pre-history 1600’s

i i i First published investigations of facial expression
Facial representation has been a major focus of art
. . — John Bulwer, London, 1648 and 1649
forms from ancient times up to the present

— archeological artifacts 1800’s
— sculpture

— drawing

— painting

— and traditional animation

‘The mechanism of human facial expression’
— G. Duchenne, Paris, 1862

‘Expression of the emotions in man and animals’
— C. Darwin, London, 1872




Broad Trends/Themes

Technique Categories

» Exponential increase in computer power
~1000x every 15 years

» Steady development of new and refinement
of existing techniques, interspersed with
flashes of insight

» Better and better tools

 Ever increasing expectations
— speed, complexity, realism

Sources of Geometric Data

» Sources of geometric data
* Modeling primitives

» Animation control

* Rendering

* Tools

Geometric Modeling

» Graph paper
* Direct surface measurement
» Photographic

* Laser scanners

« Structured light

* Interactive surface ‘sculpting’ systems

Animation Control

* Vectors
* Polygonal surfaces

* Bi-cubic parametric surfaces
— B-Splines, NURBS, ...
 Subdivision surfaces

Development of interactive modeling tools

Animation Control Handles

» Shape interpolation

* Direct parameterizations

* Muscle-based parameterizations

» Expression/Viseme level parameterizations
* Dynamic simulations

* Facial ‘rigs’ based on ‘skeletons’,
deformers, blend shapes, ...

Scripted or interactive control of:
* Interpolation coefficients
* Interpolation of parameter values

— direct or muscle based parameters
» Dynamic forces

Facial rig ‘handles’

Key frame values, interactive curve editors




Rendering Techniques

* Vectors, flat shaded polygons

» Gouraud, Phong, Blinn shading

» Texture mapping

* Bump/displacement mapping

» Shader languages — Renderman, ...
 Global illumination techniques

* Video resolution — Theatrical resolution

Initial 3D Faces - 1971

F. Parke, University of Utah
Less than 100 polygons

Chernoff’s work - 1971

Facial Animation:
Historical Perspective

Early 1970’s
+ Utah Graphics Class Project 1971
* Henri Gouraud’s dissertation face 1971
+ Chernoff's work 1971
* Interpolated Faces at Utah 1972 and 1973
* Gillenson at Ohio State 1973
» Parameterized Face Model at Utah 1974

Initial Parametric Model -

‘Parameters’ for eyes, eyelids, mouth

Used to create a flipbook’ animation

Interpolated Faces - 1972

Facial Expression Interpolation

F. Parke — University of Utah




Interpolated Faces - 1972

Face Components
Facial mask, eyes, eyebrows, teeth, hair

Interpolated Faces - 1973

Interpolation between individual faces
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Interpolated Faces - 1972

Interpolated expression animation

Interpolated Faces - 1973

Data Collection Technique
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Interpolated Faces - 1973 = Parameterized Model - 1974 =

Animation between individual faces
Expression and Conformation Control

19993 ¢

F. Parke — University of Utah

‘ Facial Animation:
Parameterized Model - 1974 ‘ Historical Perspective

Speech Synchronized Animation Late 1970’s and Early 1980’s

* Facial Action Coding System (FACS)
— Ekman and Friesen - 1977

* Interactive Parameterized Model - 1979
— Implemented on E&S CT-1 at Case Western

* Parametric Model ‘transported’ to NYIT - 1980
— Later to U. Calgary and UCSC
— Evolved into ‘Baldi’

* Muscle Based Expression Model - 1981
— Platt and Badler — University of Pennsylvania

Facial Animation:
Historical Perspective

Rise of the production studios Early to Mid 1980’s

* Many started, a few survive )
» 1981 — PC introduced, Wavefront software

YR O SV S 2 » 1982 — SGI graphic workstations, Alias Research
» Academic research
Goals —knowledge, understanding, new methods,
grants, publications...
- Production studio development * ‘Tony de Peltrie’ — 1985

Goals — get the job, get the job done — on time, make » Softimage -1986
money, survive!

* ‘Caricature’ Faces — 1982
S. Brennan - MIT




Facial Animation:
Historical Perspective

Late 1980’s

» Automatic Speech Synchronization
— Lewis and Parke, NYIT 1987
— Hill, et al, U. Calgary 1988
* New Muscle Models
— K. Waters - 1987
— Thalmann, et al —1988
— Waters and Terzopoulos - 1990

Facial Animation:
Historical Perspective

Early 1990’s — increasing activity

» Performance based Facial Animation
* SMILE multi-level animation system
* Kalra, et al, 1991
* NSF Workshop on
Facial Expression Understanding — 1992
* NSF Workshop on
Facial Animation Standards — 1994

Facial Animation:
Historical Perspective

Use in feature films

Dragonheart - 1996

Geri’s game — 1997 (subdivision surfaces)

A Bugs Life, ANTZ — 1998

Stuart Little — 1999

Star Wars Episode | — 1999
‘Principle Component’ Face Model

— Blanz and Vetter, 1999

‘Voice Puppetry’ — Brand 1999

MPEG-4 Facial Model Coding

Facial Animation:
Historical Perspective

Late 1980’s
‘Rendezvous in Montreal’ — Thalmann 1987
‘Tin Toy’ baby — Pixar 1988
‘The Abyss’ water pseudopod face — 1989
‘Don’t Touch Me’ — Kleiser/Walczak - 1989

Siggraph Facial Animation tutorials - 1989/90
— Simple parameterized model put in ‘public domain’

Facial Animation:
Historical Perspective
Mid 1990’s

Real time speech synchronization
Parke at IBM, Waters at DEC

Use in interfaces — agents/avatars

Much activity in support of low bandwidth
video conferencing

‘Babe’, ‘Toy Story’, ‘The End’’ - 1995
First book on facial animation — 1996
Speech Co-articulation — Pelachaud, et al, 1996

Facial Animation:
Historical Perspective

2000’s
» Commercially Successful!
» Synthetic characters in leading roles
+ 2001 - Final Fantasy, Shrek, Jimmy Neutron, LOR
+ 2002 - LOR, Star Wars Episode Il
» 2003 — LOR (Gollum), The Hulk, The Matrix: Revolutions

» Exponential Growth!




Applications of Facial Modeling .‘r p } p
and Animation = Entertainment animation/VFX "&£

Entertainment animation and VFX * Currently the major application and
. driving force
Interactive games

 Synthetic characters in leading and

Human-computer interfaces support roles

Telepresence * Digital stand-ins

Perception research . Crowd simulation

Medical and educational

Interactive games “ Human-computer interfaces

* Another major application and * Requires interactive models

driving force - Applications

— Software agents

— Social agents

* Real-time performance required — Conversational interfaces
— Kiosks

— Stage shows, ...

* Quality expectations approaching
those for entertainment animation

 ‘Behavior’ modeling important

(.

Agent Applications - Kiosk Applications

* Provides screen presence for agent Attracts attention
software * Initial ‘patter’

*Provides an interaction ‘focus’ « Solicits user query interaction
*Conversational interfaces Provides response information

— Two way speech + Guides query interaction
— Speech recognition

. L « Spoken query feedback
— Synchronized speech animation response
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Stage Show Applications = Interactive Model Attributes <

» Expressive

* As emcee or host — able to-assume -an-appropriate range-of.
expressions

* Responsive and ‘alive’
— synchronized speech and expression

* ‘Intelligent Behavior’
— ‘appropriate’ behaviors

* Visual realism vs. behavioral realism?
— these need to ‘match’

— Introduces show elements
— Interacts with audience

* As ‘sidekick’ for a real host
— Dialog with real host

Need to keep it ‘Alive’ ‘ Real Time Model

- Believable eyes and eye motion Screen shot - synchronized to real speech

— Eyes are always moving, if just a little
— Eye ‘tracking’
— Eye ‘blinks’
* Head motion
— Always moving, head ‘follows’ the eyes

» Appropriate expressions

* ‘Good’ synchronized speech
Fred Parke ~ 1995

Telepresence

* Carefully controlled visual stimuli
— must to be ‘correct’

* Bi-Modal visual speech example
Massaro & Cohen, UCSC

+ Only parameters sent over communication channel . . .
— visual perception and aural perception work

« For reception, parameters drive model to recreate together

the facial images — conflicts in visual and aural can induce
misperceptions — McGurk effect

Part of the MPEG-4 standard pereep . .

— what you see can influence what you ‘hear

Low bandwidth ‘video’ conferencing
« Model based compression

* Model parameters extracted for transmission
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Medical and Educational Good Enough?

Medical 'hen-will facial-animation be good-enough?

+ Teaching anatomy « Any face, any age, any expression, dramatic

. . . nuances, wide range of facial styles,’easy’...
» Surgical simulation

 Visual and behavioral realism balanced
* Model must be physically correct

] Appearance is getting very good, but not
Educational quite there yet — still hard to do well

* ‘Tutor’ Behavior modeling has a long way to go

= Face must be interactive and engaging

Facial ‘Turing’ test

Future History \ Directions

Looking ahead... Much, much better models & tools

Just the Beginning! Subtle, more realistic detail and control
* Animation only last 100 years Behaviors’ motivations

» Computer facial animation only last 35 years Idiosyncratic personality models
» Most work in the last 10 years

. i ‘Director’ level interfaces
Computation Capabilities

. i ! .
1,000 fold increase every 15 years! Something new — unexpected!

(. .

‘Motivated’ Facial Models - Fully Functional ‘Actors’ -

Action and expressions motivated by Facial animation fully integrated
the character model, the situation,
and the ‘director’ rather than Anatomically ‘correct’
manipulated by an animator Behavior driven

with personality, motivation
‘Directable’

‘Easy’ to use
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Anatomy of the Human Head

Jorg Haber
MPI Informatik

The Human Head

Components of the human head:
« skull (lat. cranium)
- facial muscles (lat. m. faciales et masticatores)
« skin (lat. integumentum commune)
« eyes (lat. oculi)
teeth (lat. dentes)

tongue (lat. lingua)

Skull

 cranium (lat. neurocranium):

— 7 bones; rigidly connected; lodges and protects
brain and eyeballs; consists of calvaria and cranial
base

- facial skeleton (lat. viscerocranium):

— 15 small bones that surround nasal and oral cavity
mosaic-like; only the mandible (lat. mandibula) is
movable

 bones of the skull are relocatable during birth,
ossification completed at the age of 18 =
proportions & shape of the skull change during growth

Terminology ‘

positions of body parts are

described relative to:

— median (sagittal) plane:
vertical plane that divides the
body into equal left and right
halves; medial / lateral <
closer to / further away from
median plane

— coronal plane: vertical plane
that divides the body into front
and back halves; (anterior /
posterior)

— transverse (horizontal) plane:
any plane perpendicular to both
median and coronal planes

SKULL, LATERAL VIEW

Images: www.humanmuscles.8k.com

Facial Muscles

Three groups:

« m. of facial expression:
two layers (superficial
and deep)

m. of mastication:
movement of the
mandible

epicranius:
tension / relaxation of
facial skin




Facial Muscles

\

—

muscles connect a) two bones, b) bone and skin / muscle,
or c) two different skin / muscle regions

Images: Parke/Waters: “Computer Facial Animation” (1996)

epidermis: 0.02 mm thick,
no vessels / glands, 5
layers of keratin

dermis: 0.3-2.4 mm thick,
2 layers of soft
connective tissue
containing elastin fibers,
blood and lymphatic
vessels, and nerves

hypodermis (subcutis):
adipose tissue built from
collagen / fat cells, blood
vessels, and nerves

E
3
3
8
5
g
a

Subcutaneous
tissue

Image: www.humanmuscles.8k.com

» complex organ consisting of eyeball (lat. bulbus oculi)
and optic nerve, embedded into the sceletal

+ eyeball composed from lens and viterous body (lat.
corpus vitreum), enclosed by three concentric layers:
sclera / cornea, choroidea / iris, and retina

Images: www.humanmuscles.8k.com

Types of Facial Muscles

: contract radially
towards a center point, e.g.
orbicularis oris, orbicularis
oculi

linear (parallel) muscles:
contract longitudinally
towards their origin, e.g.
levator labii sup.,
zygomaticus minor/major

: composed
of several linear muscles
side-by-side, e.g. frontalis

Image: www.humanmuscles.8k.com

Mechanical Properties of Skin ‘ ‘

» skin composed of various layers with different elastic
and viscous characteristics =
skin exhibits significant visco-elastic properties (e.g.
hysteresis, creep)

« skin has highly non-linear stress-strain curve:

— low stress = low resistance
against deformation (collagen
fibers unroll and stretch)

— high stress = sharp increase
in resistance (collagen fibers
are completely stretched)

+ eye muscles: alignment of optical axis (external),
focussing and adaptation to brightness (internal)

« eyelids, connective tissue: protect from contaminants

« lachrymal: secretion of tears to smooth the cornea,
facilitate the motion of the eyeball, and wash away
dust particles

Images: www.humanmuscles.8k.com




embedded into upper jaw (lat. maxilla) and lower jaw
(lat. mandibula)

20 milk teeth are replaced gradually with
32 permanent teeth starting at the age of about six

are used to chop up and squelch food, and for
articulation

Images: www.humanmuscles.8k.com

All that stuff...

Is it necessary to know all those details?

it depends on the desired quality / realism of the head
model:

— the more realism you want,
the more precisely you have to simulate anatomy

at least: we need to know about the shape / structure /
position of facial components and their interactions

... so don’t be afraid to spend some money on
medical textbooks or atlases

Image: www.humanmuscles.8k.com

. -

« consists of muscle tissue,

nerves, blood vessels, and
sensory cells (embedded
in mucous membrane)

 can alter its shape and

position in many ways

most important sense
organ for taste: sweet (tip),
salty (front sides), bitter
(back)

support during chewing
and swallowing

« use for articulation is learnt
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Overview
Facial Animation Techniques

Volker Blanz
MPI Informatik

Facial Animation:
Two Levels b

Dynamics of motion (temporal domain)
Feature point coordinates X; ()

Muscle contractions c¢;(t)

Action Units (AU, Ekman and Friesen 78) a,(¢)
Surface Deformation (spatial domain)
Displacements of vertices of a high-resolution mesh
Generate wrinkles

May be solved statically at each moment .

Performance-driven Animation

Acquisition of animation parameters

- specialized hardware (mechanical / electrical)
transfers “deformation” of the human face to a
synthetic face model

Y

Virtual Actor system by SimGraphics (1994) Movie: www.his.atr.co.jp/~kuratate/movie/

Facial Animation

Performance Driven

« Transfer performance of human actor to synthetic face
model

Synthetic Motion
* From Text, Audio or defined by an Artist

Complete Script vs. Interactive Animation

Dynamics of Motion:
Performance Driven Animation

Performance of an Actor

« Tracking of marker points attached to skin

+ Tracking of facial features

|

Feature Pointi: x.(t)

Performance Driven Animation

Acquisition of animation parameters:

— video camera + software (— computer vision)

— capture head movements, identify eyes and mouth, detect
viewing direction and mouth configuration, control synthetic
head model with these parameters

™

Movies: baback.www.media.mit.edu/~irfan/DF ACE.demol/tracking.html




Dynamics of Motion:
Voice Puppetry

Brand, Siggraph99
Audio

» Hidden Markov Model
— Trained from Video & Audio data

l

26 Feature Points i: x,()

Key Frame Animation

Types of interpolation:

+ convex combination (linear int., blending, morphing):
v=a-V;+(1-a)-v, O<ax<
v : scalar or vector (position, color,...)

+ non-linear interpolation: e.g. trigonometric functions, splines, ...;
useful for displaying dynamics (acceleration, slow-down)

+ segmental interpolation: different interpolation values / types for
independent regions (e.g. eyes, mouth);

= decoupling of emotion and speech animation

Direct Parameterization

Idea:

« perform facial animation using a set of control
parameters that manipulate (local) regions / features

What parameterization should be used?

* ideal universal parameterization:
— small set of intuitive control parameters

— any possible face with any possible expression can
be specified

Dynamics of Motion:
Key-Frame Animation

Text-To-Speech  Expression Models

Key-Frames (Morph Targets)

Blending for Coarticulation ~Simple Linear Smooth

(Cohen, Massaro) Transition Trajectory

= Feature points or Muscle contractions or AU

Surface Deformations
Main Approaches

1. Parametric Models
Physics-based Animation

Learning-Based Animation
Image-Based
3D Models

Parametric Models |

= F.|. Parke: “Parameterized Models for Facial
Animation”, IEEE CGA, 2(9):61-68, Nov. 1982
— 10 control parameters for facial expressions
— ~20 parameters for definition of facial conformation

« K. Waters: “A Muscle Model for Animating Three-
Dimensional Facial Expression”, SIGGRAPH '87,
pp. 17-24, July 1987

— deforms skin using “muscle vectors”




Parametric Models Il

* N. Magnenat-Thalmann et al.: “Abstract Muscle Action
Procedures for Human Face Animation”, The Visual
Computer, 3(5):290-297, March 1988
— pseudo muscles based on empirical models

— muscle actions are (complex) combinations of
FACS action units

+ J. E. Chadwick et al.: “Layered Construction for
Deformable Animated Characters”, SIGGRAPH ‘89,
pp. 243-252, July 1989

— freeform deformations (FFD), pseudo muscles

Parke:
Expression Parameters

- eyes:

— dilation of pupils, opening / closing of eyelids,
position and shape of eyebrows, viewing direction

mouth:

— rotation of mandible, width and shape of the mouth,
position of upper lip, position of mouth corners

additional parameters (suggested):
— head rotation, size of nostrils

Parke:
Results

Parke’s Parametric Face Model

« polygonal face mesh (~300
triangles + quads), symmetrical,
edges aligned to facial feature
lines

+ two types of parameters:

— 10 expression parameters

— about 20 conformation
parameters

- five different ways how
parameters modify facial
geometry

Parke:
Conformation Parameters

aspect ratio of the face
length and shape of the neck

shape (= relative position of assigned vertices) of chin,
forehead, cheeks, and cheekbones

size of eyelids, eyeballs, iris; position of the eyes
* jaw width
length of the nose; width of nose bridge and nostril

relative size of chin, forehead, and mouth-nose-eyes-part w.r.t.
remaining face parts

color of skin, eyebrows, iris, and lips

polygonal face mesh:
+ 201 quads + 35 triangles

10 different muscles:

— 9 linear muscles (symmetrical
left/right)

— 1 sphincter (orbicularis oris)

additional parameters:

— jaw rotation

— viewing direction

— opening of eyelids




Waters: Muscle Vectors

muscles are represented by muscle vectors, which
describe the effect of muscle contraction on the geometry
of the skin surface

muscle vectors are composed of:

— a point of attachment and
direction (for linear muscles)

— aline of attachment and
a direction (for sheet muscles)

— a center point and two
semi-axes defining an ellipse
(for sphincters)

Images: Waters: “A Muscle Model for Animating Three-Dimensional Facial Expression” (1987)

Skin Tissue Mechanics

Viscoelastic response to stress / strain

« Elastic properties:
— returns to rest shape when load is removed.
— Non-linear relationship
— Model: spring

» Viscous Properties
— Energy is absorbed
— Model: damper

Finite Element Method

» numerical technique for simulating deformation and
flow processes (crash tests, weather forecast, ...);
frequently used for surgery planning

partitioning into 3D elements (tetrahedra, cubes,
prisms,...)

continuity conditions between elements are collected
in global stiffness matrix M
= time-consuming solution for high dimensional M

’,'/;

Physics-based Models

Idea:

represent and manipulate expressions based on physical
characteristics of skin tissue and muscles

Real anatomy is too complex!

no facial animation system has represented and simulated the
complete, detailed anatomy of the human head yet.

reduce complexity to obtain animatable model

need to build appropriate models for muscles and skin tissue

Mass-Spring Networks

common technique for simulating dynamics of skin
vertices = , edges =

Lagrangian equations of motion are integrated over
time using numerical algorithms

several variants with multiple layers of mass-spring
networks (2D or 3D)

2D:

3D: tetrahedron

Learning-based Techniques

Observe facial deformations,
Ignore underlying mechanisms

* Record keyframe shapes from
— Images or Video (Multiple Views)
— 3D Scans
Keyframes reproduce natural appearance in a
photorealistic way

— Use morphing for smooth transitions between
keyframes.




What's the Goal?

Parameterized Face Models

Fred Parke
Texas A&M University

Facial Attributes

All possible faces?
A specific face?
Realistic faces?
Caricature faces?

Fantasy faces?

Facial Animation Control

Facial conformation

Facial expression posture — shape
Head orientation, eye gaze

Skin texture, shading

Hair characteristics

Mouth/speech attributes

Jjaw rotation, lip and tongue shape, teeth,...

(.

Direct Parameterizations

We can view all facial control systems as
parameterizations

Parameters

Some

Functional Mapping |

Facial Attributes

Second Level ' .
Parameterizations -

Parameters

Direct
Functional Mapping _l

Facial Attributes

Where the functional mapping primarily consists of
interpolations, affine transformations, translations, and
generative procedures applied to subsets of the
surface control points

*Higher level parameters which allow
specification and control of expressions,
visemes, ...

*Built on top of lower level parameterizations

*Speech animation one example
Viseme parameters
low level control — face attributes
—

Emotion parameters




Universal Parameterization

Allows specification of any expression and
facial attribute set, for any possible face
Don’t exist yet
A lot of work on expression parameters

— FACS provides one basis

Not much work on conformation parameters
— Anthropometry, principle component analysis

Facial Expressions

Capable facial models allow wide range of
expression

Including the universal expressions

* anger, fear, surprise, disgust, happiness,
sadness

Capable facial animation are able to
express and convey ‘emotion’

Posture and expression display emotion

Animation Control Methods

* Interpolation of expression poses

« Interpolation of control parameters to drive
a parameterized model

» Emulation of muscle actions based on
interpolated muscle parameters

Parameter Orthogonality

Expression parameters control expression for a
given face

onformation-parameters-select-or-specify-a
specific face from the universe of possible face
Should be orthogonal
* Manipulating expression should not effect conformation

* Manipulating conformation should not effect expression

Facial Action Coding System

Developed by Ekman and Friesen to study and
quantify facial expression across cultures

Consists of about 66 ‘facial actions’

While not intended, has been adopted by the facial
animation community as an effective expression
parameterization scheme

Shape Interpolation

Earliest (simplest) Animation Technique
Simple interpolation of entire face

earliest animation technique
Interpolation of ‘independent’ facial regions
* upper face, lower face - Kleiser 1989

Interpolation in n-dimensional face spaces




Expression
Interpolation

Various
expression
poses
between
two
extremes

1 dimensional

space,
3 parameters

Poses within a 2 dimensional
interpolation space
: —

Interpolated Faces - 1973

Interpolation between individual faces

y
[

v/

6 parameters

Extrapolation in pose space

Parameterized Model - 1974

— F. Parke — University of Utah
Example Images

199%¢

Expression and Conformation Control
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Starting Point “ Parameterized Model - 1974 =

About 50 parameters, ~10 most useful

Speech ‘enabled’

Facial Features ‘ Expression Parameters

Eye region
Eyes, eyelashes  Eyebrow arch, separation
Lips, tongue, teeth and mouth interior * Eyelid opening

» Eyeball size, eye gaze
Skin, Hair « Pupil size, iris size
Nose, Ears Mouth region
« Jaw rotation
* Mouth expression, width
« Upper lip position
+ Control of mouth corners

Most important features?




Conformation Parameters Conformation parameters

Shape

» Forehead, cheek, neck

Color - skin, eye, lips, teeth

Scaling

* Head scaling, eyelid scaling

+ Widths of jaw, cheek, nose
Facial proportions

+ Eye to forehead, chin to mouth, chin to eye
Offset

« Eyebrows, chin, end of nose, teeth

Conformation parameters

Implementation Techniques

Generative procedures

* Eyeballs, eyelids, eye gaze

Shape interpolation

» Forehead, cheeks, eyebrows, mouth expression
Transformations

» Aspect ratio and proportions of head and features
such as nose, jaw, chin

Translation
* Chin, end of nose, eyebrows

Parameterized Model - 1974 Interactive parameterized model

Example Animation ~1990 on SGI with GL - F. Parke




Range of expression Range of expression

Speech Animation Parameterized Model - 1974

Support speech postures Speech Synchronized Animation - F. Parke
* About 45 English phonemes

18 or so visually distinct speech
postures
Synchronize postures to speech track

With coarticulation and expression
overlays

Most Useful Speech

Parameters Parameterized Model - 1974

ip Animation

Speech with a little more expression

= Jaw rotation
* Upper lip position
* Mouth width
Expression Animation
» Mouth expression, eye tracking
» Eyebrow arch, separation
= Eyelid opening, pupil size




Parameterized Model - 1982

Speech animation for a specific character

Expression and speech only - F. Parke

Eye Actions

Eye blinks

— keep eye wet

— synchronized with speech

— follow pause in speech

— listener blinks also synced to speaker
Eye gaze

— eye contact - allowed contact culturally dependent,
degree of intimacy

— can communicate intention, ...
Pupil size
— reflects attitude, emotional state

Dialogue Mouth Action ' .
(Disney) :

» The vowel sounds A, E, I, O, U always require
some mouth opening

* The consonants B, M, P are all closed mouth

Coarticulation

Mouth posture influenced by phonemes
prior to and after current phoneme
Mouth shape blends across phonemes
Due to dynamic motion limits

May span up to five phonemes
— see Pelachaud, et al - 1991

Dialogue Mouth Action
(Disney)

Action Leading Dialogue

+ accent eyes lead sound by 2 to 5 frames -
stronger accents have longer lead

 sync eye blinks should lead by 3 to 4 frames
* anticipate initial slow moves by 3 to 8 frames

Holds
* at end of phrase, retain mouth expression
* use “moving hold” on long mouth pose

Lip Sync (Madsen)

analyze speech track
* determine overall length, pauses, etc.

identify ‘key frames’

» T and G can also pucker like a U; Y and W can go
into a very small O or U shape

* look for accented syllables, the b’s, m’s, and p’s
* look for phonemes with distinctive shapes; oval 0’s

* F and V lower lip under upper teeth and w’s
» Consonants are the accents, need to be accurate

« E sounds generally show teeth
* locate frames where the lips meet

* ‘White’ teeth flash i
approximate the rest




Lip Movements (Madsen)
Realistic characters are the greatest
challenge
* invite comparison with real people
For cartoon characters
* simplicity is secret of success

* attempts at extreme accuracy appear forced and
unnatural

Automated Synchronization

Text Driven

« Synthesize speech audio and face images together
» Based on text-to-speech systems

Speech Driven

» Analysis of speech audio track for pauses, visemes
— Simple energy tracking
— Speech recognition acoustic preprocessor
— LPC analysis — speech classification
— Neural nets

Emotional Overlays

Conversation always has emotional content
Facial expressions of emotion
« ‘affect displays’
Emotion includes visceral and muscular
physiological responses
* muscle tension

* variations in vocal tract

y
&
-

Head Tilt Angle (Blair)

Head angle, direction of ‘look’, and head motion
relative to body all contribute to expression
Example - a hand puppet depends mostly on head

tilt and body posture without any phonetic
mouthing or facial action

Changes in head tilt or head turns convey different
emotions

« affirmative ‘nod’, negative sideways shake, ...

Automatic Lip Sync - 1987

Lewis and Parke

(.

Non-Emotional Overlays

Conversation Signals - illustrators - punctuate
speech

— eyebrows

Punctuators - movements that occur at pauses
— correspond to commas, periods, exclamation points
Regulators - control speaker turn taking
— speaker-turn-signals
— Speaker state signals
— Speaker within turn
— speaker continuation




Muscle Based
Parameterizations ) Waters’ Muscle Model - 1987

Parameters control the face through Models muscle induced displacement with
functions which emulate or simulate geometric distortion functions which include
muscle actions irst-order-elastic-tissue-properties

Three kinds of muscle functions

K. Waters — 1987 — Linear, sphincter, and sheet

Thalmann, et al — 1988 The muscle functions are located and

) aligned independently of the skin geometry
and many others since

They have defined regions of influence

p 4
Abstract Muscle Action Model ‘ Principle Component Analysis

— Thalmann, et al, 1988 Use of principle component analysis to
Empirical pseudomuscle action procedures extract ‘conformation parameters’ from a

Each works on a specific region of the face data base of digitized real faces.

Each emulates a muscle or group of closely — Blanz and Vetter — 1999

related muscles The principle components become the
Loosely patterned after FACS actions parameters to specify a specific face
Groups of ‘actions’ form ‘expressions’ * Not an ‘intuitive’ parameter space

= such as ‘emotions’ and phonemes * Requires an optimizing search to match a face
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Facial Performance Capture

Lance Williams

Walt Disney Feature Animation

Laser-scanned facial expressions

Smile

NURBS models
sculpted from scan data

Neutral

Laser-scanned facial expressions

Smile

AN / 4 Sadness

NURBS models
sculpted from scan data

‘ -_ Neutral

NURBS

)/ Open
Teeth mouth

NURBS model
sculpted from scan data




Model muscle blendshapes
to fit scanned expressions

Expression: a linear superposition of shapes

» Approximately 60 blendshapes in facial model
— Jaw and eyelid rotations are piecewise linear
— Some “muiltitarget” blendshapes are used

» Generic muscles are posed to match expressions
- Differences are mapped by back propagation

* Process iterates through expressions repeatedly.

Life mask scan data

Model and image

N
.

L
By #
keytrame animation live action
(no optimization) reference

Linear regime for skin

STRESS

STRAIN

K37 TR

Stress-strain graphs of fiber-reinforced membrands.
After L. Srba, “Axis and Circumference”

Mapping detail from lifemask scan

NURBS model conformed to scan data

» Approximately 3.5 million polygons in life mask scan
NURBS model matched to rigid-body transformation
Muscle blendshapes are posed to match expression
NURBS CVs are sculpted to match model to scan

Difference is extracted as a displacement map

Fine hairs




Pores and wrinkles / Modulated wrinkles

Modulated wrinkles / Modulated wrinkles

Modulated wrinkles / Modulated wrinkles

xinmin_test_4_17_wrinkles xinmin_test_4_17_No_wrinkles




Marschner et. al.
BRDF skin model

Marschner et. al.
BRDF skin model

Environment mapping

Marschner et. al.
BRDF skin model

Environment mapping

- Ir
$/

Environment mapping




Bone constraints J Eye tracking

Eye tracking % Eye tracking

Eye tracking % Eye tracking




Eye tracking J Image and model

[ )

- 3 .
¥ {
=
Reco_ga_ir"u; ion

Model and image y Tracking registration

CG Face Photographed Actor

) ) el

Together at last / Double take




Cross mapping performance

Input Actor Output Characters

Modeling

Hiroki Itokazu

“Hirokimation”

Motion and Emotion

Next: automatic modeling,
markerless tracking

Tracking

Xinmin Zhao

Numerical Optimization

Flash capture:
texture and model




Captured model “ Captured model

Captured model = Captured model

Captured model 4 Captured model




NURBS model J Tracking cameras

_Matching images with model &' Matching images with model
-..--..-.-....--.:.-

Voiceover camera setup




Driving facial animation

€ ti,“’i

Driving facial animation

Tracking cameras

Servo camera on head marker

Ross Lamm, Perceptivu Inc.

* Most pixels on face

* Reduces motion blur

« Azimuth / elevation:

Automatic modeling, A '
markerless tracking.

Tracking cameras

Servo camera on head marker
* Most pixels on face

* Reduces motion blur

b 4

Helmet cameras

2-camera helmetcam
« All pixels on face
« Eliminates motion blur

» Reduced room lights OR camera-mounted ring lights




Helmet cameras Helmet cameras

2-camera helmetcam § _ 2-camera helmetcam

« All pixels on face e . ) « All pixels on face
 Eliminates motion blur o TN  Eliminates motion blur

» Reduced room lights OR camera-mounted ring lights
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Platt & Badler, 1981

“Animating Facial Expression”

Physics-Based
Facial Modeling and Animation

Demetri Terzopoulos
New York University
University of Toronto

A Physics-Based Face Model

Pseudo-physical approach

* Muscle represented as group of fiber

+ Contraction displaces muscle point

+ Distribute “forces” — displace skin nodes

skin: tension net

bone®+— muscle
point point

+ Skin as an infinitesimally thin surface

A Physics-Based Face Model (Jj

Physics-Based Facial Modeling

Hierarchical structure
Expression: Facial action coding system (FACS)
Control: Coordinated facial actuator commands
Muscles: Contractile muscle fibers exert forces
Physics: Muscle forces deform 3D synthetic tissue
Geometry: Expressive facial deformations

Images: Rendering by graphics pipeline

e

Artificial Humans =
Scanned Data = Synthetic Face >4

Range Image Texture Image

Cyberware

Synthesized
Expressions




Raw Input Dataset (“Heidi”)

From CyberWare 3D Color Digitizer

yra
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I -
f
iy
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Range Image

Fitting the Generic Mesh

RGB Texture Image

Generic Facial Mesh

-

Feature-based image matching algorithm

Sampling Facial Shape

localizes facial
features in:
Processed range image

RGB texture image

aailly.
.a:\q_}_u.

’

Textured 3D Geometric Model

L/
-

Texture map
coordinates
« Positions of fitted

mesh nodes in RGB
texture image

Fitted mesh nodes sample range data

ey

s,

Auxiliary Geometric Models |

Eyelid Texture Interpolation




Complete Geometric Model Facial Histology

Neutral expression
is estimated

A complex, multilayer structure

Biomechanical Skin Model Biomechanical Skin Model

Deformable tissue element Viscoelastic uniaxial primitive

Epidermis
‘ Dermis

Muscle'Layer

Single Element

Muscle|Layer \“

Single Element

Epidermis ..-“"J.vmass "
‘ ermis g position x,(?)
velocity v, (1)

{*-...acceleration a,(?)

rest length /,
stiffness ¢;
damping Vi

Voigt Viscoelastic
Model

A

Biomechanical Skin Model Empirical Stress-Strain Curve

Element dynamics

Epidermisi l

Dermis

r =X, X,

e, = ;| —;

. ;
£ =(cye; +7,¢;)

Ty

ij

Span
Deformation

Viscoelastic
Force

Biphasic
Muscle|Layer Elasticity

Single Element

+ Can represent c(e) as a lookup table




Langer’s Lines

-,
A

Non-isotropic stress-strain characteristics

Biomechanical Skin Model 5&/

Biomechanical Skin Model

Element dynamics

C=f"+f +1]

B+

’]
Musclel ayer

L
. ‘ Non-Interpenetration Constraint

Explicit Euler
Time Integration Method

Element dynamics

r, =X, -X; Span

Epidermis y
e, =|r,| -1, Deformation
Dermis / / d
</ .
a

T,
—(c 5 y Viscoelastic
GECERS N e

i

== Differential Equations of Motion
Muscle|Layer — —

m >

Single Element - 1 Muscle

Forces

Biomechanical Skin Model

Efficient near stability limit for moderately
deformable biomechanical skin model

—(Zf" +f" +1 +£°)
i JEN;
X[.er[ _

1

Xt.ert _

Deformable tissue element and patch

Epidermis
‘ Dermis
< ey
Musc&ayer A
\, DEESRVINY _;\%

Single Element Skin Patch

Facial
Musculature




Muscle SR ’
Insertions \ Facial Muscle Model Structure

35 Muscles
+ Levator Oculii
« Corrugators
* Naso-Labial
+ Zygomatics
+ Obicularis Oris

plus
* Articulate Jaw
+ Eyes/Eyelids

Summary

Muscle-Actuated Expressions Muscle-Actuated Expressions
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Muscle-Actuated Expressions <@
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Raw CyberScans

George in “Bureaucrat Too” - “Bureaucrat Too” (excerpt)

;  ime




Facial Subdivision Surface ' i Facial Subdivision Surface

Interactive, Physics-Based
Facial Animation Real-Time Facial Simulation

Runs at >30 fps on
a dual 1.5 GHz AMD
Athlon system

Better Muscle Modeling
[Kahler, Haber, Seidel 2001]
Closer to the real thing

* Muscles insert into simulated
skin tissue
Forces applied by contraction
* Muscle geometry defines zone
of influence
+ Still: Muscle deformation itself
is purely geometric
— Varying degree of realism




Realistic M odeling for Facial Animation

Yuencheng Lee!, Demetri Terzopoulos', and Keith Waters?
University of Toronto' and Digital Equipment Corporatior?

Abstract

A major unsolved problem in computer graphics is the construc-
tion and animation of realistic human facial models. Traditionaly,
facial models have been built painstakingly by manual digitization
and animated by ad hoc parametrically controlled facial mesh defor-
mationsor kinematic approximation of muscleactions. Fortunately,
animators are now ableto digitize facial geometriesthrough the use
of scanning range sensors and animate them through the dynamic
simulation of facial tissues and muscles. However, thesetechniques
require considerableuser input to construct facial model sof individ-
ual ssuitablefor animation. In this paper, we present amethodol ogy
for automating this challenging task. Starting with a structured fa-
cial mesh, we devel op algorithmsthat automatically construct func-
tional models of the heads of human subjects from laser-scanned
range and reflectance data. These algorithms automatically insert
contractile muscles at anatomically correct positions within a dy-
namic skin model and root them in an estimated skull structure with
a hinged jaw. They also synthesize functional eyes, eyelids, teeth,
and a neck and fit them to the final model. The constructed face
may be animated via muscle actuations. In this way, we create the
most authentic and functional facial modelsof individualsavailable
to date and demonstrate their usein facial animation.

CR Categories:  1.3.5[Computer Graphics]: Physicaly based
modeling; 1.3.7 [Computer Graphics]: Animation.

Additional Keywords: Physics-based Facia Modeling, Facial
Animation, RGB/Range Scanners, Feature-Based Facial Adapta-
tion, Texture Mapping, Discrete Deformable Models.

1 Introduction

Two decades have passed since Parke’s pioneering work in ani-
mating faces [13]. In the span of time, significant effort has been
devoted to the devel opment of computational models of the human
face for applications in such diverse areas as entertainment, low
bandwidth teleconferencing, surgical facial planning, and virtual
reality. However, the task of accurately modeling the expressive
human face by computer remains a major challenge.

Traditionally, computer facial animation followsthreebasicpro-
cedures: (1) design a3D facial mesh, (2) digitize the 3D mesh, and
(3) animate the 3D mesh in a controlled fashion to simulate facial
actions.

In procedure (1), it is desirable to have a refined topological
mesh that capturesthe facial geometry. Often thisentails digitizing

!Department of Computer Science, 10 King's College Road, Toronto,
ON, Canada, M5S1A4. {vlee| dt} @cs.toronto.edu

2Cambridge Research Lab., OneKendall Square, Cambridge, MA 02139.
waters@crl.dec.com

Published in the Proceedings of SIGGRAPH 95 (Los Angeles, CA,
August, 1995). In Computer Graphics Proceedings, Annual Con-
ference Series, 1995, ACM SIGGRAPH, pp. 55-62.

asmany nodesaspossible. Caremust betaken not to oversamplethe
surface because there is a trade-off between the number of nodes
and the computational cost of the model. Consequently, meshes
devel oped to date capturethe salient features of the facewith asfew
nodes as possible (see[17, 14, 21, 9, 23] for several different mesh
designs).

In procedure (2), ageneral 3D digitization technique uses pho-
togrammetry of several images of the face taken from different
angles. A common technique is to place markers on the face that
can be seen from two or more cameras. An alternative techniqueis
to manually digitize aplaster cast of the face using manual 3D dig-
itization devices such as orthogonal magnetic fields sound captors
[9], or oneto two photographs[9, 7, 1]. More recently, automated
laser range finders can digitize on the order of 105 3D points from
a solid object such as a person’s head and shouldersin just a few
seconds[23].

In procedure (3), an animator must decide which mesh nodes
to articulate and how much they should be displaced in order to
produce a specific facial expression. Various approacheshave been
proposed for deforming a facial mesh to produce facial expres-
sions; for example, parameterized models [14, 15], control-point
models [12, 7], kinematic muscle models [21, 9], a texture-map-
assembly model [25], a spline model [11], feature-tracking mod-
els[24, 16], afinite element model [6], and dynamic muscle mod-
els[17, 20, 8, 3].

1.1 Our Approach

The goal of our work is to automate the challenging task of cre-
ating realistic facial models of individuals suitable for animation.
We develop an algorithm that beginswith cylindrical range and re-
flectance data acquired by a Cyberware scanner and automatically
constructs an efficient and fully functional model of the subject’s
head, as shown in Plate 1. The agorithm is applicable to various
individuals (Plate 2 shows the raw scans of several individuals). It
proceedsin two steps:

In step 1, the algorithm adapts awell-structured face mesh from
[21] to the range and reflectance data acquired by scanning the sub-
ject, thereby capturing the shapeof the subject’sface. Thisapproach
has significant advantagesbecauseit avoidsrepeated manual modifi-
cation of control parametersto compensatefor geometric variations
in the facial features from person to person. More specifically, it
allows the automatic placement of facial muscles and enables the
use of asingle control processacross different facial models.

The generic face mesh is adapted automatically through an im-
age analysis technique that searches for salient local minima and
maxima in the range image of the subject. The search is directed
according to the known relative positions of the nose, eyes, chin,
ears, and other facial features with respect to the generic mesh.
Facial muscle emergenceand attachment points are al'so known rel-
ative to the generic mesh and are adapted automatically asthe mesh
is conformed to the scanned data.

In step 2, the algorithm elaborates the geometric model con-
structed in step 1 into a functional, physics-based model of the
subject’sfacewhich is capable of facial expression, asshowninthe
lower portion of Plate 1.

Wefollow the physics-basedfacial modeling approach proposed



by Terzopoulos and Waters [20]. Its basic features are that it ani-
mates facial expressions by contracting synthetic muscles embed-
ded in an anatomically motivated model of skin composed of three
spring-mass layers. The physical simulation propagatesthe muscle
forces through the physics-based synthetic skin thereby deforming
the skinto producefacial expressions. Among the advantagesof the
physics-based approach are that it greatly enhances the degree of
realism over purely geometric facial modeling approaches, whilere-
ducing the amount of work that must bedoneby theanimator. It can
be computationally efficient. It is aso amenable to improvement,
with an increasein computational expense, through the use of more
sophisticated biomechanical models and more accurate numerical
simulation methods.

We propose a more accurate biomechanical model for facia
animation compared to previous models. We develop anew biome-
chanical facia skin model which is simpler and better than the one
proposedin [20]. Furthermore, we argue that the skull is animpor-
tant biomechanical structure with regard to facial expression [22].
To date, the skin-skull interface hasbeen underemphasizedin facial
animation despiteitsimportancein thevicinity of thearticul atejaw;
therefore we improve upon previous facial models by developing
an algorithm to estimate the skull structure from the acquired range
data, and prevent the synthesized facial skin from penetrating the
skull.

Finally, our algorithm includes an articulated neck and synthe-
sizes subsidiary organs, including eyes, eyelids, and teeth, which
cannot be adequately imaged or resolved in the scanned data, but
which are nonethelesscrucial for realistic facial animation.

2 Generic Face Mesh and Mesh Adaptation

Thefirst step of our approach to constructing functional facial mod-
els of individuas is to scan a subject using a Cyberware Color
Digitizer™. The scanner rotates 360 degrees around the subject,
who sits motionless on a stool as a laser stripe is projected onto
the head and shoulders. Once the scan is complete, the device
has acquired two registered images of the subject: a range image
(Figure 1) — atopographic map that records the distance from the
sensor to pointsonthefacial surface, and areflectance(RGB) image
(Figure 2) — which registers the color of the surfaceat those points.
The images are in cylindrical coordinates, with longitude (0-360)
degrees along the x axis and vertical height dlong the y axis. The
resolution of theimagesis typically 512 x 256 pixels (cf. Plate 1)

The remainder of this section describes an algorithm which re-
duces the acquired geometric and photometric data to an efficient
geometric model of the subject’s head. The algorithm is atwo-part
process which repairs defects in the acquired images and conforms
ageneric facial mesh to the processed images using afeature-based
matching scheme. The resulting mesh capturesthe facial geometry
asapolygonal surfacethat can be texture mapped with the full res-
olution reflectance image, thereby maintaining arealistic facsimile
of the subject’s face.

2.1 ImageProcessing

One of the problems of range data digitization isillustrated in Fig-
ure 1(a). Inthe hair areg, in the chin area, nostril area, and even
in the pupils, laser beams tend to disperse and the sensor observes
no range value for these corresponding 3D surface points. We must
correct for missing range and texture information.

We use a relaxation method to interpolate the range data. In
particular, we apply a membrane interpol ation method describedin
[18]. Therelaxation interpolates valuesfor the missing points so as
to bring them into successively closer agreement with surrounding
points by repeatedly indexing nearest neighbor values. Intuitively,
it stretches an elastic membrane over the gapsin the surface. The
imagesinterpolated through relaxation are shownin Figure 1(b) and

(€Y (b)
Figurel: (a) Rangedataof “Grace’ from a Cyberwarescanner. (b)
Recovered plain data.

illustrate improvements in the hair area and chin area. Relaxation
workseffectively when the range surfaceis smooth, and particularly
in the case of human head range data, the smoothness requirement
of the solutionsis satisfied quite effectively.

Figure 2(a) shows two 512 x 256 reflectance (RGB) texture
maps as monochrome images. Each reflectance value represents
the surface color of the object in cylindrical coordinates with cor-
responding longitude (0-360 degrees) and latitude. Likerangeim-
ages, the acquired reflectance images are lacking color information
at certain points. Thissituationis especially obviousin the hair area
and the shoulder area (see Figure 2(a)). We employ the membrane
relaxation approach to interpol ate the texture image by repeated av-
eraging of neighboring known colors. Theoriginal texture imagein
Figure 2(a) can be compared with the interpolated texture imagein
Figure 2(b).

(b)

Figure 2: (@) Texture data of “George” with void points displayed
inwhite and (b) textureimage interpolated using relaxation method.

The method is somewhat problematic in the hair area where
range variations may be large and thereis arelatively high percent-
age of missing surface points. A thin-plate relaxation agorithm
[18] may be more effective in these regions becauseit would fill in
the larger gapswith less“flattening” than a membrane[10].

Although the head structurein the cylindrical laser rangedatais
distorted along the longitudinal direction, important features such
asthe dlopechangesof the nose, forehead, chin, and the contours of
the mouth, eyes, and noseare still discernible. In order to locatethe
contours of those facial features for use in adaptation (see below),
we use amodified Laplacian operator (applied to the discrete image
throughlocal pixel differencing) to detect edgesfrom the range map
shown in Figure 3(a) and produce the field function in Fig. 3(b).
For detail s about the operator, see[8]. Thefield function highlights
important features of interest. For example, the local maxima of
the modified L aplacian reveal s the boundaries of thelips, eyes, and
chin.

2.2 Generic Face Mesh and Mesh Adaptation

The next step is to reduce the large arrays of data acquired by the
scanner into a parsimonious geometric model of the face that can
eventually be animated efficiently. Motivated by the adaptive mesh-
ing techniques [19] that were employed in [23], we significantly
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Figure 3: (a) Original range map. (b) Modified Laplacian field
function of ().

improved the technique by adapting ageneric face mesh to the data.
Figure 4 shows the planar generic mesh which we obtain through
acylindrical projection of the 3D face mesh from [21]. One of the
advantages of the generic mesh is that it has well-defined features
which form the basis for accurate feature based adaptation to the
scanned data and automatic scaling and positioning of facia mus-
clesasthemesh isdeformed to fit theimages. Another advantageis
that it automatically produces an efficient triangulation, with finer
triangles over the highly curved and/or highly articulate regions of
theface, suchastheeyesand mouth, and larger triangles el sewhere.

Figure 4: Facial portion of generic meshin 2D cylindrical coordi-
nates. Dark lines are features for adaptation.

We label al facial feature nodes in the generic face prior to
the adaptation step. The feature nodesinclude eye contours, nose
contours, mouth contours, and chin contours.

For any specific range image and its positive Laplacian field
function (Figure 3), the generic mesh adaptati on procedureperforms
the following stepsto locate feature pointsin the range data (see [8]
for details):

Mesh Adaptation Procedures
1. Locate nosetip 6. Locateeyes
2. Locatechintip 7. Activate spring forces
3. Locate mouth contour 8. Adapt hair mesh
4. Locate chin contour 9. Adapt body mesh
5. Locate ears 10. Store texture coordinates

Oncethe mesh hasbeenfitted by the abovefeature based match-
ing technique (see Plate 3), the algorithm samplesthe range image
at the location of the nodes of the face mesh to capture the facial
geometry, asisillustrated in Figure 5.

The node positions also provide texture map coordinates that
are used to map the full resolution color image onto the triangles
(seePlate 3).

2.3 Estimation of Relaxed Face M odel

Ideally, the subject’sface should bein a neutral, relaxed expression
when he or sheis being scanned. However, the scanned woman in

(b)

Figure 5. (a) Generic geometric model conformed to Cyberware
scanof “Heidi”. (b) Sameas (a). Note that “Heidi’s’ mouth is now
closed, subsequent to estimation of the relaxed face geometry.

the “Heidi” dataset is smiling and her mouth is open (see Plate 2).
We have made our algorithm tolerant of these situations. To con-
struct afunctional model, it isimportant to first estimate the relaxed
geometry. That is, we must infer what the “Heidi” subject would
look like had her face been in a relaxed pose while she was be-
ing scanned. We therefore estimate the range values of the closed
mouth contour from the range val ues of the open mouth contour by
the following steps:

1. Perform adaptation proceduresin Sec. 2.2 without step 3.
2. Store noda longitude/latitude into adapted face model.

3. Perform lip adaptationin step 3in sec. 2.2

4. Store nodal range valuesinto adapted face model.

Asaresult, thefinal reconstructed facemodel in Figure 5(b) will
have a relaxed mouth because the longitude and latitude recorded
is the default shape of our closed mouth model (see Figure 4).
Moreover, the shape of the final reconstructed face is till faithful
to the head data because the range value at each facial nodal point
is obtained correctly after the lip adaptation procedure has been
performed. Relaxing the face shown in Figure 5(a) results in the
imagein Figure 5(b) (with eyelidsinserted — see below).

3 The Dynamic Skin and Muscle M odel

This section describeshow our system proceedswith the construc-

tion of afully functional model of the subject’sface from the facial
mesh produced by the adaptation algorithm described in the previ-

ous section. To this end, we automatically create a dynamic model

of facial tissue, estimateaskull surface, and insert the major muscles
of facial expressioninto themodel. Thefollowing sectionsdescribe
each of these components. We also describe our high-performance
parallel, numerical simulation of the dynamic facial tissue model.

3.1 Layered Synthetic Tissue Model

The skull is covered by deformable tissue which has five distinct
layers[4]. Four layers—epidermis, dermis, sub-cutaneous connec-
tive tissue, and fascia—comprise the skin, and the fifth consists of
themusclesof facia expression. Following [20], and in accordance
with the structure of real skin [5], we have designed anew, synthetic
tissue model (Figure 6(a)).

Thetissue model is composed of triangular prism elements (see
Figure 6(a)) which match the triangles in the adapted facial mesh.
The epidermal surface is defined by nodes 1, 2, and 3, which are
connected by epidermal springs. The epidermis nodes are also
connected by dermal-fatty layer springsto nodes4, 5, and 6, which
definethe fasciasurface. Fascianodesare interconnected by fascia



Epidermal Surface

Dermal-fatty Layer

Fascia Nodes

Bone Nodes 4,56
7,8,9

@
Figure 6: (@) Triangular skin tissue prism element. (b) Close-up
view of right side of an individual with conformed elements.

springs. They are also connected by muscle layer springs to skull
surface nodes7, 8, 9.

Figure 9(b) shows 684 such skin elements assembled into an
extended skin patch. Severa synthetic muscles are embedded into
the muscle layer of the skin patch and the figure shows the skin
deformation due to muscle contraction. Muscles are fixed in an
estimated bony subsurface at their point of emergence and are at-
tached to fascia nodes as they run through several tissue elements.
Figure 6(b) shows a close-up view of the right half of the facial
tissue model adapted to an individual’s face which consists of 432
elements.

3.2 Discrete Deformable Models (DDMs)

A discrete deformable model has a node-spring-node structure,
which is a uniaxial finite element. The data structure for the node
consistsof thenodal massm: ;, positionx;(t) = [z:(t), yi(¢), zi(¢)],
velocity v; = dx;/dt, acceleration a;, = d°x; /dt®, and net nodal
forcesf,”(t). The datastructure for the spring in thisDDM consists
of pointers to the head node ¢ and the tail node 5 which the spring
interconnects, the natura or rest length /i, of the spring, and the
spring stiffness cx..

3.3 TissueModel Spring Forces

By assembling the discrete deformable model according to histolog-
ical knowledgeof skin (see Figure 6(a)), we are able to construct an
anatomically consistent, albeit smplified, tissuemodel. Figure6(b)
shows a close-up view of the tissue model around its eye and nose
parts of aface which is automatically assembled by following the
above approach.

¢ Theforce spring 5 exertson node: is

g =c;(ly — l;)sj

— each layer hasits own stress-strain relationship ¢; and
thedermal -fatty layer usesbiphasic springs (non-constant

c;) [20]

— I andl; = ||x; — x;|| are therest and current lengths
for spring j

—s; = (x; — x;)/l; is the spring direction vector for
spring j

3.4 Linear Muscle Forces

Themuscles of facial expression, or the muscular plate, spreadsout
below the facial tissue. The facial musculature is attached to the
skin tissue by short elastic tendonsat many placesin the fascia, but
is fixed to the facia skeleton only at afew points. Contractions of
the facial muscles cause movement of the facial tissue. We model

28 of theprimary facial muscles, including the zygomatic major and
minor, frontalis, nasii, corrugator, mentalis, buccinator, and angulii
depressor groups. Plate 4 illustrates the effects of automatic scaling
and positioning of facial muscle vectors as the generic mesh adapts
to different faces.

To better emulate the facial muscle attachments to the fascia
layer in our model, agroup of fascianodessituated along themuscle
path—i.e., within a predetermined distance from a central muscle
vector, in accordance with the muscle width—experience forces
from the contraction of themuscle. Theface construction algorithm
determines the nodes affected by each musclein a precomputation
step.

To apply muscle forcesto the fascianodes, we calculate aforce
for each node by multiplying the muscle vector with aforce length
scaling factor and a force width scaling factor (see Figure 7(a)).
Function ©, (Figure 8(a)) scalesthe muscle force according to the
length ratio < ;, while ©, (Figure 8(b)) scales it according to the
width w; ; at node: of muscle 5:

F A F
gji = ((mj —xi)-my)/(][mj —mj||)
lpi — (pi - ny)n|
e Theforce muscle 5 exertsonnode: is

f] = O1(e,:)O2(w; i )m;

Wii =

— Oy scalesthe force according to the distanceratio ¢ ; ;,
wheree;; = p;.:/d;, with d; the muscle 5 length.

— O, scalestheforceaccordingto thewidthratiow; ; /w;,
with w; the muscle 5 width.

— my; isthe normalized muscle vector for muscle 5

Note that the muscle force is scaled to zero at the root of the
muscle fiber in the bone and reaches its full strength near the end
of the muscle fiber. Figure 9(b) shows an example of the effect of
muscle forces applied to a synthetic skin patch.

m’ i 0
i - \
! L za+b
\_ P ! Pii
linear muscle fiber segment | of piecewise linear muscle fiber j
@ (b)

Figure7: (&) Linear musclefiber. (b) Piecewiselinear musclefiber.
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Figure8: (a) Muscleforce scaling function ©1 wrt ¢, ;, (b) Muscle
force scaling function ©, wrt w; ; /w;

3.5 PiecewiseLinear Muscle Forces

In addition to using linear muscle fibersin section 3.4 to simulate
sheet facial muscles like the frontalis and the zygomatics, we aso
model sphincter muscles, such as the orbicularis oris circling the
mouth, by generdizing the linear muscle fibers to be piecewise



linear and alowing them to attach to fascia at each end of the
segments. Figure 7(b) illustrates two segments of an N-segment
piecewise linear muscle j showing three nodes m, m‘**, and
m'*2. The unit vectorsm; ;, m; ;11 and n, i, n; ;11 are parallel
and normal to the segments, respectively. Thefigureindicatesfascia
node: at x;, as well asthe distance p;; = a + b, the width w; ;,
and the perpendicular vector p; from fascia node : to the nearest
segment of the muscle. The length ratio ¢, ; for fascianode: in
musclefiber j is

N
(mé+1 - Xi) sy + Zk:l+1 || mf+1 - m? ||

N
2ogmy IImy T —mi

The width w;; calculation is the same as for linear muscles.
The remaining muscle force computations are the same as in sec-
tion 3.4. Plate 4 shows all the linear muscles and the piecewise
linear sphincter musclesaround the mouth.

€30 =

3.6 Volume Preservation Forces

In order to faithfully exhibit theincompressibility [2] of real human
skinin our model, avolume constraint force based on the change of
volume (see Figure 9(a)) and displacements of nodesis calculated
and applied to nodes. In Figure 9(b) the expected effect of volume
preservation is demonstrated. For example, near the origin of the
muscle fiber, the epidermal skin is bulging out, and near the end of
the musclefiber, the epidermal skin is depressed.

¢ Thevolume preservation force element e exerts on nodes: in
elemente is

qf = ka(Ve — Vo)n¢ + ka(pf — D)

— V* and V* arethe rest and current volumesfor e
— n{ isthe epidermal normal for epidermal node

— pfandp?¢ aretherest and current nodal coordinatesfor
node: with respect to the center of massof e

— ki1, k2 areforce scaling constants
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Figure 9: (@) Volume preservation and skull nonpenetration ele-
ment. (b) Assembled|ayered tissueelementsunder multiple muscle
forces.

3.7 Skull Penetration Constraint Forces

Because of the underlying impenetrable skull of a human head, the
facial tissueduring afacial expressionwill slide over the underlying
bony structure. With thisin mind, for each individua’s face model
reconstructed from thelaser range data, we estimatethe skull surface
normals to be the surface normals in the range data image. The
skull isthen computed as an offset surface. To prevent nodes from
penetrating the estimated skull (see Figure 9(a)), we apply a skull
non-penetration constraint to cancel out the force component on the
fascianodewhich pointsinto the skull; therefore, theresulting force
will make the nodes slide over the skull.

¢ Theforceto penalizefascianode: during motion is:

o —(fin . ni)n,' Whenf,” -n; <0
%=1 9 otherwise

— 7" isthe net force on fascianode ¢
— n; isthenoda normal of node:

3.8 Equationsof Motion for Tissue Model

Newton’slaw of motion governsthe responseof the tissue model to
forces. Thisleadsto asystem of coupled second order ODES that
relate the node positions, velocities, and accelerations to the nodal
forces. The equation for node: is

d?x; dx; . - . ~ -

mz‘?—l—wﬁ—l—grl-qz‘-l-sz'—l—hi =1

— m; isthe noda mass,

— v isthe damping coefficient,

— g, isthetota spring force at nodes,

— q; isthetotal volume preservation force at nodes,

— §; isthetotal skull penetration force at nodes,

— h; isthetotal nodal restoration force at node,

- f, isthetotal applied muscleforce at node+,

3.9 Numerical Simulation

The solution to the above system of ODEsis approximated by using
thewell-known, explicit Euler method. At eachiteration, the nodal
acceleration at time ¢ iscomputed by dividing the net force by nodal
mass. Thenodal velocity isthen calculated by integrating once, and
another integration is done to compute the nodal positions at the
nexttime step ¢ + At, asfollows:

1 = ~

t t t ~t ~t ~t t

a; = ;(fi —vvi—8 —q — 8§ —hy)
k2

vf+At = vi4 Al

xf"’m = xf + Atvf"’m

3.10 Default Parameters

The default parameters for the physical/numerical simulation and
the spring stiffnessvalues of different layersare asfollows:

Mass () | Timestep (At) | Damping (v)
05 0.01 30
Epid | Derm-fat 1 | Derm-fat 2 | Fascia | Muscle

c| 60 30 70 80 10

3.11 Parallel Processingfor Facial Animation

Theexplicit Euler method allowsusto easily carry out the numerical
simulation of the dynamic skin/muscle model in parallel. Thisis
becauseat eachtime step all the calculationsare based on theresults
from the previous time step. Therefore, parallelization is achieved
by evenly distributing calculations at each time step to all available
processors. This parallel approach increases the animation speed
to allow usto simulate facial expressionsat interactive rates on our
Silicon Graphics multiprocessor workstation.

4 Geometry Modelsfor Other Head Components

To complete our physics-based face model, additional geometric
models are combined along with the skin/muscle/skull models de-
veloped in the previous section. These include the eyes, eyelids,
teeth, neck, hair, and bust (Figure 10). See Plate 5 for an example
of acomplete model.
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Figure 10: (a) Geometric models of eyes, eydlids, and teeth (b)
Incisor, canine, and molar teeth. (c) hair and neck.

41 Eyes

Eyes are constructed from spheres with adjustable irises and ad-
justable pupils (Figure 10(a)). The eyes are automatically scaled
to fit the facial model and are positioned into it. The eyes rotate
kinematically in a coordinated fashion so that they will always con-
verge on a specified fixation point in three-dimensional space that
defines the field of view. Through a simple illumination computa-
tion, the eyes can automatically dilate and contract the pupil sizein
accordancewith the amount of light entering the eye.

42 Eydids

The eyelids are polygonal models which can blink kinematically
during animation (see Figure 10(a)). Note that the eyelids are open
in Figure 10(a).

If the subject is scanned with open eyes, the sensor will not
observe the eyelid texture. An eyelid texture is synthesized by a
rel axation based interpol ation algorithm similar to the one described
insection 2.1. Therelaxation agorithminterpolatesasuitableeyelid
texture from the immediately surrounding texture map. Figure 11
showsthe results of the eyelid texture interpolation.

1 1y
(€Y (b)
Figure 11: (a) Facetextureimage with adapted mesh before eyelid
texture synthesis(b) after eyelid texture synthesis.

4.3 Teeth

We have constructed a full set of generic teeth based on dental
images. Each tooth is a NURBS surfaces of degree 2. Three
different teeth shapes, the incisor, canine, and molar, are modeled
(Figure 10(b)). We use different orientations and scalings of these
basic shapesto model thefull set of upper and lower teeth shownin
Figure 10(a). The dentures are automatically scaled to fit in length,
curvature, etc., and are positioned behind the mouth of the facial
model.

4.4 Hair, Neck, and Bust Geometry

Thehair and bust are both rigid polygonal models(see Figure 10(c)).
They are modeled from the range data directly, by extending the

facial mesh in a predetermined fashion to the boundaries of the
range and reflectance data, and sampling the images as before.

The neck can be twisted, bent and rotated with three degrees
of freedom. See Figure 12 for illustrations of the possible neck
articulations.

N
““\W‘%ﬂ'
e

Figure 12: articulation of neck.

5 Animation Examples

Plate 1 illustrates several examples of animating the physics-based
face model after conformation to the “Heidi” scanned data (see
Plate 2).

¢ The surprise expression results from contraction of the outer
frontalis, major frontalis, inner frontalis, zygomatics major,
zygomatics minor, depressor 1abii, and mentalis, and rotation
of the jaw.

¢ Theanger expression results from contraction of the corruga-
tor, lateral corrugator, levator labii, levator labii nasi, anguli
depressor, depressor labii, and mentalis.

¢ Thequizzcal ook results from an asymmetric contraction of
the major frontalis, outer frontalis, corrugator, lateral corru-
gator, levator labii, and buccinator.

¢ Thesadnessexpressionresultsfrom acontraction of theinner
frontalis, corrugator, lateral corrugator, anguli depressor, and
depressor labii.

Plate 6 demonstrates the performance of our face model con-
struction algorithm ontwo maleindividuals(“ Giovanni” and “Mick”).
Note that the algorithm is tolerant of some amount of facial hair.

Plate 7 showsathird individual “ George.” Notetheimageat the
lower left, which shows two additional expression effects—cheek
puffing, and lip puckering—that combine to simulate the vigorous
blowing of air through the lips. The cheek puffing was created by
applyingoutwardly directed radial forcesto“inflate” the deformable
cheeks. The puckered lips were created by applying radial pursing
forces and forward protruding forces to simulate the action of the
orbicularis oris sphincter muscle which circles the mouth.

Finaly, Plate 8 shows several frames from a two-minute ani-
mation “Bureaucrat Too” (a second-generation version of the 1990
“Bureaucrat” which was animated using the generic facial model in
[20]). Here“George” tries to read landmark papers on facial mod-
eling and deformable models in the SIGGRAPH ' 87 proceedings,
only to realize that he doesn’t yet have abrain!

6 Conclusion and Future Work

The human face consists of a biological tissue layer with nonlin-
ear deformation properties, a muscle layer knit together under the
skin, and an impenetrable skull structure beneath the muscle layer.
We have presented a physics-based model of the face which takes
all of these structures into account. Furthermore, we have demon-
strated a new technique for automatically constructing face models
of this sort and conforming them to individuals by exploiting high-
resolution laser scanner data. The conformation processis carried
out by a feature matching algorithm based on a reusable generic



mesh. The conformation process, efficiently captures facial geom-
etry and photometry, positions and scales facial muscles, and aso
estimates the skull structure over which the new synthetic facial
tissue model can dide. Our facial modeling approach achieves an
unprecedented level of realism and fidelity to any specific individ-
ua. It also achieves a good compromise between the complete
emulation of the complex biomechanical structures and function-
ality of the human face and real-time simulation performance on
state-of-the-art computer graphics and animation hardware.

Although weformulate the synthetic facial skin asalayeredtis-
sue model, our work doesnot yet exploit knowledgeof the variable
thickness of the layers in different areas of the face. This issue
will in @l likelihood be addressed in the future by incorporating
additional input data about the subject acquired using noninvasive
medical scannerssuchasCT or MR.
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Plate1: Objective. Input: Rangemap in 3D and texture map (top).
Output: Functional face model for animation.

3

Plate 2: Raw 512 x 256 digitized datafor Heidi (top left), George
(top right), Giovanni (bottom left), Mick (bottom right).



Plate 3: Adapted face mesh overlaying texture map and Laplacian Plate 6: Animation examples of Giovanni and Mick.

filtered range map of Heidi.

Plate 4: Muscle fiber vector embedded in generic face model and Plate 7: Animation example of George.
two adapted faces of Heidi and George.

Plate 5: Complete, functional head model of Heidi with physics- Plate 8: Georgein four scenesfrom “Bureaucrat Too”.
based face and geometric eyes, teeth, hair, neck, and shoulders (in
Monument Valley).
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Learning-Based Approaches

Volker Blanz
MPI Informatik

Learning-Based Approaches

...more and more popular due to

* Progress in Scanning Technology
— high quality, high speed, low cost
+ Large Data Bases possible
— disk space, RAM, CPU, GPU
» Research in Machine Learning
— we're only just beginning to use this potential

Image-Based Animation

Learning from Video Data

+ Photo-realistic Results
+ Reproduce Dynamics of Motion
- Restricted in pose and illumination

- Need video footage of the person to be animated

Learning-Based Approaches

» Measure movements of real faces

» Reproduce only the shape or appearance,
Ignore underlying mechanisms
Automatically learn by induction

Transfer information to novel situations
= No artist
= No physical model and material properties

= Potential for highly realistic results within the range
of measured conditions

Overview

Image-Based Animation
BRI
3D Modeling and Animation

3553

3D Animation applied to Images

a-5-4

2D Animation Paradigms

Video Rewrite: _ _ _
t

Rearrange original frames

|
Linear Morphing: Q.#

Smooth transitions between keyframes

t

Smooth Trajectories

in Parameter Space:




Video Rewrite
Bregler et al., 1997, Graf et al., 2000

Re-arrange video-frames:

Search for the Triphones required in the novel utterance.

Video Rewrite

Compensate for 3D head movements by 2D warping of
— Entire face (Bregler)

— Sub-regions (Graf)
+ Photo-realistic

- Possible appearances are limited

- Requires large corpus of video frames

Movements in the Image Plane ‘&

Bad:

Cross-dissolve

Better: Warp

= shift pixels in image

Vector Field of Pixel Displacements

Speech Synthesis

Visemes = Basic mouth shapes in speech,

Visual analog of Phonemes.
Coarticulation = Influence of previous and subsequent viseme.

Triphones = Triplets of phonemes

Hello H-E-L/  + J[E-L-OW/

2D Morphing

“MikeTalk” by Ezzat&Poggio, 1998, 2000

Select keyframes = visemes from video

Morph in between:

[ Sl N

t

2D Morphing
Warp Pixels and Interpolate Color Values:

Aefo,]]

Let corresponding points (e.g. corners of the mouth) be:

I, (x) = 1,(x+v(x))

Lo X+ V(X)) = (1=2) - [,(X) + A- [, (x+ V(X))



2D Morphing — 4

“MikeTalk” by Ezzat&Poggio, 1998, 2000

Find corresponding points with an optical flow algorithm:

G

Warp Field

Morph between visemes:

2D Vector Space for Animation <

« Vector Space of Images:

Cosatto, Graf, 1998

« Vector Space of
Warp-fields and color values:

Ezzat, Geiger, Poggio, 2002

Trainable Speech Animation J

Ezzat, Geiger, Poggio, 2002

b

Corpus:

!

2

8 min. Video + Audio + Text

PCA on images

«
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s
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A

k-means clustering

I

46 Prototype images

-‘t“.
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|

2D Morphing “

+ Need to store keyframes only.

- Morphing in 2D difficult due to occlusions (e.g. teeth)

— Pixels can only be displaced, but not appear or
disappear.

Dynamics: Only linear transitions.

Ezzat, Geiger, Poggio, 2002

Visemes:
modeled as
clusters in model space

Speech trajectory:
has to be close to targets,
but smooth.
Use regression methods.

Training

Ezzat, Geiger, Poggio, 2002

46 Prototype images from PCA and k-means clustering
Vector Space Optical Flow, Correspondence

Model Coefficients of frames Projection

Audio, Text: Sequence of Phonemes

|

Viseme - Clusters

|

Optimal clusters

Phonetical Alignment (CMU-Sphinx)

= Trajectory synthesis by regression

- Fit synthetic to real trajectories




. - . R &
Animation Trainable Speech Animation
Ezzat, Geiger, Poggio, 2002 Ezzat, Geiger, Poggio, 2002

Audio Input

l Background sequence:

R*) ¥ X X
Sequence of Phonemes Phonetical Alignment (CMU-Sphinx) " 5 v 3

Trajectory

|

Mouth Images « Linear Combinations, Warping

|

Compositing into random background video,

Synthetic Foreground: ﬁa

Composited video:

including eye movements

3D Animation J 3D Animation

Animation with 3D Rotation, lllumination, ... Exploit 3D Measurements from:

Occlusion of Teeth by Lips modeled correctly.

Face can be integrated in Virtual Scene ’ Images., Em B B e, el
— Facial features (Pighin et al. 1998)

— Passive markers (Reveret and Essa, 2001)

Unlike Motion-Capturing, generate new motion
— e.g. morph-targets as keyframes

« Scans (Kalberer et al 2001, Blanz et al 2003)

— high-resolution scans capture details such as
wrinkles.

| Vector Space of
Example-Based Animation ‘ Shape and Texture

Blanz et al., Eurographics 03 Blanz, Vetter Siggraph99

smile =

3D Morphable
Database of 3D scans of Face Model
* Facial expressions

« Different persons’ faces

= Converted to Face Vectors
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Morphing 3D Faces

Bad 3D Blend

&

Good K1D) Morph

Shape and Texture Vectors

75 000 Vertices

3D Laser Scans

red(h,$)
green(h,d)
blue(h,)

radius(h,¢)

Dense Point-to-Point
Correspondence

Morphing and Face Vectors require Correspondence:
« Identify points such as corners of the eyes in all scans

» Automated algorithm based on Optical Flow
(Blanz, Vetter Siggraph99)

Use this to define Shape and Texture Vectors.

Shape and Texture Vectors




) Principal Component Analysis ’
Statistics PCA Q&

Faces are Points in Face Space

+ Estimate of Probability Density Function

» Order dimensions of face space according to the
variance found in data
— Data compression
— Coarse-to-fine strategies

Principal Component Analysis ’ ' Principal Component Analysis ’
PCA y PCA
Estimate Probability: Normal Distribution Estimate Probability: Normal Distribution

u,

T / 2. Principal Component

~

\\/\1 Principal Component
sy

PCA of Shapes PCA of Textures




Statistical Analysis ‘ Facial Attributes

Find directions that are suited for describing and Learn from labeled examples

manipulating faces and facial expressions Fit a linear function to input data

+ Unsupervised Methods (unlabeled data-points): — Use Linear Regression or Discriminant Analysis or
— PCA Support Vector Machine.
- Directions are, in general, not meaningful for manipulations.
— Independent Component Analysis
- Statistically independent directions in face space
+ For Facial Animation: Kalberer et al. 2001:

Follow gradient to manipulate faces

Goal:

» Manipulate attribute, but leave individual
characteristics unchanged: same person.

+ Supervised Learning:
— From labeled examples

Learning from |
Labeled Examples ‘ Facial Attributes

Gender

Original

Blanz, Vetter Siggraph99

Facial Attributes “ Facial Attributes

Hooked
Nose

: r Subjective ¢k
Weight E@ t‘g 1 Attractiveness
S L.__J_. b - |

- _,J

Original Original

Blanz, Vetter Siggraph99 Blanz, Vetter Siggraph99



Example-Based Animation ‘

Transfer 3D displacements of vertices to novel face.

» Requires correspondence of vertices

(corners of the eyes, mouth...)

» Expressions differ across individuals. Still:

» Simple transfer of 3D vertex displacements causes
no obvious artifacts.

* More sophisticated methods may improve results.

Scans of Visemes “

Teeth

Upper: fixed to head

Lower: move with chin

Same teeth for
« all expressions
« all persons

Inserted automatically

&

Identity and Expression

Blanz et al., Eurographics 03

= smile

Strategy “

* Mouth poses are learned from static scans.

AEERES

* New reference scan with open mouth and teeth.
Closing the mouth will occlude teeth in 3D.

» Upper jaw teeth remain fixed relative to the head.
* Lower jaw teeth move with tip of chin.
» Face and Lips: 3D Morphing.

Occlusions “

= Occlusions make correspondence more difficult for optical
flow than with neutral faces.

Use Bootstrapping:
» Start with set of similar expressions

» Extend vector space step-by-step




Mouth-Modeler based on PCA @

3D Animation applied to Images
Blanz et al., Eurographics 03

Versatility of 3D Animation

» Works for any pose and illumination

» No video footage of animated face required
Photo-realism of 2D methods

+ Animation in given scene context

Reanimation

in Images and Video Approach

1. Reconstruct 3D shape Blanz et al., Eurographics 03
2. Add 3D deformation

3. Draw 3D face into the image

L]
Animate =) f ‘

Wy

* unknown faces
* in given images or video

. L 1 - head angle, position, illuminati
* at any pose and illumination I 7 | I |

Facial Animation in Images Fitting the Model to an Image

Blanz, Vetter Siggraph99

smile

input lmodel

R = Rendering (Perspective Projection, Phong lllumination, Cast Shadows)

p = Pose, lllumination, ... Find optimal a, B, p

Minimize Image Difference with Stochastic Newton Optimization.



Automated
Parameter Estimation

+ Face Parameters shape coefficients «;
texture coefficients B;

+ 3D Geometry head position
head orientation
focal length

+ Light and Color Ambient: intensity, color

Error Function

Q Image difference Blanz, Vetter Siggraph99

2
Elmage = Z ( Imodel (x,y)— Iinput (x,¥) )

x,y

 Plausibility based on PCA
Eprior = _log( p(ai’ ﬁz‘) )

¢ Minimize

Parallel: intensity, color, direction
Color: contrast, gains, offsets 1mage prior

Mona Lisa

E=FEyp+E

(_—
&

Blanz et al., Eurographics 03 Blanz et al., Eurographics 03

Speech Animation

Audio + Text
|

Phoneme (t) CMU-SPHINX
|

Keyframe Animation soft accelerations

Blanz et al., Eurographics 03




Reanimation of Video J Reanimation of Video

Goal: Movie dubbing.

* 3D shape from 1 - 3 frames
Track 3D motion
Apply speech in 3D

Draw into frames

Blanz et al., Eurographics 03

Conclusion
» Learning-based methods have a large potential for
achieving photo-realistic results.

» Development of scanning technology is crucial for
extensive datasets of high-quality scans.




A Morphable Model For The Synthesis Of 3D Faces

\Volker Blanz Thomas Vetter

Max-Planck-Institut it biologische Kybernetik,
Tubingen, Germany

Abstract 3D Database

Face
Analyzer

Keywords: facial modeling, registration, photogrammetry, mor-
phing, facial animation, computer vision

o _,| Morphable
In this paper, a new technique for modeling textured 3D faces is @ @ ﬁ @ Face Model
introduced. 3D faces can either be generated automatically from
one or more photographs, or modeled directly through an intuitive
user interface. Users are assisted in two key problems of computer
aided face modeling. First, new face images or new 3D face mod- f ) Modeler

els can be registered automatically by computing dense one-to-one = —— s
correspondence to an internal face model. Second, the approach ——

regulates the naturalness of modeled faces avoiding faces with a ——

“unlikely” appearance. 2D Input 3D Output

Starting from an example set of 3D face models, we derive a
morphable face model by transforming the shape and texture of theFigure 1: Derived from a dataset of prototypical 3D scans of faces,
examples into a vector space representation. New faces and expresthe morphable face model contributes to two main steps in face
sions can be modeled by forming linear combinations of the proto- manipulation: (1) deriving a 3D face model from a novel image,
types. Shape and texture constraints derived from the statistics ofand (2) modifying shape and texture in a natural way.
our example faces are used to guide manual modeling or automated
matching algorithms. application to application, but usually ranges from 50 to 300.

We show 3D face reconstructions from single images and their ~ Only a correct alignment of all these points allows acceptable in-
applications for photo-realistic image manipulations. We also termediate morphs, a convincing mapping of motion data from the
demonstrate face manipulations according to complex parametersreference to a new model, or the adaptation of a 3D face model to
such as gender, fullness of a face or its distinctiveness. 2D images for ‘video cloning’. Human knowledge and experience

is necessary to compensate for the variations between individual

faces and to guarantee a valid location assignment in the different

faces. At present, automated matching techniques can be utilized

only for very prominent feature points such as the corners of eyes
1 Introduction and mouth. _ o _

A second type of problem in face modeling is the separation of

Computer aided modeling of human faces still requires a great dealnatural faces from non faces. For this, human knowledge is even
of expertise and manual control to avoid unrealistic, non-face-like more critical. Many applications involve the design of completely
results. Most limitations of automated techniques for face synthe- New natural looking faces that can occur in the real world but which
sis, face animation or for general changes in the appearance of aave no “real” counterpart. Others require the manipulation of an
individual face can be described either as the problem of finding eXisting face according to changes in age, body weight or simply to
corresponding feature locations in different faces or as the problem emphasize the characteristics of the face. Such tasks usually require
of separating realistic faces from faces that could never appear intime-consuming manual work combined with the skills of an artist.
the real world. The correspondence problem is crucial for all mor-  In this paper, we present a parametric face modeling technique
phing techniques, both for the application of motion-capture data that assists in both problems. First, arbitrary human faces can be
to pictures or 3D face models, and for most 3D face reconstruction created simultaneously controlling the likelihood of the generated
techniques from images. A limited number of labeled feature points faces. Second, the system is able to compute correspondence be-
marked in one face, e.g., the tip of the nose, the eye corner and lesgween new faces. Exploiting the statistics of a large dataset of 3D
prominent points on the cheek, must be located precisely in anotherface scans (geometric and textural datgberware”™) we built
face. The number of manually labeled feature points varies from & morphable face model and recover domain knowledge about face

variations by applying pattern classification methods. The mor-

*MPI fur biol. Kybernetik, Spemannstr. 38, 72076birigen, Germany. phable face model is a multidimensional 3D morphing function that
E-mail: {volker.blanz, thomas.vetp@tuebingen.mpg.de is based on the linear combination of a large number of 3D face

scans. Computing the average face and the main modes of vari-
ation in our dataset, a probability distribution is imposed on the
morphing function to avoid unlikely faces. We also derive paramet-
ric descriptions of face attributes such as gender, distinctiveness,
“hooked” noses or the weight of a person, by evaluating the distri-
bution of exemplar faces for each attribute within our face space.
Having constructed a parametric face model that is able to gener-
ate almost any face, the correspondence problem turns into a mathe-
matical optimization problem. New faces, images or 3D face scans,
can be registered by minimizing the difference between the new
face and its reconstruction by the face model function. We devel-



oped an algorithm that adjusts the model parameters automaticallying intermediate 2D morphable image models. As a consequence,
for an optimal reconstruction of the target, requiring only a mini- head orientation, illumination conditions and other parameters can
mum of manual initialization. The output of the matching proce- be free variables subject to optimization. Itis sufficient to use rough
dure is a high quality 3D face model that is in full correspondence estimates of their values as a starting point of the automated match-
with our morphable face model. Consequently all face manipula- ing procedure.

tions parameterized in our model function can be mapped to the  Most techniques for ‘face cloning’, the reconstruction of a 3D
target face. The prior knowledge about the shape and texture offace model from one or more images, still rely on manual assistance
faces in general that is captured in our model function is sufficient for matching a deformable 3D face model to the images [26, 1, 30].
to make reasonable estimates of the full 3D shape and texture of aThe approach of Pighin et al. [28] demonstrates the high realism
face even when only a single picture is available. When applying that can be achieved for the synthesis of faces and facial expressions
the method to several images of a person, the reconstructions reacirom photographs where several images of a face are matched to a

almost the quality of laser scans. single 3D face model. Our automated matching procedure could be
) used to replace the manual initialization step, where several corre-
1.1 Previous and related work sponding features have to be labeled in the presented images.

Modeling human faces has challenged researchers in computer FO(; thf: animation loftfaces, gvar|ety of ".‘e‘hofds tha\t/ﬁ b%enkprof-
graphics since its beginning. Since the pioneering work of Parke posed. For & compiele overview we again reter to the book o

[25, 26], various techniques have been reported for modeling the P arke and Waters [24]. The techniques can be roughly separated

geometry of faces [10, 11, 22, 34, 21] and for animating them in those that rely on physical modeling of facial muscles [38, 17],

[28, 14, 19, 32, 22, 38, 29]. A detailed overview can be found in and in those applying previously captured' facigl expres.sions to a
the,boo’k of' Par’ke énd Waters [24] face [25, 3]. These performance based animation techniques com-

pute the correspondence between the different facial expressions of
a person by tracking markers glued to the face from image to im-
age. To obtain photo-realistic face animations, up to 182 markers
are used [14]. Working directly on faces without markers, our au-

The key part of our approach is a generalized model of human
faces. Similar to the approach of DeCarlos et al. [10], we restrict
the range of allowable faces according to constraints derived from

prototypical human faces. However, instead of using a limited set tomated approach extends this number to its limit. It matches the

of measurements and proportions between a set of facial landmarks ' . . -
we directly use the densely sampled geometry of the exemplar facesfu” number of vertices available in the face model to images. The

obtained by laser scanning'¢berware’™). The dense model- resull(tllng degse cotrk:esp(;ndence f]LeIdstcan e\t/r?n capture changes in
ing of facial geometry (several thousand vertices per face) leads V''N<I€s and map these from one face o another.

directly to a triangulation of the surface. Consequently, there is no o
need for variational surface interpolation techniques [10, 23, 33]. 1.2 Organization of the paper

We also added a model of texture variations between faces. Theyye giart with a description of the database of 3D face scans from
morphable 3D face model is a consequent extension of the interpo-\\ hich our morphable model is built.

l[gg(]mé%ﬂnﬁ#]e 2?)?:’::%;%%%3:%2322? iﬁZi\I/ri]gSgIUBCSdf akge I;g:l;e In Section 3, we introduce the concept of the morphable face
: puting P model, assuming a set of 3D face scans that are in full correspon-

ﬁ]uttﬁéngézarlg’ r‘g’g e?nrtZt?obr:ef rtc())n:n; ;g\?vsﬁutr?; rgggget;r?; \cl)??k:giss ;r?g;jdence. Exploiting the statistics of a dataset, we derive a parametric
P description of faces, as well as the range of plausible faces. Ad-

moilt]etg;/ec:’lavtv; baéﬁ,vzgf rﬁﬁnudsr?ec?shc;?r’]beazs?sljnf? C(gso:ai?é?sthggqut:tuasditionaIIy, we define facial attributes, such as gender or fullness of
P J faces, in the parameter space of the model.

few. The goal of such an extended morphable face model is to rep- In Section 4 d ib lqorithm f tchi flexibl
resent any face as a linear combination of a limited basis set of face 3 I(tac lon I' we descri gt‘;’m aigor f'f“ or m2|c Ing 'Ct)fl:r gé’ e
prototypes. Representing the face of an arbitrary person as a linea/NOUE! 10 NOVE IMages or scans of faces. Along with a re-
combination (morph) of “prototype” faces was first formulated for construction, the algorithm can compute correspondence, based on
image compression in telecommunications [8]. Image-based Iinearthe morphable model.

2D face models that exploit large data sets of prototype faces were In Section 5, we intro_duce an iterative method for building a mor-
developed for face recognition and image coding [4, 18, 37]. phable model automatically from a raw data set of 3D face scans
Different approaches have been taken to automate the match-When no correspondences between the exemplar faces are available.

ing step necessary for building up morphable models. One class

of techniques is based on optic flow algorithms [5, 4] and another

on an active model matching strategy [12, 16]. Combinations of 2 Database

both techniques have been applied to the problem of image match-

ing [36]. In this paper we extend this approach to the problem of Laser scans@yberware’™) of 200 heads of young adults (100

matching 3D faces. male and 100 female) were used. The laser scans provide head
The correspondence problem between different three- structure data in a cylindrical representation, with radh, ¢) of

dimensional face data has been addressed previously by Leesurface points sampled at 512 equally-spaced arglesd at 512

et al.[20]. Their shape-matching algorithm differs significantly equally spaced vertical steps Additionally, the RGB-color values

from our approach in several respects. First, we compute the R(h, ¢), G(h, ¢),andB(h, ¢), were recorded in the same spatial

correspondence in high resolution, considering shape and textureresolution and were stored in a texture map with 8 bit per channel.

data simultaneously. Second, instead of using a physical tissue All faces were without makeup, accessories, and facial hair. The

model to constrain the range of allowed mesh deformations, we usesubjects were scanned wearing bathing caps, that were removed

the statistics of our example faces to keep deformations plausible.digitally. Additional automatic pre-processing of the scans, which

Third, we do not rely on routines that are specifically designed to for most heads required no human interaction, consisted of a ver-

detect the features exclusively found in faces, e.g., eyes, nose. tical cut behind the ears, a horizontal cut to remove the shoulders,
Our general matching strategy can be used not only to adapt theand a normalization routine that brought each face to a standard

morphable model to a 3D face scan, but also to 2D images of faces.orientation and position in space. The resultant faces were repre-

Unlike a previous approach [35], the morphable 3D face model is sented by approximately 70,000 vertices and the same number of

now directly matched to images, avoiding the detour of generat- color values.



3 Morphable 3D Face Model Prototype Average segments

The morphable model is based on a data set of 3D faces. Morphing *
between faces requires full correspondence between all of the faces.
In this section, we will assume that all exemplar faces are in full
correspondence. The algorithm for computing correspondence will
be described in Section 5. - -
S(+++ + S@O00O0

We represent the geometry of a face with a shape-vetter Terin 10000) S(1/21/21/21/2)
(X1,Y1,Z1, X, ..., Yo, Z,)" € R*", that contains theX, Y, Z- —— e
coordinates of its: vertices. For simplicity, we assume that the
number of valid texture values in the texture map is equal to the . ;
number of vertices. We therefore represent the texture of a face by y
atexture-vectol’ = (R1, G1, B1, R, ....., Gn, B,)T € R3", that '
contains theR, G, B color values of thex corresponding vertices.

A morphable face model was then constructed using a data set of SO0+ SE0-0) s

exemplar faces, each represented by its shape-v8ctord texture- T -9 i)
vectorT;. Since we assume all faces in full correspondence (see \
Section 5), new shape$,,.qe; and new textured,,0qc; Can be
expressed in barycentric coordinates as a linear combination of the
shapes and textures of theexemplar faces:

S(---+)
T

S (= 70)
T(0000)

S
-

Smoa = Y @iSi, Tmoa= Y biTi, Y ai=3 b =1 o000
i=1 i=1 i=1 i=1

Figure 2: A single prototype adds a large variety of new faces to the

We define the morphable model as the set of fa®s,q(a), morphable model. The deviation of a prototype from the average is

Tmoa(b)), parameterized by the coefficients= (a1, as...am)” added (+) or subtracted (-) from the average. A standard morph ()

andb = (by,b2...b,)T. * Arbitrary new faces can be generated by is located halfway between average and the prototype. Subtracting

. ~ the differences from the average yields an 'anti’-face (#). Adding
varying the parameteisand? that control shape and texture. and subtracting deviations independently for shape (S) and texture

For a useful face synthesis system, it is important to be able {0 (1) o each of four segments produces a number of distinct faces.
quantify the results in terms of their plausibility of being faces. We

therefore estimated the probability distribution for the coefficients ) o o )
a; andb; from our example set of faces. This distribution enables be increased by dividing faces into independent subregions that are

us to control the likelihood of the coefficients andb; and conse- morphed independently, for example into eyes, nose, mouth and a
quently regulates the likelihood of the appearance of the generatedsurrounding region (see Figure 2). Since all faces are assumed to
faces. be in correspondence, it is sufficient to define these regions on a

We fit a multivariate normal distribution to our data set of 200 reference face. This segmentation is equivalent to subdividing the
faces, based on the averages of shé@nd texturel’ and the co- vector space of faces into independent subspaces. A complete 3D
variance matrice€'s andC;- computed over the shape and texture face is generated by computing linear combinations for each seg-
differencesAS; = S; — SandAT; =T, — T. ment separately and blending them at the borders according to an

A common technique for data compression known as Principal algorithm proposed for images by [7] .
Component Analysis (PCA) [15, 31] performs a basis transforma- . .
tion to an orthogonal coordinate system formed by the eigenvectors 3-1  Facial attributes
s; andt; of the covariance matrices (in descending order according

to their eigenvalued) Shape and texture coefficients and 3; in our morphable face

model do not correspond to the facial attributes used in human lan-
el S guage. While some facial attributes can easily be related to biophys-
_ o5 o _ 7 " ical measurements [13, 10], such as the width of the mouth, others

Smodet = 5+ Z @i8i5 Tmodet =T + Z Biti, (1) such as facial femininity or being more or less bony can hardly be
i=1 i=1 described by numbers. In this section, we describe a method for

mapping facial attributes, defined by a hand-labeled set of example

- = m—1 . —_ . .
&, € ™. The probability for coefficients’ is given by faces, to the parameter space of our morphable model. At each po-

S sition in face space (that is for any possible face), we define shape
p(@) ~ exp[_l Z (@i /o:)?] @) and texture vectors that, when added to or subtracted from a face,
2 4 vhEe D will manipulate a specific attribute while keeping all other attributes
i=1 as constant as possible.
with o7 being the eigenvalues of the shape covariance matsix Ina performance based technique [25], facial expressions can be
The probabilityp(ﬁ) is computed similarly. transferred by recording two scans of the same individual with dif-

Segmented morphable model: The morphable model de-  ferentexpressions, and adding the differendés= Se.pression —
scribed in equation (1), has — 1 degrees of freedom for tex-  Oneutral, AT = Teapression — Tneutrat, 10 @ different individual

ture andm — 1 for shape. The expressiveness of the model can IN & neutral expression. _ . )
Unlike facial expressions, attributes that are invariant for each in-

1standard morphing between two faces & 2) is obtained if the pa- dividual are more difficult to isolate. The following method allows
rametersa;,b; are varied betweed and 1, settingaz = 1 — a1 and us to model facial attributes such as gender, fullness of faces, dark-
by =1—bs. ness of eyebrows, double chins, and hooked versus concave noses

2Due to the subtracted average vectdtsand 7', the dimensions of (Figure 3). Based on a set of fadgsy, 7;) with manually assigned
Span{AS;} andSpan{AT;} are at mostn — 1. labelsy; describing the markedness of the attribute, we compute



weighted sums

AS = wui(S; —=8), AT = wi(T; —T). (3) 4 Initializing
. Morphable Model
Multiples of (AS, AT') can now be added to or subtracted from £
any individual face. For binary attributes, such as gender, we assign | =\, P R

constant valueg 4 for all m4 faces in classd, andup # pa for 3D average head
all mp faces inB. Affecting only the scaling ofAS and AT, the <3
choice ofp 4, pp is arbitrary.

ORIGINAL CARICATURE MORE MALE FEMALE

ﬁ ﬂ ﬁ ir dir, bg,dir, ,4ir Of directed light. In order to handle photographs

SMILE FROWN WEIGHT HOOKED NOSE taken under a wide variety of condition$also includes color con-
trast as well as offset and gain in the red, green, and blue channel.
Other parameters, such as camera distance, light direction, and sur-
face shininess, remain fixed to the values estimated by the user.

To justify this method, lej:(S, T") be the overall function de- | Automated 3D Shape and Texture Reconstruction |
scribing the markedness of the attribute in a f@8eT’). Since v
to be solved. Our technique assumes jif, T') is a linear func-

tion. Consequently, in order to achieve a chadge of the at-

tribute, there is only a single optimal directigta S, AT") for the

whole space of faces. It can be shown that Equation (3) defines

the direction with minimal variance-normalized lengith S||3, =

(AS,C5TAS), ||AT||3, = (AT, CL AT).

tion of caricatures has been possible for many years [6]. This tech- v v v

nique can easily be extended from 2D images to our morphable face -

model. Individual faces are caricatured by increasing their distance

from the average face. In our representation, shape and texture co-

efficientsa;, 3; are simply multiplied by a constant factor.

Figure 4: Processing steps for reconstructing 3D shape and texture
of a new face from a single image. After a rough manual alignment
of the average 3D head (top row), the automated matching proce-
dure fits the 3D morphable model to the image (center row). In the
right column, the model is rendered on top of the input image. De-

(S, T) is not available per se for &{lS, T"), the regression prob- .
A different kind of facial attribute is its “distinctiveness”, which :
tails in texture can be improved by illumination-corrected texture

lem of estimatingu(S, T") from a sample set of labeled faces has
is commonly manipulated in caricatures. The automated produc- | lllumination Corrected Texture Extraction |
extraction from the input (bottom row).

1

Figure 3: Variation of facial attributes of a single face. The appear-
ance of an original face can be changed by adding or subtracting

shape and texture vectors specific to the attribute. From parameteré, 3, ), colored images
) ) Liodet (@, y) = (IT,mod(way)ylg,mod(z:y):Ib,mod(w:y))T (4)
4 MatChmg a morphable model to Images are rendered using perspective projection and the Phong illumina-

A crucial element of our framework is an algorithm for automati- tion model. The reconstructed image is supposed to be closest to
cally matching the morphable face model to one or more images. the inputimage in terms of Euclidean distance

Providing an estimate of the face’s 3D structure (Figure 4), it closes Er=%, ’ I Linput (@, 9) — Lnoder (z, )|

the gap between the specific manipulations described in Section 3.1 '

and the type of data available in typical applications. ‘Matching a 3D surface to a given image is an ill-posed problem.

d orl . Along with the desired solution, many non-face-like surfaces lead
Coefficients of the 3D model are optimized along with a set of ;e same image. It is therefore essential to impose constraints
rendering parameters such that they produce an image as close agy, yq et of solutions. In our morphable model, shape and texture
poss[ble to the input image. In an analysis-by-synthesis loop, the vectors are restricted to the vector space spanned by the database.
algorithm creates a texture mapped 3D face from the current model Within the vector space of faces, solutions can be further re-

parameters, renders an image, and updates the parameters accor frict tradeoff between matchin ality and prior proba-
ing to the residual difference. It starts with the average head andg ed by a tradeo bﬁe ee ching quality prior proba

; ; ; bilities, usingP (&), P(B) from Section 3 and an ad-hoc estimate
with rendering parameters roughly estimated by the user. o - .

Model Parga%eters: Facialg sr{aepe and te>)</ture ;re defined Of P’(7). Interms of Bayes decision theory, the problem is to find
by coefficientsa; and 8, j = 1,..,m — 1 (Equation 1).  the setof parametelsy, 5, 5) with maximum posterior probabil-
Rendering parameterg contain camera position (azimuth and ity, given an imagd;,,.:. While &, 3, and rendering parame-
elevation), object scale, image plane rotation and translation, ters g’ completely determine the predicted imabg,q4.;, the ob-
iNtensity i, amo, tg,amb, i,ams Of @ambient light, and intensity served imagd;,,.: May vary due to noise. For Gaussian noise



with a standard deviatioay, the likelihood to observé;, . is

P(Linput|&, B, §) ~ exp[;—% - Er]. Maximum posterior probabil-
O'N .

ity is then achieved by minimizing the cost function Pair of

Input Images

Automated

L . . . Simultaneous
The optimization algorithm described below uses an estimate of Matching

E based on a random selection of surface points. Predicted color
valuesl,,.q.; are easiest to evaluate in the centers of triangles. In
the center of triangle, texture(Ry, Gk,Bk)T and 3D location
(X, Yx, Z1,)T are averages of the values at the corners. Perspec-
tive projection maps these points to image locatitmsy., py.x)”~ -
Surface normala;, of each trianglé: are determined by the 3D lo-

2
J

g tlp +mz_l @ +mz_l 57 +Z(Pj—ﬁj)2 (5)
=5 b — - e
oN 75 o 0T ; Tp.i

Reconstruction
of 3D Shape
and Texture

cations of the corners. According to Phong illumination, the color lllumination

componentd, model, Ig,modet @NAI, moder take the form Corrected
B Texture

Ir,model,k = (ir,amb + i’r‘,di’!‘ . (nkl))Rk + iT,diTS . (I‘]cV]c)V (6) Extraction

wherel is the direction of illuminationy; the normalized differ-
ence of camera position and the position of the triangle’s center, and 3D Result
rr, = 2(nl)n — 1 the direction of the reflected ray. denotes sur-
face shininess, and controls the angular distribution of the spec-
ular reflection. Equation (6) reduces k0,modei,k = ir,amo Rk if
a shadow is cast on the center of the triangle, which is tested in a
method described below.

For high resolution 3D meshes, variationdjp,q.; across each
trianglek € {1, ...,n.} are small, s&&; may be approximated by

New Views

Figure 5: Simultaneous reconstruction of 3D shape and texture of a
new face from two images taken under different conditions. In the
center row, the 3D face is rendered on top of the input images.

- , _ _ 2 pj. In subsequent iterations, more and more principal components
Er = Zak [ Linput (Be k> Py.k) — Imoder k]|, e added.
k=1 c) Starting with a relatively large n, which puts a strong weight
whereay, is the image area covered by trianglelf the triangle is on prior probability in equation (5) and ties the optimum towards
occludedgay, = 0. the prior expectation value, we later reduce to obtain maximum

In gradient descent, contributions from different triangles of the matching quality. ) )
mesh would be redundant. In each iteration, we therefore select ad) In the last iterations, the face model is broken down into seg-

random subset C {1, ..., n;} of 40 triangles and replace; by ments (Section 3). With parameteps fixed, coefficientse; and
B; are optimized independently for each segment. This increased
_ ] _ _ 2 number of degrees of freedom significantly improves facial details.
Brx = Z Linput P,k Py,) = Imodet, )| @) Multiple Images: It is straightforward to extend this technique to
kex the case where several images of a person are available (Figure 5).

While shape and texture are still described by a common sef of

andg;, there is now a separate setgffor each input imageE;

is replaced by a sum of image distances for each pair of input and

model images, and all parameters are optimized simultaneously.

lllumination-Corrected Texture Extraction: Specific features of

rithm computes the full 3D shape of the current model, and 2D po- Ndividual faces that are not captured by the morphable model, such
as blemishes, are extracted from the image in a subsequent texture

sitions(ps, py )T of all vertices. It then determines;, and detects . . . . :

hidden surfaces and cast shadows in a two-pass z-buffer technique2d@Ptation process. Exiracting texture from images is a technique

We assume that occlusions and cast shadows are constant durin idely usgd in constructing 3D models from Images (e..g. .[28]).'
owever, in order to be able to change pose and illumination, it

each subset of iterations. is important to separate pure albedo at any given point from the
Parameters are updated depending on analytical derivatives of. P P P Y g P

the cost functionZ, usinga; — a; — A, - 2Z and similarly for influence pf shading ar!d cast shadows in the image. In our ap-
9a; proach, this can be achieved because our matching procedure pro-

The probability of selecting is p(k € K) ~ aj. This method of
stochastic gradient descent [16] is not only more efficient computa-
tionally, but also helps to avoid local minima by adding noise to the
gradient estimate.

Before the first iteration, and once every 1000 steps, the algo-

B; andp;, with suitable factors\; . ) _ __ vides an estimate of 3D shape, pose, and illumination conditions.
Derivatives of texture and shape (Equation 1) yield derivatives gypsequent to matching, we compare the predidiion ; for each
. _ _ T s )
of 2D locations(p. k, by «)" , Surface normalsy, vectorsvy, and vertexi With Linpu:(pe.i, py.i), and compute the change in texture
ri, ANALodet k (E%uatlgg 6) usmg;ham rule. From Equation (7), (R;, G;, B;) that accounts for the difference. In areas occluded in
partial denvauve%fs, 33, » and % can be obtained. the image, we rely on the prediction made by the model. Data from

Coarse-to-Fine:In order to avoid local minima, the algorithm fol- ~ multiple images can be blended using methods similar to [28].
lows a coarse-to-fine strategy in several respects:

a) The first set of iterations is performed on a down-sampled version
of the input image with a low resolution morphable model.

b) We start by optimizing only the first coefficients and/; con- The method described above can also be applied to register new
trolling the first principal components, along with all parameters 3D faces. Analogous to images, where perspective projection

4.1 Matching a morphable model to 3D scans



P : R® — R? and an illumination model define a colored im-
agel(z,y) = (R(x,y),G(z,y), B(z,y))", laser scans provide

a two-dimensional cylindrical parameterization of the surface by
means of a mapping : R* = R?, (z,y,2) — (h,$). Hence,

a scan can be represented as

I(h, ¢) = (R(h,$),G(h, ¢), B(h, ), r(h,¢))".  (8)
In a face §,T'), defined by shape and texture coefficieatsand
B; (Equation 1), vertexi with texture values(R;, G;, B;) and
cylindrical coordinategr;, h;, ¢;) is mapped td,,cqe; (hi, ¢i) =
(R;, Gy, B;,r;)*. The matching algorithm from the previous sec-
tion now determines; and3; minimizing

E =Y |[Linpue(h, 6) = Lnoder (h, )|

h,¢

5 Building a morphable model

In this section, we describe how to build the morphable model from
a set of unregistered 3D prototypes, and to add a new face to the
existing morphable model, increasing its dimensionality.

The key problem is to compute a dense point-to-point correspon-
dence between the vertices of the faces. Since the method describe
in Section 4.1 finds the best match of a given face only within the
range of the morphable model, it cannot add new dimensions to the -

vector space of faces. To determine residual deviations between q:igure 6: Matching a morphable model to a single image (1) of a

novel face and the best match within the model, as well as to Setface results in a 3D shape (2) and a texture map estimate. The tex-
unregistered prototypes in correspondence, we use an optic flow al'ture estimate can be improved by additional texriure extraétion 4)
gorithm that computes correspondence between two faces without ! P 0y . X N

The 3D model is rendered back into the image after changing facial

the need of a morphable model [35]. The following section sum- . e f X b
marizes this techni%ue. [35] 9 attributes, such as gaining (3) and loosing weight (5), frowning (6),
or being forced to smile (7).

5.1 3D Correspondence using Optic Flow

Initially designed to find corresponding points in grey-level images faces in the database. Therefore, we modified a bootstrapping al-
I(z,y), a gradient-based optic flow algorithm [2] is modified to es- gorithm to iteratively improve correspondence, a method that has
tablish correspondence between a pair of 3D s@éhs¢) (Equa- been used previously to build linear image models [36].

tion 8), taking into account color and radius values simultaneously  The basic recursive stepSuppose that an existing morphable
[35]. The algorithm computes a flow fie{dh(h, ¢), d¢(h, ¢)) that model is not powerful enough to match a new face and thereby find
minimizes differences dfI; (h, ¢) —I2(h+0dh, p+0¢)| inanorm correspondence with it. The idea is first to find rough correspon-
that weights variations in texture and shape equally. Surface prop-dences to the novel face using the (inadequate) morphable model
erties from differential geometry, such as mean curvature, may be and then to improve these correspondences by using an optic flow
used as additional componentslifh, ¢). algorithm.

On facial regions with little structure in texture and shape, such  Starting from an arbitrary face as the temporary reference, pre-
as forehead and cheeks, the results of the optic flow algorithm areliminary correspondence between all other faces and this reference
sometimes spurious. We therefore perform a smooth interpolation is computed using the optic flow algorithm. On the basis of these
based on simulated relaxation of a system of flow vectors that are correspondences, shape and texture veciomsdT' can be com-
coupled with their neighbors. The quadratic coupling potential is puted. Their average serves as a new reference face. The first mor-
equal for all flow vectors. On high-contrast areas, components of phable model is then formed by the most significant components
flow vectors orthogonal to edges are bound to the result of the pre- as provided by a standard PCA decomposition. The current mor-
vious optic flow computation. The system is otherwise free to take phable model is now matched to each of the 3D faces according
on a smooth minimum-energy arrangement. Unlike simple filter- to the method described in Section 4.1. Then, the optic flow algo-
ing routines, our technique fully retains matching quality wherever rithm computes correspondence between the 3D face and the ap-
the flow field is reliable. Optic flow and smooth interpolation are proximation provided by the morphable model. Combined with the
computed on several consecutive levels of resolution. correspondence implied by the matched model, this defines a new

Constructing a morphable face model from a set of unregistered correspondence between the reference face and the example.
3D scans requires the computation of the flow fields between each lIterating this procedure with increasing expressive power of the
face and an arbitrary reference face. Given a definition of shape andmodel (by increasing the number of principal components) leads to
texture vectorsS,..y andT,. for the reference face§ andT" for reliable correspondences between the reference face and the exam-
each face in the database can be obtained by means of the point-toples, and finally to a complete morphable face model.
point correspondence provided Byi(h, ¢), do(h, ¢)).

5.2 Bootstrapping the model 6 Results

Because the optic flow algorithm does not incorporate any con- We built a morphable face model by automatically establishing cor-
straints on the set of solutions, it fails on some of the more unusual respondence between all of our 200 exemplar faces. Our interactive
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Figure 7: After manual initialization, the algorithm automatically matches a colored morphable model (color contrast set to zero) to t
image. Rendering the inner part of the 3D face on top of the image, new shadows, facial expressions and poses can be generated.

face modeling system enables human users to create new charactensainting to novel views. For new illumination, we render two im-
and to modify facial attributes by varying the model coefficients. ages of the reconstructed 3D face with different illumination, and
Within the constraints imposed by prior probability, there is a large multiply relative changes in pixel values (Figure 8, bottom left) by
variability of possible faces, and all linear combinations of the ex- the original values in the painting (bottom center). For a new pose
emplar faces look natural. (bottom right), differences in shading are transferred in a similar
We tested the expressive power of our morphable model by au- way, and the painting is then warped according to the 2D projec-
tomatically reconstructing 3D faces from photographs of arbitrary tions of 3D vertex displacements of the reconstructed shape.
Caucasian faces of middle age that were not in the database. The
images were either taken by us using a digital camera (Figures 4,5),7  Future work
or taken under arbitrary unknown conditions (Figures 6, 7).
In all examples, we matched a morphable model built from the
first 100 shape and the firdt00 texture principal components that
were derived from the whole dataset28() faces. Each component

Issues of implementation:We plan to speed up our matching algo-
rithm by implementing a simplified Newton-method for minimizing
the cost function (Equation 5). Instead of the time consuming com-

was additionally segmented in 4 parts (see Figure 2). The whole putation of derivatives for each iteration step, a global mapping of

matching procedure was performedio® iterations. On an SGI  the matching error into parameter space can be used [9].
R10000 processor, computation time vé@sminutes. Data reduction applied to shape and texture data will reduce

Reconstructing the true 3D shape and texture of a face from ar_edundancy of our representation, saving additional computation

single image is an ill-posed problem. However, to human observers 'Me- , . -

who also know only the input image, the results obtained with our Extending the database:While the current database is sufficient

method look correct. When compared with a real image of the ro- to model Caucasian faces of middle age, we would like to extend it

tated face, differences usually become only visible for large rota- {0 children, to elderly people as well as to other races.

tions of more tharg0°. We also plan to incorporate additional 3D face examples repre-
There is a wide variety of applications for 3D face reconstruction S€Nting the time course of facial expressions and visemes, the face

from 2D images. As demonstrated in Figures 6 and 7, the results Variations during speech.
can be used for automatic post-processing of a face within the orig- _ The laser scanning technology we used, unfortunately, does not
inal picture or movie sequence. allow us to collect dynamical 3D face data, as each scanning cycle
Knowing the 3D shape of a face in an image provides a segmen_takes_at least 1(_) sec_onds. _Consequently, our current examp!e set
tation of the image into face area and background. The face can peof facial expressions is restricted to those that can be kept static by
combined with other 3D graphic objects, such as glasses or hats'the.s.canned supjects. However, the development of fast optical 3D
and then be rendered in front of the background, computing cast digitizers [27] will allow us to apply our method to streams of 3D
shadows or new illumination conditions (Fig. 7). Furthermore, we data during speech and facial expressions. .
can change the appearance of the face by adding or subtracting speExtending the face model: Our current morphable model is re-
cific attributes. If previously unseen backgrounds become visible, Stricted to the face area, because a sufficient 3D model of hair can-
we fill the holes with neighboring background pixels (Fig. 6). not be obtained with our laser scanner. For animation, the missing
We also applied the method to paintings such as Leonardo’s part of the head can bg automatlcally repla.ced.by a st.andard hair
Mona Lisa (Figure 8). Due to unusual (maybe unrealistic) light- style or a hat, or by hair th_at is modeled using interactive manual
ing, illumination-corrected texture extraction is difficult here. We Segmentation and adaptation to a 3D model [30, 28]. Automated

therefore apply a different method for transferring all details of the Irsr‘]:ggztr“dio” of hair styles from images is one of the future chal-
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Figure 8: Reconstructed 3D face of Mona Lisa (top center and
right). For modifying the illumination, relative changes in color
(bottom left) are computed on the 3D face, and then multiplied by
the color values in the painting (bottom center). Additional warping
generates new orientations (bottom right, see text), while details of (21]
the painting, such as brush strokes or cracks, are retained.

[20]

[22]
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Rendering Techniques for
Facial Animation

Jorg Haber
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Textures are...

» acheap means of conveying realism

* a tool for LoD management

« available both on graphics hardware and in
modeling / rendering software

useful for many rendering “tricks”

How to create textures from input images?

Cylindrical Textures

A head is similar to a cylinder

Rendering Faces

* skin rendering:
— textures for skin and facial components
— bump mapping for skin dimples and wrinkles
hair modeling and rendering:
— course #9 : “Photorealistic Hair Modeling,
Animation, and Rendering “

Cylindrical Textures

Common approach:

« created from input photographs:

— L. Williams: “Performance-Driven Facial Animation”,
SIGGRAPH '90, 235-242, Aug. 1990

— F. Pighin et al.: “Synthesizing Realistic Facial
Expressions from Photographs”, SIGGRAPH ’98,
75-84, July 1998

+ acquired during range scanning process
(— Cyberware scanners)

Cylindrical Textures

Problems:
limited texture resolution (Cyberware)
need accurate geometry for registration (from photos)
visual artifacts:
— on top of the head

— behind the ears
— under the chin

limited animation (eyes, teeth)




Textures from Photographs

Given:

= 3D mesh

 uncalibrated images (digitized photographs)
Assumptions:

» mesh represents real object (head) sufficiently precise
» images cover all areas of real object

Solution:

* register images using Tsai algorithm

« create texture patches

Corresponding Points

File Registration

Texture Combination

Ig *v

R T

Important aspects:

+ optimal packing of individual segments
» smooth transition between segments (blending)

Tsai Algorithm

R. Y. Tsai: “A Versatile Camera Calibration Technique for
High-Accuracy 3D Machine Vision Metrology using Off-
the-Shelf TV Cameras and Lenses”, IEEE J. of Robotics
and Automation, RA-3(4), Aug. 1987

» compute intrinsic c