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Abstract

We propose novel gaze control algorithms for active percep-
tion in mobile autonomous agents with directable, foveated
vision sensors. Our agents are realistic artificial animals,
or animats, situated in physics-based virtual worlds. Their
active perception systems continuously analyze photoreal-
istic retinal image streams to glean information useful for
controlling the animat’s eyes and body. The vision system
computes optical flow and segments moving targets in the
low-resolution visual periphery. It then matches segmented
targets against mental models of colored objects of interest.
The eyes saccade to increase acuity by foveating objects.
The resulting sensorimotor control loop supports complex
behaviors, such as predation.

Introduction
Animals are active observers of their environment (Gibson
1979). This fact has inspired a trend in the computer vi-
sion field popularly known as “active vision” (Bajcsy 1988;
Ballard 1991; Swain & Stricker 1993). Unfortunately, ef-
forts to create active vision systems for physical robots
have been hampered by hardware and processor limita-
tions. The recently proposed animat vision paradigm (Ter-
zopoulos & Rabie 1995) offers an approach to developing
biomimetic active vision systems that does not rely on robot
hardware. Instead of physical robots, animat vision pre-
scribes the use of virtual robots that take the form of arti-
ficial animals, or animats, situated in physics-based virtual
worlds. Animats are autonomous virtual agents possess-
ing mobile, muscle-actuated bodies and brains with motor,
perception, behavior and learning centers. In the percep-
tion center of the animat’s brain, computer vision algo-
rithms continually analyze the incoming perceptual infor-
mation. Based on this analysis, the behavior center dis-
patches motor commands to the animat’s body, thus form-
ing a complete sensorimotor control system. Animat vision,
implemented entirely in software, has several important ad-
vantages over conventional “hardware vision”, at least for
research purposes (refer to (Terzopoulos & Rabie 1995;
Terzopoulos 1995) for a discussion).

In many biological eyes, the high-acuity fovea covers only
a small fraction of a visual field whose resolution decreases
monotonically towards the periphery. Spatially nonuniform
retinal imaging provides opportunities for increased compu-

Figure 1: Artificial fishes swimming among aquatic plants
in a physics-based virtual marine environment.

tational efficiency through economization of photoreceptors
and focus of attention, but it forces the visual system to solve
problems that do not generally arise with a uniform field of
view. A key problem is determining where to redirect the
fovea when a target of interest appears in the periphery. In
this paper we present a solution to this problem through the
exploitation of motion and color information.

Motion and color play an important role in animal per-
ception. Birds and insects exploit optical flow for obstacle
avoidance and to control their ego-motion (Gibson 1979).
Some species of fish are able to recognize the color signa-
tures of other fish and use this information in certain piscene
behaviors (Adler 1975). The human visual system is highly
sensitive to motion and color. We tend to focus our attention
on moving colorful objects. Motionless objects whose col-
ors blend in to the background are not as easily detectable,
and several camouflage strategies in the animal kingdom
rely on this fact (Cedras & Shah 1995).

Following the animat vision paradigm, the motion and
color based gaze control algorithms that we propose in this
paper are implemented and evaluated within artificial fishes
in a virtual marine world (Fig. 1). The fish animats are the
result of research in the domain of artificial life (see (Ter-
zopoulos, Tu, & Grzeszczuk 1994) for the details). In the
present work, the fish animat serves as an autonomous mo-
bile robot situated in a photorealistic, dynamic environment.



Our new gaze control algorithms significantly enhance the
prototype animat vision system that we implemented in prior
work (Terzopoulos & Rabie 1995) and they support more
robust vision-guidednavigation abilities in the artificial fish.
We review the animat vision system in the next section be-
fore presenting our new work on integrating motion and
color analysis for animat perception in subsequent sections.

A Prototype Animat Vision System
The basic functionality of the animat vision system, which
is described in detail in (Terzopoulos & Rabie 1995), starts
with binocular perspective projection of the color 3D world
onto the animat’s 2D retinas. Retinal imaging is accom-
plished by photorealistic graphics rendering of the world
from the animat’s point of view. This projection respects
occlusion relationships among objects. It forms spatially
variant visual fields with high resolution foveas and progres-
sively lower resolution peripheries. Based on an analysis of
the incoming color retinal image stream, the visual center of
the animat’s brain supplies saccade control signals to its eyes
to stabilize the visual fields during locomotion, to attend to
interesting targets based on color, and to keep moving tar-
gets fixated. The artificial fish is thus able to approach and
track other artificial fishes visually. Fig. 2 provides a block
diagram of the active vision system showing two main mod-
ules that control retinal image stabilization and foveation of
the eyes.

Eyes and Retinal Imaging
The artificial fish has binocular vision. The movements of
each eye are controlled through two gaze angles ��� ��which
specify the horizontal and vertical rotation of the eyeball,
respectively. The angles are given with respect to the head
coordinate frame, such that the eye is looking straight ahead
when � � � � 0�.

Each eye is implemented as four coaxial virtual cameras
to approximate the spatially nonuniform, foveal/peripheral
imaging capabilities typical of biological eyes. Fig. 3(a)
shows an example of the 64 � 64 images that are rendered
by the coaxial cameras in each eye (rendering employs the
GL library and graphics pipeline on Silicon Graphics work-
stations). The level l � 0 camera has the widest field of
view (about 120�) and the lowest resolution. The resolution
increases and the field of view decreases with increasing
l. The highest resolution image at level l � 3 is the fovea
and the other images form the visual periphery. Fig. 3(b)
shows the 512 � 512 binocular retinal images composited
from the coaxial images at the top of the figure. To reveal
the retinal image structure in the figure, we have placed a
white border around each magnified component image. Vi-
sion algorithms which process the four 64� 64 component
images are 16 times more efficient than those that process a
uniform 512� 512 retinal image.

Foveation by Color Object Detection
The brain of the artificial fish stores a set of color models
of objects that are of interest to it. For instance, if the fish
is by habit a predator, it would possess models of prey fish.
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Figure 2: The animat vision system. The flow of the gaze
control algorithm is from right to left. A: Update gaze angles
��� �� and saccade using these angles, B: Search current
level for model target and if found localize it, else search
lower level, C: Select level to be processed (see text), F:
Reduce field of view for next level and render, M: Compute
a general translational displacement vector �u� v� between
images I�t � 1� and I�t�, S: Scale the color histogram of
the model for use by the current level.

The mental models are stored as a list of 64�64 RGB color
images.

To detect and localize any target that may be imaged in
the low resolution periphery of its retinas, the animat vision
system of the fish employs an improved version of a color
indexing algorithm proposed by Swain (Swain & Ballard
1991).1 Since each model object has a unique color his-
togram signature, it can be detected in the retinal image by
histogram intersection and localized by histogram backpro-
jection.

Saccadic Eye Movements
When a target is detected in the visual periphery, the eyes
will saccade to the angular offset of the object to bring
it within the fovea. With the object in the high resolution
fovea, a more accurate foveation is obtained by a second pass
of histogram backprojection. A second saccade typically
centers the object accurately in both left and right foveas,
thus achieving vergence.

Module A in Fig. 2 performs the saccades by incrementing

1Our improvements, which include iterative model histogram
scaling and weighted histograms, make the technique much more
robust against the large variations in scale that occur in our ap-
plication. The details of the improved algorithm are presented in
(Terzopoulos & Rabie 1995).
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Figure 3: Binocular retinal imaging (monochrome versions of original color images). (a) 4 component images; l � 0� 1� 2�
are peripheral images; l � 3 is foveal image. (b) Composited retinal images (borders of composited component images are
shown in white).

the gaze angles ��� �� in order to rotate the eyes to the
required gaze direction.

Visual Field Stabilization using Optical Flow
It is necessary to stabilize the visual field of the artificial
fish because its body undulates as it swims. Once a target
is verged in both foveas, the stabilization process (Fig. 2)
assumes the task of keeping the target foveated during lo-
comotion.

Stabilization is achieved by computing the overall transla-
tional displacement �u� v� of intensities between the current
foveal image and that from the previous time instant, and
updating the gaze angles to compensate. The displacement
is computed as a translational offset in the retinotopic coor-
dinate system by a least squares minimization of the optical
flow between image frames at times t and t�1 (Horn 1986).

The optical flow stabilization method is robust only for
small displacements between frames. Consequently, when
the displacement of the target between frames is large
enough that the method is likely to produce bad estimates,
the foveation module is invoked to re-detect and re-foveate
the target as described earlier.

Each eye is controlled independently during foveation and
stabilization of a target. Hence, the two retinal images must
be correlated to keep them verged accurately on the target.
Referring to Fig. 4, the vergence angle is �V � ��R � �L�
and its magnitude increases as the fish comes closer to the
target. Therefore, once the eyes are verged on a target, it is
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Figure 4: Gaze angles and range to target geometry.

straightforward for the vision system to estimate the range
to the target from the gaze angles.

Vision-Guided Navigation
The artificial fish can also employ the gaze direction (i.e.,
the gaze angles) while the eyes are fixated on a target to
navigate towards the target. The � angles are used to com-
pute the left/right turn angle �P shown in Fig. 4, and the �
angles are similarly used to compute an up/down turn angle
�P . The fish’s turn motor controllers are invoked to exe-
cute a left/right turn—right-turn-MCfor an above-threshold
positive �P and left-turn-MC for negative �P —with j�P j as
parameter. Up/down turn motor commands are issued to
the fish’s pectoral fins, with an above-threshold positive



�P interpreted as “up” and negative as “down”. The motor
controllers are explained in (Terzopoulos, Tu, & Grzeszczuk
1994).

The remainder of the paper presents our new work on
integrating color and motion analysis in active vision.

Integrating Motion and Color for Attention
Selective attention is an important mechanism for dealing
with the combinatorial aspects of search in vision (Tsotsos et
al. 1995). Deciding where to redirect the fovea can involve
a complex search process (Tsotsos et al. 1995; Rimey &
Brown 1992; Maver & Bajcsy 1990). In this section we offer
an efficient solution which integrates motion and color to
increase the robustness of our animat’s perceptual functions.

Motion and color have been considered extensively in the
literature in a variety of passive vision systems, but rarely
have they been integrated for use in dynamic perception
systems. The conjunction of color and motion cues has
recently been exploited to produce more exact segmenta-
tions and for the extraction of object contours from natural
scenes (Dubuisson & Jain 1993). Color and motion fea-
tures of video images have been used for color video image
classification and understanding (Gong & Sakauchi 1992).

Integrating motion and color for object recognition can
improve the robustness of moving colored object recogni-
tion. Motion may be considered a bottom-up alerting cue,
while color can be used as a top-down cue for model-based
recognition (Swain, Kahn, & Ballard 1992). Therefore, in-
tegrating motion and color can increase the robustness of the
recognition problem by bridging the gap between bottom-
up and top-down processes, thus, improving the selective
attention of dynamic perceptual systems such as the animat
vision system that we are developing.

Where to Look Next

Redirecting gaze when a target of interest appears in the
periphery can be a complex problem. One solution would
be to section the peripheral image into smaller patches or
focal probes (Burt et al. 1989) and search of all the probes.
The strategy will work well for sufficiently small images,
but for dynamic vision systems that must process natural or
photorealistic images the approach is not effective.

We choose a simple method based on motion cues to help
narrow down the search for a suitable gaze direction (Cam-
pani, Giachetti, & Torre 1995). We create a saliency image
by initially computing a reduced optical flow field between
two stabilized peripheral image frames (an advantage of the
multiresolution retina is the small 64 � 64 peripheral im-
age). Then an affine motion model is fitted to the optical
flow using a robust regression method that will be described
momentarily. The affine motion parameters are fitted to
the dominant background motion. A saliency map is de-
termined by computing an error measure between the affine
motion parameters and the estimated optical flow as follows:

S�x� y� �
q

�vx�x� y� � u�x� y��2 � �vy�x� y�� v�x� y��2�

(1)

where �u� v� is the computed optical flow and

vx�x� y� � a� bx� cy�

vy�x� y� � d� ex � fy (2)

is the affine flow at retinal image position �x� y�. The
saliency image S is then convolved with a circular disk
of area equal to the expected area of the model object of
interest as it appears in the peripheral image.2

The blurring of the saliency image emphasizes the model
object in the image. The maximum in S is taken as the
location of the image probe. The image patches that serve
as probes in consecutive peripheral frames form the image
sequence that is processed by the motion segmentation mod-
ule described later. Fig. 5 shows four consecutive peripheral
images with the image probes outlined by white boxes. The
blurred saliency image is shown at the end of the sequence
in Fig. 5. Clearly the maximum (brightness) corresponds to
the fast moving blue fish in the lower right portion of the
peripheral image.

Robust Optical Flow
A key component of the selective attention algorithm is
the use of optical flow. Given a sequence of time-varying
images, points on the retina appear to move because of the
relative motion between the eye and objects in the scene
(Gibson 1979). The vector field of this apparent motion is
usually called optical flow (Horn 1986). Optical flow can
give important information about the spatial arrangement of
objects viewed and the rate of change of this arrangement.

For our specific application, however, we require effi-
ciency, robustness to outliers, and an optical flow estimate
at all times. Recent work by Black and Anandan (Black
& Anandan 1990; 1993) satisfies our requirements. They
propose incremental minimization approaches using robust
statistics for the estimation of optical flow which are geared
towards dynamic environments. As is noted by Black, the
goal is incrementally to integrate motion information from
new images with previous optical flow estimates to obtain
more accurate information about the motion in the scene
over time. A detailed description of this method can be
found in (Black 1992). Here we describe our adaptation of
the algorithm to the animat vision system.

Ideally optical flow is computed continuously3 as the ani-
mat navigates in its world, but to reduce computational cost
and to allow for new scene features to appear when no in-
teresting objects have attracted the attention of the animat,
we choose to update the current estimate of the optical flow
every four frames. The algorithm is however still “con-
tinuous” because it computes the current estimate of the
optical flow at time t using image frames at t-3, t-2, t-1, and
t in a short-time batch process. Fig. 6 shows this more

2Reasonably small areas suffice, since objects in the 64 �
64 peripheral image are typically small at peripheral resolution.
Methods for estimating appropriate areas for the object, such as
Jagersand’s information theoretic approach (Jagersand 1995), may
be applicable.

3By continuously, we mean that there is an estimate of the
optical flow at every time instant.
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Figure 5: Four consecutive peripheral images with image probes outlined by white squares. Saliency image (right), with
bright areas indicating large motions.
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Figure 6: Incremental estimation of robust optical flow over
time.

clearly. This arrangement requires storage of the previous
three frames for use by the estimation module.

The flow at t � 1 is initialized with a predicted flow
computed by forward warp of the flow estimate at t by
itself4 and then the optical flow at t � 4 is estimated by
spatiotemporal regression over the four frames.

We compute our optical flow estimate by incrementally
minimizing the cost function

E�u� v� � �DED�u� v���SES�u� v���TET �u� v�� (3)

where ED is the data conservation constraint and is given
in terms of the intensity constraint equation as

ED � ��D �uIx � vIy � It�� (4)

and ES is the spatial coherence constraint and is given as

ES �
X

m�n�N

���S �u�u�m�n�����S �v�v�m�n���� (5)

where N is the 4-connected neighbors of the current pixel
position. We formulate our temporal continuity constraint
ET by imposing some coherence between the current flow
estimate and its previous and next estimate:

ET � ��T �u� uBW � � ��T �u� uFW �� (6)

where u � �u� v� is the current optical flow estimate at time
t, uBW is the previous estimate at t� 1 obtained by setting
it to the most recent estimate, and uFW is a prediction
of what the optical flow will be at t � 1 and is computed

4The flow estimate is being used to warp itself, thus predicting
what the motion will be in the future.

by forward warp of the current estimate by itself.5 The
� parameters in (3) control the relative importance of the
terms, and the �� functions in the above equations are taken
to be the Lorentzian robust estimator:

���x� � log

�
1 �

1
2

�x
�

�2
�
� (7)

and its influence function,���x�, is the first derivative with
respect to x. This function characterizes the bias that a
particular measurement has on the solution (Hampel 1974;
Black & Anandan 1993).

This robust formulation of our cost functionE causes it to
be non-convex. A local minimum can, however, be obtained
using a gradient-based optimization technique. We choose
the successive over relaxation minimization technique. The
iterative equations for minimizing E are

ui�1 � ui �
�

Tu

�E

�u
� (8)

where 1 	 � 	 2 is an overrelaxation parameter that con-
trols convergence. A similar iterative equation for v is
obtained by replacing u with v in (8). The terms Tu� Tv are
upper bounds on the second partial derivatives of E, and
can be given as

Tu �
�DI

2
x

�2
D

�
4�S
�2
S

�
2�T
�2
T

� (9)

and similarly for Tv by replacing u with v and x with y.
The partial derivative in (8) is

�E

�u
� �DIx��D �uIx � vIy � It��

�S
X

m�n�N

��S �u � u�m�n�� �

�T ���T �u� uBW � � ��T �u � uFW ��� (10)

and similarly for �E
�v.
The above minimization will generally converge to a local

minimum. A global minimum may be found by construct-
ing an initially convex approximation to the cost function

5Note that uBW can also be estimated by backward warping
of u by itself.



Figure 7: The robust optical flow vectors estimated for the
four image probe sequence (Fig. 5). Large vectors indicate
large motion of the fish object.

by choosing initial values of the � parameters to be suf-
ficiently large (equal to the maximum expected outlier in
the argument of �i���), so that the Hessian matrix of E is
positive definite at all points in the image. The minimum is
then tracked using the graduated non-convexity (GNC) con-
tinuation method (Blake & Zisserman 1987) by decreasing
the values of the � parameters from one iteration to the
next, which serves to gradually return the cost function to
its non-convex shape, thereby introducing discontinuities in
the data, spatial, and temporal terms. These discontinuities
are, however, dealt with by the robust formulation and are
rejected as outliers, thus producing more accurate optical
flow estimates. The values of the � parameters are deter-
mined empirically (typically �D � 10� �S � �T � 1).

To deal with large motions in the image sequence, we per-
form the minimization using a coarse-to-fine flow-through
strategy. A Gaussian pyramid (Burt & Adelson 1983) is
constructed for each image in the sequence, and minimiza-
tion starts at the coarsest level and flows through to the
finest resolution level. Our flow-through technique is based
on the assumption that displacements which are less than 1
pixel are estimated accurately at each individual level and
thus need not be updated from a coarser level’s estimate,
while estimates that are greater than 1 pixel are most prob-
ably more accurately computed at the coarser level, and are
updated by projecting the estimate from the coarser level.

This incremental minimization approach foregoes a large
number of relaxation iterations over a 2 frame sequence
in favor of a small number of relaxation iterations over a
longer sequence. Fig. 7 shows the optical flow estimated
for the sequence of four image probes of Fig. 5. The figure
clearly shows the complex motion of the target fish. It is a
non-trivial task to segment such motions.

Motion Segmentation and Color Recognition
For the animat to recognize objects moving in its periphery
it must first detect their presence by means of a saliency
map as described earlier. Once it detects something that
might be worth looking at, it must then segment its region
of support out from the whole peripheral image and then
match this segmentation with mental models of important
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Figure 8: Incremental motion segmentation and object
recognition using multi-resolution robust optical flow (ROF)
estimation, affine parametric motion segmentation and color
object recognition.

objects. Fig. 8 shows the steps involved in an incremental
segmentation of the detected object over the duration of the
four probe images as explained above.

Segmentation of the optical flow at each time instant is
performed by fitting an affine parametric motion model to
the robust optical flow (ROF) estimated so far at the current
time instant. This is done by incrementally minimizing the
cost function given as

E�a� b� c� d� e� f� � Ex�a� b� c� �Ey�d� e� f�� (11)

where �a� b� c� d� e� f� are the affine motion parameters. Ex
and Ey are formulated using robust estimation to account
for outliers

Ex �
X
x�y�R

���vx�x� y�� u�x� y���

Ey �
X
x�y�R

���vy�x� y� � v�x� y��� (12)

where R is the current region of support of the segmented
object (initially equal to the full frame image size). vx and
vy are horizontal and vertical affine motion flow vectors
according to (2). �u� v� is the ROF estimated at the cur-
rent instant, and ���x� is taken to be the Lorentzian robust
estimator. We use successive over relaxation and GNC to
minimize this cost function by using a small number of it-
erations over a sequence of four image probes and updating
the segmentation at every time instant.

The estimated affine motion parameters at the current
time instant are then used to update the segmentation by
calculating an error norm between the affine flow estimate
�vx� vy� and the ROF estimate as in (1). This norm is
then thresholded by an appropriate threshold taken to be the
minimum outlier in the affine fit. The updated segmentation
serves as the region of supportR for the next frame’s affine
minimization step.



If more than one moving object is present in the probe
sequence, the current segmentation is subtracted from the
image, and another affine motion model is fitted to the re-
maining pixels thus segmenting other moving objects. To
clean up the segmentation (in case some pixels where mis-
classified as outliers) a 9�9 median filter is passed over the
segmentation mask to fill in missing pixels and remove mis-
classified outliers. Fig. 9 shows the segmented background
(showing two objects as outliers) and the segmentation of
the outlier pixels into the object of interest (a blue fish).

At the end of the motion segmentation stage, the seg-
mented objects are matched to color models using the color
histogram intersection method. If a match occurs, the cur-
rent estimate of the ROF is set to zero thus accounting for
the dynamic changes in the system, otherwise the ROF is
used to initialize the optical flow at the next time step as
shown in Fig. 6.

If the model object matches the peripheral segmented re-
gion, the animat localizes the recognized object using color
histogram backprojection and foveates it to obtain a high-
resolution view. It then engages in appropriate behavioral
responses.

Behavioral Response to a Recognized Target
The behavioral center of the brain of the artificial animal
assumes control after an object is recognized and fixated.
If the object is classified as food the behavioral response
would be to pursue the target in the fovea with maximum
speed until the animat is close enough to open its mouth and
eat the food. If the object is classified as a predator and the
animat is a prey fish, then the behavioral response would
be to turn in a direction opposite to that of the predator and
swim with maximum speed. Alternatively, an object in the
scene may serve as a visual frame of reference. When the
animat recognizes a reference object (which may be another
fish) in its visual periphery, it will fixate on it and track it in
smooth pursuit at an intermediate speed. Thus, the fixation
point acts as the originof an object-centered reference frame
allowing the animat to stabilize its visual world and explore
its surroundings.

Fig. 10 shows a sequence of retinal images taken from
the animat’s left eye. The eyes are initially fixated on a red
reference fish and thus the images are stabilized. In frame
283 to 286 a blue fish swims close by the animat’s right
side. The animat recognizes this as a reference fish and
thus saccades the eyes to foveate the fish. It tracks the fish
around, thereby exploring its environment. By foveating
different reference objects, the animat can explore different
parts of its world.

Fig. 11 shows a plot of the ��L� �R� gaze angles and turn
angle between frames 200 and 400. It is clear from the
figure that the animat was first fixated on the red fish which
was to the left of the animat (negative gaze angles), and at
frame 286 and subsequent frames the animat is foveated on
the blue fish which is to its right (positive gaze angles).

Conclusion and Future Work
We have presented computer vision research carried out
within an animat vision framework which employs a

Segmented Background Segmented Object

Figure 9: Results of incremental motion segmentation mod-
ule.

physics-based, virtual marine world inhabited by lifelike
artificial fishes that emulate the appearance, motion, and
behavior of real fishes in their natural habitats. We have
successfully implemented a set of active vision algorithms
for artificial fishes that integrate motion and color analy-
sis to improve focus of attention and enable the animat to
better understand and interact with its dynamic virtual en-
vironment.

In future work we will endeavor to increase the arsenal
of active vision algorithms to support the whole behavioral
repertoire of artificial fishes. The animat approach allows
us to do this step by step without compromising the com-
plete functionality of the artificial fish. It is our hope that
the vision system that we are developing will also provide
insights relevant to the design of active vision systems for
physical robotics.
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Figure 10: Retinal image sequence from the left eye of the predator (top) and overhead view (bottom) of the predator as it
pursues a red reference fish (frames 283–285). A blue reference fish appears in the predator’s right periphery and is recognized,
fixated, and tracked (frames 286–300). The white lines indicate the gaze direction.
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Figure 11: Gaze angles as the animat changes reference
points at frame 286 from left (negative angles) to right (pos-
itive angles).
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