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An automated system for detecting Osteogenesis Imperfecta (OI), an inheritable disorder of
human connective tissue, is described. The approach is one of texture analysis, founded on
standard statistical recognition of co-occurrence-based texture descriptors. Qur contribution is
to show that texture descriptors derived from gray-level co-occurrence matrices can be used in
conjunction with descriptors derived from generalized co-occurrence matrices of local image
features to increase performance. In fact, for the OI problem, our system demonstrates a level
of performance which is significantly better than that of medical specialists.

1. INTRODUCTION

Images are certainly one of the most common forms of data representation in
biology and medicine. When they represent experimental results, isolation and
quantification of the information within them is often paramount to a successful
analysis. When they represent the results of diagnostic tests, questions of enhance-
ment, consistency, and reliability become important. Computer-based image process-
ing techniques are currently making a substantial contribution to both of these areas.
The research described in this paper is a new biomedical application of a particular
class of these techniques, texture analysis, to the diagnosis of Osteogenesis Imper-
fecta (OI), an inheritable disease of human connective tissue.

Over the past two decades, researchers interested in texture analysis by computer
have proposed a number of techniques and models for texture [4]. Most of these
approaches measure statistical properties of texture. A very useful and popular
statistical approach involves the characterization of textures by what are, essentially,
two-dimensional distributions of occurrences of pairs of image pixel intensities, or
attributes of more complex local image features. The former are often termed
gray-level co-occurrence matrices (GLCM) [5] and the latter are called generalized
co-occurrence matrices (GCM) [2]. Weszka, ef al. [11] have shown empirically that
co-occurrence matrices are one of the most powerful representations for texture
known to date.

Psychophysiological justification for the use of co-occurrence matrices in char-
acterizing textures can be found among the literature on human texture perception.
In an early study [6], Julesz discovered what appeared at the time to be a
surprisingly universal phenomenon of human, noncognitive texture perception: that
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differences in second-order statistics of image intensities are sufficient for sponta-
neous discrimination of textures. In later studies (see, e.g., [1]), however, he found
counterexamples to this conjecture; that is, he found discriminable textures with
equal second-order intensity statistics. Julesz argued that these counterexamples may
be explained by assuming that low-level feature detectors act on the retinal image to
extract local features which are more complex than the raw intensities. Since
GLCMs are measurements of second-order intensity statistics, and GCMs are
measurements of second-order statistics of local features, their utility in analyzing
textures 1s supported by Julesz’s conjectures about texture vision. Additional support
for the use of local image features for texture analysis is provided by Marr’s
computational theory of low-level vision [8]. The significance of the above ideas in
the application of co-occurrence matrices to texture analysis is explored more fully
in [10].

Following a brief discussion of the nature of OI and a formulation of the GLCM
and the GCM, we describe a system which uses texture descriptors, derived from
both types of matrices, to distinguish between images of normal and OI cell cultures.
We show that our system attains a performance which is significantly (about 20%)
better than that exhibited by a group of six medical specialists attempting to
discriminate the same images by visual inspection.

2. OSTEOGENESIS IMPERFECTA

Osteogenesis Imperfecta is a highly prevalent, genetically determined disease [9]. It
has an extremely broad range of clinical expressivity, usually involving bone tissue;
although skin, ligaments, tendons, fascia, sclera, and the inner ear are often
implicated. Common manifestations are brittle bones susceptable to multiple frac-
tures, as well as deafness, blue sclera, thin skin, slow healing of wounds, loose joints,
and hernia. The disease is most commonly inherited as a Mendelian autosomal
dominant. Current views are that Ol is characteristic of a defect in the maturation or
synthesis of one of the structural proteins, probably collagen.

Researchers at the Montreal Children’s Hospital have discovered that OI skin
fibroblasts, cultured in vitro, exhibit a morphological defect when compared with
normal cells. Specifically, “normal cells in log phase have an elongated spindle
shape, whereas OI cells at the same stage of growth in log phase are tesselated and
irregular in shape. The difference between OI and normal cells is exaggerated in the
stationary phase of culture. The shape of normal fibroblasts allows them to inter-
calate with each other in a regular or “smooth” pattern. On the other hand, the OI
fibroblasts, because of their irregular shapes, present a “rough” appearance” [7, p.
85].

Figures 1a and b are half-tone reproductions of cell contrast microscopic images
depicting normal and OI cell cultures, respectively, in the stationary phase. This
image pair is a particularly good example of how the morphology difference between
normal and OI cells results in cultures with visually different textures. Although such
textural differences appear to be consistent, they can be quite variable and, more-
over, are often extremely subtle. For example, compare Figs. lc and d with one
another and with Figs. 1a and b.

The large variation in cell morphology makes the detection of OI by visual
inspection of fibroblast culture images a nontrivial problem. A case in point is the
following experiment. Two hundred twenty-four culture slides of skin fibroblast
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F16. 1a. Image of a normal fibroblast culture showing the distinguishing morphological characteristics
of normal cells.

cultures (in vitro), most of which were in stationary phase, were examined by a panel
of six specialists at the Montreal Children’s Hospital. The doctors, working indepen-
dently, were instructed to classify each sample image as either normal or OI. Only 51
of the samples were unanimously placed in the same group. Of these 51 samples,
only 35 were classified correctly; an accuracy of about 69%. The group of 51 samples
constituted the primary data set for our computer classification experiments. Our
system outperforms the specialists by a margin of about 20% on this data set.

3. CO-OCCURRENCE MATRICES

In this section, we formally define gray-level co-occurrence matrices (GLCMs)
and generalized co-occurrence matrices (GCMs). Let F be a rectangular, discrete
image containing a finite number of gray levels. F may be defined over the domain

D= {(x,y):x,y elLx€[0,n,),y E[O, ny)},

by the relation

= {((x, y),k):(x,y)ED, keI k E[O, ng),k:f(x, y)},
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F1G. 1b. Image of an OI fibroblast culture showing the distinguishing morphological characteristics of
OI cells.

where n, and n, are the horizontal and vertical dimensions of F, n,, is the number of
gray levels in F, and [ is the set of integers.

The (normalized) GLCM, G, is a square matrix of dimension n i and 1s a function
of both the image, F, and a displacement vector
d={[x, »1:(x|.|»]) € D, || [x, »1||> 0}
in the image plane, which constitutes the (second-order) spatial relation; that is,

G(F,d)=[g,(F.d)]

Its elements, g;;, are the probabilities of co-occurring gray levels in F which are
separated by 4:

gij(F'r ‘;) = #{((xle )ﬁ)s(xzs )"2)): (xis Jﬁ):(xz» yz) e D,

(x5, v, ] =[x, 1] = grf(‘xlﬁ n) =i, f(x2, 1) :f}/N’
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F1G. lc. Tmage of a normal culture that is easily misclassified as OI.

where # denotes set cardinality. The numerator is the frequency of pairs of pixels in
F, such that the first pixel of each pair has gray level i and coincides with the tail of
d, while the second pixel has gray level j and coincides with the head of 4. The
denominator is a normalization factor which is equal to the total number of paired
occurrences

= #{((xls )’1)=(x2:}’2)): (x, Vi) (X2, ;) €D, [ in ] — [x1, 7] = d—}

and serves to normalize the GLCM so that it approximates a discrete, joint
probability density of co-occurring gray levels.

It is easy to show that if the direction of the displacement vector is reversed, the
effect on the resulting GLCM is one of matrix transposition. Since a reversal in the
direction of the displacement vector does not change the co-occurrence probabilities
(GLCM elements) but simply transposes them, it does not yield any new informa-
tion about the image. In practice, then, symmetric spatial relations, where no
distinction is made between co-occurring pixels at the head and tail of the displace-
ment vector, are employed. The use of symmetric spatial relations results in
symmetric GLCMs. Equivalently, symmetric GLCMs may be obtained by pooling
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F1G. 1d. Image of an OI culture that is easily misclassified as Normal.

frequencies of co-occurring gray levels separated by both d and —d:

G(F,=d)”
=4[G(F,d) + G(F,—d)]

G(F,=*d)

a(F,d)+G(F,a)].

Although there is less textural information in symmetric GLCMs than there is in
asymmetric GLCMs, the former are more convenient from a computational point of
view. In addition, by employing symmetric GLCMs, one effectively halves the
uncomfortably large number of possible spatial relations that may have to be
considered.

The GLCM was defined by specifying

1. an image feature (the pixel),

2. attributes of the feature (its position and gray level), and

3. a spatial relation (the displacement vector defined on the position attributes
of pairs of features).
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The definition of generalized co-occurrence matrices (GCMs) makes use of the
following three generalizations.

First the notion of image feature is extended to a set of more complex features
including edge points (pixels marking the location of intensity edges in the image),
edge segments (formed by grouping edge points), uniform regions, etc. Let this set of
features be denoted by

Y= {yi: iel,i E[O, ny)}
The second generalization allows each image feature to possess a set of attributes:
A= {a;:i€li€[0,n,)]}.

For example, an edge point can reflect the properties of the underlying image
intensity profile to which it corresponds by possessing a position, a contrast, an
orientation, and a fuzziness attribute. Attribute a of feature y can take on a number
of distinct values:

v (y)={k:k€l, ke[0,n,),0,(y) =k}.

For example, the edge point orientation attribute may be quantized to eight different
integer values, in the range [0, 7], denoting angular increments of 45°.

The third generalization involves an extension of the spatial relation notion. It is
convenient to define a Boolean function of pairs of features (specifically, of their
position attributes),

R(y:, y;) = R'(position( y,), position( ¥,))s

called a spatial predicate [2]. An arbitrary second-order spatial relation between
pairs of features may then be specified using an appropriate spatial predicate.

With the above generalizations, we can now define the generalized co-occurrence
matrix. The GCM of an attribute, a, over a set of image features Y, pairs of which

satisfy a spatial relation, R, is a square matrix of dimension n, and is defined as
follows:

e )=o)
where

(Y, a, R) = #{(ye, »1) :¥e> 1 € Y, R(y, 1) = TRUE,
v(y) =i,0,(»)=j}/N.
Once again, a normalization factor
N = #{(ykv )’1) 2 e i = R(J’k: )’1) = TRUE}

is required so that the matrix will approximate a discrete joint probability density of
co-occurring attributes under the given spatial relationship.
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Textural information is usually extracted from co-occurrence matrices by texture
descriptor functions which summarize the contents of these matrices. Fourteen such
functions for GLCMs were proposed by Haralick et al. [5]. Four of these appear to
be more useful than the rest. They are:

(1) Angular Second Moment: ASM = ¥, ¥ g2,
Ty

(2) Contrast HCON =D (1 — g, .
i
(3) Entropy :ENT =3 > — g logg, .,
LELT.
(4) Correlation :COR =3 F(ijg;; — uxt,)/5,5,,

A

where g, are elements of a GLCM, u, and s, are the mean and standard deviation of
the marginal probability density obtained by summing over the rows of the GLCM,
and u, and s, are the corresponding statistics for the column sums. These four
functions can also be used as meaningful texture descriptors for GCMs. To do this,
we replace the g;; by ¢;;, the elements of the GCM. Special care must be taken in
applying the CON descriptor to GCMs, however, since the (i — j)* term must be
replaced by a general dissimilarity function [2] whose form is such that it is
meaningful given the particular image feature attributes used for computing the
GCM. For example, the appropriate dissimilarity function for edge point orienta-
tions quantized to n values, equally spaced in the range [0, 27 ], is

Sin(2(n—7:1_j(i —j)).

The interpretation of these descriptors in terms of various perceived properties of
texture are discussed in [5] and [2].

The success of co-occurrence-based representations in applications, especially
those involving the use of pattern recognition techniques for texture discrimination,
is often critically dependent on the fidelity with which the co-occurrence matrices
capture the structure of the underlying textures. This, in turn, is dependent on the
particular spatial relations used for computing the co-occurrence matrices. In
previous research, we formulated a statistical approach for finding those spatial
relations which yield matrices that maximally capture a texture’s structure [12].
These matrices are the ones to be preferred for the design of successful pattern
classifiers.

Assuming that a texture is structured (i.e., that it is generated by a process that is
not purely random), then a GLCM that captures this structure should have highly
dependent rows and columns. That is, pixel gray levels occurring at one end of the
displacement vector should bias the probabilities of gray levels occurring at the other
end. This assumption is reasonable, to a greater or lesser extent, for many natural
textures. It motivates a quantitative (chi-square) measure of the row /column inde-
pendence of co-occurrence matrices. It is important to have a measure of this sort
available because it represents a means of finding those spatial relations which yield
optimally performing matrices. One of the results of experiments involving this

disling) —




DETECTION OF OI BY TEXTURE ANALYSIS 2357

measure 1s that the best performing co-occurrence matrices are those that are
computed using displacement vectors whose lengths are equal to the size of the

textural primitives [12]. This result is exploited in our OI detection system, which is
described next.

4. IMPLEMENTATION AND RESULTS

To discriminate images of normal fibroblast cultures from OI cultures, we employ
standard pattern recognition techniques [3]. A number of texture descriptors are
derived from GLCMs and GCMs, computed over a culture image. These descriptors
constitute a feature vector (of length L) which describes the texture depicted in the
image. Each image thus represents a sample point in ( L-dimensional) feature space.
The classification problem is to find separating hypersurfaces, or decision boundaries,
which partition feature space into a number of hypervolumes designating different
classes. A simple way of determining the decision boundaries is by a “supervised

[ el Juttlib oy

FiG. 2. Gray-level co-occurrence matrix (dimensions 16 X 16) computed over the texture of Fig, la
using displacement vector [—8,8]. (Note that the matrix is shown as a surface in 3-space, under
perspective projection. Matrix elements form a grid of points whose heights above the base plane
correspond to the scaled magnitude of these elements. The main diagonal of the matrix runs from the
upper left to the lower right corner of the plane,
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FIG. 3a. Intensity edge magnitude map for the culture image shown in Fig. la.

training” procedure where the classifier is trained on a set of samples whose true
classes are known. Our implementation uses a minimum Mahalanobis distance,
linear discriminant classifier that computes a set of linear discriminant functions
defining hyperplanar decision boundaries. The mathematical details of the classifier
are given in [12]. The classifier 1s trained on a set of known samples and, in this
application, computes a single decision boundary separating normal from OI culture
samples. An unknown sample may then be assigned to a particular class depending
on which side of the decision boundary it falls.

The 51 skin fibroblast cultures described in Section 2 were digitized from slides
into 128 X 128 pixel images with 64 gray levels. The image intensities were then
requantized into 16 gray levels occurring with approximately equal probabilities in
order to compensate for lighting condition variations among the originals and, thus,
to avoid discriminations based on overall brightness and contrast differences.

The elements of the feature vectors are obtained as follows. The first set of texture
descriptors are derived from symmetric GLCMs, computed using spatial displace-
ment vectors aligned along four directions, de {[k.0], [k, £),[0, k],[—k, k]}. The
size of the displacement vectors, &, was chosen to be eight pixels so that it matches
the average size of the textural primitives which, for these textures, are individual
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FIG. 3b. Intensity edge orientation map for the culture image shown in Fig. 1a. Note that the directions
are quantized to eight values in 45° increments.

fibroblasts. The reasons for using this criterion in selecting k& were outlined at the
end of the previous section. A GLCM obtained from the cell culture image of Fig. la
1s shown in Fig. 2. The ASM, CON, ENT, and COR texture descriptors are then
computed over the four matrices obtained using the chosen value of k. The first eight
elements of each feature vector are the means and ranges of these four descriptors.
More information about the shapes of cells is obtained from the next set of texture
descriptors, which are derived from GCMs based on directions of edge point image
features. The edge point features are obtained as follows. A 5 X 5 edge operator
(described in the Appendix) is first convolved with the image. The operator
generates an edge magnitude and edge orentation (quantized to eight values
representing 45° increments) at each point in the image. Figure 3a is the edge
magnitude map and Fig. 3b is the edge orientation map for the image in Fig. 1a. The
magnitude response is then thresholded and the marked edge regions are thinned.
The thinning is accomplished by supressing any marked pixel, if there exist other
such pixels having higher magnitudes and lying on a line perpendicular to the
marked pixel’s orientation. This line extends for a length of 2 pixels on either side of
the marked pixel. The remaining edge points are the set of local features and have
position and orientation attributes. Figure 4 shows the edge point features for the
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F16. 4. Marked edge points for the culture image shown in Fig. la. These points constitute the set of
features on which the generalized co-occurrence matrices are built.

image in Fig la. Note how the predominant borders of individual cells have been
extracted. The spatial predicate, used for computing the GCM over edge point
orientations, is TRUE if the (city block) distance between two edge pixels is less
than or equal to k /2, where k is the distance determined above. A GCM resulting
from the image in Fig. 1a is shown in Fig. 5. Finally, the remaining four elements of
the feature vector are the values of the ASM, CON, ENT, and COR texture
descriptors computed over this GCM.

The classifier was trained on the 51 feature vectors and the training set was then
reclassified as either normal or abnormal. The results are as follows. Approximately
90% of the images were correctly classified. Confusion tables for the computer and
expert’s classification are shown in Fig. 6. In addition to the better overall perfor-
mance, the system is more conservative than the experts. That is, it tends to diagnose
more cultures as Ol than the experts do.

Preliminary experiments had shown that, for this problem, the GLCM descriptors
alone or the GCM descriptors alone, perform about equally, and at a level which is
approximately 13% lower than the set of combined descriptors (see Fig. 7). This
extra 13% comes from the combined use of edge and intensity information. For a
more detailed discussion, and for a comparison of our method with other ap-
proaches to texture classification, see [10].
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F16. 5. Edge direction GCM (dimension § X 8) computed over the set of features shown in Fig.4. Note
that the main diagenal of the matrix runs from the left to the right corner. The prominant peaks, centered
at grid points corresponding to co-occurring edge directions of 1-1, 5-5, 1-5, and 5-1, indicate that the
cells in the culture shown in Fig. 1a have major axes oriented predominantly at 45° with respect to the
horizontal. Furthermore, the deep valleys indicate that very few cell borders run in perpendicular
directions. The low variance of cell orientations indicates that this culture is likely to be normal.

COMPUTER CLASSIFICATION EXPERT'S CLASSIFICATION
Assigned True Class Pesdercd True Class
Class ™. NORMAL ABNORMAL Class ~. NORMAL ABNORMAL
S R s I N ——rm TRkt hbtor]
! : = | : |
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1 I i 1 | :
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: | | ! : !
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e v i b SR 1 } AR G — e

F1G. 6. Confusion matrices for the computer and expert’s classification performances for the 51 cell
culture images.
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GLCM DESCRIPTORS GCM DESCRIPTORS
Assigned True Class Aas gned True Class
Class ™, NORMAL ABNORMAL Class ™. NORMAL ABNORMAL
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| | | ‘[ : :
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Fi1G. 7. Confusion matrices for the computer classification of the 51 cell culture images, using either
GLCM or GCM texture descriptors alone.

5. CONCLUSIONS

We have described a system for detecting Osteogenesis Imperfecta in digitized
images of fibroblast cultures. The system quantifies texture differences related to
fibroblast morphology by employing texture descriptors derived from both gray-level
co-occurrence matrices, and generalized co-occurrence matrices based on intensity
edge directions. The system performs significantly better (90% compared to 69%)
than a team of six medical experts, attempting to discriminate between cultures of
normal and OI cells by a visual inspection of their images.

We have shown that, for our problem, use of both gray level and generalized
co-occurrence matrices results in a better performance than the use of either type
alone. There appears to be some support for this in the psychological literature.
Further support comes from the mathematical observation that more information
about an image is obtained by sampling intensities, together with gradients of
intensities.

If it can be established that the morphological differences between normal and OI
fibroblasts described above also occur in amniotic cells, then our system could be
used as a factor in prenatal counselling, especially since it should be possible to
achieve an even higher reliability by employing a more sophisticated pattern
classifier.

APPENDIX: AN EDGE OPERATOR

The edge operator which was used in the OI detection system is a variation of the
operator suggested by Kirsch [1971] as it was used by Davis et al. [1979]. The
operator requires a partition of the 5 X 5 neighbourhood of a point, p = (x, y), in
the image into the eight regions, r0,...,r7 shown below.

dm—tm— ===+
| | | |
| | | |
9 123 +r2T rl +
] | I
I I I I
et S e
] i I
I rd I P r0 I
t=—tm—t——t—— ==+
| | | |
I I I I
T ES Tr6T r7 +

I
| | i |
+-—t——t——t——t——+
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However, our operator assigns edge magnitudes and orientations differently from
that of Davis et al. Let

a = max[O,S( s&mrk) = 3( s_erk)],

J=0 jj== )
i=0,1,...7, k=1i+ jmod8. (1)

Then, the edge magnitude at p is given by

.
M(p) = maxa,
i=0

and the edge orientation is

O(p) = L(=/4),

where L is equal to the value of i which maximizes M. By convention, the orientation
is assigned so that, when facing in the direction of the edge, the brighter side is on
the left.

Our operator gives a much more homogeneous orientation response than the
operator suggested by Davis er al. The notable difference is in (1), where a max
function is used instead of the absolute value function used by Davis. The max
function suppresses large negative values of its argument which would otherwise lead
to many spuriously assigned orientations near intensity edges in the image. The
resulting orientation response is more consistent, a property that is particularly
important for the computation of edge orientation based co-occurrence matrices in
the OI detection application.
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