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Abstract
The material point method (MPM) is a hybrid Eulerian Lagrangian simulation technique for solid mechanics with significant
deformation. Structured background grids are commonly employed in the standard MPM, but they may give rise to several
accuracy problems in handling complex geometries. When using (2D) unstructured triangular or (3D) tetrahedral background
elements, however, significant challenges arise (e.g., cell-crossing error). Substantial numerical errors develop due to the
inherent C0 continuity property of the interpolation function, which causes discontinuous gradients across element boundaries.
Prior efforts in constructing C1 continuous interpolation functions have either not been adapted for unstructured grids or have
only been applied to 2D triangular meshes. In this study, an unstructured moving least squares MPM (UMLS-MPM) is
introduced to accommodate 2D and 3D simplex tessellation. The central idea is to incorporate a diminishing function into
the sample weights of the MLS kernel, ensuring an analytically continuous velocity gradient estimation. Numerical analyses
confirm the method’s capability in mitigating cell crossing inaccuracies and realizing expected convergence.

Keywords Material point method · Moving least square method · Cross cell instability · Unstructure mesh

1 Introduction

Thematerial pointmethod (MPM) [1]was introduced to solid
mechanics as an extension of both the Fluid-Implicit Particle
(FLIP) method [2] and the Particle-in-Cell (PIC) method [3].
The MPM is a hybrid Eulerian-Lagrangian method, often
referred to as a particle-grid method that retains and mon-
itors all physical attributes on a collection of particles. A
background grid serves in solving the governing equations.
Both Eulerian and Lagrangian descriptions are incorporated
in the MPM to overcome the numerical challenges stem-
ming from nonlinear convective terms inherent in a strictly
Eulerian approach,while avoiding significant grid distortions
typically found in purely Lagrangian methods. The efficacy

B Yadi Cao
yadicao95@gmail.com

1 University of California, Los Angeles, Los Angeles, USA

2 Korea Advanced Institute of Science & Technology, Daejeon,
South Korea

3 Carnegie Mellon University, Pittsburgh, USA

4 University of Utah, Salt Lake City, USA

of the method has been demonstrated in problems concern-
ing extremedeformation of solidmaterials, such as biological
soft tissues [4, 5], explosivematerials [6, 7], sand [8–10], and
snow [11–13].

Based on the specific Lagrangian formulations, the MPM
is categorized into total Lagrangian [14–17] and updated
Lagrangian [18] variants, in which equations are formulated
in different reference configurations. In the total Lagrangian
MPM, numerical dissipation errors or artificial fractures are
not observed; however, challenges arise due to mesh distor-
tions as the connectivity is preserved in a manner similar to
the Finite Element Method (FEM). Conversely, the updated
Lagrangian MPM has been found to exhibit greater robust-
ness, particularly in dealing with demanding scenarios such
as impacts and shocks [8, 19–21], failures and cracks in both
single-phase andmulti-phasematerials [10, 22, 23], and con-
tact mechanics [15, 24–30].

Despite its numerous successes, the updated Lagrangian
MPMmainly adopts a uniformly-structured background grid
that aligns with the axes of the global Cartesian coordi-
nate system, using (2D) quadrilaterals or (3D) hexahedra
for spatial discretization. When boundaries involve com-
plex geometry, however, the aforementioned approach may
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introduce significant challenges in conformally discretiz-
ing the space. Remarkably, many engineering problems,
such as those in mechanical and geotechnical engineering
[31], involve complex boundary geometry. Hence, some
researchers [32–35] have proposed using unstructured (2D)
triangles or (3D) tetrahedra for discretization, which pro-
vides substantial flexibility in the presence of geometrically
complex boundaries.

Unfortunately, most of the existing approaches using
unstructured triangular or tetrahedral elements adopt a piece-
wise linear (C0) basis function [32–35] whose gradient
is discontinuous along element boundaries. In this case,
when particles move from one element to another (i.e.,
crossing element boundaries), a significant error arises—the
so-called cell-crossing error [36]. Because the function gra-
dient becomes discontinuous along element boundaries, the
cell-crossing error leads to severe stress oscillations, causing
significant numerical errors.

Several approaches have been proposed for circumventing
the cell-crossing error, including the generalized interpola-
tion material point (GIMP) method [36, 37], the dual domain
MPM (DDMPM) [38], the use of high-order basis functions
such as B-splines [39, 40], and approaches based on moving
least squares (MLS) basis functions [41, 42]. Unfortunately,
they are either limited to structured quadrilaterals/hexahedra
or are only applicable to 2D cases using triangles [43]. This
leaves the cell-crossing error as an unsolved challenge when
using unstructured tessellations in both the 2D and 3DMPM.

The objective of this study is to address the afore-
mentioned cell-crossing challenge for general unstructured
meshes in both 2D and 3D. The proposed approach is built
upon a new MLS reconstruction process that is suitable
for general unstructured discretization. By incorporating a
diminishing function into the sampleweights of theMLSker-
nel, an analytically continuous function gradient is achieved,
which efficiently eliminates the cell-crossing error. A new
MLS kernel function is derived that can be straightforwardly
implemented into an existing MPM framework.

The remainder of this paper is structured as follows:
Sect. 2.1 introduces the general governing equations of the
MPM and the details of a typical explicit MPM process.
The Moving Least Squares (MLS) approximation and the
MLS-MPM method are discussed in Sect. 2.3.1. A seem-
ingly straightforward yet inherently flawed extension of the
MLS-MPM to unstructured meshes, along with the asso-
ciated cell-crossing challenge, is presented in Sect. 2.3.2.
Section2.3.4 develops a solution to this challenge, accom-
panied by an in-depth analysis and kernel reconstruction
for representative unstructured meshes. Numerical results
affirming the efficacy of the proposed method are reported in
Sect. 3. The paper concludes in Sect. 4 with reflections and
recommendations for future work.

2 Methodology

2.1 Governing equations

Following standard continuum mechanics [44], consider the
mapping x = φ(X, t), which maps points from the (ref-
erence) material configuration, represented by X , to their
corresponding locations in the (current) spatial configura-
tion, represented by x. In this framework, velocity is defined
in two different but equivalent manners. On the one hand,
V (X, t) = ∂x

∂t (X, t) defines the Lagrangian velocity in the
material configuration.On the other hand, theEulerian veloc-
ity in the spatial configuration, is denoted by v(x, t) =
V (φ−1(x, t), t). Furthermore, the deformation experienced
by the material points is quantified using the deformation
gradient, given by F(X, t) = ∂x

∂X (X, t). The determinant
of this gradient, represented by J , is also crucial as it pro-
vides insights into volumetric changes associated with the
deformation process.

Given these definitions, the conservation equations for
mass and momentum (neglecting external forces) are [44,
45]

ρ J = ρ0,

ρ
Dv

Dt
= ∇ · σ ,

(1)

where ρ represents the density, D/Dt is the material deriva-
tive, and

σ = 1

J
PFT . (2)

is the Cauchy stress tensor, which is related to the first Piola-
Kirchhoff stress P = ∂Ψ

∂F , whereΨ denotes the strain energy
density. The evolution of the deformation gradient is given
by

Ḟ = (∇v)F. (3)

Consider a domain represented by Ω . Boundaries on
which the displacement is known, represented as ∂Ωu , are
governed by the Dirichlet boundary condition

xk(x, t) = x̄k(x, t), ∀x ∈ ∂Ωu, (4)

where x̄k denotes the predetermined displacement for com-
ponent k. Boundaries on which the tractions (forces per unit
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area) are predefined, represented as ∂Ωτ , adhere to the Neu-
mann boundary condition

σkl(x, t)nl = τ̄k(x, t), ∀x ∈ ∂Ωτ , (5)

where τ̄k is the prescribed traction for component k, and
σkl(x, t)nl represents the traction inferred from the stress
tensor σkl acting in the direction of the outward unit normal
vector nl . For ease of reference and notational clarity in our
framework, the subscripts k and l refer to components k and
l of any given vector or tensor.

To solve the conservation equations for mass and momen-
tum within the MPM framework, one often turns to the weak
form. Specifically, a continuous test function φ, which van-
ishes on ∂Ωu , is employed. Then, both sides of the equation
are multiplied by φ and integrated over the domain Ω:

∫
Ω

φρ ẍkdΩ =
∫

∂Ωτ

φτkd A −
∫

Ω

∂φ

∂xl
σkldΩ. (6)

At this juncture, integration by parts and the Gauss integra-
tion theorem are utilized, nullifying the contributions on ∂Ωu

due to the vanishing of the test function on this boundary sub-
set.

For clarity, in the remainder of this paper, the terms “grids”
or “grid nodes” will exclusively refer to regular background
grid nodes. In contrast, “mesh nodes” will denote nodes
in general, unstructured meshes. For simplicity, we do not
change the common abbreviations such as Particle-To-Grid
(P2G) and Grid-To-Particle (G2P).

In the standard implementation of the MPM, physical
quantities such as mass and velocity are retained at mate-
rial points and then projected onto background grid nodes
for further computation. (6) is discretized on these nodes
by the Finite Element Method (FEM) and then solved using
either implicit or explicit time integration schemes. This arti-
cle focuses on the explicit symplectic Euler time integration
method. While the extension to implicit methods is possible
and straightforward, it would be orthogonal to the contribu-
tion of the article.

2.2 Explicit MPM pipeline

The explicit MPM pipeline in each time step has four main
stages: (1) the transfer of material point quantities to the
background nodes, known as Particle-To-Grid (P2G), (2) the
computation of the system’s evolution on these background
nodes, (3) the back-transfer of the evolved quantities to the
material points, known asGrid-To-Particle (G2P), and (4) the
execution of necessary post-processings, such as elastoplas-
ticity return mapping and material hardening. Algorithm 1
presents an overview of the MPM pipeline, and the main
stages are elaborated below.

Algorithm 1 Explicit MPM
1: Determine material point-node connectivity, calculate kernel func-

tions wp,i
2: P2G:

Nodal mass: mi = ∑
p ρpVpwp,i

Nodal momentum: pi = ∑
p v pρpVpwp,i

Nodal velocity: vi = pi/mi
3: Internal force: f inti = − ∑

p Vpσ p∇wp,i

4: Gravity: f exti = ∑
p wp,im pgp

5: Nodal force: f i = f exti + f inti
6: Deformation of background nodes:

Updated nodal accelerations: ẍi = f i/mi
Update nodal velocities: ṽi = vi + Δt ẍi
Enforce Dirichlet conditions: ẍi = 0 and f i = 0

7: G2P:
Update point velocities: vΔt

p = v p + Δt
∑

i wp,i ẍi
Update point positions: xΔt

p = ∑
i wp,i x̃i

8: Update deformation gradient: FΔt
p =(

I + ∑
i (x̃i − xi )(∇wp,i )

T
)
F p

9: Update point volume: VΔt
p = det(FΔt

p )V 0
p

10: Update point stresses: σ p = C(F p)

11: Enforce plasticity, reset background deformation, advance to
next timestep

Stage 1: P2G In theMPM,material points are the Lagrangian
particles that track the location of the continuum along with
physical attributes such as mass, position, and velocity. To
evolve the dynamics on the background grid or mesh nodes,
an interpolation function—also known as a transfer kernel
or simply a kernel—needs to be determined to relate the
information from particles to their nearby active nodes. Gen-
erally, for a particle located at x p and all surrounding nodes
at x1, . . . , xN , the stacked kernel values associating the two
sides are:

w p = [wp,1, . . . , wp,N ]T = w(z; x p, x1, . . . , xN )

∣∣∣∣
z=x p

.(7)

Specifically, we include x1, . . . , xN in this definition
because constraints, such as the partition of unity, can
only be determined while considering all active neighbors.
Nonetheless, the neighbors are implicitly detected by x p; for
conciseness, we omit this implicit condition in the remaining
part of this paper. The kernel supports transferring informa-
tion between the nodes and any location z near x p; in most
MPM works, the kernel is evaluated at the lagged x p before
the completion of P2G, i.e., we set z = x p and keep the
kernel unchanged for both P2G and G2P.

Following this, the stacked gradients of the kernels are
obtained with respect to the spatial variable z, then evaluated
at x p:

G p = [g p,1, . . . , g p,N ]T = [∇zw(z; x p)
] ∣∣∣∣

z=x p

. (8)
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In the explicit MPM framework, the lumped mass at each
background node is defined as mi = ∑

p ρpVpwp,i , where
ρp represents the density and Vp the volume of each nearby
particle. This definition facilitates the calculation of the back-
ground node momentum, expressed as

mi ẍi = f inti + f exti , (9)

where ẍi is the acceleration of node i , and f inti and f exti
represent the internal forces and the external forces acting on
the it, respectively:

f inti = −
∑
p

Vpσ p∇wp,i , (10)

f exti =
∑
p

m pwp,i bp +
∑
p

m pwp,i g p. (11)

The stress tensor σ is determined by the deformation gra-
dient F through some constitutive relation, indicating how
material deformation influences internal forces:

σ = C(F). (12)

Stage 2: Evolution on theBackgroundNodesUsing the accel-
erations obtained from (9), we integrate the velocities and
positions of the background nodes using a symplectic Euler
time integrator employed throughout this work:

ṽi = vi + Δt ẍi (Velocity Update), (13)

x̃i = xi + Δt ṽi (Position Update), (14)

where the time step size Δt is chosen based on the CFL
condition [46].
Stage 3: G2P The FLIP scheme [2] is utilized for all experi-
ments discussed in Sect. 3. In FLIP, the particle positions and
velocities are updated as follows:

xΔt
p =

∑
i

wp,i x̃i , (15)

vΔt
p = vp + Δt

∑
i

wp,i ẍi . (16)

Subsequently, the evolution of the deformation gradient F in
(3) is conducted as follows:

FΔt
p =

(
I +

∑
i

(x̃i − xi )(∇wp,i )
T

)
F p. (17)

Given the initial deformation gradient F0 = I and initial
volume V 0

p , particle volumes are updated as:

VΔt
p = det(FΔt

p )V 0
p . (18)

Stage 4: Post-Processing and Resetting the Background
Nodes This stage encompasses all post-processing tasks such
as plasticity return mapping and material hardening [47]. In
the updated Lagrangian MPM, the grid is reset to a non-
deformed state at the end of each timestep. This is achieved
by keeping the grid or mesh constant while zeroing all infor-
mation such as velocity and acceleration.

2.3 Transfer kernel

In the MPM, the transfer kernel is crucial for relaying par-
ticle information to adjacent background nodes. Techniques
such as the B-spline MPM [39] and GIMP [36] use a specific
compact support function to smoothly influence nearby grid
nodes, whereas methods like Moving Least Squares MPM
(MLS-MPM) [41] determine the kernel implicitly, based on
the proximity of nodes. However, both strategies follow a
similar workflow, which involves for every particle: (1) iden-
tifying the set of nearby nodes, and (2) calculating the transfer
kernel and gradient for every particle-node pair.

This section first introduces the general MLS recon-
struction process and the application of MLS-MPM with a
comprehensive linear polynomial basis. It is followed by a
discussion on a naive extension of MLS-MPM to unstruc-
tured meshes, highlighting the steps of identifying nearby
nodes and computing the transfer weights. We then delve
into the desirable properties of the kernel, emphasizing why
the naive extension fails to yield continuous gradient recon-
structions when particles cross cell boundaries. Finally, we
propose a solution addressing the issue of discontinuous gra-
dient reconstructions and introduce UMLS-MPM.

2.3.1 Introduction to general MLS andMLS-MPM

Given the kernel definition in (7), the Moving Least Squares
(MLS) method aims to use a polynomial-based kernel to
reconstruct û for some function u at any location z near a
given particle location x p. It is defined as follows:

û(z; x p) = pT (z − x p)c(x p), (19)

where p(z − x p) = [p0(z − x p), p1(z − x p), . . . , pl(z −
x p)]T represents the polynomial basis, c(x p) = [c0(x p),

c1(x p), . . . , cl(x p)]T are the corresponding coefficients, and
l indicates the total order of the basis. The coefficients c(x p)

are determined by minimizing the sum of weighted square
errors between the sampled function values ui and the recon-
structed values ûi at nearby node positions xi :

c(x p) = argmin
∑
i∈Bx p

d(xi − x p)

||ui − pT (xi − x p)c(x p)||2, (20)

123



Computational Mechanics

where d is a weighting function that takes proximity as input,
and Bx p is the set of sample points in the local region around
x p where the weighting function is non-zero.

This minimization leads to the following solution for
c(x p):

c(x p) = M−1(x p)B(x p)u, (21)

where

M(x p) =
∑
i∈Bx p

d(xi − x p) p(xi − x p) pT (xi − x p)

= P(x p)D(x p)P(x p)
T ,

(22)

and

B(x p) = P(x p)D(x p). (23)

Here we use the stacked notations: u = [u1, . . . , uN ]T
is the stacked sample values, P(x p) = [ p(x1 − x p), . . . ,

p(xN − x p)] is the stacked basis, and D(x p) is the diagonal
sample weighting matrix with Di,i (x p) = d(xi − x p).

Substituting (21) into (19), we obtain the reconstruction:

û(z; x p) = pT (z − x p)M−1(x p)B(x p)u

= w(z; x p)
T u,

(24)

where the last derivation is obtained by defining the kernel
for MLS, and note that M−1(x p) is symmetric:

w(z; x p) = BT (x p)M−1(x p) p(z − x p). (25)

Similar to (7) and (8), in the context of MPM, we again
set the spatial variable z to be the particle positions x p before
completing P2G and obtain the kernel value:

w p = w(z; x p)

∣∣∣∣
z=x p

= BT (x p)M−1(x p) p(0), (26)

as well as the kernel gradient:

G p = [∇zw(z; x p)
] ∣∣∣∣

z=x p

= BT (x p)M−1(x p)(∇z p)(0).

(27)

The Linear Polynomial Basis Case A special case involves
using a complete linear polynomial basis, as in MLS-MPM

Fig. 1 Schematic plot of the zeroth and first ring of neighbors

[41], where p(z − x p) = [1, (z − x p)
T ]T . Setting z = x p

in this basis, we have:

p(0) =
[

1
0dim

]
,

(∇z p)(0) =
[

0Tdim
Idim,dim

]
,

[ p(0), (∇z p)(0)] = Idim+1,dim+1;

(28)

Substituting (28) into (26) and (27) and stacking w p and
G p in a column, we obtain a compact formula for both the
kernel and the gradient:

[w p, G p] = BT (x p)M−1(x p)[ p(0), (∇z p)(0)]
= BT (x p)M−1(x p)Idim+1,dim+1

= BT (x p)M−1(x p).

(29)

Applying (29) to the stacked function sample values at
nodes u, we obtain a compact formula for both the recon-
structed function value û p and the gradient ∇z û p of u:

[
û p

∇z û p

]
= [w p, G p]T u = M−1(x p)B(x p)u. (30)

We adopt the linear basis throughout this work.

2.3.2 Extending MLS-MPM onto unstructured meshes

We select MLS-MPM as our foundation because of its inher-
ent versatility, allowing it to be applied to adjacent nodes
without reliance on specific topological or positional con-
straints. Our implementation and experiments are based on
triangular and tetrahedral cells. Nonetheless, it is worth not-
ing that our method can easily be extended to any tessellation
by designing a smooth and locally diminishing function ηv

compatible with the tessellation, such as the one in (32) for
simplex cells.

Identifying Nearby Nodes Around a Particle To determine
the nearby nodes for a given particle p, we first locate the cell
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Fig. 2 a When N 0
p alone is

selected as the active nearby
nodes, as a particle crosses the
cell edge, the nodes indicated by
the blue and red boxes are added
or removed, respectively.
Consequently, the weights there
must approach zero to ensure C0
continuity, resulting in kernel
degeneration along the edge. b
Advancing to C1 addresses this
issue by incorporating a
sufficient number of
surrounding nodes to fully
encompass the particle

that encompasses p and refer to its nodes asN 0
p , representing

the 0-ring neighbors of p. Then, we define N 1
p as the 1-

ring neighbors, which comprise all nodes connected to N 0
p .

Note that N 0
p ⊂ N 1

p . Similarly, we can define N 2
p , . . . in an

analogous manner, as illustrated in Fig. 1.
To quickly search for the cell that contains p, we pre-store

the adjacency relationship between the spatial hashing grid
and the mesh cells. When given a x p, the spatial hash grid
is queried, and we then only check the cells adjacent to this
hash grid. The detailed pipeline can be found in Appendix A.

Ring Level Selection for Nearby Nodes When a specific
level of ring neighbors is chosen as the active set of nodes, a
natural question arises:

What is the minimum number of rings required to satisfy
the desired properties of the MPM kernel?

Assume N 0
p is selected, and the particle only affects the

nodes i ∈ N 0
p ; since at least C0 continuity is required for the

kernel, when the particle passes one interface of the cell, the
node not on the interface is removed from the active set and
the kernel for itmust be zero. This leads to the kernel degener-
ating, i.e., the kernel affecting merely the interface when the
particle crosses it, as depicted in Fig. 2a. Conversely, opting
for 1-ring neighbors,N 1

p , effectively circumvents this issue,
ensuring a non-degenerate kernel interaction as illustrated in
Fig. 2b.

Computing the Weights For conciseness, we replace the
function input with the subscript, for example replacing (x p)

with p in all related equations, the reconstruction reads:

[
û p

∇z û p

]
= M−1

p B pu. (31)

2.3.3 Required properties for the transfer kernel

Consider the essential desirable properties for an MPM ker-
nel:

1. The kernel must be a non-negative partition of unity. This
means that the sum of the kernel weights for all nearby
vertices of a particle should equal 1; i.e.,

∑
v∈N 1

p
wv = 1,

with each individual weight wv ≥ 0,∀v ∈ N 1
p .

2. There should be a continuous reconstruction of both the
function value and gradient as the particle crosses the cell
boundary.

With MLS-MPM, the partition of unity is inherently assured
by the characteristics of MLS [48], and non-negativity is
assured by the uniform sampling of grid nodes (i.e., no degen-
erate samples). Lastly, with uniform grid nodes, MLS-MPM
ensures continuous reconstruction by utilizing a B-spline for
sample weighting and provides C1 continuity.

However, this property holds only under uniform grid
nodes with spacing properly aligned with the support of the
B-spline weighting function. The key is that the B-spline
function approaches zero for grid nodes that are about to be
added or removed.Consequently, the influence of the discrete
change in the set of active nodes on the assembly of M p and
B p in (30) is infinitesimal, ensuring no abrupt change during
the reconstruction.

Due to the varying spacing of the unstructured meshes,
the weighting function is not guaranteed to approach zero for
the added or removed nodes during cell crossings, leading to
discontinuous reconstruction. This issue will be addressed in
the next section.
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Fig. 3 1D meshes: a uniform. b Uniform but truncated. c Periodically
shrinking/expanding

Still, we can borrow the key insight fromMLS-MPM that
“the weighting function for added or removed nodes should
approach zero” and design a scheme to enforce this prop-
erty. The solution will be discussed and presented in the next
section.

2.3.4 Remedying discontinuous reconstruction across the
cell boundary

The jump change originates from the discrete change of the
active setN 1

p during particle cell crossing if their influence on
the MLS assembly is nonzero. Hence, an intuitive solution is
to artificially diminish their influence on the MLS assembly.
To achieve this, we multiply any initial sample weighting
function dp,i , such as B-spline, by a smooth diminishing
function ηp,i ; i.e., d ′

p,i ← ηp,i dp,i . Here, ηp,i → 0 for nodes

that are added or removed from the active setN 1
p during the

cell crossing. A detailed proof of the efficacy of this approach
is provided in Appendix B.

For simplex elements, we design the following ηp,i :

ηp,i =
∑
n∈N 0

p

Bp,nAi,n, (32)

where A denotes the mesh’s adjacency matrix; an adjacency
matrix is a binary matrix representing the connectivity of a
graph, where each Ai, j = 1 indicates the presence of an edge
between nodes i and j . A mesh can naturally be viewed as a
graph by connecting an edge between every pair of adjacent
nodes in a cell. Bp,n represents the barycentric coordinate for
particle p with respect to a specific node n ∈ N 0

p . Taking a

2D simplex, the triangular cell, as an example, the barycentric
coordinates of a location x p are triplets of numbersb1, b2, b3,
subject to b1 + b2 + b3 = 1. If these values are considered
as masses placed at the nodes of the triangle, the centroid of
thesemasseswill be at x p.Generally, barycentric coordinates
can be calculated as follows:

Bp,ni = det
([xn1 , . . . , xni−1 , x p, xni+1 , . . . , xndim+1 ]

)
det

([xn1 , . . . , xndim+1 ]
) . (33)

Combining (33) with the adjacency matrix definition pro-
vides a more geometric interpretation of the design (32): for
i ∈ N 1

p , ηp,i is the sum of the barycentric weights for all
n ∈ N 0

p that are connected to i .Note thatηp,i = 1, ∀v ∈ N 0
p .

Appendix B proves the claimed diminishing property for this
design in the simplex cell, while Fig. 25 provides a simple
visual illustration of the proposed ηp,i .

2.3.5 Verification of the proposed kernel

To verify that the proposed method can produce continuous
reconstruction, analytical and numerical solutions of some
examples are produced in 1D and 2D test cases, respectively.

For the 1D case, the first basic verification is conducted
on a uniform mesh, as shown in Fig. 3a. Figure4a shows the
correct kernel reconstruction with the diminishing function
η, while Fig. 4b, as an ablation, shows that the reconstruction
is discontinuous even for the simplest uniform mesh, prov-
ing the necessity of η. The detailed setup for this analytical
solution is provided in Appendix C.

Note that when a particle is in a boundary cell, such as
Node 3 in Fig. 5, negative weight values may be obtained for
some interior nodes. This is caused by kernel degeneration
due to the absence of a first ring of neighbors on the boundary
side during MLS sampling. To remedy this problem, which
can cause numerical instabilities [49], an extra layer of cells
beyond the real boundary is included in our experiments.

The next verification is on a periodically shrinking and
expanding 1D mesh (Fig. 3c). The mesh contains cyclic cell
sizes of [. . . , 1, R, R2, R, 1, . . . ] designed tomimic the tran-
sition between varying mesh resolutions. The size transition
ratios tested range from 1.1 to 1.5 to correspond with typi-

Fig. 4 Comparison of kernel
values and gradient estimations
on a uniform 1D mesh a with
and b without applying the
diminishing function
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Fig. 5 The negative weight for Node 3 (yellow) when the particle is in
the boundary cell and there is no extra layer

cal transition ratios in FEM analysis. Kernel reconstructions
are conducted on Nodes 5, 6, 7, and 8 as a full cycle. As
shown in Fig. 6, both the kernel and the gradient estimations
are piece-wise C1.

We note that kinks can be seen in the function value plots
in Fig. 6, leading to the potential confusion that the gradi-
ent is discontinuous. However, the plots of kernel values are
w(z; x p)|z=x p = w(x p; x p) versus x p, as in (7); for themis-
leading statement to hold true, the gradient should have been
taken with respect to the plot axis x p, i.e., ∇x pw(x p; x p),
which is not the case according to (8).

The ablation tests are also performed on a 2D unstruc-
tured mesh featuring a “&” shape. The comparison between
scenarios with and without the use of η, as shown in Fig. 7a,
b respectively, validates the importance of η and the effec-
tiveness of the proposed method in managing unstructured
meshes.

Finally, we experimentally show that UMLS-MPM can
seamlessly be combined with other schemes, such as the
Affine Particle in Cell (APIC) scheme [50, 51] to help con-
serve the total angular momentum of the system. For details,
see Appendix D.

Fig. 6 Kernel values (left
column) and gradient
estimations (right column) on a
periodically
shrinking/expanding 1D mesh
with varying size transition rate
R
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Fig. 7 Comparison of the kernel
on an unstructured mesh a
without and b with the
application of the diminishing
function

Fig. 8 Setup of the 1D bar vibration test

3 Experiments and results

To demonstrate and assess the effectiveness of our approach,
particularly its reduced cross-cell error owing to the contin-
uous gradient reconstruction, we have chosen representative
test cases fromprior related studies. Our benchmarking relies
on analytical solutions when feasible; alternatively, we use
the standardMPMwithB-spline orGIMPbasis functions at a
sufficiently high resolution. All experiments were carried out
on a single PC equipped with an Intel® Core™ i9-10920X
CPU.

3.1 1D vibrating bar

Consider the 1D vibration bar problem shown in Fig. 8a
[52]. The left end of the bar is fixed and the right has a sliding
condition in the x direction. The physical properties of the
bar are: E = 100Pa, ν = 0, L = 25m, and ρ = 1kg/m3.
The initial velocity conditions are u̇(x, t = 0) = v0 sin (β1x)
with β1 = π

2L .
The analytical expression of the center of mass in this

problem is

x(t)CM = L

2
+ v0

β1Lω1
sin (ω1t) , (34)

and

u̇(t)CM = v0

β1L
cos (ω1t) , (35)

with ω1 = β1
√
E/ρ.

The original experiments in [52] included two velocity
settings: v0 = 0.1m/s and v0 = 0.75m/s. The lower veloc-
ity setting, v0 = 0.1m/s, was utilized solely for validation
against the linear kernel MPM, as it does not involve cell
crossings. Here, we focus on the higher-velocity setting to
assess the effectiveness of UMLS-MPM in addressing cell-
crossing errors.

Figure 9 presents the convergence rate of UMLS-MPM
with grid refinement. Specifically, Fig. 9a shows that, with
the exception of the coarsest resolution dx = 2m, UMLS-
MPM consistently achieves high accuracy, with a maximum
root mean square error (RMSE) of 0.554% in particle dis-
placements. Figure9b indicates that the convergence rate is
approximately second order on coarser grids, but it starts
to level off on finer grids due to mounting temporal errors,
aligning with established MPM theory [53].

Figure 10a displays the stress profile for a particle located
at x0 = 12.75m, which undergoes the most frequent
cell crossings during its vibrational motion. The outcomes
achieved with UMLS-MPM showcase a remarkable level of
smoothness and precision. Figure10b illustrates the energy
dynamics for the entire system, revealing that the system’s
energy is largely conserved throughout the simulation, with
only slight fluctuations. We believe the fluctuations in the
energy plot are due to the symplectic integration schemes or
the combined effect of the FLIP scheme. Similar phenomena
have been observed in previous works [54] and [55], respec-
tively. These findings collectively underscore the robustness
andprecisionofUMLS-MPMinmanaging intense cell cross-
ings by particles.
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Fig. 9 Plots of a the center of
mass displacement of the bar
and b convergence rate of the
RMSE of particle displacements

Fig. 10 Plots of a the stress at the sampled particle closest to [17.5, 0.5]
and b the system energy

3.2 2D collision disks

Next, we considered the problem of two colliding elastic
disks shown in Fig. 11a [52]. The physical properties of the
disks are: E = 1000Pa, ν = 0.3, ρ = 1000kg/m3, and
v = ±(0.1, 0.1)m/s for the left and right disks, respectively.
Each disk was discretized with 462 material points using the
triangle mesh of a disk. The background mesh was generated
using Delaunay triangulation with a target element size of
0.025m.We plot key snapshots of the simulation in Fig. 11b–
d, with the impact at 1.5s, total retardation right before 2.0
s, and rebounding separation right before 2.5s.

Quantitative results for the collision disks are presented
in Fig. 12. In Fig. 12a, a comparison of momentum recov-
ery during collision between UMLS-MPM and the B-spline
MPMwith sufficiently high resolution is shown.While a per-
fect momentum recovery, such as that in the rigid collision
(dashed gray line in Fig. 12a), is not expected, UMLS-MPM
approaches this limit effectively. Similarly, Fig. 12b displays
the kinetic energy recovery during the collision. The results
indicate that UMLS-MPM effectively preserves the system
energy. Figure12c illustrates the stress log at the center par-
ticle of the left disk. The results align perfectly with the
reference, but only for negligible fluctuations, showing that
UMLS-MPM does not generate spurious stress oscillations
either from the collision or cell crossings.

3.3 2D cantilever with rotations

Although an unstructured mesh offers the adaptability to
match any boundary shape, the cell orientation, or a differ-
ent tessellation, can potentially affect accuracy. To illustrate
the precision of our method under various rotation angles,
we examined the case of a cantilever under its own weight,
as shown in Fig. 13a [52]. The cantilever’s physical charac-
teristics are as follows: length l = 10m, height h = 2m,
gravitational acceleration g = 9.81m/s2, Young’s modu-
lus E = 100000Pa, Poisson’s ratio ν = 0.29, and density
ρ = 2kg/m3. The cantilever was discretized with uniformly
spaced particles in both directions. We created the back-
ground mesh using Delaunay triangulation, aiming for an
element size of 0.5m. Additionally, we rotated the mesh of
the cantilever by angles of 15◦, 30◦, and 45◦ to showcase the

Fig. 11 2D collision disks: a
problem setup. b–d Snapshots
of the simulation at 1.5 s, 2.0 s,
and 2.5 s
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Fig. 12 Plots of a the
momentum in the x-direction of
the left disk, b the energies of
the system, and c the stress at
the sampled particle closest to
the center of the left disk

Fig. 13 2D cantilever problem
under different rotation angles:
a 0◦, b 15◦, c 30◦, and d 45◦ 2

10

g g gg

(a) zero rotation (b) rotated 15o (c) rotated 30o (d) rotated 45o

Fig. 14 Plots of a the
displacement in the y-direction
at the right tip of the cantilever
and b the energies of the system

resilience of our method to rotation, as depicted in Fig. 13b–
d.

Figure 14a illustrates the spatial convergence of the y-
displacement at the right tip of the cantilever beam under
grid refinement. Notably, except for the coarse resolutions
of dx = 2m and dx = 1m, errors for all finer resolu-
tions are negligible. Therefore, a resolution of dx = 0.5m
was employed to ensure sufficient accuracy for all subse-
quent plots in this experiment. Figure14b demonstrates that
UMLS-MPM effectively conserves energy, aligning with the
reference B-spline MPM.

Figure 15a shows snapshots of the cantilever with dif-
ferent initial mesh rotation angles. The results indicate that
UMLS-MPM is robust under mesh rotation with only minor
visible errors. Figure15b quantitatively compares the y-
displacement at the right tip. The results align well overall

with both zero rotation and the reference, with errors of
1.27%, 2.18%, and 4.72% for 15◦, 30◦, and 45◦ rotation,
respectively.

The convergence rate of UMLS-MPM is demonstrated in
Fig. 16. The results indicate that for cases with zero rota-
tion, the convergence rate is second order. While the RMSE
increases slightly for caseswithmesh rotation, it still remains
in the magnitude of 1E−2, and the convergence rate remains
near second order. These combined results demonstrate the
robustness and accuracy of UMLS-MPM under mesh rota-
tion.

3.4 2D ball in a wavy channel

We highlight the proposed method’s ability to conform to
irregular geometric boundaries. To this end, we consider the
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Fig. 15 a Snapshots of the
cantilever with different initial
rotating angles. b Comparison
of the displacement in the
y-direction at the right tip of the
cantilever

Fig. 16 Convergence plot of the RMSE of particle displacements

case of a ball freely falling but confined in a wavy channel,
as shown in the leftmost subfigure of Fig. 17. The physical
properties of the ball are: radius r = 1.0m,Young’smodulus
E = 100 kPa, Poisson’s ratio ν = 0.29, and density ρ =
400 kg/m3. The ball was discretized with 4735 randomly
sampled material points. The background wavy channel has
a sinusoidal shape.

The left wall of the channel has an analytical expression
of:

xl =
{
A sin(ω1y) sin(ω2y), 0 < y ≤ 20.0 m

0, Otherwise,
(36)

where A = 1.0 m, ω1 = π
5 rad/m, and ω2 = π

20 rad/m. The
right wall is created by shifting the left wall by 2.0 m, i.e.,
xr = xl +2.0 m. The background mesh was generated using
Delaunay triangulation with a target element size of 0.05 m,
resulting in 43,360 cells.

The snapshots of the simulation at 1.4 s, 3.0 s, and 6.5 s
are shown in Fig. 17, while the zoomed-in views of the
ball’s deformation and hydrostatic stress are shown inFig. 18.
UMLS-MPMcaptures both the bouncing into thewavy chan-

nel (at 1.1 s, 1.9 s, 3.7 s) and the squeezing through the narrow
part of the channel (at 1.4 s, 2.4 s, 3.0 s) with no rasteriza-
tion artifacts, proving the robustness of the proposed method
in simulating under general mesh tessellation and handling
irregular geometry boundaries.

3.5 3D slope failure

Next, the performance of the proposed approach was investi-
gated when dealing with material behavior involving plastic-
ity. To this end, we simulated failure of a 3D slope comprosed
of sensitive clay. The problem geometry was adopted from
[56] and is illustrated in Fig. 19. Here, the bottom boundary
of the slope is fixed and the three lateral sides are supported
with rollers. To model the elastoplastic behavior of the sensi-
tive clay in an undrained condition, a combination of Hencky
elasticity and J2 plasticity with softening was used. The
softening behavior is governed by the following exponen-
tial form: κ = (κp − κr )e−ηε

p
q + κr , where κ , κp, and κr

denote the yield strength, the peak strength, and the resid-
ual strength, respectively, ε

p
q denotes the equivalent plastic

strain, and η is a softening parameter. The specific parame-
ters were adopted from [56]. They are a Young’s modulus of
E = 25MPa, a Poisson’s ratio of ν = 0.499, a peak strength
of κp = 40.82kPa, a residual strength of κr = 2.45kPa, and
a softening parameter of η = 5. The assigned soil density is
ρ = 2.15 t/m3.

The space was discretized using Delaunay triangulation
with the shortest edge length of 0.2m. The material points
were initialized with a spacing of 0.1m in each direction,
amounting to 311,250 material points in the initial slope
region. Note that the spatial discretization aligns with the one
used in [56] in terms of both the shortest edge length of the
background element and the number ofmaterial points. Also,
the F̄ approach proposed in [56] was utilized to circumvent
volumetric locking that UMLS-MPM solutions encounter
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Fig. 17 2D ball in a wavy
channel: snapshots of the
simulation at 0 s, 1.4 s, 3.0 s, and
6.5 s

when simulating a large number of particles of incompress-
ible materials. As a reference to verify the correctness of the
proposed formulation, the F̄ solution in [56] was used.

Figures 20 and 21 show the snapshots of the slope simu-
lated by the standard and UMLS-MPM, where particles are
colored by the equivalent plastic strain and mean normal
stress, respectively.We can see that UMLS-MPM effectively
captures the retrogressive failure pattern of slopes made of
sensitive clay. Also, in terms of equivalent plastic strain fields
and mean normal stress fields, we observe a strong similarity
between theUMLS-MPMsolution and the reference solution
from [56].

For a further quantitative comparison, Fig. 22 presents
the time evolutions of the run-out distance—a measure of
the farthest movement of the sliding mass. Observe that the
distances in the standard and UMLS-MPM solutions are
remarkably similar. Taken together, these findings confirm
that the proposed method performs similarly to the standard
MPM.

3.6 3D elastic object expansion in a spherical
container

Finally, we examined the performance of UMLS-MPM in
problems involving complex boundary geometry. In this
problem, the standard MPM with a structured grid may
be challenged to impose conforming boundary conditions.
Hence, a collision between an elastic body with a spherical
container was considered and simulated.

The geometry of the problem, as demonstrated in Fig. 23,
involves an elastic object in the shape of a Metatron, which
is located at the center of a spherical container (with a radius

of 0.5m). The object is initially compressed isotropically
(with an initial deformation gradient of F = 0.75I), stor-
ing non-zero elastic potential energy. At the onset of the
simulation, the stored elastic energy is released, causing the
object to expand and collide with the spherical container’s
boundary. To capture the elastic behavior of the object, aNeo-
hooken elasticity was adopted with a Young’s modulus of
3.3MPa and a Poisson’s ratio of ν = 0.49. The elastic object
was discretized using a significant number of material points
(2,392,177) for high-fidelity simulation. Also, the spherical
container was discretized using 2,178,129 tetrahedral ele-
ments, each with an average edge length of h = 0.025m.
Note that to avoid negative kernel values at boundary nodes,
an extra layer of elements was added outside the original
boundary, as discussed in Sect. 2.3.5.

To consider the frictional collision between the elastic
object and the container boundary, a barrier approach [57]
was adopted, ensuring that the elastic object does not pen-
etrate the boundary. Contact forces are applied when the
distance between a material point and the boundary is below
a specific value d̂, which was chosen to be a quarter of h for
sufficient accuracy. Also, a friction coefficient of μ = 0.5
was introduced to stop the sliding of the elastic object in
the later stages. The simulation ran with a time increment of
Δt = 6.16 × 10−5 s until t = 1.5s.

Figure 24 presents six snapshots simulated with UMLS-
MPM, where the particles are colored based on the mag-
nitude of the contact force. The dynamic behavior of the
object at various stages is well captured, including the ini-
tial expansion stage (a), the first collision stage (b–d), the
rebounding stage (e), and the final static stage (f). Overall,
theUMLS-MPMeffectively handles complex geometrywith
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Fig. 18 Zoomed-in view of the
ball’s deformation in the wavy
channel at key timestamps.
From top to bottom, timestamps
around 1.4 s, 3.0 s, and 6.0 s
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Fig. 19 Problem geometry of
the 3D slope failure (adapted
from [56])

Fig. 20 Snapshots of the
solutions from the UMLS-MPM
and the standard MPM with
GIMP basis functions in Zhao et
al.[56]. Particles are colored
based on the equivalent plastic
strain
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Fig. 21 Snapshots of the
solutions from the UMLS-MPM
and the standard MPM with
GIMP basis functions in Zhao et
al.[56]. Particles are colored
based on the mean normal stress

a conformal discretization, which is critical for simulating a
wide range of interactions between deformable objects and
complex boundaries.

4 Conclusion, limitations, and future work

This study has extended the Moving Least Square Mate-
rial Point Method to encompass general tessellations within

both 2D and 3D meshes. This advance has been achieved
through the multiplication of a diminishing function to the
MLS sample weights. Analytically proved, the approach
ensures continuous kernel reconstruction and provides a
sound foundation forMPM on any unstructured mesh types..
Several numerical experiments in both 2D and 3D domains
have demonstrated the method’s effectiveness in achieving
high-order convergence and eliminating cell-crossing errors.
However, the proposed method still has limitations.
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Fig. 22 Time evolutions of the
run-out distance from
UMLS-MPM and the standard
MPM with GIMP basis
functions

Fig. 23 Problem setting of the
3D elastic object expansion in a
spherical container

To ensure theMLS solution does not degenerate, there are
quality requirements for the surrounding nodes of the parti-
cle, which pose challenges, especially in meshes with sharp
resolution transitions or poor quality. Additionally, related
to varying mesh resolution is the sample weights: we used
a B-spline function with a fixed support radius equaling the
maximum edge size to ensure that the first ring of neighbors
is reserved in the coarsest area. However, this strategy leads
to nearly uniform sample weights in finer regions, blurring
the kernel. A potential solution could be to incorporate a siz-
ing field within the mesh to dynamically adjust the sample
weight function.

Although UMLS-MPM has advantages in conforming to
irregular geometry, this also brings potential issues and leaves
room for further improvements. For example, the lack of
surrounding samples on one side when the particle is inside
the boundary cell can lead to kernel degeneration. While
this issue was mitigated in our experiments by drawing an
extra layer of cells, an automatic and algorithmic approach
is more appealing. Combining UMLS-MPM with regular
MPM is also promising, as it leverages the advantage of
UMLS-MPM in conforming to boundary shapes, as well
as the robustness and efficiency of regular MPM for inte-
rior domains. For the transition between interior nodes and
boundary nodes, methods similar to immersed FEM [58–60]
could be effective, as they project information from regular
background grids to irregular meshes.

From a practical standpoint, we need not a higher-order
polynomial basis or higher rings of neighbors as long as the
current schemes, which have the lowest cost as discussed
in Sect. 2, provides sufficient accuracy. However, from a the-
oretical perspective, these two prososals are still interesting.
Several challenges can be noted: 1. Changing to higher rings
of neighborswill require a different solution for the diminish-
ing function (32) to accommodate the new discrete change of
active sets. 2. The higher-order polynomial basiswill result in
a differentMLS solution compared to the linear solution (31).
Additionally, since the propositions in Appendix B are based
on the linear solution, it remains an open question whether
the higher-order solution has a continuous kernel and gra-
dient, even with a diminishing function. 3. The higher-order
polynomial basis will necessitate a more delicate selection of
quadrature point locations. Unlike higher-order FEMsimula-
tions, where the quadrature points are usually well-designed
and fixed [61], inMPM, these points may need to be adjusted
with the particle locations, requiring extra design and atten-
tion.

From an application standpoint, exploring the integra-
tion between the material point method (MPM) and gas
or fluid simulations via the Finite Volume Method (FVM)
presents significant potential [21, 62]. For simulating gran-
ular materials in realistic and irregular container shapes,
combining UMLS-MPM with the Discrete Element Method
(DEM) [63] is also an interesting direction. Moreover, object
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Fig. 24 Snapshots from the
UMLS-MPM solutions in which
particles are colored based on
the magnitude of the contact
force

contact detection and handling [64] is crucial to prevent
artificial penetration and sticking commonly seen in MPM
[53]. In the field of scientific machine learning, recent
advances have demonstrated learning MPM or other mesh-
based simulations using graph neural networks, accelerating
the inferences [65–67]. Our kernel construction suggests a
potentially novel learning paradigm for MPM on unstruc-
tured meshes, similar to embedding both kernel and mesh
information into the network’s channel [68, 69].

A Pipeline for rapid cell search

Fast determination ofwhich cell contains a specific particle is
crucial for the efficiency of UMLS-MPM.We propose a hash
grid-based method to accelerate this process. The pipeline
consists of two steps: (1) building the hash grid connectivity
table, a dictionary mapping the hash grid as a key to all of
its touching cell indices, as detailed in Algorithm 2, and (2)
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Algorithm 2 Build Hash to Adjacent Cell
1: Input: Mesh node positions: pos, mesh cells: cell, hash grid size: dx
2: Output: Hash to adjacent cell connectivity: hash2cell
3: Calculate the bounding box of the whole mesh

min_pos ← min(pos, axis=0)
max_pos ← max(pos, axis=0)

4: Initialize hash2cell as an empty dictionary
hash2cell ← {}

5: For each cell, find its bounding box, determine the spatial hash grids it touches,
and append the cell to those hash grids

6: for cell_idx in range(len(cell)) do
7: cell_min ← min(pos[cell[cell_idx]], axis=0)
8: cell_max ← max(pos[cell[cell_idx]], axis=0)
9: min_idx ← floor((cell_min - min_pos) / dx)
10: max_idx ← ceil((cell_max - min_pos) / dx)
11: range ← indices(max_idx - min_idx)
12: candidates ← range.reshape(dim, -1).T + min_idx
13: for c in candidates do
14: hash2cell[c].append(cell_idx)
15: end for
16: end for

Algorithm 3 Find Containing Cell
1: Input: Mesh node positions: pos, mesh cells: cell, Mesh mini-

mum position: min_pos, hash grid size: dx, Hash to adjacent cell
connectivity: hash2cell, particle position: xp

2: Output: Containing cell index or None
3: Get the hash spatial index for the particle

hash_idx ← floor((xp-min_pos) / dx)
4: Get all adjacent cells to this hash grid

candidates ← hash2cell[hash_idx]
5: For each candidate cell, check if the particle is inside
6: for c in candidates do
7: e ← cell[c]
8: vs ← pos[e]
9: # get the bounding box of the cell
10: e_min ← min(vs, axis=0)
11: e_max ← max(vs, axis=0)
12: # quick filter using bounding box
13: if all(xp >= e_min) and all(xp <= e_max) then
14: # check barycentric coordinates
15: bc ← barycentric_coord(vs, xp)
16: if all(bc >= 0) then
17: return c
18: end if
19: end if
20: end for
21: # If no candidate cells contain xp
22: return None

the online search for determining which cell contains a given
particle, as described in Algorithm 3.

B Proofs for the continuous reconstructions

For conciseness, we drop the subscripts p in the following
proofs. We start by assuming there exists a smooth, locally
diminishing function η for the nodes added or removed from
the set of nearby nodesN 1 when a particle crosses the bound-
ary of a cell. Under this assumption, we can prove that our
kernel value and gradient estimation is continuous across
the boundary. We present the proof in 2D when a particle
crosses an edge; the extension to 3D and other crossing cases

is straightforward. Finally, we prove that (32) satisfies the
forementioned assumption.

Proposition Our kernel value and gradient estimation is
continuous across cell boundaries.

Proof Let N 1
o,n be the sets of nearby nodes before/after the

particle p crosses the common edge between the old/new
cellsN 0

o,n . Here, the subscripts o, n denote the old/new cell,
respectively, and the superscripts 0, 1 indicate the ring-0/1
neighbors of the cell, respectively. Let xo,n be the position of
particle p before/after the crossing and ||xn − xo|| = O(ε).
Define the common node set N 1

c = N 1
o ∩ N 1

n , the added
node set N 1

a = N 1
n \N 1

c , and the removed node set N 1
r =

N 1
o \N 1

c . Since η is locally diminishing for v ∈ N 1
a,r , we

have a positive value K1 such that η = O(K1ε) = O(ε).
The pertubation for the assembled matrix M before/after the
particle p crosses an edge is

δM =
∑

v∈N 1
c

δ(ηd p pT ) +
∑

v∈N 1
a

ηd p pT −
∑

v∈N 1
r

ηd p pT ,

(37)

where the first term is continuous by construction since every
factor is smooth; i.e., ||δ(ηd p pT )|| = O(ε). For the second
and third terms, since η = O(ε), we have

||δM|| ≤
∑

v∈N 1
c

||δ(ηd p pT )|| +
∑

v∈N 1
a

||ηd p pT ||

+
∑

v∈N 1
r

||ηd p pT ||

≤
[
|N 1

c | +
(
|N 1

a | + |N 1
r |

)
max

v∈N 1
a,r

||d p pT ||
]
O(ε)

= O(|N 1|h2ε)
= O(ε).

(38)

Here, as long as themesh has a reasonably good quality, |N 1|
is finite and small; i.e., there is a finite and small amount of
ring-1 neighbors. Also, h, a constant, is the support radius of
the kernel, outside of which the weight is zero. In all, both
|N 1| and h can be omitted in the analysis.

The perturbation of the inverse matrix is given by

||δM−1|| = ||(M + δM)−1 − M−1||
= ||M−1 − M−1δMM−1

+ O(||δM||2) − M−1||
= ||M−1δMM−1 + O(ε2)||
≤ ||M−1δMM−1|| + O(ε2)

≤ ||M−1||2 · ||δM|| + O(ε2)
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= ||δM||
σ(M)2min

+ O(ε2)

= O
(

ε

σ (M)2min

)
+ O(ε2)

= O
(

ε

σ (M)2min

)
, (39)

where σ(M)min is the minimum singular value of M.
Similarly, for the perturbation in the assembled vector

Bu = P Du before/after the particle crossing is

||δ (P Du) ||
= ||

∑
v∈N 1

c

δ(ηdu p) +
∑

v∈N 1
a

ηdu p −
∑

v∈N 1
r

ηdu p||

≤
∑

v∈N 1
c

||δ(ηdu p)|| +
∑

v∈N 1
a

||ηdu p|| +
∑

v∈N 1
r

||ηdu p||

≤
[
|N 1

c | +
(
|N 1

a | + |N 1
r |

)
max

v∈N 1
a,r

||du p||
]
O(ε)

= O(|N 1|hε)

= O(ε).

(40)

Furthermore, we can establish the following bound for the
assembled vector P Du:

||P Du|| = ||
∑

v∈N 1

ηdu p||

≤ |N 1| · max
v∈N 1

||ηdu p||
= O(|N 1|h)

= O(1).

(41)

Finally, the perturbation for
[
û,∇ûT

]T
from (31) is

[
û,∇ûT

]T = ||δ(M−1Bu)||
= ||δ(M−1P Du)||
= ||δM−1P Du + M−1δ (P Du) ||
≤ ||δM−1P Du|| + ||M−1δ (P Du) ||
≤ ||δM−1|| · ||P Du|| + ||M−1|| · ||δ (P Du) ||

= O
((

1

σ(M)2min

+ 1

σ(M)min

)
ε

)
.

(42)

In the incomplete singular value decomposition of M, the
singular values will always be non-negative. And if the sur-
rounding nodes are not degenerate, the minimum singular
value σ(M)min will always be positive and the condition
number of M is bounded. Therefore, as long as the mesh

is of reasonably good quality, both the function value and
gradient estimation is C0 across the boundary. ��

Proposition The function ηi in (32) is locally diminishing
for ∀i ∈ N 1

a,r .

Proof Formally,we need to prove that for any i ∈ N 1
a,r , when

x is crossing the edge of a triangle and ||xn − xo|| = O(ε),
the smoothing function ηi = O(ε).

Denote the edge that the particle is crossing as e and the
portion of ||xn − xo|| in the new/old cell as Ln,o. Trivially,

Ln,o ≤ Ln + Lo

= ||xn − xo||
= O(ε).

(43)

Then, let the far-away node not on the edge but in the new/old
cell be ifar (i.e., i

n,o
far /∈ e ∧ in,o

far ∈ N 0
o,n) and the height from a

node i to an edge e be H(i, e). Since the height is orthogonal
to the edge, we have H(xn,o, e) ≤ Ln,o = O(ε). Consider
the barycentric coordinate contributed by the far-away node,
in the new/old cell respectively, for x:

Bn,o
ifar

= H(xn,o, e) · ||e||
H(in,o

far , e) · ||e||
= H(xn,o, e)

H(in,o
far , e)

= O
(

ε

H(in,o
far , e)

)

= O(ε).

(44)

Finally, if a node is added/removed during the particle
crossing (i.e., i ∈ N 1

a,r ), this means that i is only connected
to the far-away nodes in,o

far but not to the edge e; i.e., Ai,in,o
far

=
1,∀i ∈ N 1

a,r , otherwise Ai,n = 0,∀n ∈ e ∧ ∀i ∈ N 1
a,r .

Hence,

η =
∑
n∈N 0

Bn Ai,n

= Bn,o
ifar

Ai,in,o
far

+
∑
n∈e

Bn Ai,n

= Bn,o
ifar

· 1 +
∑
n∈e

Bn · 0

= Bn,o
ifar

= O(ε), ∀i ∈ N 1
a,r .

(45)

This concludes the proof. ��
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C Settings and analytical solutions for the
verification experiments of the continuous
reconstructions

This section presents the detailed setup and analytical solu-
tions for the 1D verification experiments on a uniform 1D
mesh in Sect. 2.3.5. The kernel value is denoted as f and
the gradient estimation is denoted as g, respectively. For the
uniform 1D mesh, each cell has a length of 1, and the unit
support length for the B-spline used for the sample weights
is also 1. The analytical solution for the uniform 1D mesh,
obtained using Mathematica 2023, is as follows:

f =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.25(0.5−x)2x
x5−6x4+13.5x3−13.75x2+6.3125x−0.5625

, 0.5 < x ≤ 1
−x6+5x5−9.5x4+8.5x3−3.3125x2+0.3125x+0.0625

−x5+4x4−5.5x3+3.25x2−1.3125x+1.0625
, 1 < x ≤ 1.5

x6−12x5+58.5x4−148.25x3+205.563x2−147.063x+42.25
x5−11x4+47.5x3−100.25x2+103.313x−41.125

, 1.5 < x ≤ 2
x6−12x5+58.5x4−147.75x3+202.563x2−141.438x+39

−x5+9x4−31.5x3+53.75x2−45.3125x+16.125
, 2 < x ≤ 2.5

x6−19x5+149.5x4−623.5x3+1453.31x2−1794.19x+915.687
−x5+16x4−101.5x3+318.75x2−495.313x+304.188

, 2.5 < x ≤ 3
−0.25x3+2.75x2−10.0625x+12.25

−x5+14x4−77.5x3+212.25x2−288.313x+156.688
, 3 < x ≤ 3.5

0, Otherwise

(46)

g =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1(0.5−x)2x(x−2)
x5−6x4+13.5x3−13.75x2+6.3125x−0.5625

, 0.5 < x ≤ 1
−x5+5x4−10.5x3+11.5x2−5.8125x+1.0625
−x5+4x4−5.5x3+3.25x2−1.3125x+1.0625

, 1 < x ≤ 1.5
−x5+9x4−33.5x3+65.75x2−67.3125x+27.625

−x5+11x4−47.5x3+100.25x2−103.313x+41.125
, 1.5 < x ≤ 2

−x5+11x4−49.5x3+112.25x2−125.313x+53.625
x5−9x4+31.5x3−53.75x2+45.3125x−16.125

, 2 < x ≤ 2.5
−x5+15x4−90.5x3+274.5x2−417.813x+254.188
x5−16x4+101.5x3−318.75x2+495.313x−304.188

, 2.5 < x ≤ 3
x4−13x3+62.25x2−129.5x+98

−x5+14x4−77.5x3+212.25x2−288.313x+156.688
, 3 < x ≤ 3.5

0, Otherwise

(47)

D Conservation of the linear and affine
momentumwhen combined with affine
particle-in-cell

Since UMLS-MPM by construction generates a kernel that
is the partition of unity and conserves the linear basis [48],
i.e.,

∑
i

wn
p,i = 1,

∑
i

wn
p,i x

n
i = xnp,

∑
i

wn
p,i (x

n
i − xnp) = 0,

then the system’s total linear and angular momentum will be
conservedwhen combinedwithAPIC.A simple introduction

to APIC is given here for the sake of completeness, while the
detailed proof can found in the supplementary document of
the original APIC paper [50].

In APIC, massmp, position x p, velocity v p, and an affine
matrix B p = ∑

i wp,ivi (xi − x p)
T are stored and tracked

on particles. Then,

Definition 1 The total linear momentum on grids is

ptoti =
∑
i

mivi .

Definition 2 The total linear momentum on particles is

ptotp =
∑
p

m pv p.

Definition 3 The total angular momentum on grids is

I toti =
∑
i

xi × mivi .

Definition 4 The total angular momentum on particles is

I totp =
∑
p

x p × mpv p +
∑
p

m p(B p)
T : ε,

where ε is the Levi-Civita permutation tensor, and for any
matrix A, the contraction A : ε = ∑

αβ Aαβεαβγ , which
is usually used to transition from a cross product into the
tensor product u × v = (vuT )T : ε. Also note that for the
total angular momentum of the particles: 1) the grid node
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Fig. 25 A visual representation
of the notations used to prove
that η diminishes locally, as
described in (44), for every
vertex i within the first ring of
neighbors, N 1

a,r . The dashed
line denotes the perpendicular
height from a given position to
the shared edge. Dotted lines are
drawn to construct a triangle
between the point x and the
edge, facilitating the
computation of the barycentric
coordinates

locations can be perceived as the sample points of a rotating
mass centered at the material particle location, and 2) the
total angular momentum comprises both that of the center
and that of the affine-rotation of the grids around the center.

APIC P2G is given by

mn
i =

∑
p

wn
p,im p

Dn
p =

∑
i

wn
p,i (x

n
i − xnp)(x

n
i − xnp)

T

mn
i v

n
i =

∑
p

wn
p,im p(v

n
p + Bn

p(D
n
p)

−1(xni − xnp))

(48)

with G2P given by

vn+1
p =

∑
i

wn
p,i ṽ

n+1
i

Bn+1
p =

∑
i

wn
p,i ṽ

n+1
i (xni − xnp)

T ,
(49)

where the superscript˜means the intermediate value after the
update on grids but before the G2P process.

D.1 Numerical validation

A numerical validation as in [50] is also conducted here to
verify these conservations. A square with a side length of
l = 0.2 is discretized with 20 × 20 particles. The physical
properties of the square are as follows: E = 1 × 104 Pa,
ν = 0.3, and ρ = 1.0kg/m3. Initially, the square is divided
into two halves by a hypothetical vertical line through the
middle. The left half is initialized with an upward veloc-
ity v = (1, 0)m/s, while the right half is initialized with a
downward velocity v = (−1, 0)m/s. The experimental setup
is illustrated in Fig. 26. The background mesh is generated
using Delaunay triangulation with a target element size of
0.01m in a 1 × 1m2 box. The simulation is run for 1 × 106

time steps with a time step size of 1 × 10−5 s.
The proposed conservation is accurately illustrated in

Fig. 27b–c, with only round-off errors on the order of 1 ×
10−15 and 1×10−7 for the total linear and affine momentum
of the system, respectively.

Funding this study was supported by Sony Corporation of America
(Sony Faculty Innovation Award, 2023).

Fig. 26 Setup and snapshots of
a rotating elastic square
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Fig. 27 Logs of a linear and b
angular momentum of the
rotating cube experiment after
106 time steps
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