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Abstract

Adaptive meshes are dynamic networks of nodal masses intercon-
nected by adjustable springs. They are useful for nonuniformly
sampling and reconstructing visual data. This paper extends the
adaptive mesh model in the following ways: it (i) develops open
adaptive meshes and closed adaptive shells based on triangular
and rectangular elements, (ii) proposes a discontinuity detection
and preservation algorithm suitable for the model, and (iii) devel-
ops techniques for adaptive hierarchical subdivision of adaptive
meshes and shells. The extended model is applied to image and
3D surface data.

1

In [1] we proposed the adaptive mesh model and demonstrated its
application to the nonuniform sampling and reconstruction visual
data. Adaptive meshes are dynamic networks of nodal masses in-
terconnected by adjustable springs. Acting as mobile sampling
sites, the nodes observe interesting properties of the data, such as
intensities, depths, gradients, and curvatures. Based on the nodal
observations, the springs automatically adjust their stiffnesses so
as to distribute the available nodal degrees of freedom of the re-
constructed model in accordance with the local complexity of the
input data. Adaptation can significantly improve the quality of the
reconstruction.

The adaptive mesh is a versatile model. In this paper we mod-
ify and extend it in several ways. We construct closed adaptive
meshes, or adaptive shells. It is often preferable to use trian-
gular rather than quadrangular spring-mass elements in adaptive
meshes, because the triangle (the 2D simplex) offers the great-
est flexibility in tessellating open and closed 2D manifolds in 3D
Euclidean space. We further generalize the model to handle piece-
wise continuous data by introducing a suitable discontinuity detec-
tion and preservation algorithm. Finally we develop techniques for
adaptive hierarchical subdivision of polygonal elements in adap-
tive meshes and shells. This allows us to significantly improve the
model’s range of adaptivity. Huang and Goldgof [2] have inde-
pendently developed a related algorithm for reconstructing closed
adaptive meshes with subdivisible triangular elements. Their tech-
nique differs from ours with regard to the details of the element
subdivision and the absence of mechanisms for discontinuity de-
tection/preservation and continuous adaptivity. After briefly re-
viewing the basic adaptive mesh model in the next section, we
develop the aforementioned extensions to our algorithm and apply
it to image and 3D surface data.
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2 Review of Adaptive Meshes

An adaptive mesh is a discrete dynamic system constructed from
a set of mobile nodes and adjustable springs. The nodes, indexed
by 4, for i = 1,..., N, have masses m; and 3-space positions
xi(t) = [zi(t), yi(t),zi(t)]. The adaptive mesh is governed by
the set of ordinary differential equations of motion

d*x;
mi;———
dt?

dx;
+vi—— +

dt

gi iZ].,...,N, (1)
where d”x; /dt> is the acceleration of node 4, dx; /dt is its veloc-
ity, i is a damping coefficient that controls the rate of dissipation
of the node’s kinetic energy, f; is an external force applied at the
node which typically serves to couple the mesh to input data for

the purposes of reconstruction, and

gi(t) = Z Sij

JEN;

@

is the total force on node ¢ due to adjustable springs connecting it
to neighboring nodes j. Here,

Cijeij

S e ©
is the force that a spring with stiffness ¢;; exerts on node 4, where
the norm of r;; = x; — x; is the actual length of the spring and
eij = ||rij|| — li; is the deformation of the spring relative to a
natural length 7;;. The 7;; control the minimal distances between
nodes.

Each node i of an adaptive mesh acts as a mobile sampling site.
It computes local observations O; € [0, 1] on input data d(§) by
sampling an adaptation function derived from d which identifies
important features of the data, such as high gradients, curvatures,
etc. (see [1] for examples). The spring stiffnesses c¢;; adapt as a
function of the observations according to ¢;; = (1 — pij)cmin —
pcmax, Where cpin and cmax are minimum and maximum allow-
able values for the spring constant, and p;; = (O; + O;), is the
average value of the observations computed at nodes 7 and 5 con-
nected by the spring. The stiffness of spring ¢j grows with larger
pij, thereby pulling nodes ¢ and j closer together. Thus the node
density adapts to the magnitude of the adaptation function and,
consequently, to the complexity of the data.

The second-order equations of motion (1) of the adaptive mesh
are simulated using an explicit Euler procedure (see [1] for further
details).
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Figure 1: Discontinuity spring force.

3 Discontinuities

We now extend adaptive meshes to accommodate jump (C°) dis-
continuities in the data.! Discontinuity detection and preservation
in visual surface reconstruction is a difficult and intriguing prob-
lem (e.g., [4, 5, 6, 3]). Our discrete mechanical model suggests in-
teresting variations upon recent discontinuity-preserving Markov
random field [7] and variational surface reconstruction [8] tech-
niques.

The original adaptive mesh model responded to discontinuities
in the data by concentrating nodes (i.e., degrees of freedom) in the
vicinity of abrupt changes, enabling the mesh to conform better
to the changes. The discontinuity algorithm that we develop here
deals with discontinuities directly, removing the burden from the
adaptation process, whose job then becomes to produce a mesh
that adapts to complexity of the data in continuous regions.

Discontinuity detection and preservation involves a modifica-
tion of the force (|s|) vs deformation (e) relationship of the adap-
tive springs. We modify the linear relationship (3) illustrated by
the dashed line (with slope ¢;;) in Fig. 1 to obtain the nonlinear re-
lationship shown by the solid curve. The humped curve represents
a spring which asymptotically “gives up” trying to pull nodes to-
gether that are forced far apart by data on opposite sides of a large
discontinuity. We can obtain the humped form using several dif-
ferent functions. A simple one is e/(1 + €?). 2

Since the adaptive mesh is under tension, however, the
force/deformation profile of springs in an adaptive mesh ought to
be modified only in the direction of the discontinuity. For exam-

ple, in the case of single-valued surface reconstruction, we modify
only the z component of the spring force. If we were also to mod-
ify the « and y components, the balance of forces in the plane
of the mesh would be altered and the mesh would develop large

gashes in the vicinity of discontinuities. We therefore modify (3)
as follows:

10 0 oo
Sij = 0 1 0 l]‘ _l] rij, (4)
0 0 1/(1+Be%) e |

where 3 is a discontinuity sensitivity coefficient.

Fig. 2 illustrates the behavior of the discontinuity procedure
when applied to the range map of a statuette which was also used
in [1]. A triangular dynamic mesh model is applied in Fig. 2(a) us-
ing 8 = 0 in order to disable the discontinuity mechanism (refer to

LSince the adaptive mesh has no flexural rigidity (unlike a thin-plate
model) it automatically preserves C* discontinuities in the data. However,
the lack of rigidity can be a drawback when dealing with sparse, noisy data
sets [3].

2Li [8] mentions a version of this function for variational surface
reconstruction.
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Figure 2: Adaptive mesh reconstruction without (a) and
with (b) discontinuity detection.

(@) (b)

Figure 3: Dividing a triangle (a), a quadrangle (b).

[1] for simulation parameter values). Note how the jump discon-
tinuities between the statuette and background are inappropriately
smoothed. Fig. 2(b) shows how the discontinuity process detects
and preserves the occluding boundary and other prominent depth
changes when g8 = 1.0. We have not enabled the mesh adapta-
tion process in this example in order to illustrate the effects of the
discontinuity procedure more clearly.

4 Hierarchical Subdivision & Merging

In this section, we enhance the adaptivity of the mesh model by
introducing an algorithm for subdividing and merging triangle and
quadrangle elements. The model supports the recursive applica-
tion of these operations by maintaining a hierarchical data struc-
ture, where elements include pointers to their constituent springs
and nodes and, if they have been divided, to their children ele-
ments.

Fig. 3(a) illustrates the division of a triangle of the mesh into 4
children, where each existing spring is divided in two at its mid-
point and 3 new nodes along with 3 new springs are added to
the mesh data structure.® This type of subdivision produces finer
meshes with the same triangular structure and it maintains the “fat”
shape of the subtriangles.

3Fig. 3(b) illustrates the division of the quadrangle element that we
employed in [1] into 4 children. Each existing spring is divided in half and
8 new springs are added along with 5 new nodes.

4The subdivision illustrated in Fig. 3(a) is superior to the subdivision
obtained by connecting the 3 nodes to a new node introduced at the center,
as is employed in [2]. Since the latter method produces increasingly long,
thin triangles (“slivers”) with successive subdivisions, it is inappropriate
for recursive subdivision.
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Figure 4: Illustration of collinearity constraint.

The possibility of adaptively subdividing only some of thetrian-
glesin the mesh raises complications, again because all the springs
are normally under tension. Consider two triangles that share a
common spring. If only one of these triangles is subdivided as
in Fig. 3(a), the new node introduced on the divided spring must
be constrained to dlide like a bead along the common edge, oth-
erwise the springs added to the subdivided triangle will pull the
node away from the edge, thereby destroying the triangular struc-
ture of the mesh. The constraint procedure remedies this undesir-
able effect which would otherwise be exacerbated by subsequent
subdivisions.

The constraint procedure illustrated by Fig. 4 is applied at each
time step of the Euler integration of (1) and recursively to each
subdivided spring. Node C must be constrained to slide along the
common edge AB (every line segment in the diagram represents
a spring). The procedure first cancels the component of the net
nodal force fgt of node C that acts perpendicular to line AB. The
remaining tangential force can displace C paralléel to line AB only.
Let f5 be the sum of the forces exerted by springs AC and BC on
node C. The constraint procedure adds the normal component of
fs to fgt which will draw C towards line AB. Finaly, since ACB
should behave like arigid “rod,” the normal component £, of force
f; + £ due to springs DC and EC is partitioned and added to the
net nodal forces on nodes A and B, according to the ratio of the
distances of C from these nodes.

The vision literature abounds with methods for subdividing and
merging hierarchical image data structures based on various cri-
teria (e.g., [9, 10]). In the context of adaptive meshes, we can
extend theidea of nodes as sampling sitesto the triangles or quad-
rangles that they define. A possibility that is suitable for image
data is to compute regiona properties of the intensity function
(such as average gradients) within element areas and subdivide or
merge elements based on property values relative to prespecified
thresholds.® Thisisillustrated in Fig. 5. Theimagein Fig. 5(a) is
sampled and reconstructed in Fig. 5(b) using a 30 x 30 uniform
triangular mesh, with poor results. In Fig. 5(c) the uniform mesh
has been allowed to adapt and subdivide adaptively based on the
average intensity gradient within each triangle. The triangles have
subdivided around high gradient areas. Fig. 5(d) shows a closeup
of part of the mesh to illustrate the effect of the collinearity con-
straint procedure. Fig. 5(e-f) demonstrate the results obtained af-
ter a second round of subdivision and adaptation. Note the wide
range of triangle sizes over the image.

5A better criterion for subdividing and merging elements for the case
of 3D datais considered in the next section.
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5 Adaptive Shells

This section considers adaptive meshesin the form of closed shells
in space constructed from triangular elements (we also employ
generalized, viscoelastic springs, but must omit the details due to
lack of space). We can use adaptive shells to reconstruct surface
models from scattered 3D points in space. The reconstruction is
based on applying traction forces (f; in (1)) from each data point
to the nearest node on the shell to deform the shell into a con-
sistent shape. Each element of the mesh defines a local approxi-
mating function (a plane in the case of triangles). When the shell
achieves equilibrium, we can compute the residual or discrepancy
between this function and the 3D data and subdivide the element
if the residual exceeds athreshold.

To illustrate the method, we initialize the shell as a regular
icosahedron within a “cloud” of 3D points which were sampled
from a mannequin foot using the Cyberware, Inc., 3D digitizer
(Fig. 6(a)). Fig. 6(b) shows the equilibrium position of the shell
after one subdivision step. Fig. 6(b) shows the shell at equilibrium
after the third subdivision step, rendered as a shaded surface.

The final figure illustrates the adaptive shell algorithm with the
discontinuity process applied to 3D samples of a friend’s head.
Fig. 7(a) shows the 3D point data. Fig. 7(b) shows a prelimi-
nary reconstructed model with 900 nodes. Here, the discontinuity
process has been disabled. Note the excessive smoothness of the
model. Fig. 7(c) shows the model after another subdivision step
(3197 nodes), and with the discontinuity and adaptation processes
enabled.
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Figure 6: Reconstruction of afoot using an adaptive shell.
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Figure 7: Reconstruction of a head using an adaptive shell.
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