Modeling Surfaces of Arbitrary Topology with Dynamic Particles
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Abstract

This paper develops a new approach to surface modeling
and reconstruction which overcomes some important limi-
tations of existing surface representation methods, such as
their tendency to impose restrictive assumptions about ob-
ject topology. The approach features two components. The
first is a dynamic, self-organizing, oriented particle system
which discovers topological and geometric surface structure
implicit in visual data. The oriented particles evolve accord-
ing to Newtonian mechanics and interact through long-range
attraction forces, short-range repulsion forces, co-planarity,
co-normality, and co-circularity forces. The second com-
ponent is an efficient triangulation scheme which connects
the particles into a continuous global surface model that is
consistent with the inferred structure. We develop a flexible
surface reconstruction algorithm that can compute complete,
detailed, viewpoint invariant geometric surface descriptions
of objects with arbitrary topology. We apply our algorithms to
3-D medical image segmentation and surface reconstruction
from object silhouettes.

1 Introduction

The representation of surfaces of 3D objects has attracted sig-
nificant attention in computational vision. A problem central
to this endeavor is the estimation of geometric surface models
from various types of visual data, including range and surface
normal measurements. These surface models can be used as
an intermediate representation for object recognition, to guide
robotics tasks such as grasping, to segment three-dimensional
volumes (e.g., in medical applications), and to integrate dif-
ferent visual modalities.

Many vision researchers have investigated the recon-
struction of 2%—D viewer-centered surface representations
[3, 20, 4, 14]. These representations are typically based
on parametric spline models with internal strain energics.
Equally intense effort has gone into the development of 3-D
object-centered surface representations. These include gener-
alized cylinders [1], superquadrics (9], and triangular meshes
[5], as well as their physics-based generalizations, dynamic
deformable cylinders [22], spheres [6, 7], and superquadrics
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[21], which have internal deformation energies and can be fit-
ted through external forces to visual data such as 2-D images
or 3-D range points.

Existing surface representations have limitations—the
viewer-centered methods make no attempt to represent non-
visible portions of object surfaces, while the object-centered
methods make strong assumptions about object topology. In
this paper, we propose a new approach to surface model-
ing which overcomes these limitations. Our approach leads
to very flexible reconstruction algorithms which are able to
compute detailed geometric descriptions that are not only in-
herently viewpoint invariant, but more importantly, are suffi-
ciently powerful to represent the entire surface of objects with
arbitrary topologies. The algorithms can interpolate regular
or scattered 3-D data acquired from an imaged object, without
any a priori knowledge about the topology of the object.

The surface model and reconstruction method presented in
this paper has two components. The first is a dynamic parti-
cle system which discovers topological and geometric surface
structure implicit in the data. The second component is an ef-
ficient triangulation scheme which connects the particles into
a continuous global surface model that is consistent with the
particle structure. The evolving global model supports the
automatic extension of existing surfaces with few restrictions
on connectivity, the joining of surfaces to form larger con-
tinuous surfaces, and the splitting of surfaces along arbitrary
discontinuities as they are detected.

The most novel feature of our approach to surface recon-
struction is the use of a molecular dynamics simulation in
which particles interact through long-range attraction forces
and short-range repulsion forces. Our particle system is in-
spired by recent molecular dynamics models of liquids for
use in graphics [23]. In these models, which have spherically
symmetric potential fields, particles tend to arrange them-
selves into densely packed volumes.

The particles in our system are more complex, i.¢., cach par-
ticle represents an oriented trihedral coordinate frame. Based
on these frames, we design new interaction potentials which
favor locally planar or locally spherical arrangements of par-
ticles. Thus, the oriented particles support smoothness con-
straints similar to those inherent in the deformation energies of



Figure 1: Forming a complex object. The initial surface is deformed upwards and then looped around. The new topology (a

handle) is created automatically.

popular, elastic surface models. When reconstructing an ob-
ject of arbitrary topology, the particles can be made to “flow”
over the data, extracting and conforming to meaningful sur-
faces.

Our oriented particles have been used as the basis for an
interactive surface modeling system [18]. With this system,
users can spray collections of points into space to form elastic
sheets, shape them using deformation tools, and then freeze
the surfaces into the desired final shape. They can create
any desired topology with this technique. For example, they
can deform a flat sheet into an object with a protrusion and
then change the topology to create a looped handle (Figure
1). Forming such surfaces with traditional spline patches is a
difficult problem that requires careful attention to patch conti-
nuities. Other examples of modeling operations in this system
include “cold welding” two surfaces together by abutting their
edges, “cutting” surfaces with with a knife-like constraint tool,
and “creasing” surfaces by designating certain particles to be
unoriented [18].

2 Oriented Particle System

Particle systems have been used extensively in computer
graphics to model certain natural phenomena such as fire [11].
A simple particle system consists of a large number of point
masses (particles) moving according to Newton’s laws under
the influence of external forces such as gravity, vortex fields,
and collisions with obstacles.

Ideas from molecular dynamics have been used to develop
models of fluids and deformable solids using collections of in-
teracting particles [23]. In these models, long-range attraction
forces and short-range repulsion forces control the dynamics
of the system. Typically, these forces are derived from an
intermolecular potential function such as the Lennard-Jones
function

$us(rij) = Aljryj||™™ — Bljey;||™™ (1)

(Figure 2), where ||ri;|| = ||p; — pil| is the distance between
molecules ¢ at p; and j at p; and m, n, A, B are constants
{(we use the default values A = B = 1.0, m = 1, n = 3).
When internal forces dominate over external forces, parti-
cles will tend to bond together into closely packed structures
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to minimize their total energy, thereby behaving like solids.
As internal forces decrease, the behavior resembles that of
viscous fluids.

To enable particles to model surfaces rather than volumes,
we introduce oriented particles. An oriented particle has
a position and an orientation, for a total of six degrees of
freedom in each particle’s state. Each oriented particle defines
both anormal vector (n; = z in Figure 2b) and a local tangent
plane to the surface (defined by the local z and y vectors).
More formally, we write the state of each particle as (p;, R;),
where p; is the particle’s position and R; is a 3 x 3 rotation
matrix which defines the orientation of its local coordinate
frame (relative to the global frame (X,Y, Z )). The third
column of R; is the local normal vector n;.

To encourage oriented particles to group themselves into
surface-like arrangements, we devise three new potential
functions. These potential functions can be derived from the
deformation energies of local triangular patches using finite
element analysis [17]. The three functions are:

1. A co-planarity potential

ép(ni, rij) = (i - vy (s ), (2)

which encourages neighboring particles to lie in each other’s
tangent planes, and therefore favors flat (planar) surfaces. The
weighting function ¢(r) is a monotone decreasing function
used to limit the range of inter-particle interactions. We use
¥(r) = e 712" with o, = 1.0.

2. A co-normality potential

(3)

én(ni, nj, vi5) = [Ing — 0y |Py(||ry; ),

which attempts to line up neighboring normals.

3. A co-circularity potential

¢$c(ni,nj,ri) = ((n: +ny) - v P9(||rgl)  (4)

which is zero when normals are antisymmetrical with respect
to the vector joining two particles, and therefore favors sur-
faces with constant curvature (spherical surfaces).

To control the bending and stiffness characteristics of our
deformable surface, we use a weighted sum of potential ener-
gies
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Figure 2: (a) Lennard-Jones type function: the solid line shows the potential function ¢;(r), and the dashed line shows the
force function f(r) = — 2 ¢1i(r); (b) two interacting oriented particles: the interparticle distance r;; is computed from the

global coordinates p; and p; of particles 7 and j.

Ei; = opéu(lril]) + apdp(ng, ri;)

+ angn(ng, nj, ry;) + acde(ng, nj, ry;).

&)

The first term controls the average inter-particle spacing, the
next two terms control the surface’s resistance to bending, and
the last controls the surface’s tendency towards uniform local
curvature. We use the default values oy = 2.0, ap = a¢ =
1.7, ax = 1.0 (normally only one of ap oOr o is non-zero).
The total internal energy of the system Ej, is computed by
summing the inter-particle energies

Eu=) Y Ej

i JEN;

where N; are the neighbors of ¢ (Section 3).

3 Particle Dynamics

Having defined the internal energy associated with our system,
we can derive its equations of motion. The derivative of the
inter-particle potential with respect to the particle position
and orientations gives rise to forces acting on the positions
and torques acting on the orientations. The formulas for the
inter-particle forces f;; and torques 7;; are givenin [17]. The
standard Newtonian equations of motion are then integrated
using an explicit Euler’s method {17, 18], which is equivalent
to energy minimization with gradient descent.

A straightforward evaluation of the forces and torques at
all of the particles requires O(N?) computation, where N is
the number of particles. For large values of N, this can be
prohibitively expensive. This computation has been shown to
be reducible to O(N log N) time by hierarchical structuring
of the particles [2]. In our work, we use a k-d tree [12] o
subdivide space so that we can efficiently find all the particle’s
neighbors within some radius (usually 3 7y, where r¢ is the
natural inter-particle spacing). To further reduce computation,
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we perform this operation only occasionally and cache the list
of neighbors for intermediate time steps.

4 Triangulation

Because our particle system does not give us an explicitly
triangulated surface, we have developed an algorithm for tri-
angulating particles. A commonly used technique for tri-
angulating a 2-D surface or a 3-D volume is the Delaunay
triangulation (5, 10]. In 2-D, a triangle is part of the Delaunay
triangulation if no other vertices are within the circle circum-
scribing the triangle. To extend this idea to 3-D, we check
the smallest sphere circumscribing each triangle (thisis a 3-D
analogue of the Gabriel graph [10]). We also limit the length
of valid triangle edges (to 2 units, by default). This heuristic
works well in practice when the surface is adequately sampled
with respect 10 the curvature.

To better visualize the resulting surface, Gouraud, Phong,
or flat shading can be applied to each triangle. To obtain a
smoother surface, a cubic patch can be interpolated at each
triangle (since we know the normals at each vertex). The ma-
jor benefit of smoothly interpolating the surface across each
triangle is that we can compute local differential geometric
quantities and support a finite element analysis on the patch
deformation energies [21, 7]. In [19] we describe an approxi-
mately G? (first order geometric) continuous triangular Bezier
patch that we have developed to perform this interpolation.

5 Surface Fitting

An important application of our oriented particle systems is
the interpolation and extrapolation of sparse 3-D data. This is
a particularly difficult problemn when the topology of the sur-
face to be fitted is unknown. Oriented particles can provide a
solution to the unknown topology problem by extending the
surface out from known data points. This technique is partic-
ularly useful for interpolating sparse position measurements
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Figure 3: Surface interpolation through a collection of 3-D points. The surface extends outward from the seed

fills in the gaps and forms a complete surface.

points until it

available from stereo or tactile sensing [15].

The basic components of our particle-based surface exten-
sion algorithm are two heuristic rules controlling the addition
of new particles. These rules are based on the assumption that
the particles on the surface are in a near-equilibrium configu-
ration with respect to the flatness, bending, and inter-particle
spacing potentials.

The first (stretching) rule checks to see if two neighboring
particles have a large enough separation between them to add
a new particle. If two particles are separated by a distance d
such that dyin < d < diay, we create a candidate particle at
the midpoint and check that there are no other particles within
0.5 dipin. Typically dyin & 2.079 and diax & 2.5 ro, where
7o is the natural inter-particle spacing. An example of this
stretching rule in action are shown in Figure 1.

The second (growing) rule allows particles to be added in
all directions with respect to a particle’s local z-y plane. The
rule is generalized to allow a minimum and maximum number
of neighbors and to limit growth in regions of few neighboring
particles, such as at the edge of a surface. The rule counts the
number of immediate neighbors nxy to see if it falls within
a valid range nmin < ny < Mgk It also computes the
angles between successive neighbors A8; = 6;4; — 6; using
the particle’s local coordinate frame, and checks if these fall
within a suitable range 6,,;, < A8; < ... If these conditions
are met, on¢ or more particles are created in the gap. In
general, a sheet at equilibrium will have interior particles
with six neighbors spaced 60° apart while edge particles will
have four neighbors with one pair of neighbors 180° apart.

With these two rules, we can automatically build a sur-
face from collections of 3-D points. We create particles at
each sample location and fix their positions and orientations.
We then start filling in gaps by growing particles away from
isolated points and edges. After completing a rough surface
approximation, we can release the original sampled particles
to smooth the final surface, thereby eliminating excessive
noise. If the set of data points is reasonably distributed, this
approach will result in a smooth continuous closed surface
(Figure 3). The fitted surface does not assume a particular
topology, unlike previous 3-D surface fitting models such as
[22].

In conjunction with fitting the surface, we can estimate
local differential geometric quantities such as the principal
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directions and minimum and maximum curvatures. This can
be achieved by simply adding an extra potential function that
induces a torque around the local z axis and which forces the
2 and y axes to align themselves in the directions of mini-
mum and maximum curvature [19].  The resulting system
of oriented particles resembles the collection of interacting
Darboux frames used by Sander and Zucker [13].

6 3-D Volume Segmentation

Our surface fitting algorithm may be used to help segment
structures in 3-D volumetric data such as CT, MRI, or other
3-D medical imagery. To perform this segmentation, we first
apply a 3-D edge operator [8] to the data and use the edges to
initialize and attract particles, or directly use gradients in the 3-
D image as external forces on the particles. In this application,
our 3-D surface model can be viewed as a generalization of
the active deformable surface model [22, 7], but without the
restrictions imposed by a manually selected surface topology.

Figure 4a—c shows slices from a CT scan of a plastic “phan-
tom” vertera model (decimated to 120 x 128 x 52 resolution).
Figure 4d shows the reconstructed 3-D model. This smooth,
triangulated model contains 6650 particles and 13829 trian-
gles, and was created by seeding a single particle and ex-
tending the surface along high 3D edge values until a closed
surface was obtained. Figure 4e shows a Gouraud shaded
rendering of the reconstructed surface.

7 Surfaces from Silhouettes

We have applied our particle-based approach to the recon-
struction of triangulated surface models from the output of
a shape-from-silhouettes algorithm [16]. The algorithm con-
structs a bounding volume for the object by intersecting sil-
houettes from a sequence of views taken around an object—in
this case, a cup—as it rotates on a turntable. The algorithm
represents the volume using an octree [12] (Figure 5a).

To reconstruct the surface model of the cup, we first cre-
ate a volume occupancy array from the octree representation
and then apply the 3D edge operator and our reconstruction
algorithm as in the vertebra example. Figure 5b shows the
reconstructed model of the cup. The reconstructed surface
has 3722 particles and 7568 triangles.
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Figure 4: 3-D Reconstruction of a vertebra from 120 x 128 x 52 CT volume data: (a) xy slice, (b) xz slice, (¢) yz slice, (d)
reconstructed 3-D surface model with triangulated particles, (¢) shaded surface.
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Figure 5: Reconstruction of a surface model of a cup from silthouettes: (a) cup bounding volume represented as an octree, (b)
triangulated surface of reconstructed model.
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8 Discussion

The particle-based surface model we have developed has a
number of advantages over traditional spline-based surfaces.
Particle-based surfaces are easy to shape, extend, join, and
separate. By adjusting the relative strengths of various poten-
tial functions, the surface’s resistance to stretching, bending,
or variation in curvature can all be controlled. The topol-
ogy of particle-based surfaces can easily be modified, as can
the sampling density, and surfaces can be fitted to arbitrary
collections of 3-D data points.

Our particle-based surface model shares some character-
istics with local patch models such as those developed by
Sander and Zucker [13]. Our particles interact in a manner
similar to their frames, but in addition, particle positions are
not fixed, so that a more even distribution of samples can be
achieved. More importantly, the triangulation process ensures
that a globally consistent smooth analytic surface is defined
at all times. This enables us to derive interaction potentials
based on finite element analysis, so that arbitrary smoothness
conditions or material properties can be simulated.

In future work, we plan to extend our finite element analy-
sis to the large defiection case, and to integrate external forces
over each triangle, thus achieving a higher degree of accu-
racy. We also plan to track deformable objects (e.g., objects
undergoing non-rigid motion such as a beating heart) using
a Kalman filter. We have begun developing techniques for
curvature-dependent adaptive meshing of our surfaces, which
should increase fidelity and decrease overall complexity, and
on combining our particle-based surface model with a sim-
ilar particle-based line process (curve model), which could
be used to model surface terminators, creases, and surface
markings [19].

9 Conclusion

We have developed a particle-based model of deformable sur-
faces and applied it to several computer vision problems. Our
new model, which is based on oriented particles with new in-
teraction potentials, has characteristics of both physics-based
surface models and of particle systems. Itcan be used to model
smooth, elastic, moldable surfaces, like traditional splines,
and it also allows for arbitrary interactions and topologies.
Our oriented particle surface model can be used to automat-
ically fit a surface to sparse 3-D data even when the topology
of the surface is unknown. We can also use our surfaces
to segment 3-D volumetric data, and to incrementally con-
struct 3-D object models from motion sequences. Because
of the flexibility of the technique, and because of its close
relationship to analytic finite element modeling, we believe
this approach will form the basis of a powerful new class of
shape models for numerous computer vision applications.
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