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Abstract

We review several model-based and image-based meth-
ods that we have developed for analyzing, synthesizing,
and recognizing facial images. Our model-based meth-
ods include a sophisticated, functional model of the hu-
man face/head, which incorporates a biomechanical tissue
model with embedded muscle actuators, and techniques for
applying it to computer animation and expression estima-
tion in video. Our image-based methods include Tensor-
Faces, a nonlinear (multilinear) representation for facial
image ensembles that disentangles pose, illumination, and
expression effects to improve facial recognition.

1. Introduction

After more than three decades of intense research, the
human face continues to pose challenging research prob-
lems in computer vision, computer graphics, and related
fields. Computer vision researchers have been mainly in-
terested in tackling facial image analysis and recognition
problems (see, e.g., [2]). Conversely, computer graphics re-
searchers have focused on problems of facial image synthe-
sis (see, e.g., [7]). In both domains, interest extends beyond
static images to video. When it comes to faces, vision re-
searchers have traditionally relied on image-based methods
while their graphics colleagues have traditionally relied on
model-based methods, but this is no longer strictly the case.
Strongly model-based and image-based methods may be re-
garded as being situated at opposite ends of a spectrum, with
myriad hybrid approaches in between, most of them yet to
be conceived.

Within our research group, we have had a longstanding
interest both in computer vision and in computer graphics,
including subinterests in facial image/video analysis, recog-
nition, and synthesis. This article overviews several of our
contributions on these topics. The remainder of the article is
divided into two main sections and a conclusion. Section 2
reviews our model-based methods, which exploit a sophis-
ticated, function model of the human face, and their appli-
cation to the synthesis of animated facial expressions and

in the analysis of expressive facial video. We also discuss
the individualization of our face model to fit image sensor
data acquired from human subjects. We then turn in Sec-
tion 3 to nonlinear image-based approaches for face recog-
nition, reviewing our recently proposed appearance-based
recognition method known as TensorFaces, which relies on
multilinear algebra, the algebra of higher-order tensors.

2. Model-Based Methods

2.1. A Functional Facial Model

We have developed a sophisticated, functional model of the
human face and head that is efficient enough to run at inter-
active rates on high-end PCs. Conceptually, the model de-
composes hierarchically into several levels of abstraction,
which represent essential aspects related to the psychology
of human behavior and facial expression, the anatomy of
facial muscle structures, the histology and biomechanics of
facial tissues, facial geometry and skeletal kinematics, and
graphical visualization:

1. Behavior. At the highest level of abstraction, the syn-
thetic face model has a repertoire of autonomous be-
haviors, including natural head/eye behaviors, as well
as intentional and reactive expressive behaviors.

2. Expression. At the next level, the face model executes
individual expression commands. It can synthesize any
of the six primary expressions within a specific dura-
tion and degree of emphasis. A muscle control pro-
cess based on Ekman and Friesen’s FACS [2] translates
expression instructions into the appropriately coordi-
nated activation of actuator groups in the soft-tissue
model. This coordination offers a semantically rich
set of control parameters which reflect the natural con-
straints of real faces.

3. Muscle Actuation. As in real faces, muscles comprise
the basic actuation mechanism of the face model. Each
muscle submodel consists of a bundle of muscle fibers.
Currently there are some three dozen muscles of facial
expression in the synthetic face.
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Figure 1: Image-based facial modeling. (a) Cylindrical range and texture images of the head of a real person captured using a
Cyberware 3D Color Digitizer. From the pair of images at the top, our algorithms “clone” a functional model of the subject,
incorporating a textured, biomechanically-simulated deformable facial skin with embedded muscles of facial expression. The
synthetic face at the bottom is rendered in neutral (center) and expressive poses dynamically generated through coordinated
muscle contractions. (b) Fitting the generic mesh to both RGB texture and edge-enhanced range images. (c) Scenes from the
computer-animated short Bureaucrat Too, which features an animated face “cloned” from a male subject.

4. Biomechanics. When muscle fibers contract, they dis-
place their points of attachment in the facial tissue or
the articulated jaw. The face model incorporates a
physical approximation to human facial tissue, a non-
homogeneous and nonisotropic layered structure con-
sisting of the epidermis, dermis, subcutaneous fatty tis-
sue, fascia, and muscle layers. The tissue model [6] is
a lattice of point masses connected by nonlinear vis-
coelastic springs, arranged as layered prismatic ele-
ments that are constrained to slide over an impenetra-
ble skull substructure. Large-scale synthetic tissue de-
formations are simulated numerically by continuously
computing the response of the assembly of volume-
preserving elements to the stresses induced by acti-
vated muscle fibers.

5. Geometry/Kinematics. The geometric representation
of the facial model is a non-uniform mesh of poly-
hedral elements whose sizes depend on the curvature
of the neutral face. Muscle-induced synthetic tissue
deformations distort the neutral geometry into an ex-
pressive geometry. The epidermal display model is a
smoothly-curved subdivision surface that deforms in
accordance with the simulated tissue elements. In ad-
dition, the complete head model includes functional
subsidiary models of skull with articulated jaw, teeth,
tongue/palate, eyes, eyelids, and neck.

6. Rendering. After each simulation time step, standard
visualization algorithms implemented in the PC graph-
ics pipeline render the deforming facial geometry in
accordance with viewpoint, light source, and skin re-
flectance (texture) information to produce the lowest
level representation in the modeling hierarchy, a con-
tinuous stream of facial images.

The hierarchical structure of the model appropriately en-
capsulates the complexities of the underlying representa-
tions, relegating the details of their simulation to automatic
procedures.

2.2. Image-Based Reconstruction of the Face Model

We have developed a highly automated image-based ap-
proach to constructing anatomically accurate, functional
models of human heads that can be made to conform closely
to specific individuals [6]. Fig. 1(a) shows example input
images and the resulting functional model, which is suit-
able for animation. The image acquisition phase begins by
scanning a human subject with a laser sensor, which cir-
cles around the subject’s head to acquire detailed range and
reflectance images. The figure shows a head-to-shoulder,
360◦ cylindrical scan of a woman, “Heidi”, acquired using
a Cyberware Color 3D Digitizer, producing a range image
and a registered RGB photometric image, both 512 × 256
pixel arrays in cylindrical coordinates.

In the image analysis phase, an automatic conforma-
tion algorithm adapts to the acquired images a deformable
model which takes the form of an elastic triangulated face
mesh of predetermined topological structure. The generic
mesh, which is reusable with different individuals, reduces
the range data to an efficient, polygonal approximation
of the facial geometry and supports a high-resolution tex-
ture mapping of the skin reflectivity. Fig. 1(b) shows the
elastic mesh after it has conformed to the woman’s facial
area in both the range and RGB images using a feature-
based matching algorithm that encodes structural knowl-
edge about the face, specifically the relative arrangement
of nose, eyes, ears, mouth, and chin. The 2D positions of
the nodes of the conformed mesh serve as texture map co-
ordinates in the RGB image, as well as range map sampling
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locations from which 3D Euclidean space coordinates are
computed for the polygon vertices. The visual quality of
the face model is comparable to a 3D display of the original
high resolution data, despite the significantly coarser mesh
geometry.

After reducing the scanned data to the 3D epidermal
mesh, the final phase of the reconstruction process assem-
bles the physics-based, functional face model. The con-
formed polygonal mesh forms the epidermal layer of a
biomechanical model of facial tissue. An automatic algo-
rithm constructs the multilayer synthetic skin and estimates
an underlying skull substructure with a jointed jaw. Finally,
the algorithm inserts the synthetic muscles of facial expres-
sion into the deepest layer of the facial tissue. The resulting
face model can be animated, as is illustrated for a male sub-
ject in Fig. 1(c).

2.3. Model-Based Facial Image Analysis/Synthesis

Facial image analysis/synthesis is useful in several appli-
cations. Among them is low bandwidth teleconferencing
which may involve the real-time extraction of facial con-
trol parameters from live video at the transmission site and
the reconstruction of a dynamic facsimile of the subject’s
face at a remote receiver. Teleconferencing and other ap-
plications require facial models that are computationally ef-
ficient and also realistic enough to synthesize the various
nuances of facial structure and motion. Over a decade ago,
we argued that the anatomy and physics of the human face,
especially the arrangement and actions of the primary facial
muscles, provide strong constraints and a principled basis
for facial image analysis and synthesis [8].

Part of the difficulty of facial image analysis is that the
face is highly deformable, particularly around the forehead,
eyes, and mouth, and these deformations convey a great deal
of meaningful information. Techniques for tracking the de-
formation of facial features include “snakes” [5]. Motivated
by the anatomically consistent musculature in our model,
we have considered the estimation of dynamic facial mus-
cle contractions from video sequences of expressive faces
(e.g., 2(a)). We have developed an analysis technique that
uses snakes to track the nonrigid motions of facial features
in video (2(b)). Features of interest include the eyebrows,
nasal furrows, mouth, and jaw in the image plane. We are
able to estimate dynamic facial muscle contractions directly
from the snake state variables. Fig. 2(d) shows a plot of
the estimated muscle contractions versus the frame number.
They are input at the muscle actuation layer of the func-
tional model. These estimates make appropriate control
parameters for resynthesizing facial expressions through a
generic face model at real-time rates (2(c)). Three rendered
images are shown in Fig. 2(c).

Ishikawa et al. [4, 3] present a variant on this approach,
using a neural network transducer to map between esti-
mated muscle actions and the synthetic face model.

(a) (b) (c)

"Left Occipitofrontalis Inner"

"Left Occipitofrontalis Major"

"Left Occipitofrontalis Outer"

"Right Occipitofrontalis Inner"

"Right Occipitofrontalis Major"

"Right Occipitofrontalis Outer"

"Left Zygomaticus Major"

"Right Zygomaticus Major"

"Left Levator Labii Superioris Alaeque Nasi"

"Right Levator Labii Superioris Alaeque Nasi"

"Jaw Rotation"

0 5 10 15 20 25 30 35

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Contraction

Frame Number

(d)

Figure 2: Dynamic facial image analysis and expression
resynthesis. Sample video frames with superimposed de-
formable contours tracking facial features; (a) intensity im-
ages with black snakes, (b) image potentials with white
snakes. (c) Facial model resynthesizes surprise expression
from estimated muscle contractions. (d) Estimated facial
muscle contractions plotted as time series.
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3. Image-Based Methods

Appearance-based face recognition has been an active area
of biometrics research in recent years [1]. Given a database
of suitably labeled training images of numerous individuals,
this supervised pattern-recognition technique aspires either
to recognize the faces of these individuals in previously un-
seen test images or to identify the test images as new faces.
The conventional approach addresses the problem of facial
representation for recognition by taking advantage of the
functionality and simplicity of linear algebra, the algebra
of matrices. In particular, principal components analysis
(PCA) has been a popular method for appearance-based fa-
cial image recognition. This linear method (a.k.a. “eigen-
faces”) and its variants adequately address face recog-
nition under tightly constrained conditions—e.g., frontal
mugshots, fixed lightsources, fixed expression—where per-
son identity is the only factor that is allowed to vary. Various
attempts have been made to deal with the shortcomings of
PCA-based facial image representations in less constrained
situations.

In our appearance-based recognition work, we confront
the fact that natural images result from the interaction of
multiple factors related to scene structure, illumination, and
imaging. For facial images, these factors include differ-
ent facial geometries, expressions, head poses, and light-
ing conditions. We have advocated the use of multilinear
algebra, the algebra of higher-order tensors, for comput-
ing a parsimonious representation of facial image ensem-
bles which separates these factors [10]. Our representa-
tion, called TensorFaces, yields significantly improved fa-
cial recognition rates relative to standard eigenfaces [9].

3.1. TensorFaces

Within the TensorFaces framework, the image ensemble
is represented as a higher-dimensional tensor. This image
data tensor D must be decomposed in order to separate and
parsimoniously represent the constituent factors related to
scene structure, illumination, and viewpoint. To this end,
we prescribe the N -mode SVD algorithm, a multilinear ex-
tension of the conventional matrix singular value decompo-
sition (SVD). Our earlier papers overview the mathematics
of our multilinear analysis approach and presents the N -
mode SVD algorithm [10].

In short, an order N > 2 tensor or N -way array D is
an N -dimensional matrix comprising N spaces. N -mode
SVD is a “generalization” of conventional matrix (i.e., 2-
mode) SVD. It orthogonalizes these N spaces and decom-
poses the tensor as the mode-n product, denoted ×n, of N -
orthogonal spaces, as follows:

D = Z ×1 U1 ×2 U2 . . . ×n Un . . . ×N UN . (1)

Tensor Z , known as the core tensor, is analogous to the di-
agonal singular value matrix in conventional matrix SVD,
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Figure 3: The facial image database (28 subjects, 60 images per
subject). (a) The 28 subjects shown in expression 2 (smile), view-
point 3 (frontal), and illumination 2 (frontal). (b) Part of the image
set for subject 1. Left to right, the three panels show images cap-
tured in illuminations 1, 2, and 3. Within each panel, images of
expressions 1, 2, and 3 (neural, smile, yawn) are shown horizon-
tally while images from viewpoints 1, 2, 3, 4, and 5 are shown
vertically. The image of subject 1 in (a) is the image situated at
the center of (b). (c) The 5th-order data tensor D for the image
ensemble; only images in expression 1 (neutral) are shown.

. . .

Figure 4: Upixels contains the PCA eigenvectors (eigenfaces),
which are the principal axes of variation across all images.
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Figure 5: (a) A partial visualization of the 28 × 5 × 4 × 3 × 7943 TensorFaces representation of D, obtained as T = Z ×5 Upixels

(only the subtensor of T associated with expression 1 (neutral) is shown). Note that the mode matrix Upixels contains the conventional PCA
eigenvectors or “eigenfaces”, the first 10 of which are shown in Fig. 4, which are the principal axes of variation across all of the images.
(b) A partial visualization of the 28 × 5 × 4 × 3 × 7943 tensor B = Z ×2 Uviews ×3 Uillums ×4 Uexpres ×5 Upixels (again, only the subtensor
associated with the neutral expression is shown), which defines 60 different bases for each combination of viewpoints, illumination and
expressions. These bases have 28 eigenvectors which span the people space. The eigenvectors in any particular row play the same role in
each column. The topmost plane depicts the average person, while the eigenvectors in the remaining planes capture the variability across
people in the various viewpoint, illumination, and expression combinations.

but it lacks a simple, diagonal structure. The core ten-
sor governs the interaction between the mode matrices
U1, . . . ,UN . Mode matrix Un contains the orthonormal
vectors spanning the column space of matrix D(n) resulting
from the mode-n flattening of D (see [10]).

The multilinear analysis of facial image ensembles leads
to the TensorFaces representation. We illustrate the tech-
nique using a portion of the Weizmann face image database:
28 male subjects photographed in 5 viewpoints, 4 illumina-
tions, and 3 expressions. Using a global rigid optical flow
algorithm, we aligned the original 512 × 352 pixel images
relative to one reference image. The images were then dec-
imated by a factor of 3 and cropped as shown in Fig. 3,
yielding a total of 7943 pixels per image within the ellipti-
cal cropping window.

Our facial image data tensor D is a 28×5×4×3×7943
tensor (Fig. 3(c)). Applying multilinear analysis to D, using
our N -mode SVD algorithm with N = 5, we obtain

D = Z×1 Upeople ×2 Uviews ×3 Uillums ×4 Uexpres ×5 Upixels, (2)

where the 28× 5× 3× 3× 7943 core tensor Z governs the
interaction between the factors represented in the 5 mode
matrices: The 28 × 28 mode matrix Upeople spans the space
of people parameters, the 5×5 mode matrix Uviews spans the
space of viewpoint parameters, the 4×4 mode matrix Uillums

spans the space of illumination parameters and the 3 × 3

mode matrix Uexpres spans the space of expression parame-
ters. The 7943 × 1680 mode matrix Upixels orthonormally
spans the space of images. Reference [10] discusses the at-
tractive properties of this analysis, some of which we now
summarize.

Multilinear analysis subsumes linear, PCA analysis. As
shown in Fig. 4, each column of Upixels is an “eigenimage”.
Since they were computed by performing an SVD of the
matrix D(pixels) obtained as the mode-5 flattened data ten-
sor D, these eigenimages are identical to the conventional
eigenfaces. Eigenimages represent the principal axes of
variation over all the training images. The big advantage of
multilinear analysis beyond linear PCA is that TensorFaces
explicitly represent how the various factors interact to pro-
duce facial images. Tensorfaces are obtained by forming
the product Z ×5 Upixels (Fig. 5(a)).

Multilinear dimensionality reduction generalizes the
conventional version associated with linear PCA, truncation
of the singular value decomposition (SVD), whose optimal-
ity properties are well-known. Unfortunately, optimal di-
mensionality reduction is not straightforward in multilinear
analysis. For multilinear dimensionality reduction, we have
presented an N -mode orthogonal iteration algorithm that is
based the N -mode SVD [11].

The facial image database comprises 60 images per per-
son that vary with viewpoint, illumination, and expression.
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PCA represents each person as a set of 60 vector-valued co-
efficients, one from each image in which the person appears.
The length of each PCA coefficient vector is 28×5×4×3 =
1680. By contrast, multilinear analysis enables us to repre-
sent each person, regardless of viewpoint, illumination, and
expression, with the same coefficient vector of dimension
28 relative to the bases comprising the 28×5×4×3×7943
tensor

B = Z ×2 Uviews ×3 Uillums ×4 Uexpres ×5 Upixels, (3)

some of which are shown in Fig. 5(b). This many-to-one
mapping is useful for face recognition. Each column in the
figure is a basis matrix that comprises 28 eigenvectors. In
any column, the first eigenvector depicts the average person
and the remaining eigenvectors capture the variability over
people, for the particular combination of viewpoint, illumi-
nation, and expression associated with that column. Each
image is represented with a set of coefficient vectors repre-
senting the person, viewpoint, illumination and expression
factors that generated the image. This is an important dis-
tinction that is relevant for facial image recognition.

3.2. Face Recognition Using TensorFaces

We have proposed a recognition method based on multilin-
ear analysis which employs the recognition bases shown in
Fig. 5(b) (see [9] for the details). In our preliminary ex-
periments with the Weizmann face image database, Tensor-
Faces yields significantly better recognition rates than PCA
(eigenfaces) in scenarios involving the recognition of peo-
ple imaged in previously unseen viewpoints and illumina-
tions.

In the first experiment, we trained our TensorFaces
model on an ensemble comprising images of 23 people,
captured from 3 viewpoints (0,±34 degrees), with 4 il-
lumination conditions (center, left, right, left+right). We
tested our model on other images in this 23 person dataset
acquired from 2 different viewpoints (±17 degrees) under
the same 4 illumination conditions. In this test scenario,
the PCA method recognized the person correctly 61% of
the time while TensorFaces recognized the person correctly
80% of the time.

In a second experiment, we trained our TensorFaces
model on images of 23 people, 5 viewpoints (0,±17,±34
degrees), 3 illuminations (center light, left light, right light)
and tested it on the 4th illumination (left+right). PCA
yielded a poor recognition rate of 27% while Tensorfaces
achieved a recognition rate of 88%.

4. Conclusion

This paper has presented an overview of several model-
based and image-based methods that we have developed
for facial image synthesis, analysis, and recognition. The
two categories of methods are complementary and, in our

experience, both are indispensable in tackling the toughest
practical problems.
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