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Abstract

We propose AcFR, an active face recognition system
that employs a convolutional neural network and acts con-
sistently with human behaviors in common face recogni-
tion scenarios. AcFR comprises two main components—a
recognition module and a controller module. The recog-
nition module uses a pre-trained VGG-Face CNN to ex-
tract facial image features, along with a nearest-neighbor
identity recognition criterion. The controller module can
make three different decisions based on the results—greet
a recognized individual, disregard an unknown individual,
or acquire a different viewpoint from which to reassess the
subject, which are natural reactions when people observe
passers-by. Evaluated on the CMU PIE face database, our
recognition module yields higher accuracy on images ac-
quired at angles more similar to those saved in memory. The
view-dependent accuracy provides evidence for the proper
design of the controller module.

1. Introduction
Face recognition is a classic computer vision problem.

A big challenge is improving recognition accuracy given

limited information. In this context, the active perception

approach in computer vision [3, 1, 4, 14] seems promising.

For example, when observing the profile of someone who

looks like a friend, before presuming to greet the individ-

ual, one might move to a better viewpoint from which to see

more of the face of interest in order to ascertain the person’s

identity. The idea of viewpoint-dependent recognition has

been studied in neurophysiology [2], and Wang et al. [15]

found face-selective neurons tuned to specific viewpoints.

These considerations have motivated us to develop an ac-

tive face recognition (AcFR) system that models human be-

haviors in common face recognition scenarios. Unlike most

existing face recognition systems, it does not rely solely on

a single input image; instead, like people in real-world sce-

narios, it acquires additional images from different view-

points to improve recognition accuracy.

AcFR comprises two main components, a face recogni-

tion module and a behavior controller module. The face

recognition module, which employs VGG-Face, a popular

convolutional neural network (CNN), in conjunction with

a nearest-neighbor identity recognition criterion, evaluates

the input image and provides the data needed to make de-

cisions. The controller module uses these data to drive its

follow-up behavior, including whether to greet the (known)

observed individual, disregard the (unknown) individual, or

obtain a different viewpoint from which to reassess the sub-

ject.

The main contributions of this study are twofold: First,

we propose the AcFR approach, which actively recognizes

faces by mimicking human behaviors. Second, the use of a

CNN makes the visual processing more biologically plau-

sible, which is relevant in future applications of AcFR to

biomechanical virtual human models.

The remainder of the paper is organized as follows: In

Section 2, we briefly review recent related work. Section 3

describes the methodology of AcFR in detail and Section 4

demonstrates its effectiveness through experiments. Finally,

in Section 5, we present our conclusions and discuss future

work.

2. Related Work
Our work is relevant to human modeling and simulation.

Early efforts on this topic focused on human face and body

modeling. Over time, technologies from computer graph-

ics, computer vision, machine learning, psychology, etc.,

have been converging on this area. Some recent work, in-

cluding ours, considers brain functionalities such as visual

recognition, learning, and communication abilities.

With regard to recognition, much work has been done on

object recognition, especially face recognition. Learning-

based face recognition has recently made major strides. Tra-

ditional approaches represent faces using hand-crafted fea-

tures extracted from the image, such as SIFT, LBP, and

HOG [12, 16, 7], which are then employed in the classi-

fication step. So-called deep learning approaches employ

artificial neural networks that learn appropriate features au-

tomatically via training on massive quantities of image data.

Among neural networks, CNNs are preferred by the com-
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Figure 1. System architecture

puter vision community in part because the mechanisms un-

derlying their architectural design are suggestive of cortical

mechanisms in biological vision systems.

Although CNNs have been applied to face recognition

as far back as 1997 [6], the recent availability of massive

image datasets have revealed their power. A representative

work of this class of approaches is Deep-Face [13], which

uses a 9-layer CNN trained on 4.4 million labeled facial

images including over 4,000 identities. It has achieved out-

standing performance in both the Labeled Faces in the Wild

(LFW) [7] and YouTube Faces (YTF) [16] benchmarks.

Subsequently, Parkhi et al. [10] proposed the VGG-Face

network, which we have adopted in our work. It uses a

16-layer CNN trained on 2.6 million images and achieves

even better accuracy in these benchmarks.

3. Methodology
As illustrated in Fig. 1, our AcFR system consists of

two main modules—a behavior controller module, which is

served by a face recognition module. Given a facial image,

the recognition module will attempt to determine the sub-

ject’s identity and will provide its results to the controller.

The controller has two functionalities: to re-evaluate the

face whenever the viewpoint changes and to model human

behaviors based on the results of recognition.

3.1. Face Recognition

The modern face recognition pipeline usually consists of

four stages: detection, alignment, representation, and clas-

sification. Detection and alignment are often included as

preprocessing steps. Given a good facial representation,

the system can predict identity through classification algo-

rithms.

3.1.1 Preprocessing

Face detection and alignment algorithms are often em-

ployed because many face recognition algorithms require

the input images to be carefully positioned into a canonical

pose. Sometimes the assumption is made that the detection

step has provided rough alignment. In this project, faces are

detected using the algorithm by Mathias et al. [8].

3.1.2 Face Representation

Face representation heavily influences the performance of

the face recognition system and is also the focus of current

recognition-related research. In this project, we employ the

VGG-Face network (Fig. 2), a 16-layer CNN that is trained

on over 2 million celebrity images. In addition to its out-

standing performance in benchmarks, we chose it over other

CNNs because (i) the image dataset that VGG-Face used is

similar to ours, which makes its performance more reliable

in our application, and (ii) the pre-trained VGG-Face model

is available in the Caffe [5] Zoo Library, which makes it

easy to use. Using VGG-Face, we are able to extract suit-

able image features from the output of the fc-6 layer and

use them in our subsequent classification stage. In this way,

each 224×224 image is represented by a 4,096-dimensional

feature vector.
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Figure 2. VGG-Face network architecture

3.1.3 Classification

Given the extracted features, we experimented with vari-

ous classification algorithms. With half the dataset used for

training, Support Vector Machines and Linear Regression

yielded poor accuracy (below 20%), whereas K-Nearest-

Neighbor (KNN) classification achieved 90% accuracy with

K = 30. We determined that the performance gap is at-

tributable to the “curse of dimensionality”. Furthermore,

maintaining only a single frontal image per person in the

gallery G results in an improvement over KNN. Accord-

ingly, we decided to use the Nearest-Neighbor (NN) classi-

fier. Given the feature vector θ associated with an unknown

image, NN will compute its Euclidean distance from each

of the feature vectors θi stored in the gallery G and output

the identification of the image as

ID = arg min
θi∈G

‖ θ − θi ‖ . (1)

We also used Euclidean distance in the subsequent behav-

ioral model.

3.2. Behavior Modeling

In active face recognition scenarios, human behaviors

can be roughly categorized into three types: change view-

point, greet, and ignore. If a person of interest is likely to

be someone we know, but we are uncertain, we will seek a

better position from which to observe the subject’s face un-

til we can confidently recognize the subject or relegate the

subject a stranger, at which point we would choose to greet

or ignore the subject, respectively. Hence, our controller

module is designed to model such behaviors based on the

results of facial image recognition.

The controller module is initialized with two distance

thresholds, t1 and t2. Given the output of the recognition

module, the controller can model the aforementioned be-

haviors in the following simple way:

Behavior =

⎧⎪⎨
⎪⎩

Greet if d ≤ t1,

Ignore if d ≥ t2,

ChangeView if t1 < d < t2,

(2)

where d = minθi∈G ‖ θ − θi ‖. In the first and second

cases, our system is confident that the subject is a friend

or a stranger, respectively, while in the third case it must

acquire more information via a change in viewpoint.

4. Experiments

4.1. Experimental Setup

We used Caffe [5] to implement our recognition module.

It is one of most popular neural network frameworks and

is widely used by many large-scale computer vision appli-

cations. Additionally, Caffe provides various popular pre-

trained neural networks in its Model Zoo. Considering the

high computational costs of CNNs and the complexity of

installing Caffe, we decided to develop this project on Elas-

tic Compute Cloud (EC2), which provides a scalable com-

puting capability on Amazon Web Service (AWS), and we

used the g2.2xlarge GPU instance, which has Caffe already

installed, that takes advantage of the high-performance par-

allel processing capabilities of NVIDIA GPUs.

4.2. Dataset

The PIE facial image database used in this project was

collected by Carnegie Mellon University’s Robotics Insti-

tute [11]. It contains 41,368 images of 68 people taken un-

der 43 different illumination conditions, 4 different facial

expressions, and 13 imaging viewpoints (from 13 cameras)

ranging from -90◦ to 90◦. Among the 13 cameras, 9 are po-

sitioned at head height in an arc from approximately a full

left profile to a full right profile. As shown in Fig. 3, images

acquired from these 9 viewpoints may be used to model a

sequence of faces seen by an active observer.
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Figure 3. A sequence of 9 images of the same person

Figure 4. Distance for different viewpoints

Figure 5. Accuracy for different viewpoints

4.3. Face Recognition Module Performance

To evaluate the performance of our recognition module,

we reserved one frontal image of each person, saved its

VGG-Face feature vector in the gallery and used the re-

maining images for testing. Fig. 4 and Fig. 5 show that

the accuracy and distance are view-dependent, as expected.

For images with angles closer to the frontal view, the ac-

curacy can reach 100% and the distance is also minimized.

This shows that views can be represented by the features

extracted by VGG-Face and also provides evidence for the

Figure 6. Distance for different viewpoints for side-view gallery

Figure 7. Accuracy for different viewpoints for side-view gallery

view-dependent design of our behavior model.

To investigate further the influence of the gallery on the

results, we changed the stored feature vectors in the gallery

from frontal views to -45◦ side views. Fig. 6 and Fig. 7

show that the optimal view (the view that results in the high-

est accuracy and minimal distance) changes accordingly.

Also, due to the similarity between the left and right side

views, a distance local minimum occurs at 45◦ and the ac-

curacy remains roughly the same for angles near -45◦ and

45◦. This is reasonable because the images most familiar
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to the active observer are the images (feature vectors) in

memory—the gallery.

To test how our AcFR system works when observing

strangers, we removed 10 people randomly from the gallery

to relegate them strangers. For these strangers, the aver-

age distances under different views range from 286 to 350,

which are close to the distance of the worst views at -90◦

and 90◦. This shows that our system is able to distinguish

strangers from friends. Thus, for properly set thresholds in

the behavior controller module, it exhibits appropriate be-

havioral modeling.

4.4. Behavior Controller Module Performance

For each of the 68 subjects in the PIE database, we

choose a sequence of images, one per viewpoint angle, un-

der one specific illumination condition (Fig. 3), albeit some-

times with different expressions. This is because viewpoint

changes usually happen quickly, which means that illumi-

nation is likely to remain unchanged, although expression

may change. Then our AcFR system plays the role of an

active observer with the feature vectors associated with the

frontal images of all 68 subjects in memory. We tested the

active observer’s first reaction when acquiring images from

different viewpoint angles.

Modifying the thresholds in our behavior model changes

the “personality” of our AcFR system. As expected, the

system greets the subject more often for larger t1, and ig-

nores the subject more often for smaller t2. By default, we

set the thresholds to t1 = 250 and t2 = 325.

Fig. 8 shows the behaviors when the initial observation

is at different angles. Obviously, the frontal view is the

best from which the observer can immediately recognize

the subject. By contrast, the full left profile and full right

profile are the most difficult views to recognize and they

sometimes even lead to incorrect results. This mimics hu-

man active face recognition in the real world.

4.5. Time Complexity

Computational efficiency is an important concern for

us because large latencies undermine real-time behavioral

modeling. The initialization of our AcFR system takes ap-

proximately 2.2 seconds and the recognition of each image

takes only about 0.067 seconds. This implies that our sys-

tem is capable of performing real-time recognition, which

makes it suitable for virtual human modeling applications.

5. Summary, Limitations, and Future Work

We have proposed an approach to simulating human be-

haviors in facial recognition. Motivated by real-life face

recognition scenarios and related psychological findings,

we assumed that the recognition strategy should be active;

therefore, the controller module in our prototype Active

Figure 8. Behaviors for different initial viewpoints

Face Recognition (AcFR) system was designed to perform

facial recognition in a view-driven sequential manner. Our

use of a convolutional neural network makes the recogni-

tion module of the AcFR system more biomimetic and more

powerful compared to alternative approaches. The experi-

mental results support our design decisions.

The direction of movement when our AcFR system de-

cides to change its viewpoint was not carefully investigated.

This can be a problem because the system may decide to

move from a side view to look at the subject from behind,

whereas people normally move towards the front of a sub-

ject in order to see the face more clearly. Therefore, the

direction of the face must be estimated for more realistic

active face recognition.

In future work, we will incorporate our AcFR system

into a biomechanical human model of the face-head-neck

complex [9]. To this end, the behavioral repertoire of the

system’s controller module will need to be expanded.
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