ELSEVIE

Available online at www.sciencedirect.com

ScienceDirect

Q5.
R Graphical Models 69 (2007) 246-274

Graphical Models

www.elsevier.com/locate/gmod

Autonomous pedestrians

Wei Shao ?, Demetri Terzopoulos >*

* Google Inc., Kirkland, WA, USA
> Computer Science Department, University of California, Los Angeles, CA, USA

Received 12 April 2006; received in revised form 18 September 2007; accepted 24 September 2007
Available online 18 Ocotber 2007

Abstract

We address the challenging problem of emulating the rich complexity of real pedestrians in urban environments. Our
artificial life approach integrates motor, perceptual, behavioral, and cognitive components within a comprehensive model
of pedestrians as individuals. Featuring innovations in these components, as well as in their combination, our model yields
results of unprecedented fidelity and complexity for fully autonomous multihuman simulation in a large urban environ-
ment. We represent the environment using hierarchical data structures, which efficiently support the perceptual queries that
influence the behavioral responses of the autonomous pedestrians and sustain their ability to plan their actions on local

and global scales.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Artificial life; Virtual humans; Autonomous characters; Behavioral animation; Cognitive modeling

1. Introduction

“Forty years ago today at 9 a.m., in a light rain,
Jack-hammers began tearing at the granite walls
of the soon-to-be-demolished Pennsylvania Sta-
tion, an event that the editorial page of The New
York Times termed a “monumental act of vandal-
ism” that was “‘the shame of New York.””

(Glenn Collins, The New York Times, 10/28/03)

The demolition of New York City’s original
Pennsylvania Station (Fig. 2), which had opened
to the public in 1910, in order to make way for
the Penn Plaza complex and Madison Square Gar-
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den, was “a tragic loss of architectural grandeur”.
Although  state-of-the-art computer graphics
enables a virtual reconstruction of the train station
with impressive geometric and photometric detail,
it does not yet enable the automated animation of
its human occupants with anywhere near as much
fidelity. Our research addresses this difficult, long-
term challenge.

In a departure from the substantial literature on
so-called “crowd simulation”, we develop a decen-
tralized, comprehensive model of pedestrians as
autonomous individuals capable of a broad variety
of activities in large-scale synthetic urban spaces.
Our artificial life approach to modeling humans
spans the modeling of pedestrian appearance, loco-
motion, perception, behavior, and cognition [35].
We deploy a multitude of self-animated virtual
pedestrians within a large environment model, a
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Fig. 1. A large-scale simulation of a virtual train station populated by self-animated virtual humans. From left to right are rendered

images of the main waiting room, concourses, and arcade.

Fig. 2. Historical photos of the original Pennsylvania Station in New York City.

VR reconstruction of the original Penn Station
(Fig. 1). The environment model includes hierarchi-
cal data structures that support the efficient interac-
tion between numerous pedestrians and their
complex virtual world through fast perceptual query
algorithms that sustain pedestrian navigation on
local and global scales.

We continue with a review of related work in Sec-
tion 2. Section 3 briefly reviews our virtual environ-
ment model. In Section 4, we present our
autonomous pedestrian model, mostly focusing on
its (reactive) behavioral and (deliberative) cognitive
components. Additional details regarding the
autonomous pedestrian and environmental models
are provided in Appendices A,B,C,D. Section 5
describes the simulation of the models. Section 6
presents results comprising long-term simulations
with well over 1000 pedestrians and reports on per-
formance. Finally, Section 7 draws conclusions and
discusses future work.

2. Related work

Human animation is an important and challeng-
ing problem in computer graphics [2]. Psychologists
and sociologists have been studying the behavior
and activities of people for many years. Closer to
home, pedestrian simulation has recently begun to
capture the attention of CG researchers [1,20]. The
topic has also been of some interest in the field of
artificial life [4], as well as in architecture and urban

planning [16,28] where graphics researchers have
assisted in visualizing planned construction projects,
including pedestrian animation [8,19].

In pedestrian animation, the bulk of prior
research has focused on synthesizing natural loco-
motion (a problem that we do not consider in this
paper) and on path planning (one that we do).
The seminal work of Reynolds [23] on behavioral
animation is certainly relevant to our effort, as is
its further development in work by other researchers
[37,36,17]. Behavioral animation has given impetus
to an entire industry of applications for distributed
(multiagent) behavioral systems that are capable of
synthesizing flocking, schooling, herding, etc.,
behaviors for lower animals, or in the case of human
characters, crowd behavior. Low-level crowd inter-
action models have been developed in the sciences
[10,12,3,27] and by animation researchers
[11,15,33,38,14] and also in the movie industry by
Disney and many other production houses, most
notably in recent years for horde battle scenes in
feature films (see www.massivesoftware.com).

While our work is innovative in the context of
behavioral animation, it is very different from so-
called “crowd animation”. As the aforementioned
literature shows, animating large crowds, where
one character algorithmically follows another in a
stolid manner, is relatively easy. We are uninterested
in crowds per se. Rather, the goal of our work is to
develop a comprehensive, self-animated model of
individual human beings that incorporates nontrivial
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human-like abilities suited to the purposes of ani-
mating virtual pedestrians in urban environments.
Our approach is inspired most heavily by the work
of [37] on artificial animals and by [9] on cognitive
modeling for intelligent characters that can reason
and plan their actions. We further develop their
comprehensive artificial life approach and adopt it
for the first time to the case of autonomous virtual
humans that can populate extensive urban spaces.
In particular, we pay serious attention to delibera-
tive human activities over and above the reactive
behavior level.

3. Virtual environment model

The interaction between a pedestrian and his/her
environment plays a major role in the animation of
autonomous virtual humans in synthetic urban
spaces. This, in turn, depends heavily on the repre-
sentation and (perceptual) interpretation of the
environment. Recently, Lamarche and Donikian
[14] proposed a suitable structuring of the geometric
environment and reactive navigation algorithms for
pedestrian simulation. While this part of our work is
conceptually similar, our methods differ. We have
devoted considerable effort to developing a large-
scale (indoor) urban environment model, which is
described in detail in Appendix A and elsewhere
[29], and which we summarize next.

We represent the virtual environment by a hierar-
chical collection of maps. As illustrated in Fig. 3,
the model comprises (i) a topological map which
represents the topological structure between differ-
ent parts of the virtual world. Linked within this
map are (ii) perception maps, which provide rele-
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Fig. 3. Hierarchical environment model.

vant information to perceptual queries, and (iii)
path maps, which enable online path-planning for
navigation.

In the topological map, nodes correspond to
environmental regions and edges represent accessi-
bility between regions. A region is a bounded vol-
ume in 3D space (such as a room, a corridor, a
flight of stairs or even an entire floor) together with
all the objects inside that volume (e.g., ground,
walls, benches). The representation assumes that
the walkable surface in a region may be mapped
onto a horizontal plane without loss of essential
geometric information. Consequently, the 3D space
may be adequately represented within the topologi-
cal map by several 2D, planar maps, thereby
enhancing the simplicity and efficiency of environ-
mental queries.

The perception maps include grid maps that rep-
resent stationary environmental objects on a local,
per region basis, as well as a global grid map that
keeps track of mobile objects, usually other pedes-
trians. These uniform grid maps store information
within each of their cells that identifies all of the
objects occupying that cellular area. The typical cell
size of the grid maps for stationary object percep-
tion is 0.2-0.3 m. Each cell of the mobile grid map
stores and updates identifiers of all the agents cur-
rently within its cellular area. Since it serves simply
to identify the nearby agents, rather than to deter-
mine their exact positions, it employs cells whose
size is commensurate with the pedestrian’s visual
sensing range (currently set to 5 m). The perception
process will be discussed in more detail in Section
4.2.

The path maps include a quadtree map which
supports global, long-range path planning and a
grid map which supports short-range path planning.
Each node of the quadtree map stores information
about its level in the quadtree, the position of the
area covered by the node, the occupancy type
(ground, obstacle, seat, etc.), and pointers to neigh-
boring nodes, as well as information for use in path
planning, such as a distance variable (i.e., how far
the node is from a given start point) and a conges-
tion factor (the portion of the area of the node that
is occupied by pedestrians). The quadtree map sup-
ports the execution of several variants of the 4"
graph search algorithm, which are employed to
compute quasi-optimal paths to desired goals (cf.
[5]). Our simulations with numerous pedestrians
indicate that the quadtree map is used for planning
about 94% of their paths. The remaining 6% of the
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paths are planned using the grid path map, which
also supports the execution of A" and provides
detailed, short-range paths to goals in the presence
of obstacles, as necessary. A typical example of its
use is when a pedestrian is behind a chair or bench
and must navigate around it in order to sit down.
With each of the aforementioned maps special-
ized to a different purpose, our environment model
is efficient enough to support the real-time (30 fps)
simulation of about 1400 pedestrians on a
2.8 GHz Xeon PC with 1 GB memory. For the
details about the construction and update of our
environment model and associated performance sta-
tistics regarding its use in perception and path plan-
ning, we refer the reader to Appendix A and [29,31].

4. Autonomous pedestrian model

Like real humans, our synthetic pedestrians are
fully autonomous. They perceive their virtual envi-
ronment, analyze environmental situations, make
decisions, and behave naturally. Our autonomous
human characters are architected as a hierarchical
artificial life model. Progressing upward through
the levels of abstraction, our model incorporates
appearance, motor, perception, behavior, and cog-
nition sub-models. The following sections discuss
each of these components in turn.

4.1. Human appearance, movement, & motor control

As an implementation of the low-level appear-
ance and motor levels, we employ a human anima-
tion software package called DI-Guy, which is
commercially available from Boston Dynamics
Inc. It provides textured 3D human characters with
basic motor skills, such as standing, strolling, walk-
ing, running, sitting, etc. [13]. DI-Guy characters
are by no means autonomous, but their actions
may be scripted manually using an interactive tool
called DI-Guy Scenario, which we do not use. DI-
Guy also includes an SDK that allows external C/
C++ programs to control a character’s basic motor
repertoire. This SDK enables us to interface DI-
Guy to our extensive, high-level perceptual, behav-
ioral, and cognitive control software, which will be
described in subsequent sections, thereby achieving
fully autonomous pedestrians.

Emulating the natural appearance and move-
ment of human beings is a difficult problem and,
not surprisingly, DI-Guy suffers from several limita-
tions. The 3D character appearance models are

insufficiently detailed. More importantly, DI-Guy
characters cannot synthesize the full range of
motions needed to cope with a highly dynamic
urban environment. With the help of the DI-Guy
Motion Editor, we have modified and supplemented
the motion repertoire, enabling faster action transi-
tions, which better enables our pedestrians to deal
with busy urban environments.

Moreover, we have implemented a motor control
interface between the kinematic layer of DI-Guy
and our higher-level behavioral controllers. The
interface accepts motor control commands from
behavior modules, and it verifies and corrects them
in accordance with the pedestrian’s kinematic limits.
It then selects an appropriate motion sequence or
posture and calls upon the kinematic layer to update
the state of the character. Our seamless interface
hides the details of the underlying kinematic layer
from our higher-level behavior routines, allowing
the latter to be developed largely independently.
Hence, in principle, any suitable low-level human
animation API can easily replace DI-Guy in our
future work.

4.2. Perception

An autonomous and highly mobile virtual
human must have a perceptive regard of its environ-
ment. Our environment model (Section 3) efficiently
provides accurate perceptual data in response to the
queries of autonomous pedestrians.

4.2.1. Sensing ground height

In the static object perception map, each map cell
contains the height functions of usually a single
though sometimes multiple ground objects, such as
the floor, stairs, etc. The highest object at the
desired foot location of a pedestrian is returned in
constant time and it is processed within the pedes-
trian’s motor layer, which plants the foot at the
appropriate height.

4.2.2. Sensing static objects

The visual sensing computation shoots out a fan
of line segments, with length determining the desired
perceptual range and density determining the
desired perceptual acuity (Fig. 4(a)—(b)). Grid cells
on the perception map along each line are interro-
gated for their associated object information. This
perceptual query takes time that grows linearly with
the length of each line times the number of lines but,
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Fig. 4. Perception. (a) and (b) A pedestrian (denoted by the red circle) perceives stationary objects, (a) by examining map cells along the
rasterized eye ray, while (b) perceiving the broader situation by shooting out a fan of eye rays (rasterization not shown). (c) Sensing mobile
objects by examining (color-coded) tiers of the sensing fan. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

most importantly, it does not depend on the number
of objects in the virtual environment.

4.2.3. Sensing mobile objects

To sense mobile objects (mostly other humans), a
pedestrian must first identify nearby pedestrians
within the sensing range. The range here is defined
by a fan as illustrated in Fig. 4(c). On the mobile
object perception map, the cells wholly or partly
within the fan are divided into “tiers” based on their
distance to the pedestrian. Closer tiers are examined
earlier. Once a predefined number (currently set to
16) of nearby pedestrians are perceived, the sensing
is terminated. This is motivated by the fact that, at
any given time, people usually pay attention only to
a limited number of other people, usually those that
are most proximal.! Once the set of nearby pedestri-
ans is sensed, additional information can be
obtained by referring to finer maps, estimation, or
simply querying some pedestrian of particular inter-
est. Given the sensing fan and the upper bound on
the number of sensed pedestrians, sensing is a con-
stant-time operation.

4.2.4. Locating an object

Given a location identifier (e.g., “Track 9), a
search at the object level can find the virtual object.
This is accomplished in constant time using a hash
map with location names as keys. As the virtual
object has an upward reference to its region (e.g.,
“under the lower concourse”), it can be quickly
located by referring to the node in the topological
graph, as can nearby objects in that region (say,

! Because of the limited processing capacity of the brain, people
become consciously aware of but a small fraction of the available
sensory input, as determined by their focus of attention, which is
partly a subconscious and partly a voluntary selection process [6].

“Platform 9 and ‘“Platform 10”) by referring to
the perception maps linked within the node.

4.2.5. Interpreting complex situations

Abstract interpretation of the environment is
indispensable for performing higher-level, motiva-
tional behaviors (Section 4.3). For example, in order
to get a ticket, a pedestrian should assess (1) the
length of the queues at ticketing areas and pick a short
one, (2) the last pedestrian waiting in line in order to
join the queue, (3) when (s)he has become the first per-
son in line, and (4) whether a ticket booth has become
available to make the purchase. These perceptual
queries are efficiently answered by the specialized
environmental objects that keep track of the evolving
situation, in the ticketing example these include a
queue object and several purchase-point objects
each associated with a ticket booth.

4.3. Behavioral control

Realistic behavioral modeling, whose purpose is
to link perception to appropriate actions, is a big
challenge in the case of autonomous virtual
humans. Even for pedestrians, the complexity of
any substantive behavioral repertoire is high. Con-
siderable literature in psychology, ethology, artifi-
cial intelligence, robotics, and artificial life is
devoted to the subject. Following [37], we adopt a
bottom-up strategy that uses primitive reactive
behaviors as building blocks that in turn support
more complex motivational behaviors, all con-
trolled by an action selection mechanism.

4.3.1. Basic reactive behaviors
Reactive behaviors appropriately connect per-
ceptions to immediate actions. We have developed
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six key reactive behavior routines, each suitable for
a specific set of situations in a densely populated
and highly dynamic environment (Fig. 5). Given
that a pedestrian possesses a set of motor skills, such
as standing in place, moving forward, turning in dif-
ferent directions, speeding up and slowing down,
etc., these routines are responsible for initiating, ter-
minating, and sequencing the motor skills on a
short-term basis guided by sensory stimuli and
internal percepts. The details of the six routines,
denoted Routines A-F, are provided in Appendix
B.

Several remarks regarding the routines are in
order: Obviously, the fail-safe strategy of Routine

E suffices in and of itself to avoid nearly all colli-
sions between pedestrians. However, our experi-
ments show that in the absence of Routines C and
D, Routine E makes the dynamic obstacle avoid-
ance behavior appear very awkward—pedestrians
stop and turn too frequently and they make slow
progress. Enabling Routines C and D, the obstacle
avoidance behavior looks increasingly more natural.
Interesting multiagent behavior patterns emerge
when all the routines are enabled. For example,
pedestrians will queue to go through a narrow por-
tal. In a busy area, lanes of opposing pedestrian
traffic will tend to form spontaneously after a short
while.
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Fig. 5. Reactive behaviors. (a) (left to right) Original travel direction of pedestrian; detect stationary obstacle ahead by examining grid
entries along the rasterized eye ray; perceive other nearby stationary obstacles by shooting additional eye rays; change direction and
proceed. (b) Pedestrians choose best turning curves (gray) to turn southward. (c¢) Pedestrians within pedestrian H’s forward parabolic
region traveling in similar directions as H (labeled C) are in H’s temporary crowd. (d1) To avoid cross-collision, (left) H slows down and
turns toward C while C does the opposite until collision is cleared (right). (d2) To avoid head-on collision, both pedestrians turn slightly
away from each other. (e) The dotted rectangle defines H’s forward safe area; w and d depend on H’s bounding box size and d is also
determined by H’s current speed s. (f) Confronted by static and dynamic threats, H picks obstacle-free direction (light gray arrow) and

slows down (black arrow) to let others pass before proceeding.
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A remaining issue is how best to activate the six
reactive behavior routines. Since the situation
encountered by a pedestrian is always some combi-
nation of the key situations that are covered by the
six routines, we have chosen to activate them in a
sequential manner (Fig. 6), giving each an opportu-
nity to alter the currently active motor control com-
mand, comprising speed, turning angle, etc. For
each routine, the input is the motor command
issued by its predecessor, either a higher-level
behavior module (possibly goal-directed navigation)
or another reactive behavior routine. The sequential
flow of control affords later routines the chance to
override motor commands issued by earlier rou-
tines, but this may cause the pedestrian to ignore
some aspect of the situation, resulting in a collision.
The problem can be mitigated by finding a “best”
permutation ordering for activating the six routines.
We have run many extensive simulations (longer
than 20 min in virtual time) in the Penn Station
environment with different numbers of pedestrians
(333, 666, and 1000), exhaustively evaluating the
performance of all 720 possible permutation order-
ings. The best permutation of the six routines, in the
sense that it results in the fewest collisions while rea-
sonable progress is still maintained in navigation, is
C-A-B-F-E-D. Appendix C explains how we
determined this best permutation.

4.3.2. Navigational behaviors

While the reactive behaviors enable pedestrians
to move around freely, almost always avoiding col-
lisions, navigational behaviors enable them to go
where they desire, which is crucial for pedestrians.
A pioneering effort on autonomous navigation is
that by Noser et al. [21]. Metoyer and Hodgins
[19] propose a model for reactive path planning in
which the user can refine the motion by directing
the characters with navigation primitives. We prefer
to have our pedestrians navigate entirely on their
own, as normal biological humans are capable of
doing.

{Higher—level behavior control} Reactive behavior

Motor control __—
command flow

Motor control

Fig. 6. Activation of the reactive behavior routines in the best
permutation order “C-A-B-F-E-D”.

The online simulation of numerous pedestrians
within large, complex environments, confronts us
with many navigational issues, such as the realism
of paths taken, the speed and scale of path planning,
and pedestrian flow control through and around
bottlenecks. We have found it necessary to develop
a number of novel navigational behavior routines to
address these issues. These behaviors rely in turn on
a set of conventional navigational behavior rou-
tines, including moving forward, turning (in place
or while moving), proceeding toward a target, and
arriving at a target (see [25] for details).

In the Penn Station environment, large regions
are connected by narrow portals and stairways,
some of which allow only two or three people to
advance comfortably side by side. These bottlenecks
can easily cause extensive queueing, leading to
lengthy delays. In our experience, available tech-
niques, such as queuing in [25], self-organization
in [12], and global crowd control in [20] cannot
tackle the problem, as it involves highly dynamic
two-way traffic and requires quick and flexible
responses from pedestrians. In our solution, we
employ two behavioral heuristics. First, pedestrians
inside a bottleneck should move with traffic while
trying not to impede oncoming pedestrians. Second,
all connecting passageways between two places
should be used in balance. The two behaviors that
are detailed next enabled us to increase the number
of pedestrians within the Penn Station model from
under 400 to well over 1000 without any long-term
blockage in bottlenecks.

4.3.2.1. Passageway navigation. In real life, if pedes-
trians are traveling in the same direction inside a
narrow passageway, they will tend to spread out
in order to see further ahead and maximize their
pace. However, once oncoming traffic is encoun-
tered, people will tend to form opposing lanes to
maximize the two-way throughput. Our virtual
pedestrians incorporate a similar behavior. First,
two imaginary boundaries are computed parallel
to the walls with an offset of about half the pedes-
trian H’s bounding box size (Fig. 7(a)). Restricting
H’s travel direction within a safety fan defined by
the boundaries, as shown in the figure, guarantees
that H stays clear of the walls. Second, if A detects
that its current direction is blocked by oncoming
pedestrians, it will search within the safety fan for
a safe interval to get through (Fig. 7(b)). The search
starts from H’s current direction and continues
clockwise. If the search succeeds, H will move in
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Fig. 7. Passageway navigation. (a) Two imaginary boundaries (dashed lines) and the safety fan. (b) Pedestrian H searches for a safe
direction interval when confronted by oncoming traffic. (¢) Spread out when no oncoming traffic is observed. (d) Typical flow of
pedestrians in a passageway—big flows on the sides with small unblocking streams intermingling in the middle.

the safe direction found. Otherwise, H will slow
down and proceed in the rightmost direction within
the safety fan. This strategy allows non-blocking
traffic to intermingle without resistance. However,
in a manner that reflects the preference of real peo-
ple in many countries, a virtual pedestrian will tend
to squeeze to the right if it is impeding or impeded
by oncoming traffic (Fig. 7(d)). Finally, Routine C
(see Section B.3 in Appendix B) is used to maintain
a safe separation between pedestrians travelling in
the same direction. By altering their crowding factor
w; based on the observation of oncoming traffic,
pedestrians can spread out or draw tightly to adapt
to the situation (Fig. 7(c)).

4.3.2.2. Passageway selection. People are usually
motivated enough to pick the best option from sev-
eral available access routes, depending on both per-
sonal preferences and the real-time situation in and
around those routes. Likewise, our pedestrians will
assess the situation around stairways and portals,
pick a preferred one based on proximity and density
of pedestrians near it, and proceed toward it. They
will persist in the choice they make, unless a
significantly more favorable condition is detected
elsewhere. This behavior, although executed inde-

pendently by each individual, has a global effect of
balancing the loads at different passageways.

Visually guided navigation among static obsta-
cles is another important behavior for pedestrians.
The following two behavioral routines accomplish
this task on a local scale.

4.3.2.3. Perception-guided navigation among static
obstacles. Given a path P (the global planning of
paths will be explained in the next section), a farthest
visible point p on P—i.e., the farthest point along P
such that there is no obstacle on the line between p
and the pedestrian H’s current position—is deter-
mined and set as an intermediate target (Fig. 8). As
H progresses toward p, it may detect a new farthest
visible point that is even further along the path. This
enables the pedestrian to approach the final targetin a
natural, incremental fashion. During navigation,
motor control commands for each footstep are veri-
fied sequentially by the entire set of reactive behavior
routines in their aforementioned order so as to keep
the pedestrian safe from collisions.

4.3.2.4. Detailed “arrival at target” navigation.
Before a pedestrian arrives at a target, a detailed

a 0 b

° &

Obstacle

& Start point

Fig. 8. Perception-guided navigation. (a) To reach target 7, pedestrian H will (b) plan a jagged path on a path map (either grid or
quadtree), (c) pick the farthest visible point (blue circle marked F) along the path, and proceed toward it. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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path will be needed if small obstacles intervene.
Such paths can be computed on a fine-scale grid
path map. The pedestrian will follow the detailed
path strictly as it approaches the target, because
navigational accuracy becomes increasingly impor-
tant as the distance to the target diminishes. As
some part of an obstacle may also be a part of or
very close to the target, indiscriminately employing
the reactive behaviors for static obstacle avoid-
ance—Routines A and B (refer to Subsections B.1
and B.2 in Appendix B)—will cause the pedestrian
to avoid the obstacle as well as the target, thereby
hindering or even preventing the pedestrian from
reaching the target. We deal with this by temporar-
ily disabling the two routines and letting the pedes-
trian accurately follow the detailed path, which
already avoids obstacles. Note that the other reac-
tive behaviors, Routines C, D, and E, remain active,
as does Routine F, which will continue to play the
important role of verifying that modified motor
control commands never lead the pedestrian into
obstacles.

4.3.3. Motivational behaviors

The previously described behaviors comprise an
essential aspect of the pedestrian’s behavioral reper-
toire. To make our pedestrians more interesting,
however, we have augmented the repertoire with a
set of non-navigational, motivational behavior rou-
tines including, among others, the following:

e Meet with friends and chat;

e Select an unoccupied seat and sit down when
tired;

e Approach and observe a performance when
interested;

¢ Queue at a ticketing area or vending machine and
make a purchase.

In the latter behavior, for example, a pedestrian
joins a ticket purchase queue and stands behind its
precursor pedestrian, proceeding forward until com-
ing to the head of the queue. Then, the pedestrian
will approach the first ticket counter associated with
this queue that becomes available. Appendix D pre-
sents the details of several of the above behavior
routines.

Note that these motivational behaviors depend
on the basic reactive behaviors and navigational
behaviors to enable the pedestrian to reach targets
in a collision-free manner. Furthermore, these rou-
tines are representative of higher-level behaviors

that involve potential competition among pedestri-
ans for public resources. While each pedestrian gen-
erally tries to maximize their personal benefit, they
also follow social conventions designed to maximize
collective benefits, leading to natural, rational
pedestrian behavior.

4.3.4. Mental state and action selection

Each pedestrian maintains a set of internal
mental state variables that encodes the pedestrian’s
current physiological, psychological, or social
needs. These variables include tiredness, thirst,
curiosity, the propensity to be attracted by perfor-
mances, the need to acquire a ticket, etc. When
the value of a mental state variable exceeds a
specified threshold, an action selection mechanism
chooses the appropriate behavior to fulfill the
need. Once a need is fulfilled, the value of the
associated mental state variable begins to decrease
asymptotically to zero.

We classify pedestrians in the virtual train station
environment as commuters, tourists, law enforce-
ment officers, performers, etc. Each pedestrian type
has an associated action selection mechanism with
appropriately set behavior-triggering thresholds
associated with mental state variables. For instance,
law enforcement officers on guard will never
attempt to buy a train ticket and commuters will
never act like performers. As a representative exam-
ple, Fig. 9 illustrates the action selection mechanism
of a commuter.

4.4. Cognitive control

At the highest level of autonomous control, a
cognitive model is responsible for creating and
executing plans suitable for autonomous pedestri-
ans. Whereas the behavioral substrate described

[ Update internal state values ] [ Decrease the value of D ]
— - Y ) N
Is fulfilling any desire D? Is D fulfilled?
N Y
Y N [ Remove current goal from stack ]

Need a ticket?

g=buya
ticket [

U =/attracted

Pick the most urgent desire U ]

U = thirsty U =|tired U =\hurried

lg = go and Walch] lg =buya drink] lg =take a resl] lg = go to the platform

l Put g on the stack l

l Pass control to behavior module ]

Fig. 9. Action selection in a commuter.
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in the previous section is mostly reactive, the cog-
nitive control layer [9] makes our pedestrian a
deliberative autonomous agent that can exploit
knowledge, reason about the world, and conceive
and execute long-term plans, as real humans do.

The realism of pedestrian animation depends on
the execution of rational actions at different levels
of abstraction and at different spatiotemporal
scales. At a high level of abstraction and over a
large spatiotemporal scale, a pedestrian must be
able to make reasonable global navigation plans
that can enable it to travel purposefully and with
suitable perseverance between widely separated
regions of its environment, say, from the end of
the arcade through the waiting room, through the
concourses, and down the stairs to a specific train
platform. Such plans should exhibit desirable prop-
erties, such as being relatively direct and saving time
when appropriate. During the actual navigation,
however, the pedestrian must have the freedom to
decide to what extent to follow the plan, depending
on the evolving situation, as we discussed when
explaining the behaviors in Section 4.3.2. Priority
must be given to the local (in both space and time)
situation in the dynamic environment in order to
keep the pedestrian safe while still permitting pro-
gress towards the long-range goal. Moreover, in a
large, rich, and highly dynamic environment, an
autonomous pedestrian should have the ability to
fulfill not just a single goal, but possibly multiple
goals. The pedestrian also needs the ability to decide
whether and when a new plan is needed, which
requires a bidirectional coupling between the behav-
ioral layer and cognitive layer. With these insights,
we apply three heuristics in the design of our pedes-
trian cognitive model:

1. Divide and conquer—decompose complex tasks
into multiple simpler ones;

2. Think globally, but act locally—a plan is needed
at the global level, but on the local level it will
serve only as a rough guide; and

3. be flexible—always be prepared to modify local
subplans in response to the real-time situation.

The subsequent sections present additional details
of our cognitive model, starting with a brief descrip-
tion of the internal knowledge representation.

4.4.1. Knowledge of the virtual world
To make plans, especially path plans, a pedestrian
must have a representation of the environment from

its own egocentric point of view. For efficiency, the
environment model serves as the internal knowledge
base of the static portion of the virtual world for each
pedestrian. Hence, except for tourists, every pedes-
trian knows the layout of the environment and the
position of relevant static objects (such as walls,
stairs, tracks, ticket booth, etc.), as well as the pedes-
trian’s own current position within it (or localization,
a fundamental problem in robotics [7]). However,
each pedestrian also maintains, and updates at every
simulation step, a representation of the dynamic
aspect of the current world in the form of a list of per-
ceived objects, including nearby pedestrians, and cur-
rent situation-relevant events (e.g., “‘that ticket
window is available”, “that seat is taken”, etc.).

This approach allows us to maintain only a single
copy of the huge representation of the static world
and still be able to support diverse cognitive and
behavioral control for different pedestrians. While
an over-simplification, this is reasonable for model-
ing pedestrians that are generally familiar with the
urban space around them and is a sensible strategy
for the real-time simulation of hundreds of pedestri-
ans in extensive environments.

4.4.2. Planning

Planning is central to the cognitive model. Global
path planning is an important planning task for
pedestrians. Path planning directs a pedestrian to
proceed through intermediate areas and reach ulti-
mate destinations. In our pedestrian model, path
planning is decomposed into subtasks at different
spatiotemporal scales (Section A.4). The divide-
and-conquer strategy allows the problem to be solved
in a top-down manner. Each subtask can address its
own portion of the overall problem in a suitable and
efficient way, contributing to the final solution. Thus,
the complete path planning process has global scale,
yet reasonable local accuracy and economy.

As knowledge, the path planner instantiated
within each individual pedestrian exploits the topo-
logical map at the top level of the environment
model (Fig. 3). Given a pedestrian’s current location
and a target region, this map provides a set of opti-
mal neighboring regions where the pedestrian can
go. By applying path search algorithms within the
path maps associated with each region known to
each pedestrian, the pedestrian can plan a path from
the current location to the boundary or portal
between the current region and the next. The pro-
cess is repeated in the next region, and so on, until
it terminates at the target location. In this way,
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although the extent of the path is global, the pro-
cessing is primarily local. Our path search algo-
rithms (detailed in Appendix A and [31]), which
are based on the well-known A" graph search algo-
rithm, are very efficient, but they provide rough
paths—i.e., paths that are either jagged (grid path
maps) or contain spikes (quadtree path maps)—as
opposed to smooth, spline-like paths. Consequently,
a pedestrian uses those rough navigational plans
only as a guide and retains the freedom to locomote
locally in as natural a manner as possible, as was
described in Section 4.3.2.

In addition to the global path planner, the cogni-
tive model incorporates other planning routines, or
planners. Generally speaking, planners are like
manuals that guide one through the steps needed
to accomplish specific goals. Each step may also
require further instructions. For instance, to “meet
a friend”, a pedestrian must first reach the meeting
point and then wait for the friend. Accomplishing
the first step requires a path planner. Once the plan-
ner finishes its work, control is handed over to the
behavioral level to pursue the plan either until it is
complete or until a more urgent plan arises. Conti-
nuity is maintained by the memory model.

4.4.3. Memory

A pedestrian can have many different activities
inside a big train station. For instance, (s)he may
have to purchase a ticket and meet with a friend
before boarding a train. The route from station
entrance to train track may be complicated and
may require multiple strategies to navigate. On the
way to the platform, (s)he may want to get a drink
or to stop and watch a street artist performance,
and so on. To keep important things in mind while
doing others, a pedestrian needs memory. The mem-
ory model enables a pedestrian to:

e Store information—memorize intermediate and
ultimate tasks;

e Retrieve information—remember pending tasks;
and

e Remove
tasks.

information—forget  accomplished

Unlike the pedestrian’s static world knowledge,
the memory model stores internal results directly
from thinking or planning, including a list of pre-
planned goals (e.g., first purchase a ticket, then meet
a friend, then catch the train), a sequence of sub-
tasks decomposed from a major task (e.g., to catch

a train, one must exit the arcade, cross the waiting
room, pass one of the gates, cross the upper con-
course, and descend the stairs to the platform),
interruption/resumption (e.g., after stopping at the
vending machine and performance, continue to the
train platform), and so on. Therefore, the memory
model is highly dynamic and usually long-term,
and can vary dramatically in size.

Taking a simple approach, we use a stack as the
memory. Our stack memory model precludes pedes-
trians from accomplishing multiple tasks in flexible
(non-deterministic) ways, but real pedestrians prob-
ably do not normally exhibit such flexibility. How-
ever, the stack data structure features simple
constant-time operations which permit easy and fast
maintenance, regardless of size. This offers a big
advantage in the real-time simulation of hundreds
or thousands of pedestrians.

Algorithm 1. Skeleton routine for processing
memory items

1: if the goal is accomplished then

2:  pop the goal from the memory stack

3: else if the goal has expired then

4:  pop the goal from memory stack

5: else if multiple subtasks are required to
achieve the goal then

6: create a plan containing these multiple

subtasks based on the current situation

7:  push the first subtask on the memory
stack marked with an appropriate expi-
ration time

8: else

9:  determine the appropriate action needed

to achieve the goal

Each item on the memory stack represents a goal
and has a list of properties, including a descriptor of
the goal type (e.g., catch a train, take a rest, reach a
specific target point), the goal complexity (high or
low), goal parameters (e.g., platform 10, position
and orientation of the seat, position of the target
point), preconditions (e.g., target must be within
0.5m), and expiration time (e.g., for 3s, until
finished).

The top item on the stack is always the current
goal. It will be processed by a cognitive or behav-
ioral routine designed specifically for its type. This
is done according to Algorithm 1, which decom-
poses complex goals into multiple simpler ones.
Among these subtasks, only the first subtask is
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pushed onto the memory stack because task decom-
position is accomplished according to the real-time
situation (reflected, for instance, in the choice of
goal parameters in subtasks). By the time the first
subtask is accomplished, the situation may have
changed and the remaining subtasks of the original
decomposition may no longer be optimal or appro-
priate. However, when the top subtask is completed
and removed from the memory stack, the original
goal rises to the top and is processed again, and a
new decomposition can be determined at the current
time. To make pedestrians persistent to their previ-
ous choice, after the decomposition but prior to the
pushing of the first subtask, the original complex
goal on the top of the memory stack is updated with
concise information about the decomposition.
Hence, when the original goal is exposed again, this
information reminds the pedestrian of the previous
choice, and the pedestrian can choose to adhere to
it, depending on the cognitive or behavioral routine
that will process the goal.

Sometimes, the time needed to finish the first sub-
task can be lengthy. The expiration time attached to
the memory item can cause the subtask to expire,
re-exposing the original goal, thus guaranteeing fre-
quent plan update. The expiration time also forces
replanning when a task resumes after an interruption
by another task. For example, if a pedestrian feels
thirsty on the way to the train platform and decides
to detour to a vending machine, (s)he needs to con-
tinue the trip to the platform after purchasing the
drink. As the “get a drink” task is an interruption,
there may be subgoals of “get to the platform” on
the memory stack reflecting the original plan. Due
to their expiration time, these subgoals may become
invalid, which effectively forces a replanning of the
“get to the platform” task. However, as it is an inter-
ruption, the “get a drink” task’s expiration time is set
in accordance with the spare time available before the
pedestrian needs to proceed to the train platform.

4.4.4. Coupling the cognitive and behavioral layers
The goal stack of the deliberative, cognitive layer
is also accessible to the underlying reactive, behav-
ioral layer, thus coupling the two layers. If a goal
is beyond the scope of the behavioral controller
(for example, some task that needs path planning),
it will be further decomposed into subgoals, allow-
ing the cognitive controller to handle those subgoals
within its ability (such as planning a path) and the
behavioral controller to handle the others by initiat-
ing appropriate behavior modules (such as local

navigation). The behavioral controller can also
insert directives according to the internal mental
state and environmental situation (e.g., if thirsty
and a vending machine is nearby, then push “plan
to get a drink’). This usually interrupts the execu-
tion of the current task and typically invalidates it.
When it is time for the interrupted task to resume,
a new plan is often needed. Intuitively, the goal
stack remembers “what needs doing”, the mental
state variables dictate “why it should be done”,
the cognitive controller decides “how to do it” at
a higher, abstract level, and the behavior controller
determines “how to do it” at a lower, concrete level
and ultimately attempts to “get it done™.

5. Simulation

Fig. 10 shows the layered relationship of the var-
ious components within the pedestrian model,
together with the world model. We will employ
the figure to explain what happens at each hAuman
simulation step (HSS), which comprises several
motion/rendering frames.

At the beginning of each HSS, the pedestrian’s
cognitive center retrieves the top memory item as
the current goal g (arrow 2). If g is a complex goal
(such as “meet a friend”), it will be decomposed
by a planner into subtasks (e.g., “go to the meeting
point” and “wait”). The first subtask will become
the current task and will be pushed onto the mem-
ory stack (arrow 2). Knowledge (usually of the sta-
tic world) will be used (arrow 1) during planning as
needed (say, in planning a path). If the task is simple
enough (arrows 6 and 7), the action selection mech-
anism will choose a suitable behavioral routine to
handle it. The behavior center acquires information
about the current environmental situation through
the sensory processes (arrows 3 and 10). The sen-
sory data are also used to update the internal
knowledge representation (arrow 4). Additional
behavior-relevant information is supplied by the
cognitive center (arrow 5). The behavior center
issues motor control commands (e.g., go forward
with speed 1.2 m/s in the next step, turn 15 degrees
left with walk speed 0.5 m/s in the next step, stand
still, sit down, look at the clock, look left, etc.) down
to the motor control interface (arrow 12) where they
will first be verified and corrected in accordance
with the motion abilities and kinematic limits of
the pedestrian’s body. They then manifest them-
selves as actual motions or motion transitions that
the motor center selects from the motion repertoire
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Fig. 10. Architecture of the pedestrian animation system.

(arrow 14), thus determining the pedestrian’s pose
sequence (arrow 15) for several subsequent frames.
Feedback (arrow 13) from the motion level (such
as a change of position/orientation, the current
speed, whether in a seated state, etc.) is used to
update the external world model (arrow 11) and it
also becomes available proprioceptively to the per-
ception center (arrow 8), thus resulting in a slightly
different perception. This may modify the internal
(mental) state variables (arrow 9), which may in
turn trigger (arrow 10) the behavioral controller to
initiate or terminate certain behaviors. The textured
geometric human model is used to render the scene

in each frame (arrows 16). After several frames, a
new HSS will be processed.

Note from the figure that the motor control inter-
face effectively hides the DI-Guy software from our
higher-level controllers, which makes it easy, in
principle, to replace it with other human animation
packages.

6. Results

Our pedestrian animation system, which com-
prises about 50,000 lines of C++ code, is capable,
without manual intervention, of running long-term
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simulations of pedestrians in a large-scale urban
environment—specifically, the Penn Station envi-
ronment. In our simulation experiments, we popu-
late the virtual train station with five different
types of pedestrians: commuters, tourists, perform-
ers, policemen, and patrolling soldiers. With every
individual guided by his/her own autonomous con-
trol, these autonomous pedestrians imbue their vir-
tual world with liveliness, social (dis)order, and a
realistically complex dynamic.

In preprocessing the Penn Station environment
model, the entire 3D space of the train station
(200(7) x 150(w) x 20(h) m?), which contains hun-
dreds of architectural and non-architectural objects,
was manually divided into 43 regions. At run time,
the environment model requires approximately
90 MB of memory to accommodate the station
and all of its associated objects.

6.1. Performance

We have run various simulation tests on a
2.8 GHz Intel Xeon system with 1 GB of main
memory. The total length of each test is 20 min in
virtual world time. Fig. 11 plots the computational
load as the number of pedestrians in the simulation
increases. The simulation times reported exclude
rendering times and include only the requirements
of our algorithms—environment model update
and motor control, perceptual query, behavioral
control, and cognitive control for each pedes-
trian—updating at 30 frames per virtual second.
The figure shows that real-time simulation can be
achieved for as many as 1400 autonomous pedestri-
ans (i.e., 20 virtual world minutes takes 20 min to
simulate). Although the relation is best fit by a qua-
dratic function, the linear term dominates by a fac-
tor of 2200. The small quadratic term is likely due to
the fact that the number of proximal pedestrians
increases as the total number of pedestrians
increases, but at a much lower rate. Fig. 12 breaks
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Fig. 12. Computational loads of the system’s parts.

down the computational load for various parts of
the simulation based on experiments with different
numbers of pedestrians ranging from 100 to 1000
on the aforementioned PC. Fig. 13 tabulates the
frame rates that our system achieves on the afore-
mentioned PC with an NVIDIA GeForce 6800
GT AGP8X 256 MB graphics system. Due to the
geometric complexity of the Penn Station model
and its numerous pedestrians, rendering times dom-
inate pedestrian simulation times.

6.2. Animation examples

We will now describe several representative sim-
ulations that demonstrate specific functionalities.
To help place the animation scenarios in context,
Fig. 14 shows a plan view of the Penn station model.

# of Pedestrians 0 | 100 | 200 | 300 | 400 | 500
Simulation only n/a | 64.4|32.2|23.016.9 | 123
Rendering only 21.0[125| 92 | 76 | 6.0 | 54
Simulation+Rendering | 21.0 | 10.5 | 7.2 | 5.7 | 44 | 3.8

Fig. 13. Frame rate (in frames/s) for pedestrian simulation only
(including DI-Guy), rendering only (i.e., static pedestrians), and
both simulation and rendering, with different numbers of
pedestrians.

Fig. 14. Plan view of the Penn Station model with the roof not
rendered, revealing the two-level concourses and the train tracks
(left), the main waiting room (center), and the long shopping
arcade (right).
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6.2.1. Following an individual commuter

As we claimed in the introduction, an important
distinction between our system and existing crowd
simulation systems is that we have implemented a
comprehensive human model, which makes every
pedestrian a complete individual with a richly broad
behavioral and cognitive repertoire. Figs. 15(a)—(f)
and (g)—(1) show selected frames from a typical ani-
mation in which we choose a commuter and follow
our subject as he enters the station (a), proceeds to
the ticket booths in the main waiting room (b), and
waits in a queue to purchase a ticket at the first
open booth (¢). Having obtained a ticket, he then
(d) proceeds to the concourses through a congested

portal, avoiding collisions. Next, our subject feels
thirsty (e) and spots a vending machine in the con-
course (f). He walks toward it and waits his turn to
get a drink (g). Feeling a bit tired (h), our subject
finds a bench with an available seat, proceeds
towards it, and sits down (i). Later, the clock
chimes the hour (j) and it is time for our subject
to rise from his seat and proceed to the correct train
platform. He makes his way through a somewhat
congested area by following, turning, and stopping
as necessary in order to avoid colliding with other
pedestrians. He passes by some dancers that are
attracting interest from many other pedestrians
(k), but in this particular instance our subject has

Fig. 15. Following an individual commuter.
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no time to watch the performance and descends the
stairs to his train platform (1).

6.2.2. Pedestrian activity in the train station

Fig. 16(a)—(f) shows selected stills of a routine
simulation, which includes over 600 autonomous
pedestrians, demonstrating a variety of pedestrian
activities that are typical for a train station. We
can interactively vary our viewpoint through the
station, directing the virtual camera on the main
waiting room, concourse, and arcade areas in order
to observe the rich variety of pedestrian activities
that are simultaneously taking place in different
parts of the station (see also Fig. 1). Some addi-

tional activities that were not mentioned above
include pedestrians choosing portals and navigating
through them (a), chatting in pairs (b) or small
groups (e), congregating in the busy upper con-
course (c) to watch a dance performance for amuse-
ment (d), and proceeding to the train platforms by
navigating the rather narrow and oftentimes con-
gested staircases (f).

7. Conclusions
We have developed a sophisticated human ani-

mation system whose major contribution is a com-
prehensive artificial life model of pedestrians as
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Fig. 16. Pedestrian activity in a train station.

highly capable individuals that combines percep-
tual, behavioral, and cognitive control components.
Incorporating a hierarchical environmental model-
ing framework that efficiently supports perceptual
sensing, situational awareness, and multiscale plan-
ning, our novel system efficiently synthesizes numer-
ous self-animated pedestrians performing a rich
variety of activities in a large-scale indoor urban
environment.

Our results speak to the robustness of our human
simulation system and its ability to produce prodi-
gious quantities of intricate animation of numerous
pedestrians carrying out various individual and
group activities. Like real humans, our autonomous

[VLETRTY
AN §% B

virtual pedestrians demonstrate rational behaviors
reflective of their internal goals and compatible with
their external world. Although motion artifacts are
occasionally conspicuous in our animation results
due to the limitations of the low-level DI-Guy soft-
ware, our design facilitates the potential replace-
ment of this software by a better character
rendering and motion synthesis package should
one become available.

7.1. Future work

With additional work, at least in principle there
seems to be no reason why the appearance and
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performance of virtual humans cannot eventually
become indistinguishable from those of real
humans, though clearly not for many years to
come. In future work, we plan to expand the
behavioral and cognitive repertoires of our auton-
omous virtual pedestrians, as well as to include
learning mechanisms, in a systematic effort to nar-
row the gap between their abilities and those of
real people. Despite the satisfactory performance
of our reactive behavior level for the time being,
it may be beneficial to activate the behavior rou-
tines in some parallel fashion instead of sequen-
tially. We also intend to develop a satisfactory
set of reactive and deliberative head/eye move-
ment behaviors for our virtual pedestrian model.
Our autonomous pedestrians are currently too
myopic for the sake of computational efficiency.
Longer-range, biomimetic visual perception (e.g.,
[34,35]) in conjunction with appropriate head/eye
behaviors would enable realistic ““visual scanning”
in which a mobile individual, assesses the inten-
tions of other nearby pedestrians, especially those
to the front. It also remains to imbue our pedes-
trians with useful manipulation skills, including
the upper body motions necessary for making
purchases at ticket booths or vending machines.
Also, our train station simulations would be more
realistic if some virtual pedestrians toted luggage
and if we could simulate “families” of pedestrians
that move together in small groups. The simula-
tion of interpersonal behavior in autonomous
pedestrians is a challenging problem and it has
recently received attention through a probabilistic
approach [39]. Finally, we are pursuing novel
applications of our simulator to archacology
[30], computer vision [22], and other fields.
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Appendix A. Environmental modeling

We represent the virtual environment by a hierar-
chical collection of data structures, including a
topological map, two types of maps for perception,
two types of maps for path planning and a set of
specialized environmental objects (Fig. 3). With
each of these data structures specialized to a differ-
ent purpose, the combination is able to support
accurate and efficient environmental information
storage and retrieval.

A.1. Topological map

At the highest level of abstraction, a graph repre-
sents the topological relations between different
parts of the virtual world. In this graph, nodes cor-
respond to environmental regions, and edges
between nodes represent accessibility between
regions.

A region is a bounded volume in 3D space (such
as a room, a corridor, a flight of stairs, or even an
entire floor) together with all the objects inside that
volume (for example, ground, walls, ticket booths,
benches, vending machines, etc.). We assume that
the walkable surface in a region may be mapped
onto a horizontal plane without loss of essential
geometric information, particularly the distance
between two locations. Consequently, a 3D space
may be adequately represented by several planar
maps, thereby enhancing the simplicity and effi-
ciency of environmental queries, as will be described
shortly.

Another type of connectivity information stored
at each node in the graph is path-to-via information.
Suppose that L(A, T) is the length in the number of
edges of the shortest path from a region A4 to a dif-
ferent target region 7, and P(A, T) is the set of paths
from A to T of length L(A,T) and L(A4,T) + 1. Then
the path-to-via of A associated with T is a set of
pairs defined as V(4,7T)= {(B,Cp)}, where Cj is
the length of a path p € P(A, T) along which region
B is next to A. As the name suggests, if (B, Cp) is in
(A, T), then there exists a path of length Cg from A4
to T via B. Informally, (A4, T) answers the question
“If I am currently in 4 and want to go to 7, to
which region shall I go and what will be the
expected cost?”
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Algorithm 2. Computing path-to-via information

Require: G(N, E), a graph with N nodes and E
edges

1: Initialization:
for each node 4 do

for each target node 7 do
if A==T then
VA, T) — {(4,0))
else
A, T) —{}

2: Collect information associated with paths of
length L based on the information associated
with paths of length L — 1.
for L=1to N—1do

for each node 4 do
for each target node T do
for every neighbor node B of 4 and
any node X in G do
if (X,L — 1) € V(B,T) then
add (B,L) to (4, T)
3: Keep only minimal cost entries:
for each node 4 do
for each target node 7" and any node Yin
G do
let Cppin, be the minimal cost in V(A4, T)
for each entry E(Y,C) in V(A4,T) do
if (C> Cpjn + 1) then
remove E from V(A,T)

Given a graph, the path-to-via information is
computed offline, in advance, using the incremental
Algorithm 2. Note that after Step 3 of the algorithm,
only those entries are stored whose cost is Cyj, or
Chin T 1. Thus, we can avoid paths with cycles. To
understand this, consider V(A4,C) for the graph in
Fig. 3. Region C is a direct neighbor of A4; so (C,1)
is clearly an entry of V(A4,C). As A-B-A-C is also a
possible path from 4 to C, then (B,3) is another
entry. Obviously, 4-B-A-C is not desirable as it con-
tains a cycle. Such paths will automatically be
removed from the path-to-via set after Step 3.

Linked within each node of the topological map
are perception maps and path maps together with
a list of objects inside that region. The next three
sections describe each in turn.

A.2. Perception maps

Mobile objects and stationary objects are stored
in two separate perception maps, which form a com-

posite grid map. Hence, objects that never need
updating persist after the initialization step and
more freedom is afforded to the mobile object (usu-
ally virtual pedestrian) update process during simu-
lation steps. Table 1 compares the perception maps,
and the next two subsections present the details.

A.2.1. Stationary objects

Our definition of a region assumes that we can
effectively map its 3D space onto a horizontal plane.
By overlaying a uniform grid on that plane, we
make each cell correspond to a small area of the
region and store in that cell identifiers of all the
objects that occupy that small area. The gridded
“floor plan” simplifies visual sensing. The sensing
query shoots out a fan of line segments whose
length reflects the desired perceptual range and
whose density reflects the desired perceptual acuity
(cf. [37,18]). Each segment is rasterized onto the grid
map (see the left and center panels of Fig. 4). Grid
cells along each line are interrogated for their asso-
ciated object information. This perceptual query
takes time that grows linearly with the number of
line segments times the number of cells on each line
segment. More importantly, however, it does not
depend on the number of objects in the virtual envi-
ronment. Without grid maps, the necessary line-
object intersection tests would be time consuming
in a large, complex virtual environment populated
by numerous pedestrians. For high sensing accu-
racy, small sized-cells are used. In our simulations,
the typical cell size of grid maps for stationary
object perception is 0.2-0.3 m.

A.2.2. Mobile objects

Similarly, a 2D grid map is used for sensing
mobile objects (typically other pedestrians). In this
map, each cell stores and also updates a list of iden-
tifiers of all the pedestrians currently within its area.
To update the map, for each pedestrian H (with Cgyq
and C,.,, denoting the cells in which H was and is,
respectively), if (Colg==Chew) then we do nothing;
otherwise, we remove H from Cg,q and add it to
Chew- As the update for each pedestrian takes negli-
gible, constant time, the update time cost for the
entire map is linear in the total number of pedestri-
ans, with a small coefficient.

The main purpose of this perception map is to
enable the efficient perceptual query by a given
pedestrian of nearby pedestrians that are within its
sensing range. The sensing range here is defined by
a fan as illustrated in the right part of Fig. 4. In
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Table 1

Comparison of perception maps, including the cost to update the entire world and the query cost per pedestrian
Type Cell size Update cost Query cost

Stationary Small (~107'm) 0 Constant, given the sensing range and acuity

Mobile Linear in the number of

pedestrians

Large (~10' m)

Constant, given the sensing fan and max number of sensed
pedestrians

the mobile object perception map, the set of cells
wholly or partly within the fan are divided into sub-
sets, called “‘tiers”, based on their distance to the
pedestrian. Closer tiers are examined earlier. Once
a maximum number (currently set to 16) of nearby
pedestrians are perceived, the sensing is terminated.
This strategy is intuitively motivated by the fact that
usually people can simultaneously pay attention
only to a limited number of other people, preferably
proximal individuals. Once the set of nearby pedes-
trians is sensed, further information can be obtained
by referring to finer maps, by estimation, or simply
by querying a particular pedestrian of interest.
Given the sensing fan and the upper bound on the
number of sensed pedestrians, perception is a con-
stant-time operation.

A.3. Path maps

Goal-directed navigation is one of the most
important abilities of a pedestrian, and path plan-
ning enables a pedestrian to navigate a complex
environment in a sensible manner. To facilitate fast
and accurate online path planning, we use two types
of maps with different data structures—grid maps
and quadtree maps. These will be briefly presented
in turn, before we discuss path planning.

A.3.1. Grid path map

Grid maps, which are useful in visual sensing, are
also useful for path planning. We can find a shortest
path on a grid map, if one exists, using the well-
known A” graph search algorithm [32].

In our system, grid path maps are used whenever
a detailed path is needed. Suppose D is the direct
distance between pedestrian H and its target 7.
Then, a detailed path is needed for H if D is smaller
than a user-defined constant D,,, and there are
obstacles between H and 7. This occurs, for
instance, when one wants to move from behind a
chair to the front and sit on it. Clearly, the accuracy
of the path in this instance depends on the size of
the cells in the grid path maps. A small cell size
results in a large search space and, likely, low per-

formance. However, detailed paths are usually not
needed unless the target is close to the starting
point. Therefore, chances are that paths can be
found quickly, while the search has covered only a
small portion of the entire search space. Roughly
speaking, in most cases the space that must be
searched is bounded by 4(Dmax/c)?, Where ¢ is the
cell size. Typical values for these constants
in our current system are 1< Dy, < 10m and
107'<e<1m.

When creating grid maps, special care must be
taken to facilitate efficient updates and queries.
Polygonal bounding boxes of obstacle objects repre-
sented on grid maps are enlarged by half the size of
a pedestrian’s bounding circle. If the center of a
pedestrian never enters this “buffer” area, collisions
will be avoided. This enables us to simplify the rep-
resentation of a virtual pedestrian to a single point,
which makes most queries simpler and more
efficient.

A.3.2. Quadtree path map

Every region has a quadtree map, which supports
fast online path planning [5]. Each quadtree map
comprises

1. A list of nodes N; (i=0, 1, 2,...,m), which
together cover the entire area of the region (see
Step (3) in Fig. 17);

2. C, the number of levels; i.e., the number of differ-
ent node cell sizes appearing in the map (which is
3 for the quadtree map in Fig. 17); and

3. A pointer to an associated grid map with small
cell size (see Step (1) in Fig. 17).

Each node N; of the quadtree [26] stores the fol-
lowing variables:

1. L;, where 0 < L; < C, the level of the node in the
quadtree (which also indicates the cell size of N,);
2. The center position of the area covered by this
node;
. The occupancy type (ground, obstacle, etc.);
4. A list of pointers to neighboring nodes;

98]
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Fig. 17. Constructing a quadtree map.

5. A congestion factor g;, which is updated at every
simulation step and indicates the portion of the
area covered by this node that is occupied by
pedestrians; and

. A distance variable, which indicates how far the
area represented by the node is from a given start
point, and will be used at the time of path-plan-
ning, especially during back-tracking as a gradi-
ent reference to find the shortest way back to
the start point.

As Fig. 17 illustrates, given a grid map with small
cells, the algorithm for constructing the quadtree
map first builds the list of map levels containing
nodes representing increasing cell sizes, where the
cell size of an upper level node is twice as large as
that of lower level nodes. Higher level nodes, which
aggregate lower level nodes, are created so long as
the associated lower level cells are of the same occu-
pancy type, until a level is reached where no more
cells can be aggregated. Quadtree maps typically
contain a large number of lower level nodes (usually
over 85% of all nodes) that cover only a small por-
tion (usually under 20%) of the entire region. Such
nodes significantly increase the search space for
path planning. Thus, in the final stage of construc-
tion, these nodes are excluded from the set of nodes
that will participate in online path planning. As the
area that they cover is small, their exclusion does
not cause significant accuracy loss.

A.4. Path planning

We now overview the three phases of autono-
mous pedestrian path planning, which from global
to local include planning global paths between

regions, planning intermediate length paths within
a region, and planning detailed local paths. For
the full details of the path planning algorithms, we
refer the reader to [31].

A.4.1. Planning global paths between regions

In global path planning, the path-to-via informa-
tion is useful in identifying intermediate regions that
lead to the target region. Any intermediate region
can be picked as the next region and, by applying
the path-searching schemes described below, a path
can be planned from the current location to the
boundary between the current region and that next
region. The process is repeated in the next region,
and so on, until it can take place in the target region
to terminate at the target location. Although the
extent of the path is global, the processing is local.

A.4.2. Planning intermediate length paths within a
region

To plan a path between two widely separated
locations within a region, we first employ one of sev-
eral variants of 4™ algorithm to search for a path on
the quadtree path map of the region, taking pedes-
trian congestion into consideration [31]. Fig. 18
compares paths computed by the four search vari-
ants of the path planning algorithm. Sometimes,
however, quadtree maps may fail to find a path even
though one exists. This is because low level nodes on
a quadtree map are ignored during path search in
order to decrease the search space (see Section
A.3.2). Therefore, paths that must go through some
low level nodes cannot be found on a quadtree map.
To resolve this, we turn to grid path maps whenever
search fails on a quadtree map. The standard A4”
algorithm is used to find a path on grid maps. For
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Fig. 18. Comparison of path planning algorithms on quadtree maps. (1) Visualization of the quadtree map of the upper concourse in the
Penn Station environment model. The white quads denote ground nodes and the blue ones denote obstacles. The green circle (left) is the
start location and orange circle (right) is the destination. With obstacle quads suppressed for clarity, (2)—(5) show results of the four path
planning schemes: (2) SortedQ, (3) SingleQ, (4) MultiQ, and (5) PmultiQ. The search space is color coded with the distance variable values
increasing from green to orange. Note that, although the four paths are similar, the sizes of search space differ. Refer to [31]. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

efficiency, a list of grid maps with decreasing cell
sizes is kept for each region. Grid map path search
starts at the coarsest level and progresses down
the list so long as the search fails on coarser levels.
Although grid maps with large cells are likely to
merge separate objects due to aliasing, and thus
cause the search to fail, the multiresolution search
ascertains that, as long as the path exists, it will

always be found eventually on maps with smaller
cells.

A.4.3. Planning detailed local paths

If two locations are nearby but obstacles inter-
vene, the finest grid path map of this region is used
for finding a detailed path. The path will be slightly
smoothed, and the pedestrian will follow the pro-
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cessed path strictly when approaching the target as
we describe in Section 4.3.2.

A.5. Specialized environment objects

At the lowest level of our environmental hierarchy
are environmental objects. Cells of grid maps and
quadtree maps maintain pointers to a set of objects
that are partly or wholly within their covered area.
Every object has a list of properties, such as name,
type, geometry, color/texture, functionality, etc.
Many of the objects are specialized to support quick
perceptual queries. For instance, every ground object
contains an altitude function which responds to
ground height sensing queries. A bench object keeps
track of how many people are sitting on it and where
they are sitting. By querying nearby bench objects,
weary pedestrians are able to determine the available
seat positions and decide where to sit without further
reference to the perceptual maps. Other types of spe-
cialized objects include queues (where pedestrians
wait in line), purchase points (where pedestrians
can make a purchase), entrances/exits, etc. In short,
these objects provide a higher level interpretation of
the world that would be awkward to implement with
perception maps alone, and this simplifies the situa-
tional analysis for pedestrians when they perform
autonomous behaviors.

Appendix B. The basic reactive behavior routines

This appendix describes the six basic reactive
behavior routines.

B.1. Routine A: Static obstacle avoidance

If there is a nearby obstacle in the direction of
locomotion, lateral directions to the left and right
are tested until a less cluttered direction is found
(Fig. 4(b)). If a large angle (currently set to 90°)
must be swept before a good direction is found, then
the pedestrian will start to slow down, which mimics
the behavior of a real person upon encountering a
tough array of obstacles; i.e., slow down while turn-
ing the head to look around, then proceed.

B.2. Routine B: Static obstacle avoidance in a
complex turn

When a pedestrian needs to make a turn that can-
not be finished in one step, it will consider turns with
increasing curvatures in both directions, starting

with the side that permits the smaller turning angle,
until a collision-free turn is found (Fig. 5(b)). If the
surrounding space is too cluttered, the curve is likely
to degenerate, causing the pedestrian to stop and
turn on the spot. The turn test is implemented by
checking sample points along a curve with interval
equal to the distance of one step of the pedestrian
moving with the anticipated turn speed.

B.3. Routine C: Maintain separation in a moving
crowd

For a pedestrian H, other pedestrians are consid-
ered to be in H’s temporary crowd if they are moving
in a similar direction to H and are situated within a
parabolic region in front of H defined by y = —(4/
R)x*>+ R where R is the sensing range, y is oriented
in H’s forward direction and x is oriented laterally
(Fig. 5(c)). To maintain a comfortable distance from
each individual C; in this temporary crowd, a direc-
ted repulsive force (cf. [12]) given by f; = r{di/|d})/
(|d] — dmin) 1s exerted on H, where d; is the vector
separation of C; from H, and d,;, is the predefined
minimum distance allowed between H and other
pedestrians (usually 2.5 times H’s bounding box
size). The constant r; is C;’s perceived “repulsive-
ness’” to H (currently set to —0.025 for all pedestri-
ans). The repulsive acceleration due to H’s
temporary crowd is given by a = > _.f;/m where m is
the “inertia” of H. The acceleration vector is decom-
posed into a forward component a; and a lateral
component @;. The components aAt and aw;At are
added to H’s current desired velocity. The crowding
factor w; determines H’s willingness to “follow the
crowd”, with a smaller value of w; giving H a greater
tendency to do so (currently 1.0 < w; < 5.0).

B.4. Routine D: Avoid oncoming pedestrians

To avoid pedestrians not in one’s temporary
crowd, a pedestrian H estimates its own velocity
v and the velocities v; of nearby pedestrians C,.
Two types of threats are considered here. By
intersecting its own linearly extrapolated trajectory
T with the trajectories 7; of each of the C,, pedes-
trian H identifies potential collision threats of the
first type: cross-collision (Fig. 5(d1)). In the case
where the trajectories of H and C; are almost par-
allel and will not intersect imminently, a head-on
collision (Fig. 5(d2)) may still occur if their lateral
separation is too small; hence, H measures its lat-
eral separation from oncoming pedestrians.
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Among all collision threats, H will pick the most
imminent one C*. If C* poses a head-on collision
threat, H will turn slightly away from C*. If C”
poses a cross-collision threat, H will estimate
who will arrive first at the anticipated intersection
point p. If H determines that it will arrive sooner,
it will increase its speed and turn slightly away
from C*; otherwise, it will decrease its speed and
turn slightly towards C* (Fig. 5(d1)). This behav-
ior will continue for several footsteps, until the
potential collision has been averted.

B.5. Routine E: Avoid dangerously close pedestrians

This is the fail-safe behavior routine, reserved for
emergencies due to the occasional failure of Rou-
tines C and D, since in highly dynamic situations
predictions have a nonzero probability of being
incorrect. Once a pedestrian perceives another
pedestrian within its forward safe area (Fig. 5(e)),
it will resort to a simple but effective behavior—
brake as soon as possible to a full stop, then try
to turn to face away from the intruder, and proceed
when the way ahead clears.

B.6. Routine F: verify new directions relative to
obstacles

Since the reactive behavior routines are executed
sequentially (see Section 4.3.1), motor control com-
mands issued by Routines C, D or E to avoid pedes-
trians may counteract those issued by Routines A or
B to avoid obstacles, thus steering the pedestrian
towards obstacles again. To avoid this, the pedestrian
checks the new direction against surrounding obsta-
cles once more. If the way is clear, it proceeds. Other-
wise, the original direction issued by either the higher-
level path planning modules or by Routine A, which-
ever was executed most recently prior to the execution
of Routine F, will be used instead. However, occa-
sionally this could lead the pedestrian toward future
collisions with other pedestrians (Fig. 5(f)) and, if

s0, it will simply slow down to a stop, let those threat-
ening pedestrians pass, and proceed.

Appendix C. Optimally ordering the reactive behavior
routines

This appendix presents the details of the exhaus-
tive search procedure (cf. [24]) that we employed to
find the best permutation ordering for activating the
six reactive behavior routines listed in Appendix B,
which is C-A-B-F-E-D.

C.1. Fitness

We evaluate the performance of the different acti-
vation permutations of the reactive behavior routines
through a set of long-term simulations with different
numbers of pedestrians. The performance measure is
the overall fitness F = (1/N)Y_ | F; of a population
of N pedestrians over the course of a simulation.
Here, F; = (S; V,—)4 is the individual pedestrian fitness,
where the safety factor S;= (1 — C/50)* if C;< 50
and S; = 0 otherwise, with C; denoting the average
number of frames in every 10,000 frames that pedes-
trian 7 is involved in a collision either with stationary
obstacles or with other pedestrians, and where the
vitality factor V;=1i1f R;> 0.5and V; = (2R,~)8 other-
wise, with the speed ratio R; defined as the average
speed of pedestrian 7 in the simulation divided by
the pedestrian’s preferred speed. Note that the safety
and vitality factors, both of which take values in the
range [0,1], conflict in the sense that one can be guar-
anteed by sacrificing the other. Their product in F;
rewards the best tradeoff between safety and vitality.

C.2. Analysis of the results

Fig. 19 plots the fitness (y-axis) of all 720 possible
activation permutations of the six reactive behavior
routines (x-axis). Before carrying out this exhaustive
evaluation, we had originally guessed that a sensible
activation order of the reactive behavior routines is
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Fig. 19. Plot of the fitness values of all permutations. The best activation permutation C-A-B-F-E-D is at x = 246.
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simply A-B-C-D-E-F, which occurs at x = 1 in the
plot. Clearly, this choice yields a performance no
better than average. Although the plot at first
appears chaotic, we see a significant increase in the
fitness function after x = 240, which marks the tran-
sition from permutations that begin with reactive
behavior Routine B (in the range 121 < x < 240)
to those that begin with Routine C (in the range
241 < x < 360). Comparing the fitness values F}, in
the former range to those F, in the latter, we see that
the mean fitness value of activation permutations
that begin with Routine C is higher than the maxi-
mum fitness value of those that begin with Routine
B. Sorting permutations by partial ordering and
comparing the shape of different parts of the plot,
etc., we made the following observations:

e Permutations P starting with A and B usually
give poor performance.

e The later that D appears in P, the better the
performance.

e It is better for C to appear before A, but they
need not be adjacent.

o It is better for A to appear before B, but they
need not be adjacent.

e If F appears earlier than C, D, and E, it results in
the same performance as when F is omitted.’

e Almost all of the high-performance permutations
have A before B and after C, and end with D.

It is difficult to fully explain the above results, but
we offer the following four plausible heuristics:

1. Routine C should be activated before Routine A.
Consider a crowd in which pedestrian H moves
in a certain direction. As long as H stays in the
interior of the crowd, chances are that H will
not bump into a stationary obstacle, since pedes-
trians on the periphery of the crowd should have
already avoided any obstacle, thus steering the
crowd to a safe direction (see Fig. 20). Hence,
H need only stay within the crowd by using Rou-
tine C. Consequently, the order C-A allows a
pedestrian to take advantage of obstacle avoid-
ance efforts made by other pedestrians.

2. Routine A should be activated before Routine B.
Ordering Routine B after Routine A is sensible
as whenever a pedestrian wants to check a turn,

2 This is obviously true as Routine F is designed to correct
directions picked by Routines C, D, or E. If the latter routines are
not executed, F will have no effect.

Fig. 20. Explanation of the order of C-A: pedestrian H can avoid
obstacles by simply following the crowd and letting other
pedestrians (labeled P) deal with them. So can pedestrian R.

the turn itself had better already be determined;
otherwise, the check will be wasted effort. Among
the six routines, however, only Routine A can
change the turning angle so much that the turn
may need more than one step to finish. Conse-
quently, it is better for Routine A to be activated
before Routine B.

3. Routine D should be activated last. Routine D
avoids oncoming pedestrians (either from the
front or side) that may cause potential collision
on a pedestrian’s trajectory. Since it generally
considers pedestrians at some distance, the situa-
tions with which it deals are usually not as urgent
as those dealt with by the other routines. Hence,
all of the avoiding options in D are small changes
in speed or turning angle or both. This means
that the motor control command issued by the
preceding routine is likely to be more or less pre-
served. If Routine D appears early in a permuta-
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Fig. 21. Approach and watch a performance. A pedestrian
(yellow), who is interested in the performance, finds an available
observation spot and approaches it. Among the current observers
are two (blue) who are about to leave. Outside the observation
area, pedestrians (green) are passing by. (For interpretation of the
references to color in this figure legend, the reader is referred to
the web version of this article.)
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tion, other routines may likely overwrite D’s
motor control command with their more signifi-
cant changes. Consequently, it makes sense for
Routine D to appear at the end of the
permutation.

4. The activation order of Routines E and F appears
flexible. If Routines A, B, C, and D are perfectly
designed, almost all dangerous situations will be
dealt with in their early stages and it is likely that
the situations handled by Routines E and F will
be rare. Ideally then, E and F will not provide
as much assistance as the other routines. Even
for situations when E and F can help substan-
tially, their strategies for dealing with collision
threats involve slowing to a stop, and subsequent
routines will have little effect on a nearly stopped
pedestrian. Hence, E and F can take any posi-
tion, in principle, but their actual positions may
have a small affect on performance, since earlier
routines may occasionally redirect the pedestrian
such that the original threat is avoided but new
threats appear. Consequently, the most we can
say is that the activation order of Routines E
and F appears to be flexible.

Table 2 lists some of the best permutations
found after an exhaustive evaluation of the perfor-
mances of all possible activation permutations of
the six behavior routines in 20-min (36,000-frame)
Penn Station simulation trials with different num-
bers of pedestrians, along with the average num-
ber of collisions that occurred over several
simulations involving the indicated number of
pedestrians. Analogous with the real world, we
do not impose any hard constraints to prevent
collisions. Most of the collisions occur between
pedestrians and fewer than 3% of them occur
between a pedestrian and an immobile obstacle.
Collisions usually last no more than 1s, and for
the pedestrian-obstacle collisions, pedestrians
never move completely through the obstacle.

Table 2

Average number of collisions occurring in simulations with
different number of pedestrians using some of the best permu-
tations of reactive behaviors

Permutation 333 666 1000
Pedestrians Pedestrians Pedestrians
C-A-B-F-E-D 4 22 84
F-C-A-B-E-D 3 25 85
C-E-A-B-F-D 3 23 94
C-A-F-B-ED 4 24 99
E-C-A-B-F-D 1 31 102

Algorithm 3. The observe-a-performance routine
(Fig. 21)

Require: The performance area A4, a semi-circular
area surrounding the performing artists
(Fig. 21), and the performance-area
specialized object
1: if A is far away, use navigation behaviors to
approach A4
2:once A is close enough, find an available
observation point p around A4
3: use the detailed arrival behavior to approach
and reach p
: turn to face the performance
: watch the performance for some time
: turn away from the performance
: leave the performance

~N N L B

Appendix D. Details of motivational behavior
routines

This appendix presents the details of several repre-
sentative motivational behavior routines. These rou-
tines depend on lower-level routines in our behavioral
hierarchy, including navigational behaviors and reac-
tive behaviors, as well as a collection of action-level
motor skills, such as walking, running, turning while
moving, turning on the spot, standing, sitting, etc. In
addition, they rely on specialized environmental
objects for abstract level interpretation of situations
in order to make decisions.

D.1. Observe a performance

When attracted by a nearby dance performance,
a pedestrian will use the routine described in Algo-
rithm 3 to approach the performance and observe
it until it is time to leave.

In Step 2, a pedestrian will use detailed path-
planning to identify an available observation point
and simultaneously plan a path to it. The pedestrian
first sets the performance area A as a target on a
grid path map and adds every observer as a static
circular obstacle. The path search finds the nearest
observation point. However, a dense arrangement
of existing observers can effectively block the path
from the target area. In this case, the pedestrian
can either give up or perhaps enlarge the target per-
formance area by the size of a pedestrian bounding
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box and attempt to plan a new path. This strategy
leads to a sparse second layer of observers.

To identify all the current observers quickly, a
pedestrian employs a specialized object—the per-
formance-area object—which maintains a list
of the observers currently surrounding the area.
Incoming prospective observers are registered onto
the list (late in Step 3), while outgoing observers
are removed (late in Step 7). On a first-come-first-
served basis, prospective observers request registra-
tion on the list when they are within a meter of A4,
which resolves conflicts if two pedestrians compete
for a spot big enough for only one. When leaving
the performance area, a former observer is removed
from the list once more than a meter away.

D.2. Make a purchase

To make a purchase at a ticket booth or a vending
machine, a pedestrian invokes the routine detailed in
Algorithm 4, whose functionality is illustrated in
Fig. 22. In Step 2, a routine similar to passageway
selection (see Section 4.3.2) is used by the pedestrian
to choose among several available purchasing places.
In Step 13, one of several styles of waiting motions in
the motion repertoire will be chosen probabilistically
to express the pedestrian’s (im)patience.

This routine requires two types of specialized
objects to help it analyze the situation. The queue
object keeps track of the pedestrians waiting in line
and efficiently informs a pedestrian how many people
are waiting, which pedestrian is first and which one is
last. The purchase-point object indicates
whether or not a transaction spot is available. Analo-
gous to the previous routine, pedestrians issue
requests to register themselves into and remove them-
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Fig. 22. Joining a queue to make a purchase. On the left, a
pedestrian (yellow) joins a ticket purchasing line. The (yellow)
pedestrian at the head of the line is about to take the transaction
spot freed as a (blue) pedestrian leaves the second ticket window.
On the right, a line forms for making purchases at a vending
machine. The triangles denote pedestrians currently making
purchases. With other pedestrians (green) passing by, the scene is
efficiently analyzed using specialized objects. (For interpretation
of the references to color in this figure legend, the reader is
referred to the web version of this article.)

selves from those specialized objects. Since there are
other pedestrians constantly passing by (Fig. 22),
these specialized objects support efficient situation
analysis and decision making by pedestrians.

Algorithm 4. The make-a-purchase routine

Require: queue and purchase-point
specialized objects
1: identify all places in the current region that
sell the desired item
2: pick the best one B among them in terms of
proximity and expected wait time
. if B is far
approach B using the navigation behavior
5: else if there is a spot available in B for the
transaction and there is no queue then
6: approach and take the transaction spot
: else
join the end of the queue, behind the last
person (if any)
9:  while not (at the head of the queue and a
transaction spot is available) do

& W

0 3

10: if waited too long and the purchase is
optional then

11: leave queue.

12: else

13: stand patiently or impatiently

14: if the line advances then

15: follow the line, moving forward

16: approach and take the transaction spot
17: make the purchase
18: leave the transaction spot

Algorithm 5. The take-a-rest routine

Require: seat-space specialized object
1: identify the available seats in the current
region
2: pick the best available seat B among them in
terms of proximity and expected resting comfort
3. if B is far, use the navigation behavior to
approach it
4: once B is proximal, plan a detailed-path and
use detailed arrival behavior to approach
and reach it
5: when in front of the seat, turn to face the
correct direction and sit down
: repeat
sit
: until rested or it is time to leave
: stand up and leave

O 00 1O
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Fig. 23. Choosing a seat to take a rest. Four long benches are
illustrated. Four pedestrians (gray) are currently sitting on the
benches. A pedestrian (blue) is about to leave the left-most bench,
on which a pedestrian (yellow) desires to sit. To the upper right,
another pedestrian (yellow) also wants to take a rest. With two
nearby choices, the pedestrian picks the more comfortable seat
(offering the most space) and proceeds to it. Meanwhile, other
pedestrians (green) are passing by. (For interpretation of the
references to color in this figure legend, the reader is referred to
the web version of this article.)

D.3. Take a rest

The final example is the routine that enables the
pedestrian to take a rest as illustrated in Fig. 23
and detailed in Algorithm 5. Its basic structure is
similar to the previous two routines. The selecting
behavior here uses the resting comfort in addition
to proximity as the criteria. Again, there is a special-
ized object—seat-space that tracks all the avail-
able spaces on a resting facility—which assists in the
execution of this behavior routine.
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