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Abstract

This paper presents our work on modelling a vision sys-
tem for highly mobile autonomous agents that is capable
of dynamic obstacle avoidance and active perception. We
demonstrate the robust performance of the system in arti-
ficial animals with directable, foveated eyes, situated in a
physics-based simulated environment. Through active per-
ception, each agent controls its eyes and body by con-
tinuously analyzing photorealistic binocular retinal image
streams. The vision system estimates optical flow, computes
stereo disparity and segments looming targets in the low-
resolution visual periphery while controlling eye movements
to track an object fixated in the high-resolution fovea. It
matches segmented targets against mental models of colored
objects of interest in order to decide whether the segmented
objects are harmless or represent dangerous obstacles. The
latter are localized, enabling the artificial animal to exer-
cise the sensorimotor control necessary to support complex
behaviors, such as predation, and obstacle avoidance.

Keywords: Active Vision; Antificial Intelligence; Simu-
lated Environment; Virtual Reality; Simulated Robotics; Ar-
tificial Animals.

1 Introduction

Animals are active observers of their environment [14].
This fact has inspired a trend in computer vision popularly
known as “active vision” [3, 4]. Our recently proposed ani-
mat vision paradigm offers a new approach to developing bi-
ologically inspired active vision systems and experimenting
with them [29]. Rather than allow the limitations of available
robot hardware to hamper research, animat vision prescribes
the use of virtual robots that take the form of realistic arti-
ficial animals, or animats, situated in physics-based virtual
worlds. Animats are autonomous virtual agents possessing
highly mobile, muscle-actuated bodies and brains with mo-
tor, perception, behavior and learning centers. In the percep-
tion center of the animat’s brain, computer vision algorithms
continually analyze incoming perceptual information. Based
on this analysis, the behavior center dispatches motor com-
mands to the animat’s body, thus forming a complete senso-
rimotor control system.

Motion and color play an important role in animal per-
ception. Birds and insects exploit optical flow for obsta-
cle avoidance and to control their ego-motion [14]. Some
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species of fish are able to recognize the color signatures of
other fish and use this information in certain piscene behav-
iors [1]. The human visual system is highly sensitive to mo-
tion and color. We tend to focus our attention on moving
colorful objects. Motionless objects whose colors blend in
to the background are not as easily detectable, and several
camouflage strategies in the animal kingdom rely on this fact
[12].

Biological creatures move through the world with little
apparent effort. Many do so using eyes with a high-acuity
fovea covering only a small fraction of a visual field whose
resolution decreases monotonically towards the periphery.
Spatially nonuniform retinal imaging provides opportunities
for increased computational efficiency through economiza-
tion of photoreceptors and focus of attention, but it forces
the visual system to solve problems that do not generally
arise with a uniform field of view. A key problem is deter-
mining how to deal with objects that are detected in the low
resolution periphery while focusing attention on an object of
interest fixated in the high resolution fovea. In this paper we
present a solution to this problem through the combined ex-
ploitation of color, motion and depth information from stereo
disparity.

Building upon the animat vision paradigm, the stereo,
motion and color based motor and gaze control algorithms
that we propose in this paper are implemented and evalu-
ated within artificial fishes in a virtual marine world. The
fish animats are the result of research in the domain of arti-
ficial life (see (30] for the details). In the present work, the
fish animat serves as an autonomous mobile robot inhabiting
a photorealistic, dynamic environment. Our new navigation
algorithms significantly enhance the prototype animat vision
system implemented in prior work [28, 22, 29, 23]. They
support in the artificial fishes more robust vision-guided nav-
igation, including obstacle recognition and avoidance. We
briefly review the animat vision system in the next section
before presenting, in the subsequent sections, our work on
integrating motion, stereo disparity and color analysis for an-
imat navigation and perception.

2 A Prototype Animat Vision System

The basic functionality of the animat vision system,
which is described in detail in [28, 29}, starts with binocular
perspective projection of the color 3D world onto the ani-



mat’s 2D retinas. Retinal imaging is accomplished by pho-
torealistic graphics rendering of the world from the animat’s
point of view. This projection respects occlusion relation-
ships among objects. It forms spatially variant visual fields
with high resolution foveas and progressively lower resolu-
tion peripheries. Based on an analysis of the incoming color
retinal image stream, the visual center of the animat’s brain
supplies saccade control signals to its eyes to stabilize the vi-
sual fields during locomotion, to attend to interesting targets
based on color, and to keep moving targets fixated. The ar-
tificial fish is thus able to approach and track other artificial
fishes visually.

2.1 Eyes and Retinal Imaging

The artificial fish has binocular vision. The movements
of each eye are controlled through two gaze angles (6, &)
which specify the horizontal and vertical rotation of the eye-
ball, respectively. The angles are given with respect to the
head coordinate frame, such that the eye is looking straight
ahead when 8 = ¢ = 0°.

Each eye is implemented as four coaxial virtual cameras
to approximate the spatially nonuniform, foveal/peripheral
imaging capabilities typical of biological eyes. Fig. 1(a)
shows an example of the 64 x 64 images that are rendered
by the coaxial cameras in each eye (rendering employs the
OpenGL library and graphics pipeline on Silicon Graphics
workstations). The level | = 0 camera has the widest field of
view (about 120°) and the lowest resolution. The resolution
increases and the field of view decreases with increasing L.
The highest resolution image at level I = 3 is the fovea and
the other images form the visual periphery. Fig. 1(b) shows
the 512 x 512 binocular retinal images composited from the
coaxial images at the top of the figure. To reveal the retinal
image structure in the figure, we have placed a white bor-
der around each magnified component image. Vision algo-
rithms which process the four 64 x 64 component images
are 16 times more efficient than those that process a uniform
512 x 512 retinal image.

2.2 Foveation by Color Object Detection

The brain of the artificial fish stores a set of color models
of objects that are of interest to it. For instance, if the fish
is by habit a predator, it would possess models of prey fish.
The mental models are stored as a list of 64 x 64 RGB color
images.

To detect and localize any target that may be imaged in
the low resolution periphery of its retinas, the animat vision
system of the fish employs an improved version of a color
indexing algorithm proposed by Swain [26].! Since each
model object has a unique color histogram signature, it can
be detected in the retinal image by histogram intersection
and localized by histogram backprojection.

2.3 Saccadic Eye Movements

‘When a target is detected in the visual periphery, the eyes
will saccade to the angular offset of the object to bring it
within the fovea. With the object in the high resolution fovea,

. ! Qur imp which include iterative model histogram scaling and weighted
h make the techni much more robust against the large variations in scale
1[151;1] occur in our application. The details of the improved algorithm are presented in

a more accurate foveation is obtained by a second pass of
histogram backprojection. A second saccade typically cen-
ters the object accurately in both left and right foveas, thus
achieving vergence. The saccades are performed by incre-
menting the gaze angles (6, ) in order to rotate the eyes to
the required gaze direction.

2.4 Visual Field Stabilization using Optical Flow

It is necessary to stabilize the visual field of the artificial
fish because its body undulates as it swims. Once a target is
verged in both foveas, the stabilization process assumes the
task of keeping the target foveated during locomotion.

Stabilization is achieved by computing the overall transla-
tional displacement (u, v) of intensities between the current
foveal image and that from the previous time instant, and up-
dating the gaze angles to compensate. The displacement is
computed as a translational offset in the retinotopic coordi-
nate system by a least squares minimization of the optical
flow between image frames at times t and ¢ — 1 [16].

The optical flow stabilization method is robust only for
small displacements between frames. Consequently, when
the displacement of the target between frames is large
enough that the method is likely to produce bad estimates,
the foveation. module is invoked to re-detect and re-foveate
the target as described earlier. Each eye is controlled in-
dependently during foveation and stabilization of a target.
Hence, the two retinal images must be correlated to keep
them verged accurately on the target.

Fixation Point
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‘Figure 2: Gaze angles and range to target geometry.

2.5 Vision-Guided Navigation

The artificial fish can also employ the gaze direction (i.e.,
the gaze angles) while the eyes are fixated on a target to nav-
igate towards the target. The 6 angles are used to compute
the left/right turn angle 8 p shown in Fig. 2, and the ¢ an-
gles are similarly used to compute an up/down turn angle
¢p. The fish’s turn motor controllers are invoked to exe-
cute a left/right turn—right-turn-MC for an above-threshold
positive 6 p and left-tum-MC for negative § p—with |0p| as
parameter. Up/down turn motor commands are issued to the
fish’s pectoral fins, with an above-threshold positive ¢ p in-
terpreted as “up” and negative as “down”. The motor con-
trollers are explained in [30].

The remainder of the paper presents our new work on
integrating color, motion and disparity analysis within the
animat vision system for dynamic perception and obstacle
avoidance.
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Figure 1: Binocular retinal imaging. (a) 4 component images; { = 0, 1,2, are peripheral images;

Right eye

= 3 is foveal image. (b)

Composited retinal images (borders of composited component images are shown in white).

3 Disparity and Color for Obstacle Avoidance

Color and stereo algorithms have been discussed exten-
sively in the literature in a variety of passive vision systems,
but rarely have they been integrated for use in dynamic obsta-
cle avoidance systems. Color and stereo cues have recently
been integrated together with motion cues to implement a
real-time passive stereo system that can detect and identify
moving objects for application to surveillance and human-
computer interaction {2]. Disparity and color cues have also
been combined to improve the focus of attention and recog-
nition capabilities of an active vision system [15].

The following sections describe our dynamic obstacle
recognition and avoidance algorithms. Exploiting stereo and
color cues, the algorithms enable the animat to navigate
through its virtual environment fixating and tracking a refer-
ence target in the fovea while avoiding obstacles that appear
in its low resolution visual periphery.

3.1 Stereo Analysis

Stereo analysis is a process of extracting scene depth
information by measuring the disparity of corresponding
points between left and right binocular images. The task of
determining the correspondence between points in the two
views is known as the correspondence problem, which is
considered difficult. Classical approaches to stereo analy-
sis try to deal with the correspondence problem with two
basic algorithms; area-based [20, 16] and feature-based ap-
proaches [21, 16]. Several approaches take into considera-
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tion available biological and neurophysiological data about
the human visual system [21, 24, 19]. There is biological ev-
idence that the pattern of light projected on the human retina
is sampled and spatially filtered. Early in cortical visual pro-
cessing, receptive fields become oriented and are well ap-
proximated by linear spatial filters, with impulse response
functions that are similar to partial derivatives of a Gaussian
function [32].

Our animat vision approach for estimating stereo dispar-
ity is motivated by knowledge about the early visual process-
ing in the primate cortex. We implement the receptive fields
as steerable spatial filters that process the input images. The
steerable filter responses at an image location form a feature
vector that is used in establishing correspondence. The out-
puts of a steerable filter convolved with an image at multiple
orientations provides rich information about a local neigh-
borhood around each pixel. This simplifies the matching of
image patches from the left and right images of a stereo pair
and the probability of a correct match increases as the length
of the feature vector increases.

“Steerable filter” is a term used to describe a class of spa-
tial filters in which a filter of arbitrary orientation is syn-
thesized as a linear combination of a set of basis filters.
Steerable filters, first developed by Freeman and Adelson
[13], have recently been used for estimation of scene mo-
tion [17] and for object recognition [5] and stereopsis [19].
Simoncelli and Freeman have recently introduced a multi-
scale, multi-orientation steerable filter image decomposition




framework called the Steerable Pyramid [25] which we use
as a front-end for our stereo algorithm. It has the advantage
of producing feature descriptions that are both translation-
and rotation-invariant.

3.2 Disparity Estimation for Animat Vision

Our disparity estimation algorithm starts by decomposing
the left and right images into steerable pyramid represen-
tations using the framework developed by Simoncelli and
Freeman in [25]. Fig. 3 shows an example of a three-level
steerable pyramid for a single orientation for an retinal im-
age acquired by the animat’s right eye.

®)
Figure 3: (a) An image acquired by the animat’s right eye, (b)

A three-level Steerable Pyramid of the image in (a) shown
for a single orientation.

Feature vectors fg(z,y,!) and f;(z,y,[) are then con-
structed from the right and left pyramid responses for each
pixel at each level of the pyramid by combining the re-
sponses of the multi-orientation steerable filters at each pixel
into a vector that provides a very rich description of the in-
tensities at that pixel in the image. To further enrich the de-
scription of each pixel, we make use of the (R, G, B) color
signals from our color images by including them in the fea-
ture vector. This simple addition improves our matching pro-
cess considerably by restricting the matching process to ar-
eas of similar color composition, which can be considered as
a sort of color-feature constraint.

An initial disparity map is estimated at each individual

Figure 4: Right and Left images acquired by the animat’s eye
and the estimated disparity map

level by matching left and right feature vectors by minimiz-
ing the mean square error (MSE) between left and right fea-
ture vectors. The MSE measure is computed over all the
elements in the vector as follows;

1 , ,
E, = gz [fk(zvyvl) - fi(x+dzyy+dy’l)]2’ 1
i€S

where S is the feature vector size. The MSE measure E,,
is computed for a limited range of horizontal and vertical
disparities d, (1) € D;(l) and dy(l) € D,(1).

A coarse-to-fine-flow-through strategy is then taken based
on the assumption that for level ! disparity estimates |d()| >

|Q¥l| are more accurately estimated at the coarser level I+ 1.
Thus at coarse levels, large disparities are estimated presum-
ably more accurately, and these flow through to the finer lev-
els, while small disparities that are estimated from the finer
levels are assumed accurate since they cannot be estimated
at coarser levels due to the loss of high frequency structure
from the original coarse-level images. Fig. 4 shows a dispar-
ity map estimated by the algorithm for a stereo retinal image
acquired by our animat.

3.3 Color Obstacle Recognition and Localization

To distinguish between dangerous obstacles and benign
objects we combine the disparity cues estimated using the
above algorithm with color cues available naturally from the
acquired photorealistic images. The animat continuously
computes a disparity map from its stereo retinal input as it
navigates through the virtual world. The estimated dispar-
ity map is used as a bottom-up cue to alert the animat of
potential danger while color is used as a top-down cue for
recognition of the actual obstacle.

The estimated disparity map is first segmented into po-
tential obstacles via thresholding with an appropriate (em-
pirically determined) threshold value. Then each segmented
object is examined and matched against color mental mod-
els of designated dangerous obstacle objects. A match indi-
cates that a candidate object is really an obstacle and is to be
avoided, otherwise the object is considered harmless. Harm-
less objects include food particles and sea weeds.

The region of support of an obstacle’s disparity map is
then convolved with a circular disc of equal area. This
will blur out any misclassified pixels in the segmentation
while emphasizing the obstacle and facilitating its localiza-
tion. The pixel location (z.,y.) of the peak in the blurred
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Figure 5: (a) Thresholded disparity map of fig. 4, (b) Corresponding color segmentation of potential obstacles, (c) Backpro-
jection map, (d) The exact region of support of the segmented obstacle, (e) The localization of the obstacle by blurring the

corresponding segmentation of the disparity map.

Obstacles

e _ @

Animat

Figure 6: Relationship between close objects and large steer-
ing angles.

disparity map localizes the obstacle. Fig. 5 shows images of
the various segmentation steps.
3.4 Obstacle Avoidance Strategy

The point of localization (z.,y.) obtained from the peak
in the blurred disparity map is used to compute the steer-
ing angles the animat must use to steer clear of the obstacle.
The angular location with respect to the right eye is given
as § = tan"'(3),¢ = tan"'(¥), where f. is the cam-
era focal length. The turn angles given to the animat’s motor
controller are, thus, proportional to (—6, —¢); i.e., in the op-
posite direction, to avoid collision while still fixating on a
reference target to stabilize the visual world.

The merit of using (—6, —¢) for steering the animat is
twofold: 1) simplicity of computing a steering vector and,
2) the fact that for close objects (6, @) is large, as is de-
picted in Fig. 6. Therefore, the turn maneuver will be large to
avoid the obstacle quickly. The farther away the obstacle, the
smaller the turn angles, hence steering will not be excessive.

Fig. 7 shows frames from a top view of a sequence show-
ing the animat navigating:in its environment. The animat is
fixating and tracking a target red fish while avoiding obsta-
cles taking the form of other fish obstructing its path. The
figure shows two instances where the animat encounters an
obstacle (frames 156 and 180). These are followed by frames
showing how the animat has successfully avoided the obsta-
cle by steering its body in the opposite direction as explained
above. The white lines emanating from the eyes of the ob-
server indicate the gaze direction.

Next, we present active vision additions to the animat vi-
sion system enhancing the animat’s functionality in it’s vir-
tual environment. In the following section, motion and color
cues are integrated to increase the robustness of the animat’s
perceptual functions. This, in addition to the stereo and
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color obstacle avoidance capabilities, further enhances the
animat’s behavioral responses.

4 Integrating Motion and Color for Attention

Selective attention is an important mechanism for dealing
with the combinatorial aspects of search in vision. Deciding
whete to redirect the fovea can involve a complex search pro-
cess [31]. In this section we offer an efficient solution which
integrates motion and color to increase the robustness of our
animat’s perceptual functions.

Integrating motion and color for object recognition can
improve the robustness of moving colored object recog-
nition. Motion may be considered a bottom-up alerting
cue, while color can be used as a top-down cue for model-
based recognition [27]. Therefore, integrating motion and
color can increase the robustness of the recognition problem
by bridging the gap between bottom-up and top-down pro-
cesses, thus, improving the selective attention of dynamic
perceptual systems such as the animat vision system that we
are developing.

4.1 Where to Look Next

Redirecting gaze when a target of interest appears in the
periphery can be a complex problem. One solution would
be to section the peripheral image into smaller patches or fo-
cal probes [10] and search of all the probes. The strategy
will work well for sufficiently small images, but for dynamic
vision systems that must process natural or photorealistic im-
ages the approach is not effective.

We choose a simple method based on motion cues to
help narrow down the search for a suitable gaze direction
[11]. We create a saliency image by initially computing a
reduced optical flow field between two stabilized peripheral
image frames (an advantage of the multiresolution retina is
the small 64 x 64 peripheral image). Then an affine mo-
tion model is fitted to the optical flow using a robust regres-
sion method that is described in [22]. The affine motion pa-
rameters are fitted to the dominant background motion. A
saliency map is determined by computing an error measure
between the affine motion parameters and the estimated op-
tical flow as follows:

S(zay) = \/[ua(mo y) - ’u(.’D,y)]z + [v,,(.'c, y) - v(zay)]:z))




Figure 7: An overhead view of a blue animat pursuing a red

where (u, v) is the computed optical flow and

uo(z,y) = a+bz+ey,
v(z,y) = d+er+fy 3)

is the affine flow at retinal image position (z,y). The
saliency image S’is then convolved with a circular disk of
area equal to the expected area of the model object of inter-
est as it appears in the peripheral image.>

The blurring of the saliency image emphasizes the model
object in the image. The maximum in S is taken as the lo-
cation of the image probe. The image patches that serve as
probes in consecutive peripheral frames form the image se-
quence that is processed by the motion segmentation module
described later. Fig. 8 shows four consecutive peripheral im-
ages with the image probes outlined by white boxes. The
blurred saliency image is shown at the end of the sequence
in Fig. 8. Clearly the maximum (brightness) corresponds to
the fast moving blue fish in the lower right portion of the
peripheral image.

4.2 Robust Optical Flow

A key component of the selective attention algorithm is
the use of optical flow. Given a sequence of time-varying
images, points on the retina appear to move because of the
relative motion between the eye and objects in the scene [14].
The vector field of this apparent motion is usually called op-
tical flow [16]. Optical flow can provide important informa-
tion about the spatial arrangement of objects viewed and the
rate of change of this arrangement.

For our specific application, however, we require effi-
ciency, robustness to outliers, and an optical flow estimate at
all times. Recent work by Black and Anandan {7, 8] satisfies
our requirements. They propose incremental minimization
approaches using robust statistics for the estimation of op-
tical flow which are geared towards dynamic environments.
As is noted by Black, the goal is incrementally to integrate
motion information from new images with previous optical
flow estimates to obtain more accurate information about the
motion in the scene over time. A detailed description of this
method can be found in [6].

Ideally optical flow is computed continuously® as the an-
imat navigates in its world, but to reduce computational cost

2Rc'n.wnnbly small arcas sufﬁoc since objccts in the 64 X 64 peripheral image are
typically small at peripheral for appropriate areas f for
the ob;cn, such as Jagersand's information theoretic approach [18), may be i

reference fish while detecting and avoiding other fish obstacles.
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Figure 9: Incremental estimation of robust optical flow
(ROF) over time.

we choose.to update the current estimate of the optical flow
every four frames. The algorithm is however still “contin-
uous” because it computes the current estimate of the op-
tical flow at time ¢ using image frames at t-3, t-2, t-1, and
t'in a short-time batch process. Fig. 9 shows this more
clearly. This arrangement requires storage of the previous
three frames for use by the estimation module.

The flow at t + 1 is initialized with a predicted flow com-
puted by forward warp of the flow estimate at ¢ by itself  and
then the optical flow at ¢ + 4 is estimated by spatiotemporal
regression over the four frames. Full details of our robust
optical flow estimation algorithm can be found in [22].

4.3 Motion Segmentation and Color Recognition

For the animat to recognize objects moving in its periph-
ery it must first detect their presence by means of a saliency
map as described in section 4.1. Once it detects something
that might be worth looking at, it must then segment its re-
gion of support out from the whole peripheral image and then
match this segmentation with mental models of important
objects. Fig. 10 shows the steps involved in an incremental
segmentation of the detected object over the duration of the
four probe images as explained above.

Segmentation of the optical flow at each time instant is
performed by fitting an affine parametric motion model to
the robust optical flow (ROF) estimated so far at the current
time instant. This is done by incrementally minimizing the
cost function given as

E(a,b,c,de, f) = E:(a,b,c) + Ey(d,e, ), @)
where (a,b,c,d, e, f) are the affine motion parameters. E,
and E, are formulated using robust estimation to account for

By continuously, we mean that there is an estimate of the optical flow at every
time instant.

“The flow estimate is being used to warp itself, thus predicting what the motion
will be in the future.
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Figure 8: Four consecutive peripheral images with image probes outlined by white squares. Saliency image (right), with bright
areas indicating large motions.
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Figure 10: Incremental motion segmentation and object

rcc_ognition using multi-resolution robust optical flow (ROF)
estimation, affine parametric motion segmentation and color
object recognition.
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where R is the current region of support of the segmented ob-
ject (initially equal to the full frame image size). u, and v,
are horizontal and vertical affine motion flow vectors accord-
ing to (3). (u,v) is the ROF estimated at the current instant,
and p, (x) is taken to be the Lorentzian robust estimator. We
use successive over relaxation and graduated non-convexity
regression methods [9, 22] to minimize this cost function by
using a small number of iterations over a sequence of four
image probes and updating the segmentation at every time
instant.

The estimated affine motion parameters at the current
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time instant are then used to update the segmentation which
serves as the region of support R for the next frame’s affine
minimization step. Fig. 11 shows the segmented background
(showing two objects as outliers) and the segmentation of the
outlier pixels into the object of interest (a blue fish).

At the end of the motion segmentation stage, the seg-
mented objects are matched to color models using the color
histogram intersection method. If the model object matches
the peripheral segmented region, the animat localizes the
recognized object using color histogram backprojection and
foveates it to obtain a high-resolution view. It then engages
in appropriate behavioral responses.

4.4 Behavioral Response to a Recognized Target

The behavioral center of the brain of the artificial animal
assumes control after an object is recognized and fixated. If
the object is classified as food the behavioral response would
be to pursue the target in the fovea with maximum speed un-
til the animat is close enough to open its mouth and eat the
food. If the object is classified as a predator and the animat is
a prey fish, then the behavioral response would be to turn in a
direction opposite to that of the predator and swim with max-
imum speed. Alternatively, an object in the scene may serve
as a visual frame of reference. When the animat recognizes a
reference object (which may be another fish) in its visual pe-
riphery, it will fixate on it and track it in smooth pursuit at an
intermediate speed. Thus, the fixation point acts as the origin
of an object-centered reference frame allowing the animat to
stabilize its visual world and explore its surroundings.

Fig. 12 shows a sequence of retinal images taken from
the animat’s left eye. The eyes are initially fixated on a red
reference fish and thus the images are stabilized. In frames
up to 285 a blue fish swims close by the animat’s right side.
The animat recognizes this as a reference fish and thus sac-
cades the eyes to foveate the fish (frame 286 and beyond). It
tracks the fish around, thereby exploring its environment. By
foveating different reference objects, the animat can explore
different parts of its world.

5 Summary and Conclusions

We have presented computer vision research carried out
within the animat vision paradigm, which employs lifelike
artificial fishes inhabiting a physics-based, virtual marine
world. We have successfully implemented a set of active
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Figure 11: Results of incremental motion segmentation.

Figure 12: Retinal image sequence from the left eye of the
predator (top) and overhead view (bottom) of the predator as
it pursues a red reference fish (frames up to 285). A blue
reference fish appears in the predator’s right periphery and
is recognized, fixated, and tracked (frames 286 and beyond).
The white lines indicate the gaze direction.

vision algorithms for artificial fishes that integrate motion,
stereo and color analysis. These algorithms support ro-
bust vision-guided navigation, visual perception, and obsta-
cle recognition and avoidance abilities, enabling the animat
to better understand and interact with its dynamic virtual en-
vironment. Our work should also be relevant to the design of
active vision systems for physical robotics.
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