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Abstract 

Given a collection of similar signals that have been deformed with respect to each other, the general 
signal-matching problem is to recover the deformation. We formulate the problem as the minimization of 
an energy measure that combines a smoothness term and a similarity term. The minimization reduces to a 
dynamic system governed by a set of coupled, first-order differential equations. The dynamic system finds 
an optimal solution at a coarse scale and then tracks it continuously to a fine scale. Among the major 
themes in recent work on visual signal matching have been the notions of matching as constrained opti- 
mization, of variational surface reconstruction, and of coarse-to-fine matching. Our solution captures 
these in a precise, succinct, and unified form. Results are presented for one-dimensional signals, a motion 
sequence, and a stereo pair. 

1 Introduction 

Given a collection of similar signals that have 
been deformed with respect to each other, the 
general signal-matching problem is to recover the 
deformation. Important matching problems in- 
clude stereo vision, motion analysis, and a variety 
of registration problems such as template match- 
ing for speech and vision. 

We cast the problem as the minimization of an 
energy functional o ~ (V) where V is the deforma- 
tion. The energy functional is the sum of two 
terms, one based on the correlation of the de- 
formed signals, and the other based on the 
smoothness of the deformation. 

In general, the energy functional 8 (V) can be 
highly nonconvex, so that ordinary optimization 
methods become trapped in local minima. 
Optimization by simulated annealing can be at- 
tempted, but at severe computational expense. 
Instead, we rely on continuation methods to 
solve the problem. By introducing a scale param- 
eter or, the minimization problem is embedded 
within a larger space. A suitable minimum can 
be achieved relatively easily for large tr because 
the signals and hence the energy landscape are 
very smooth. The solution of the original minimi- 

zation problem is then obtained by continuously 
tracking the minimum as tr tends to zero. This is 
analogous to a coarse-to-fine tracking of ex- 
trema through scale space in the sense of Witkin 
[1]. 

The entire procedure consists of solving the 
first-order dynamic system 

6, --- -cx exp(-cat  Wo~ (V, ~r)[), V=  - ~7~¢ (V, o') 

where the dot denotes a time derivative, a is the 
scale parameter and Cl and c2 are constants. 
Given an initial crude estimate for V at a coarse 
scale tr0, the system minimizes 8 at tr 0 and follows 
a trajectory of minima through finer scales, there- 
by increasing the resolution of V. Any of a num- 
ber of well-known numerical techniques can be 
used to solve for the trajectory. Through a series 
of incremental deformations, correlations of 
deformed signals are optimized and balanced 
against the smoothness of the deformations while 
moving from coarse-to-fine scale. Thus, the first- 
order system compactly unifies a number of im- 
portant yet seemingly disparate signal-matching 
notions. 

In the remainder of this section, the relation of 
our technique to previous work on matching is 
discussed. Then in section 2, a minimization 
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framework for the matching problem is intro- 
duced. In section 3, the solution of the problem 
by continuation methods and the resulting single 
differential equation are developed. Section 4 de- 
scribes the specific similarity term employed and, 
in section 5, the details of the smoothness term 
are discussed. Section 6 develops a discrete solu- 
tion of the differential equation. Finally, section 7 
presents several examples of matching results for 
one- and two-dimensional signals. 

1.1 Background  

An enormous amount of work has been done on 
signal matching, giving precedent for several 
components of our approach. 

Optimization of constrained deformations 
guided by correlation or L: metrics can be found 
in prior work. In speech recognition, the problem 
of time warping speech segments to match input 
utterances with stored prototypes has been 
addressed in this context. Dynamic programming 
has been used to compute constrained warping 
functions (see Rabiner and Schafer [2] and Sank- 
off and Kruskal [3], part II). This particular Ol~ti- 
mization technique is readily applicable in match- 
ing situations involving sequentially ordered sig- 
nals, such as speech, and unilateral continuity 
constraints. However, its stringent requirements 
on the energy functional appear incompatible 
with the unordered multidimensional signals and 
isotropic smoothness constraints that are of 
primary concern to us. 

Smoothness constraints have been popular in 
computational vision. Consider the important 
problem of stereo matching. In the past, dense 
disparity maps have been computed through a 
two-step process of local matching followed by 
smooth [4], multiresolution [5], or piecewise con- 
tinuous [6, 7] surface reconstruction from the 
sparse disparities. The approach in the present re- 
port unifies matching and piecewise smooth re- 
construction into a single iterative optimization 
process. 

Broit's work [8] in registering a deformed 
image to a model image resembles ours in that 
matching is explicitly formulated as a minimiza- 
tion problem involving a cost functional that com- 
bines both a deformation constraint and a simi- 
larity measure. His deformation model, which 

involves the strain energy of a globally smooth 
elastic body, is more elaborate than the defor- 
mation constraints inherent in the spring-loaded 
subtemplate matching technique of Fischler 
and Elschlager [9] or the iterative Gaussian- 
smoothed deformation models proposed by Burr 
[10]. Our controlled-continuity deformation mod- 
el provides us with the additional capability to 
regulate the order of smoothness and to preserve 
discontinuities in the deformation. 

Horn ([11] section 13.9.1) formulates an 
approach to stereo matching that involves the 
minimization of a cost functional that combines a 
global smoothness constraint and a squared dif- 
ference image similarity measure. Poggio et al. 
([12] table 1) consider a similar cost functional 
for stereo in the context of the regularization 
approach. Neither of these sources presents an 
implementation, but mention is made of low-pass 
or band-pass filtering of images as a means of sim- 
plifying the minimization. Stochastic optimization 
is the usually expensive alternative. Monte Carlo 
algorithms for signal matching are given by Mar- 
roquin ([13] chapter 6) and a simulated annealing 
algorithm for stereo matching is offered by Barn- 
ard [14]; both employ cost functionals very similar 
to Horn and Poggio. 

Coarse-to-fine matching schemes have pre- 
viously been treated as a multistage process in 
which a matching operation is performed at each 
successive level [15-19]. We have extended this 
idea into a matching process that evolves con- 
tinuously toward finer spatial scale. The idea of 
progressing continuously through scale space 
derives from Witkin [1]. 

As our matching process computes the de- 
formation iteratively, it is best to perform the 
similarity measurements by deforming the signals 
according to the current approximation of the de- 
formation. This concern has also been addressed 
by the matching algorithms described by Mori et 
al. [15] Burr [10], Broit [8], and Quam [20]. 

2 Framework 

Consider a vector of n similar signals f*(x) = 
[f~a(x) . . . .  ,j~(x)] defined in d dimensional space 
x --- [xl . . . .  , Xd] e ~ d and a deformation map- 
ping V: ~ d  _~ ~/nd, such that V(x) = [vffx) . . . . .  
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%(x)], where each of the n disparity functions vk: 
~ d  ~ ~ d  is a vector valued function v~(x) = 
[v~(x) . . . . .  va(x)] T. Given a set of deformed sig- 
nals f such that f*(x) = f(V*(x)), the matching 
problem is to recover the deformation V*(x). 

Suppose that the similarity between the signals 
f for a given deformation V is measured by a func- 
tional °2 (V): ,~,,,t ~ ~t bounded from above by a 
value achieved by the best possible match. A 
reasonable objective is to find the deformation U 
which maximizes the quality of the match; i.e., to 
minimize - .~ (V) over possible deformations V. 
Thus, U represents an optimal approximation to 
V*. 

This minimization problem is clearly ill-posed 
in the absence of constraints on admissible de- 
formations, since, e.g., degenerate or chaotic de- 
formations can always be contrived that achieve 
the minimum value. Such constraints may be en- 
coded by a second functional ~ (V) :  jgnd _.  ~?, 
where yg.d C ~ , a  is the subset of admissible 
deformations. 

Useful instances of similarity and constraint 
functionals will be formulated shortly. Their com- 
bination, however, leads to the following mini- 
mization problem: Find the deformation U E ~  "d 
such that ~ (U) = infw)ff nd o ~ (V), where the 
energy functional is given by 

= - (1  - A)~ - A ,5 ~ (1) 

and where A e (0, l) is a weighting parameter. 
Stabilization offers a general approach to a 

numerical solution through the construction of a 
discrete dynamic system whose fixed points in- 
clude a discrete solution of the above optimiza- 
tion problem [21]. A simple dynamic system with 
this property is characterized by the differential 
equation 

"q + V ~ = 0 (2) 

where the dot denotes differentiation with respect 
to time t and ire denotes the gradient of e with 
respect to the free variables of the discrete de- 
formation. Optimization occurs by dissipation of 
energy; energy cannot increase along the system's 
trajectory V(x, t) in 2g "d, which follows the direc- 
tion of the gradient of #. Although the trajectory 
terminates at a local minimum of 8, there is no 
guarantee that the global minimum U will be 
attained by solving this initial value problem start- 

ing from an arbitrary initial condition V(x, 0). 

3 Continuation over Scale 

The key remaining difficulty is that for obvious 
choices of ,~, such as linear correlation, ~ is likely 
to have many local minima, making the minimiza- 
tion problem highly nonconvex and therefore ex- 
tremely difficult to solve. There are two options: 
solving this hard problem directly (for example by 
simulated annealing) or simplifying the problem 
by choosing d to be convex or nearly so. We pur- 
sue the second option because annealing is expen- 
sive. 

3.1 Continuation Methods 

may be smoothed by subjecting f to a smooth- 
ing filter of characteristic width or. We observe 
empirically that the best solution for V as cr in- 
creases tends to be an increasingly smoothed ver- 
sion of the correct solution. This means that 
slightly deblurring V by reducing cr produces a 
slightly better solution close to the one just 
obtained. To the extent this is so, we can solve 
the problem using equation (2) by means of con- 
tinuation methods [22], 

Continuation methods embed the problem to 
be solved, 

g(v) = 0 

in a family of problems 

g(v,  s)  = 0 

parameterized by S. Let ss+l = ss + As, g(v, s,) be 
the problem we wish to solve, presumably dif- 
ficult, and g(v, Sl) a readily solvable member of 
the family, and let 

u(s) = H(g, s, vo) 

be the solution for g at s given Vo as an initial con- 
dition. Then u(s.) is obtained from u(sl) by the 
iteration 

U(Ss+0=H(g,  ss+l, Us); i = l  . . . . .  n -  1 

that is, each solution is used as an initial condition 
to obtain the next one. 

For the current problem, the continuation 
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parameter is or, with ao- < 0. We continue from 
an initial coarse scale tr 1 and an initial guess V1 by 

V i + l  : U ( ~ / q -  A o x'~, o-i+1, Vi)  

to a fine scale o-,, and a final answer Vn. To visual- 
ize this method, imagine the energy landscape at 
each value of or as a contoured surface in 3-space. 
The surfaces are stacked one above the other, so 
that the topmost surface is very smooth, while the 
lower ones become increasingly bumpy. Imagine 
a hole drilled at each local minimum on each sur- 
face. A ball bearing dropped onto the topmost 
surface will roll down to the bottom of the hill. At 
this point, it falls through to the next level, rolls 
down again, falls through again, and so on to the 
bottom. 

tion, where q) is small, question (4) approaches 
equation (2), changing V but not o-. Approaching 
a solution, or begins to decrease. At a solution, 
= 0 and b'= - c  1. From an initial V(t0), tr(t0), the 
solution V(t), or(t) moves through V at nearly con- 
stant scale until a minimum in g is approached, 
then it begins descending in scale staying close to 
a solution. 1 

Equation (4) finds a solution at the initial scale, 
then tracks it continuously to finer scales. To use 
equation (4), we choose a coarse-scale tr(t0), a 
crude initial guess V(t0), and a terminal fine-scale 
trT. We then run the equation until o'(t) = ~rr, 
taking V(T) as the solution. 

3.2 A Scale Space Equation 

This iteration solves a separate initial value prob- 
lem at each step. A more attractive alternative is 
to collapse the continuation over or into a single 
differential equation. Ideally, the solution should 
follow a curve V(o') satisfying I VS(V(o~))l -= 0; 
i.e., a continuous curve of solutions over scale. A 
differential equation for this curve is 

V,, = - ( V g  )~,(VVg )-1 (3) 

The solution to this equation tracks a given 
coarse-scale solution continuously to fine-scale, 
in precise analogy with the coarse-to-fine tracking 
through scale space of Witkin [1]. Unfortunately, 
it is impractical to solve this equation for arbitrary 
5eand _~, since VVg is high dimensional. 

To construct an approximate equation, we in- 
troduce the quantity • = -cle-c2117~ l, so that ~ = 
- c l  at a solution to equation (2), diminishing with 
distance from the solution at a rate determined by 
the space constant c2. The equation 

ir = -cle-c21 v~ (v, ~)t, "~ = - Vo ~ (V, o-) (4) 

approaches the desired behavior. Far from a solu- 

3.3 Ambiguous Solutions 

From time to time, we expect to encounter insta- 
bilities in the solutions of equation (4), in the 
sense that a small perturbation of the data induces 
a large change in the solution curve's trajectory 
through scale space. These instabilities corre- 
spond to bifurcations of the solution curve, 
analogous to bifurcations that can be observed in 
Guassian scale space. We have considered two 
approaches to dealing with them. First, by adding 
a suitable noise term to g,  equation (4) becomes a 
hybrid of scale space continuation and simulated 
annealing. We believe that local ambiguities can 
be favorably resolved using low-amplitude noise, 
and hence with little additional computational 
cost. A second approach is to regard these insta- 
bilities as genuine ambiguities whose resolution 
falls outside the scope of the method. In that case, 
a set of alternative solutions can be explored by 
the addition of externally controlled bias terms to 
~. These. terms can reflect outside constraints of 

any kind, for example, those imposed by the op- 
eration of attentional processes. 

In the following sections, we turn to specific 
choices for 5e and ~.  

1The solution to equation (4) oscillates around the exact solu- 
tion (equation 3) with frequency and amplitude controlled by 
c 1 and Cz. This oscillation can be damped by the addition of 
second-order terms in t, but we have not found it necessary to 
do so in practice. 
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4 Similarity Functional 

In general the similarity measure ~ should cap- 
ture what is known about the specific matching 
problem. In many cases, the undeformed signals 
are sufficiently similar that a simple correlation 
measure suffices. In this section we formulate a 
generic choice for this class of problems. Note 
that, by assumption, it is the undeformed signals 
f* (x) that are similar, so the quality of a potential 
solution V should be measured by the similarity of 
the signals f(V(x)). 

Consider the case of two signals f~ and ft. A 
general family of similarity measures is obtained 
by integrating local similarity measures over posi- 
tion. Let Qk.t(x) be a local measure of the simi- 
larity of fk(v/,(x)) and ft(vt(x)) around x. A num- 
ber of possibilities exist for Qk.t(x). Normalized 
cross-correlation produces good results for sever- 
al matching problems that we have examined. 
If W~(x) is a window function where ~/ denotes 
the width parameter, /~k(x) = f f~(vk(y - x)) 
Wy(y)dy, and vk(x) = f [f~(v~(x - y)) - / zg (x  - 
y)]2 Wy(y)dy, then the normalized cross-correla- 
tion can be written 

Qk, t(x) = [vk(x)vl(x)] -~ f{[fi,(vk(x- y)) - 
/xk(x - y)] × [ft(vl(x - y)) - 
/xt(x - y)]W'y(y)}dy 

A global measure of similarity for fk and fl is 
given by 

~k,t(Vk, Vt) = jQk.t(x)dx 
This functional generally has many local minima. 
In order to apply the continuation method, we 
compute ~k.t(vk, vl) for signals fk and ft, which 
have been smoothed by Gaussians of standard de- 
viation ~r. The correlation window size W~ should 
be large enough to provide an accurate local esti- 
mate of the mean and variance of the signals, but 
small enough that nonstationarities in the signals 
do not become a problem. A convenient way to 
set ~/ to a reasonable value is to make it a fixed 
multiple of the average autocorrelation widths of 
the smoothed signals. Then "V can be regarded as a 
function of ~. The resulting functional ~k.l(vk, vt, 
tr) can then be made as smooth as is desired. 

By simply adding up pairwise similarities, a 
global measure of similarity can be constructed 
for n signals: 

,,~(V,cr) = ~ ~" k,t(v~, vt,~r) 
k=l l=k+l  

Note that ~ (V,o-) must be recomputed at each 
iteration, with the signals resampled to reflect the 
current choice of V. If the deformation is very 
small, the distortion induced by failing to resam- 
pie can be ignored, but the value of such resam- 
piing in stereo matching, for example, is well 
established [15, 20]. The Gaussian smoothing 
should also take place on the resampled signals 
f(V(x)). 

5 Smoothness Functionals 

The functional 6e (V) places certain restrictions on 
admissible deformations in order to render the 
minimization problem better behaved. Perhaps 
the simplest possible restriction, and one that has 
been used often in the past, is to limit possible 
disparities between signals to prespecified ranges. 
A deformation can then be assigned within dis- 
parity bounds on a point-by-point basis according 
to maximal similarity criteria. Although simple, 
such limited searches are unfortunately error pro- 
ne, since they are based on purely local informa- 
tion. 

This problem can be resolved by imposing glob- 
al constraints on the deformation that are more 
restrictive yet remain generic. Such constraints 
may be based on a priori expectations about de- 
formations; for example, that they are coherent in 
some sense. In particular, admissible deforma- 
tions may be characterized according to the 
controlled-continuity constraints defined by Ter- 
zopoulos [7]. These constraints, which are based 
on generalized splines, restrict the admissible 
space of deformations to a class of piecewise con- 
tinuous functions. The deformation's order of 
continuity is controllable, and discontinuities of 
various orders (e.g., position, tangent, and curva- 
ture discontinuities) are permitted to occur, sub- 
ject to an energy penalty. 

A general controlled-continuity constraint is 
imposed on the deformation by the functional 

= Z S(vk) 
i=1 

where 
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S(v) = --mX=0 : , . ( x )  
• " = ' "  , j l + .  . m j l l  . j d  ! 

amv(x) [ 
Z 2 dx (5) 

The positive integer p indicates the highest order 
generalized spline that occurs in the functional, 
and this determines the maximum order of con- 
tinuity (Cp -1) of the admissible deformations. 
The nonnegative continuity control functions 
w(x) = [w0(x), • • • , wp(x)] determine the place- 
ment of discontinuities. A discontinuity of order q 
< p is permitted to occur at x0 by forcing w/(xo) = 
0 for i -> q (see Terzopoulos [7] for details). 

The p = 2 order controlled-continuity con- 
straint is employed in our implementations to 
date. If, for convenience, a "rigidity" function 
p(x) and a "tension" function [1 - r(x)] are intro- 
duced such that w0(x) = 0, Wl(X) = p(x)[1 - 
r(x)], and W2(X ) ----- p(x)r(x),  then it is natural to 
view the functionals as characterizing "general- 
ized piecewise continuous splines under tension." 
In particular, for the case of n signals in 1 dimen- 
sion x = [x], the functional (5) reduces to 

P 

S(v) -- - | ~  o(x){[1 - r(x)llvxl 2 + 
i /  

r(x) lvxxlE}dx (6) 

while for the case of n signals in two dimensions x 
= [x, y], it becomes / - / *  

S ( v ) = - | t ~  2p(x, y ) { [ 1 -  r(x, y)](,Vx[2 + 

Ivyl 2) + r(x, y)(lVxxl 2 + 21Vxy[ 2 + 
IVy/2)) dx dy (7) 

6 Discrete Solution 

Equations (4) pose a standard first-order initial 
value problem for which solution methods 
abound. We have employed numerical methods 
of varying sophistication, each giving satisfactory 
results. In order of sophistication, these include 
Euler's method, a fourth-order Runge-Kutta 
method, and Adams-Moulton predictor-corrector 
methods. The latter offer the advantage that the 
step size can be automatically adapted, making 
them particularly robust [22]. 

Discretization of the continuous variational 

form of the n signal-matching problem can be car- 
ried out using standard methods. As an illustra- 
tion of the iterative formulas involved, consider 
an explicit Euler step in which the time deriva- 
tives 6- and "~ are approximated by forward differ- 
ence expressions with time step At. This leads to 
the following discrete time version of equations 
(4): 

o f t + l =  o-t  - ( a t ) c l e - cd  Vg 'l , 
Vt+ 1 = V '  --  (At)  V 8  t 

where V8 t = [ I71 8 t . . . . .  Vn 8 q, whose compo- 
nents, one for each signal, are given by 

vk e (v,~), = 

- ( 1  - A) ~ V k -~k, l(Vk, vt, O')'-- AVS(vg) t 
l=1 t,k (8) 

Although finite element methods offer the 
greatest flexibility, for simplicity we employ stan- 
dard central finite difference formulas for uniform 
meshes to approximate the spatial derivatives. 
This leads to locally computable expressions for 
equation (8). 

The first term in equation (8) involves partial 
derivatives of the similarity functional with re- 
spect to each of the d disparity functions in vG 
i.e., V k ~ k . l ( V k ,  V l ,  0") = [ O ~ k , l / O g V 1 , .  . . , O ~ k , l /  

Ova]. These derivatives are computed numerically 
by taking first differences. 

The components of VS(v), the second term in 
equation (8), are obtained by discretizing S using 
first and second differences. For the case of 
matching one-dimensional signals, discretization 
of equation (6) yields the components 

aS(v) 1 
0Vi -- h2 {W 1 i(Vi+ 1 --  Vi) --  W 1 i_l (Vi  -- Vi_l )  } 

- - ~ { W 2 i - I ( V  i - -  2vi-1 + vi-2) 

- - 2 W 2 i ( V i +  1 - -  2Vi + Vi_l )  

+ W 2 i + l ( V i +  2 - -  2Vi+l + Vi)} (9)  

where i indexes the nodes of the mesh defined on 
a compact domain of interest g2 E ~ ,  Wl i = pi[1 - 
ri], and Wzi = p:~. Similarly, for the case of 
matching two-dimensional signals, the discretiza- 
tion of equation (7) yields the components 



aS(v)_ 1 
aVi,j h2 {Wl i ' j ( V i + l ' J  - vi,j) 

- W l i _ l , j ( ¥ i , j  - V i _ l , j )  

"Jr- W 1 i , j ( V i , ] + l  - -  V i , j )  - -  W 1 i , j - i ( V i . j  - -  V/.j_I) } 

1 
- - - ~ { W 2 i _ l , j ( V i .  j - -  2Vi_l,  j q"- Vi_2,j) 

- -  2 W 2 i . j ( V i + l ,  j - -  2Vi,/ + Vi_l.j) 
"-}- W 2 i + l . j ( V i + 2 , j  - -  2Vi+l.j  -I- V i , j )  

@ 2 W 2 i - I . j - I ( V i . j  - -  Vi- l , j  -- V i , j - 1  "4- V i - l , j - l )  
- -  2 W 2 i , j _ l ( V i + l .  j - -  Vi ,  j - -  Vi+l. j_ 1 -~- Vi,j_l) 
- -  2 W 2 i _ I , j ( V i . j +  1 - -  V/_I.j+ 1 -- Vi ,  j "F- Vi_l,j)  
"a t- 2 W 2 i , j ( V i + l , j +  1 - -  Vi.j+ 1 -- V/+I. j -~- Vi.j) 
-}- W 2 i , j - I ( V i , j  - -  2vi,/_l + V/,j--2) 
- -  2 W 2 i . j ( V i . j +  1 - -  2 V i ,  j + Vi,j-1) 
"a t- W 2 i , j + l ( V i , j +  2 - -  2Vi,j+ 1 @ Vi, j)} (10) 

where i, j index the nodes of the mesh defined on 
the compact domain g2 ~ 2 ,  wli, j = Pi, y[1 - ~i4], 
and w2i,/ = pi4zi,/. In equations (9) and (10), h 
denotes the distance between neighboring nodes. 

The above local computations are valid only in 
regions where the deformation has C 1 continuity. 
The computations must be modified at nodes that 
are within a distance of 2h from the position dis- 
continuities on the boundary of O (the natural 
boundary conditions). The same is true within 
regarding position and tangent discontinuities in 
the deformation, which have been prescribed or 
which may be introduced during the matching 
process. The iterative computations are automati- 
cally modified as required using the technique of 
summation and inhibition of computational mole- 
cules (see [6]). The automatic detection of discon- 
tinuities requires the estimation w, and w2 during 
matching, and this is accomplished using tech- 
niques described by Terzopoulos [7]. 

7 Results 

7.10ne-DimensionalSignals 

The method is applicable to matching n signals, 
each of which is d-dimensional. Figure 1 shows 
the simplest case, that of matching two one- 
dimensional signals. The signals are measure- 
ments of the resistivity of a geologic structure as a 
function of depth at two different locations. From 
top to bottom, the signals first appear in their ori- 
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I ' t l r l t | o n !  I ~ : i l i t  6 , J  / ~ rnz  M[I. 

I [ l e l t t ~ l l  5 ,~¢i1111 S.39a1c/~) I ~ r n :  { i , R ] ~ 1 1 4 3  

L / 

I t m e o t t l a ~  9 , ~ o l e z  4 . 5 ~  I ' lal~: I I . a 3 1 ~ 4  

[~ll~a~torb: L3 Sc;ele: 3 . ) ~ ' c ) T J  /~e-n: G.O2CD2111431J 

I t ~ - ~ t a n l  ~? Sc:41ex 3./,c~)~)112 ~.or~: Q.~I21~IIS~IX 

£ t i l ' l t t t O n l  2[  S I : I I I :  2 . g l J ~ L  I ~ |  i.|~.~t44411OtJ 

Fig. 1. Matching two one-dimensional signals. The deforma- 
tion function V is shown above each signal trace. From top to 
bottom, the signals first appear in their original form, then par- 
tially deformed at intermediate stages of the matching process, 
and finally showing the end result. 

ginal form, then partially deformed at intermedi- 
ate stages of the matching process, finally showing 
the end result. The deformation function V is 
shown above the signals. 

Figure 2 shows a more challenging example in 
which four signals are matched simultaneously. 
The signals are intensity profiles from a complex 
natural image. On the left, the four signals are 
shown superimposed at several points in the 
matching process. As before, the original signals 
appear at the top and the final result is at the bot- 
tom. Note that coarse-scale features are aligned 
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S 

Fig. 2. Simultaneous matching of four signals. The signals are superimposed at several points in the matching process (left). The 
original signals appear at the top and the final result is at the bottom. The four corresponding deformation functions vi(x) are shown 
(right). 
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(a) 

(b) 

Fig. 3. Two frames from a motion sequence (a). The original image has been texture mapped onto a surface that encodes speed as 
elevation (b). The raised area indicates motion before a stationary background. 

first in the matching process while fine-scale fea- 
tures are matched later. The four corresponding 
deformation functions vi(x) are shown to the 
right. 

7.2 Motion Sequence 

Figure 3 shows two frames from a motion se- 

quence showing M. Kass moving against a station- 
ary background. The frames are separated in time 
by about 1.5 s. Results of the matching process 
are shown as follows: The original image has been 
mapped  onto a surface that encodes estimated 
speed as elevation. The raised area shows the re- 
gion in which the algorithm detects motion. No 
at tempt  has been made in this example to detect 
motion discontinuities. 
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(a) 

(b) 
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(c) 

Fig. 4. A stereogram showing a potato partly occluding a pear (the images are reversed for free fusing) (a). The matching results are 
rendered as two shaded surfaces with the image coordinate grid mapped onto the first (b) and the left image mapped onto the second 
(c). The visible portions for the reconstructed surfaces are rendered from an oblique viewpoint showing the computed surface 
discontinuities, 

7.3 Stereo Matching 

Figure 4 contains a stereogram showing a potato 
partly occluding a pear. The matching results are 
rendered as two shaded surfaces with depth com- 
puted from the disparity. An image coordinate 
grid is mapped onto the first surface and the left 
image is mapped onto the second. The recon- 
structed surfaces are rendered from an oblique 
viewpoint showing the computed surface discon- 
tinuities. Only those portions of the scene visible 
in the original stereogram are shown. 

8 Conclusion 

A variational approach to signal matching has 
been developed. The approach unifies several 
established themes in signal matching including 
constrained optimization, piecewise continuous 
reconstruction, coarse-to-fine matching, and in- 
cremental deformation of signals. The main tech- 
nical contribution of this paper is twofold. First, 
we introduced the notion of tracking the solution 
to the matching problem continuously over scale. 
This continuation method for finding good local 
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minima offers an efficient deterministic alter- 
native to stochastic optimization techniques. 
Second, we developed a single system of first- 
order differential equations that characterize this 
process. The system is governed by an energy 
functional that balances similarity of the signals 
against smoothness of the deformation. This 
balance is maintained as the solution is tracked 
continuously over scale. The effectiveness of 
this approach has been demonstrated for both 
one- and two-dimensional signals. 
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