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Abstract

We describe the design of ARK (Autonomous Robot for
a Known Environment), a visually guided mobile robot
for navigating in an industrial environment whose ma-
jor structures have been previously mapped. ARK uses
visual landmarks for navigation, the position of which
are indicated on the robot’s map. The position esti-
mation problem is solved through the use of an active
vision sensor, equipped with a video camera and a laser
ranging device, which is used for detecting and tracking
landmarks. Since it is likely that some areas are not ad-
equately covered by landmarks, ARK plans paths which
minimize a weighted sum of path length and path un-
certainty. The global path planner assumes that the
robot will use a Kalman filter to integrate landmark
imformation with odometry data to correct path devia-
tions as the robot moves, and then uses this information
to choose a path which reduces the expected path de-
viation. As a result, a longer path may be selected, if
more landmarks are visible from it, thereby helping the
position estimation process.

1 Introduction

ARK (Autonomous Robot for a Known environment)
is a visually guided mobile robotics project undertaken
as a collaboration between Ontario Hydro, Atomic En-
ergy Canada Limited (AECL), The National Research
Council of Canada (NRC), and two universities; York
University and the University of Toronto. The goal of
this project 1s to build an autonomous vehicle capable
of performing inspection and monitoring tasks in a typ-
1cal industrial environment. The project will eventually
construct two different robots; a tethered robot, called
ARK-1, which will be used as a proof of concept ve-
hicle, and a second generation vehicle, called ARK-2,
which will utilize the best of the results of ARK-1 and
which will operate in real time with the majority of its
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computation performed onboard. Both robots will use
visual data obtained through active vision processes as
the primary source of sensing for the robot, but both
robots will also utilize non-visual sensors such as in-
frared, sonar and laser range finders.

The design of the ARK-1 robot (which will be re-
ferred to as ARK) has been driven by the final appli-
cation domain of ARK-2. The ARK-2 robot will oper-
ate in a complex industrial environment, similar to the
types of environments found in industrial bays, power
plants, and other large complex manufacturing centers.
These environments are radically different from the lab
environments typically used in robotic research. In in-
dustrial environments the lighting varies dramatically
from location to location and even by time of day. There
are a number of permanent structures in the environ-
ment (external walls, pillars, etc.), but there are also a
number of large semi-permanent structures (manufac-
turing cites, mockups, etc.), and even temporary struc-
tures. In addition to the complexity of the global en-
vironment, the local environment is considerably more
complex than that found in most robotic research labs.
The floor may contain cable trays, drainage ditches, and
the like. Objects may protrude at arbitrary heights and
from arbitrary orientations. Walls, in the classic sense,
may only be found at the environments external bound-
aries.

It is not practical in the ARK-2 environment to per-
form modifications of the environment such as adding
bar codes to the walls, magnetic strips beneath the
floor, or active radio beacons, and as an industrial
environment lacks the wall structure of an office or
lab space, navigation by necessity has to rely primar-
ily on landmark detection, identification and tracking
(8,5,16,17,14]. Thus the design of a sensor capable of
localizing landmark features and algorithms for acquir-
ing those features is crucial to the performance of the
robot. In addition, the global path planning activities
of the robot rely on this active vision sensor. This pa-



per presents the basic design of the ARK vision sensor
and describes a path planning procedure which takes
the knowledge of the active vision sensor and the land-
mark localization procedure into account when perform-
ing global path planning.

2 The ARK Active Vision Sen-
sor

The ARK-1 robot is built around a 3 wheeled Cybermo-
tion K2A platform, which has been augmented with ad-
ditional sensors which are used primarily for local path
planning (see {19] for a general description of the ARK
project). One of the most novel features of the ARK
robot is its use of active vision to localize visual cues in
the robot’s environment.

Active Vision[2] is a research paradigm inspired by
the structure of biological vision systems[3], and has
been shown to have benefits for a number of visual
tasks[22]. To implement this paradigm in practice, a
particular experimental apparatus is required to pro-
vide control over the acquisition of active image data.
One approach considered by a number of researchers
has been the construction of robotic “heads” which pro-
vide mechanisms for modifying the geometric or opti-
cal properties of the sensors under computer control.
Several research groups have built stereo robotic heads
which rely purely on visual data to recover structure
in the environment (for example, see [4,13,1,21,6,18]).
Rather than relying purely on visual data, the ARK
active vision head combines a spot laser sensor (manu-
factured by Optech) with a computer controlled zoom
and focus color video camera. This combined sensor of
video and range data is mounted within a pan and tilt
unit providing the robot with the ability to point the
combined sensor in different directions (see Figure 1).

The Optech laser range finder obtains depth mea-
surements by temporally integrating individual infrared
laser range measurements. The beam spread is quite
small with a 5 mrad beam divergence[20]. The sensor
operates in one of two modes, a slow accurate mode
(0.55 sec/scan) with an accuracy of +5cm and a faster
slightly less accurate mode (0.12 sec/scan). The sensor
lias an operating range of 0.2 to more than 100m. Note
that unlike stereo robotic heads, the range error associ-
ated with the laser scanner is independent of distance.
The laser is also eye safe making it suitable for use in
inhabited environments.

3 ARK Control Structure

The ARK robot has two different control structures. A
low level reactive control system whose major goal is to
prevent the robot from damaging itself or its environ-
ment, and a higher level control structure which allows
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Figure 1: The ARK robot head. At the top is the
zoom and focus controlled lens, and at the bottom is the
Optech laser range finder. The pan-tilt unit is operated
by two DC servocontrolled motors from Micromo Elec-
tronics, equipped with gearboxes and optical encoders.

user defined missions to be carried out. These missions
include tasks such as “move the robot to its recharge
point”. The higher level control structure performs op-
erations such as path planning and then utilizes the re-
active control system to carry these tasks out.

The low level system is based around the onboard
computing available on the K2A platform. The K2A
platform integrates a number of specially designed sonar
sensors and a bumper with a drive subsystem which can
be used to prevent the robot from driving into obsta-
cles which appear in its path. In addition to the func-
tionality provided by the Cybermotion base, additional
operations related to the operation of the active vision
head are also defined.

One fundamental operation provided by the high
level system is that of path planning and visual land-
mark selection. By taking the need for visual landmark
sensing into account when planning paths the high level
control structure attempts to plan paths which will al-
low the robot to move with certainty throughout its
environment.

4 Global path planning

ARK takes an approach to path planning which incor-
porates a number of novel ideas. It integrates (i) the use
of sensory information to use landmarks in the environ-
ment to correct odometry errors when the robot moves,
(ii) knowledge of this integration process to choose paths
which reduce the maximum uncertainty in the path cho-
sen, and (iii) a tradeoff between the shortest paths that
avoid obstacles and paths that are exposed to land-
marks, and hence help the position estimation process.



Constructing an environmental potential field
Although the ARK robot utilizes a hybrid representa-
tion for its map, it is sufficient to consider a simpler
occupancy grid representation here.

The basic approach in an occupancy grid based path
planner is to superimpose a grid over a blueprint of the
robot’s workspace. Each cell in the grid is assigned a
certainty that it contains a solid object. The process of
converting a blueprint into certainty measurements has
been addressed by a number of authors. Very sophisti-
cated path planning problems can be solved using this
type of representation. For example, Hwang and Ahuja
[10], have developed a simulation-only system which can
solve problems involved in moving complex pieces of fur-
niture through very small openings. As in [10] structure
in the environment generates a potential field. Each
grid element is assigned a potential field value equal to
the maximum potential field that reaches this cell. The
use of the maximum, rather than an additive field is to
avoid the generation of local maxima in the field. In or-
der to treat the robot as a point for planning purposes,
the robot’s footprint is treated as a circle and then all
obstacles are thickened by this radius. Similar to the
approach of Hwang and Ahuja, ARK uses a potential
field function given by

p(%) = max(6 + dist(F, 0;)) !

(1)

where o; is the closest point on the i’th object to Z, and
the index 7 runs over all of the known structure in the
environment. The potential field is basically 1/d where
d is the distance to the closest obstacle. The term § is
simply a small positive number used to prevent overflow
situations. As the map used by ARK is built up of two
dimensional geometric primitives, the task of determin-
ing the closest obstacle is quite straightforward.

Estimating the robot’s position

For any robot navigation process to operate, the robot
must be able to relate knowledge about the environment
(the map) to information obtained with the robot’s sen-
sors. In particular the robot must be able to know where
and with what orientation, the robot is on the map. To
simphfy the process, it will be assumed that the robot
can be modelled as a point robot, capable of straight
line motions and rotations about the robot’s current
position. Of course, in order for any of this to work the
robot has to know where it is with respect to the map.
For simplicity, we assume that the robot starts out in a
known state and this is established through a registra-
tion procedure. Using only the laser range finder, two
registration procedures have been implemented. The
first [7] is based on point to line-segment matching, and
seeks a pose correction (translation and rotation) that
minimizes the total squared distance between each data
point and the line segment in the map that is closest
to it. Data points that are outliers are detected as hav-
ing too large a distance from every line segment of the
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map, and they are discarded from the least squares for-
mulation of the problem. The second [9] seeks a pose
correction that minimizes the total squared distance be-
tween point features in the map and in the sensed range
data. A variety of point features can be used, such
as convex or concave corners, or occlusion boundaries
(points), that can be reliably detected in the range data
and also unambiguously defined in the map. The cur-
rent implementation uses occlusion points, which can be
identified precisely by using a bisection method similar
to that for solving non-linear equations and the pan-tilt
ability of the ARK robot head. In a manner similar to
the treatment of outliers in the point-to-line matching
method, we associate with eath data point the model
point that is closest to it. Data points that are too far
away from every model point are considered outliers and
they are not included in the least squares minimization
formulation. The advantage of the point-to-point least
squares problem is that it has a closed form solution,
unlike the point-to-line version, which must be solved
iteratively. The disadvantage is that its accuracy de-
pends on the accuracy with which the point features
are known in both the data and the map, and is proba-
bly more sensitive to such errors than the point-to-line
version.

For integrating odometry with sensor information,
perhaps the most successful technique so far has been
the use of Kalman filtering. A number of different
robots have successfully utilized this technique including
Kleeman [11] and Leonard and Durrant-White [15,16].
The Kalman filter provides a prediction of where the
landmarks should be in the next image, thus facilitating
position estimation. The Hough transform has also been
used in addition to a Kalman filter to limit the search
for matching edge elements [12]. The ARK robot also
utilizes a Kalman filter to integrate sensory information
with odometry information to provide a least squares
estimate of the robot’s position. Unlike the more com-
mon sonar based case, ARK utilizes visually localized
pre-mapped landmarks as the sensory input to localize
the robot. ARK is expected to navigate primarily via
its active vision sensor. This sensor (mounted on some
point on the robot) obtains the distance and direction
(from the sensor) to a known landmark on the map.
For navigational purposes, we can assume that this ori-
entation and distance are two dimensional. In practice
the landmarks are located at different altitudes and the
sensor will actually obtain three dimensional direction
and distance measurements. This information is used
for target identification, but we consider only the more
simple case of two dimensional data here. In a mea-
surement cycle, the robot consults the map to identify
landmarks which may be visible from the robot’s cur-
rent position. The active vision sensor is then used to
locate any landmarks that may be visible. Zero, one
or more landmarks may potentially be visible at any
point, and the active vision sensor will return the mea-



sured direction and distance to each of the identified
landmarks.

5 Path planning with uncer-
tainty

As Kalman filtering is to be used to estimate the robot’s
position on its path it is possible to estimate the co-
variance matrix associated with the robot’s state before
physically moving the robot. Suppose that before phys-
ically moving a robot down a path, the robot’s motions
are simulated using the robot’s map of its environment
and position of the landmarks. In this simulation it
will be assumed that (i) the robot always goes to where
it is expected to go, and (ii) that the sensors always
report the correct measurement, then even though the
simulated robot will always go to where it is supposed
to, and there are no measurement errors, it will still
be possible, via the Kalman filter equations, to com-
pute the state covariance matrix P(k|k) at each step in
the robot’s path. Thus for each step in each path it is
possible to estimate (given that the robot and sensors
perform flawlessly), the uncertainty of a particular step
and path. Define

cost(p;) = ﬁz Pricra(pi) + (1 - 8) m.;axTréce(ﬁ(i|i))
' (2)

to be the cost of a path, where Ppica(p;) is the oc-
cupancy field measure at step ¢ in the path, and
Trace(P(ii)) is the Trace of the Kalman covariance
matrix at step ¢. This is equivalent to the sum of the
Eigenvalues of P(i|¢) which is a measure of the size of
the uncertainty region at the i’th step. Minimizing cost
is a trade off (controlled by B) between paths which
minimize the certainty grid cost (weighted path length)
and paths which minimize the maximum positional un-
certainty over their length. Paths which minimize cost
are both short and sure.

The potential field used to represent the free space
of the robot defines a metric array representation of the
position of the robot. This space is expanded to in-
clude a discrete representation of the orientation of the
robot (currently 8 different orientations to match the
rectangular decomposition of the position space). Thus
the possible positions of the robot (for path planning)
are discretized both in position and orientation. Each
position has a potential field value associated with it.
For each step in the path planning process, the robot
may move no farther than an adjacent cell in position,
and may change orientation arbitrarily. Given a start-
ing position, and a goal position, an A* algorithm (or
Djikstra’s algorithm) can be used to find a path from the
start to the goal which minimizes the path cost function
given in (2).
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Figure 2: Shortest distance path planning. The initial
pose of the robot is shown as a circle and the planned
path is indicated by a dotted line.

6 Testing

Although the uncertainty based path planner operates
in very complex environments it is more instructive to
consider its application in a very simple environment
such as an enclosed rectangular room with no inter-
nal obstacles. Figures 2, 3, and 4 show different paths
planned by a robot in moving from one point to an-
other in an empty environment. The paths planned by
the robot are shown as dotted lines. Figure 2 shows the
path planned by a shortest path algorithm. The robot
plans the straight path from the start to the goal. Figure
3 shows the path planned by an occupancy grid mini-
mizing algorithm. As the centre of the room is farther
away from obstacles (the walls), the best path involves
moving towards the centre of the room before moving
towards the goal.

Figure 4 shows the same environment but has the
addition of a visible landmark at the top of the room
(indicated by a small circle). The visibility region of
this landmark is shown as a semicircular region centred
on the landmark. The same start and goal positions
are used as in Figure 2 and Figure 3. The planned path
moves away from the goal position towards the visibility
region of the landmark in order to reduce the robot’s
uncertainty and then moves back towards the goal after
moving through the landmark visibility region for some
distance.

In addition to planning the robot’s path, the Kalman
uncertainty based path planner records the landmarks
that were used to compute the positional uncertainty
of the robot at each point in the path. These planned
sightings of landmarks are also displayed as dotted lines



.......................................

......

Figure 3: Occupancy cost path planning. The initial
pose of the robot is shown as a circle and the planned
path is indicated by a dotted line.

Figure 4: Uncertainty based path planning. The initial
pose of the robot is shown as a circle and the planned
path 1s indicated by a dotted line. Expected land-
mark sightings are also shown as straight lines from the
robot’s path to the landmark.
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Figure 5: Uncertainty path cost. The maximum uncer-
tainty cost at different points in the path is shown for
the planned path with (displayed in figure 4) and with-
out (displayed in figure 3) the presence of the landmark.
As is clearly evident the longer path has a much lower
maximum uncertainty than the shorter one.

from the robot’s planned path to the landmark position.
When the path is finally executed this information is
used to prime the ARK head to acquire a specific land-
mark at an approximate position for position estima-
tion.

The uncertainty-based path planner can also be used
if no landmarks are present in the environment. In this
case the planner computes a path which is similar to
the distance minimizing path. For the environment pre-
sented here the path computed by the Kalman path
planner if the landmark is removed is exactly the same
path as the distance minimizing path shown in Figure 2.
In addition to computing the path the expected Kalman
covariance matrix is also computed. Plotting the costs
of the uncertainty based planned path with and with-
out the presence of the landmark is very informative (see
Figure 5). The plot shows the maximum Trace of the
covariance matrix at each point in the path for the path
planned with landmarks and the path planned without.
The path with landmarks is longer but has long regions
of low uncertainty (corresponding to moving within the
visibility region of the landmark). The path planned
without the landmark is shorter but has a much higher
positional uncertainty at the goal. For some environ-
ments it may be worthwhile to move a farther distance
to be more sure of getting to the goal.

7 Discussion

The ARK robot navigates through the use of vi-
sual landmarks acquired with an active vision sensor.
This sensor is a computer controllable laser-color video
pair. This combination of sensors allows for active vi-
sual search for landmark features through controllable
changes in focal length, pan, tilt and focus. The head



also has the ability to make spot depth measurements
with the laser sensor. Premapped visual landmarks are
identified with the sensor and foveated. The direction to
the landmark and its distance are used by the robot to
correct the positional errors associated with the robot’s
drive system. Knowledge of this correction process and
the relative sparseness of visual landmarks suggests the
use of path planner which approaches path planning
by identifying paths which are likely to be navigatable
with the sensors, and sensor integration mechanisms
currently on board. Rather that identifying short or safe
paths, paths identified with this planner will be suited
to the onboard sensors, rather than being independent
of them.

Many enhancements to the ARK global path plan-
ner are possible. It would be possible, for example, to
discard any path with positional uncertainties that ex-
ceed a particular value (hence identifying locations that
can be reliable accessed). The path planner currently
does not utilize any heuristics to suggest growing the
search space towards the location of the known goal.
This could be easily added. Finally, even the walls
themselves can be thought of as landmarks for naviga-
tion, and it would be straightforward to add additional
classes of landmarks (and their visibility regions) into
the path planner.
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