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Abstract—The retinal vasculature provides important
clues in the diagnosis and monitoring of systemic diseases
including hypertension and diabetes. The microvascular
system is of primary involvement in such conditions, and
the retina is the only anatomical site where the microvascu-
lature can be directly observed. The objective assessment
of retinal vessels has long been considered a surrogate
biomarker for systemic vascular diseases, and with recent
advancements in retinal imaging and computer vision tech-
nologies, this topic has become the subject of renewed
attention. In this paper, we present a novel dataset, dubbed
RAVIR, for the semantic segmentation of Retinal Arteries
and Veins in Infrared Reflectance (IR) imaging. It enables
the creation of deep learning-based models that distinguish
extracted vessel type without extensive post-processing.
We propose a novel deep learning-based methodology,
denoted as SegRAVIR, for the semantic segmentation of
retinal arteries and veins and the quantitative measure-
ment of the widths of segmented vessels. Our extensive
experiments validate the effectiveness of SegRAVIR and
demonstrate its superior performance in comparison to
state-of-the-art models. Additionally, we propose a knowl-
edge distillation framework for the domain adaptation of
RAVIR pretrained networks on color images. We demon-
strate that our pretraining procedure yields new state-of-
the-art benchmarks on the DRIVE, STARE, and CHASE_DB1
datasets. Dataset link: https://ravirdataset.github.io/data.
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I. INTRODUCTION

THE retina and its vasculature are directly visible due to the
optically clear media of the human eye; thus, the ability

to image the retina rapidly and non-invasively using a variety
of modalities provides a window into vital organs such as the
brain, heart, and kidneys. Analysis of the retinal vasculature
offers a unique avenue to monitor and assess changes associ-
ated with systemic diseases such as hypertension, diabetes, and
neurodegenerative disorders. The sequelae of these conditions,
including stroke, coronary heart disease, and dementia, repre-
sent major causes of morbidity and mortality in the developed
world [1]–[3]. To date, most classification schemes for retinal
vascular changes due to these conditions, particularly in the early
stages of disease, depend on the human assessment of qualitative
morphological changes [4], [5].

We and others hypothesize that the assessment of retinal
vasculature changes can elicit biomarkers associated with early,
even asymptomatic, disease states [6]. For example, hyperten-
sion is known to cause structural changes in the macro and
micro vasculature of vital organs throughout the body, including
the brain, heart, and kidneys. As retinal vasculature is both
functionally and pathologically linked to cerebral vasculature,
it exhibits similar morphological changes [7]. However, early
structural changes to the vasculature are inconspicuous, and
detection and analysis of these early changes is often difficult
due to the non-quantitative modalities used in routine clinical
practice, including direct examination, fundus photography, and
angiography.

The accessibility of the retinal vasculature to multimodal
imaging provides the opportunity to quantitatively assess
prognosis, risk, and response to treatment. Infrared Reflectance
(IR) imaging is regarded as an ideal modality to evaluate the
retinal vasculature due to several advantages including the
ability to capture images through a non-dilated pupil, increased
patient comfort due to lack of visible light flash, and better
penetration through opaque media. Additionally, previous
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studies have found a substantial correlation in image resolution
and utility between IR and color imaging modalities [8].

While systemic etiologies affect both arterial and venous vas-
culature, the morphological changes between the two may differ
significantly. In the early stages of hypertensive retinopathy,
for example, increased blood pressure triggers autoregulatory
mechanisms that result in diffuse narrowing of the arterial ves-
sels. If the elevated pressure persists, a compensatory thickening
of the arterial walls occurs, which can be clinically observed by
the resultant widening and accentuation of the vascular light
reflex (“copper wiring” or “silver wiring”). By contrast, physio-
logic changes in venous vasculature include dilated and tortuous
venules resulting from venous compression at arteriovenous
crossing points subsequent to thickening of the adjacent arterial
walls. Additionally, these physiological changes progress in
a well-understood and sequential manner that is correlated to
the duration and severity of disease. For this reason, clinically
observable changes in retinal vasculature are among the primary
metrics used in the diagnosis, progression, and response to
treatment.

The development of an automated, reliable tool that repro-
ducibly quantifies changes in the retinal vasculature in response
to disease and intervention promises to augment or even disrupt
current evaluation and treatment paradigms. By enabling physi-
cians to detect disease, predict outcomes, and assess interven-
tions at an earlier stage, such a tool can serve in the management
of systemic conditions such as hypertension and diabetes with
the potential to dramatically improve patient outcomes and
public health at large.

A critical step in tracking such important structural changes
of the retinal vasculature is segmentation of the retinal vessels
in ophthalmologic images, as it enables localization of the veins
and arteries and the extraction of relevant information such as the
change in diameters of the vessels. The automated segmentation
and serial analysis of both arterial and venous retinal vasculature
is therefore a potentially valuable capability. Since the advent
of “deep learning” in the field of computer vision, Convolu-
tional Neural Networks (CNNs) have been widely employed
for the automated segmentation of medical images, including
retinal images. Using stochastic gradient descent optimization
approaches, CNNs can be trained end-to-end to automatically
learn and extract important features. However, training requires
annotated datasets with detailed, pixel-wise ground truth la-
bels, and such annotation processes are often notoriously time-
consuming due to the complex structure of retinal vessels.1

Consequently, publicly available annotated datasets for retinal
vessel segmentation tend to be relatively small in size, as is
often the case in medical imaging, a domain that is infamously
deficient in adequate datasets.

In this paper, we introduce a dataset for training deep learning
CNN models to perform detailed, pixel-resolution “semantic
segmentation” of Retinal Arteries and Veins in IR imaging,
dubbed RAVIR. In conjunction with our new RAVIR dataset, we

1Self-supervised and unsupervised deep learning approaches do not require
annotations, but supervised approaches usually perform significantly better.

Fig. 1. The RAVIR dataset enables semantic understanding of retinal
vessels in IR imaging. (a) Reference labels. (b) SegRAVIR semantic
segmentation output. (c) Pixel-wise vessel width measurement. Red
and blue masks denote artery and vein classes, respectively. Width
measurement map presented in microns.

propose a novel deep learning-based methodology, denoted Seg-
RAVIR, which is tailored to the semantic segmentation of retinal
arteries and veins. Specifically, SegRAVIR features a two-stream
encoder-decoder CNN architecture consisting of main and aux-
iliary streams with shared encoders to simultaneously segment
the vessels and reconstruct the input images. The role of the
auxiliary stream is mainly to regularize the main stream and
help the shared encoder learn effective representations of the
retinal vessels.

As shown in Fig. 1, since the RAVIR dataset provides pre-
cise pixel-scale ground-truth information, we can leverage the
output segmentation masks to measure the diameters of retinal
arteries and veins. This can enable monitoring the morpho-
logical changes of retinal vasculature in a quantitative man-
ner. Our extensive experiments validate the effectiveness of
SegRAVIR, as it proves to outperform existing methodologies
by a considerable margin. Furthermore, when trained from
scratch on another color retinal artery and vein segmentation
dataset called RITE, SegRAVIR again achieves state-of-the-art
performance.

Additionally, we propose a novel knowledge distillation
framework for the domain adaptation from IR to color images
of models pretrained on the RAVIR dataset. We demonstrate the
effectiveness of our domain adaptation approach by fine-tuning
and testing SegRAVIR on three popular color retinal vessel
segmentation datasets, DRIVE, STARE, and CHASE_DB1.

To summarize, our specific contributions are as follows:
1) We introduce RAVIR, a novel dataset for semantic seg-

mentation and quantitative analysis of retinal arteries and
veins in the IR imaging modality.

2) We propose a novel framework with tailored loss func-
tions for the segmentation task. To this end, we propose
the proxy task of reconstructing input images by using
an autoencoder to regularize the segmentation output and
improve its fine-grained details.
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TABLE I
COMPARISON BETWEEN THE RAVIR DATASET AND OTHER PUBLICLY AVAILABLE

3) We provide extensive quantitative benchmarks for per-
formance comparison of our RAVIR framework against
state-of-the-art methodologies for retinal vessel segmen-
tation.

4) We propose a novel knowledge distillation framework
for the domain adaptation to color images of models
pretrained on RAVIR, and our results establish new
state-of-the-art benchmarks on the publicly available
DRIVE, STARE, and CHASE_DB1 datasets by a
substantial margin.

II. RELATED WORK

In this section, we review and discuss the publicly available
datasets for training models to perform retinal artery and vein
segmentation in different imaging modalities (Table I), as well
as the notable deep-learning-based methodologies underlying
such segmentation models.

A. Retinal Artery and Vein Segmentation Datasets

Traditional color photographs have long been utilized in the
screening evaluation of retinal vascular diseases.

One such early effort is the STructured Analysis of the REtina
(STARE) dataset [9], which was created at the University of
California, San Diego, with the aim of developing a system
capable of the automated diagnosis of various diseases in the
human eye. This dataset comprises 20 color retinal images,
acquired by a Topcon TRV-50 camera at a 35◦ field of view
(FOV), and sized at 605× 700 pixels with 8 bits per RGB color
channel. Half of the images in this dataset depict pathology that
manifests an abnormal appearance of retinal blood vessels and
obscures them.

Another important effort is the Digital Retinal Images for
Vessel Extraction (DRIVE) dataset [10], which was created as
part of a diabetic retinopathy screening program in The Nether-
lands. It consists of 40 color retinal images with corresponding
binary segmentation masks, which are equally divided into train
and test sets. In the DRIVE dataset, 7 cases show signs of
mild early diabetic retinopathy or conditions such as pigment
epithelium changes, pigmentary epithelial atrophy, butterfly
maculopathy with pigmented scar in fovea, choroidiopathy, atro-
phy around the optic disc, background diabetic retinopathy, and

other vascular abnormalities. The images were acquired using
a Canon CR5 non-mydriatic 3CCD camera with a 45◦ FOV
and are sized at 768× 584 pixels with 8 bits per RGB color
channel.

Using the original images in the DRIVE dataset, the Reti-
nal Images vessel Tree Extraction (RITE) dataset [11] was
developed to support the segmentation and classification of
retinal arteries and veins. Qureshi et al. [19] also presented a
manually labeled dataset with pixel-wise annotations for retinal
arteries and veins for images in the DRIVE dataset.

The Child Heart and Health Study (CHASE) in England
yielded the CHASE_DB1 dataset [12], including 28 color retinal
images from both eyes of 14 child subjects. The images were
captured by a hand-held Nidek NM-200-D fundus camera with
a resolution of 1280× 960 pixels at a 30◦ FOV. The vessels
in these images are poorly contrasted against the background.
Additionally, the artery cross-sectional intensity depicts a central
vessel reflex. Eight images are used as the training set and the
remainder as a test set.

The IOSTAR [13] and LES-AV [14] datasets contain color
retinal images that include artery and vein pixel-wise anno-
tations. The IOSTAR dataset consists of 30 images of size
1024× 1024 pixels acquired through a Scanning Laser Oph-
thalmoscopy (SLO) methodology from patients suffering from
diabetic retinopathy, whereas the LES-AV dataset has 22 images
of glaucomatous patients.

Another commonly used dataset is the High Resolution Fun-
dus (HRF) dataset [15], which contains 45 color retinal images
of size 3504× 2336 pixels captured by a Canon CR-1 fundus
camera with a 45◦ FOV. The dataset includes images of 15
subjects with diabetic retinopathy, 15 subjects with glaucoma,
and 15 healthy subjects.

Aside from IR imaging and RAVIR, and in addition to the
aforecited color image datasets, retinal vessel segmentation
datasets have recently been curated in other imaging modali-
ties. The ROSE dataset [16] provides 117 Optical Coherence
Tomography Angiography (OCTA) images of 304× 304 pixel
resolution from 39 subjects suffering from Alzheimer’s disease
and, with regard to the Fluorescein Angiography (FA) modality,
the RECOVERY-FA19 dataset [17] contains 8 ultra-wide-field
images of size 3900× 3072 pixels from patients participating
in the Intravitreal Aflibercept for Retinal Non-Perfusion in
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Proliferative Diabetic Retinopathy trial [20]. Another FA dataset
is the PRIME-FP20 dataset [18], comprising 15 images with a
resolution of 4000× 4000 pixels acquired from patients with
diabetic retinopathy.

B. Retinal Vessel Segmentation Methodologies

Subsequent to the success in medical and biomedical im-
age segmentation of the seminal U-Net [21] architecture,
many efforts have been proposed to leverage its encoder-
decoder paradigm in the context of retinal vessel segmentation.
Zhuang et al. [22] proposed an architecture based on U-Net that
utilizes multiple-path networks to leverage a path-wise formula-
tion in segmenting retinal vessels. Conversely, Wang et al. [23]
proposed a Dense U-Net architecture with a patch-based training
strategy and extensive data augmentation, which outperforms
the baseline U-Net by a small margin. Jiang et al. [24] devel-
oped a multi-path encoder-decoder architecture that fused the
outputs of the network at different scales to obtain the final
predictions.

Furthermore, Alom et al. [25] introduced a recurrent residual
U-Net architecture in which residual convolutional layers are
used for optimal feature representation learning. Jin et al. [26]
proposed a deformable U-Net architecture that captures
various scales and shapes of the vessels by adjusting the
adaptive receptive field of the deformable convolutional layers.
Wu et al. [27] used a U-like encoder-decoder architecture
that leverages Inception residual blocks for improved feature
representation and is supervised in a multi-scale manner
to preserve features of different sizes. Zhang et al. [28]
proposed an attention-guided network that effectively captures
vessel structural information. Wang et al. [29] utilized two
encoders, in a U-Net like architecture, to preserve the spatial
information and semantic representations separately. Gu et
al. [30] proposed a context encoder network, CE-Net, to
effectively capture high-level semantic and spatial content
for use in segmenting vessels. Additionally, Zhang et al. [31]
proposed an edge-attention guidance network to improve the
accuracies of the boundaries of segmented vessels.

Recently gaining traction is the application of cascaded archi-
tectures where several encoder-decoders are chained together
to refine the segmentation outputs. Although these approaches
typically result in more refined boundaries, they are memory-
intensive and the inference time is substantially increased due to
the complexity of the model. Yan et al. [32] introduced a method-
ology in which a three-step CNN was employed to separately
segment thick and thin vessels and learn how to effectively fuse
the results and refine the predictions. Francia et al. [33] proposed
to use an architecture consisting of two residual U-Nets in which
the second refines the feature maps of the first and resolves the
ambiguities. Li et al. [34] used a cascade of U-Net architectures
that share their weights and are connected by mid-level skip
connections, thus yielding a deeper CNN that can effectively
disambiguate the uncertain regions in the output segmented
vessels. Guo et al. [35] introduced a bidirectional symmetric
cascade with adaptive supervision of each layer according to
the diameter scale of each vessel.

In addition to graph-based methodologies [36]–[38], several
efforts have applied deep learning-based methods to the seman-
tic segmentation of arteries and veins as distinct vessels in color
retinal images. Welikala et al. [39] used an architecture consist-
ing of three convolutional layers and three fully-connected layers
to segment vessels in small 25× 25 image patches. Hemel-
ings et al. [40] proposed another patch-based approach to vessel
segmentation by leveraging a regular U-Net with categorical
cross-entropy as the loss function. Girard et al. [41] introduced
a whole-image approach with a U-Net-like encoder-decoder in
which the output predictions of the CNN are propagated through
a graph representation of the retinal vasculature based on a likeli-
hood score for detecting arteries, but the model requires training
on small patches that are centered on retinal vessels, which is
a limitation relative to the method by Hemelings et al. [40];
however, both methods require ad-hoc image pre-processing
techniques to achieve optimal performance. Xu et al. [42] pro-
posed a related whole-image approach requiring extensive data
augmentation, and the final segmentation maps are obtained via
a heuristic for assigning pixel-wise outputs. Kang et al. [43]
introduced an architecture for segmenting retinal arteries and
veins consisting of a GoogLeNet [44] encoder, a decoder, and a
weighted-attention fusion module that predicts the final segmen-
tation outputs by fusing and refining segmentation probabilities
of each semantic class; however, the absence of high-resolution
skip connections between the encoder and decoder limits the
ability to exploit multi-scale representations. Ma et al. [45] in-
troduced a model consisting of a pretrained U-Net incorporating
a ResNet [46] encoder with two parallel branches for extracting
common retinal artery and vein representations, focusing on dis-
criminative features whose segmentation output is generated by
concatenating the outputs of each branch and using a customized
activation block that emphasizes the importance of capillary
vessels. Chen et al. [47] proposed a Generative Adversarial
Network (GAN) approach to improving the connectivity of seg-
mented retinal arteries and veins. Morano et al. [48] described
a U-like architecture to independently segment retinal arteries,
veins, and vessels using Binary Cross Entropy (BCE) as the loss
function. Despite these advances, a primary shortcoming of the
aforementioned methodologies is frequent classification errors
in the detected vessels.

III. THE RAVIR DATASET

Recently there has been a substantial increase in the utiliza-
tion of single wavelength confocal imaging that only captures
reflected light passing through a pinhole, which will allow
capturing high quality, high contrast fundus images. The images
in our RAVIR dataset were captured using infrared (815 nm)
Scanning Laser Ophthalmoscopy (SLO), which in addition to
having higher quality and contrast, is more convenient for the
patient and is less affected by opacities in optical media and
pupil size. This imaging modality is also commonly used in
ophthalmology clinics. The RAVIR dataset consists of 46 IR
retinal images from the UCLA Stein Eye Institute imaging
database, divided into train and test sets of 26 and 20 images,
respectively. We used 4 images from the 26 test images as our
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TABLE II
RAVIR DATASET DEMOGRAPHICS

TABLE III
IR IMAGING MANIFESTATIONS OF STUDY POPULATION IN RAVIR

validation set. The images were captured using a Heidelberg
Spectralis camera with a 30◦ FOV. They are sized at 768× 768
pixels and compressed in the Portable Network Graphics (PNG)
format. Each pixel in the images has a reference length of 12.5
microns. Table I compares our RAVIR dataset against other
retinal vessel segmentation datasets.

Our study was carried out with the approval of the Institutional
Review Board at UCLA and adhered to the tenets of the Decla-
ration of Helsinki. Table II reports the demographics of the study
population. The average age of the subjects was 55 years, with a
range from 19 to 88. There were 29 male and 17 female subjects.
One eye from each patient was imaged for the dataset, and there
were 24 right eyes and 22 left eyes. Twenty-three images were
normal, while 23 images depicted retinal pathology. The train
and test sets of the RAVIR dataset have an equal number of
healthy and pathological cases.

As described in Table III, a wide variety of retinal pathologies
are covered by the dataset. These conditions may all affect the
retinal vascular pattern and infrared retinal background. For
example, diabetic retinopathy and vein occlusions may cause
vascular caliber changes and signal blocking from retinal hemor-
rhage or edema. Peripapillary atrophy causes increased infrared
reflectance around the Optic Nerve Head (ONH). Hypertensive
retinopathy can manifest as vessel narrowing and arteriovenous
nicking, which is the segmental narrowing of veins at arterial
crossing points. Severe myopia can cause increased signal trans-
mission of choroidal vessels.

Manual pixel-wise annotations were performed and verified
by our experienced retinal image analysis specialist. Per-pixel
labels were applied to all vessel regions that could accurately be
identified as artery or vein. Vessels were labeled over the ONH
in those images where the arteries and veins could be resolved.
However, for images in which the veins and arteries over the
ONH were indistinguishable, the ONH region was blocked for
masking.

IV. SEGRAVIR METHODOLOGY

This section develops our SegRAVIR methodology, including
the network architecture and loss function, as well as our vessel
width estimation technique and domain adaptation strategy.

A. The SegRAVIR Architecture

To analyze retinal arteries and veins, we devise an encoder-
decoder architecture dubbed SegRAVIR (Fig. 2), which consists
of a main stream for segmenting and an auxiliary stream for
reconstructing the input images. The main stream leverages
residual blocks and skip connections that connect the encoder
and decoder. The auxiliary stream benefits from a decoder
that learns how to reconstruct the input images and acts as a
regularizer. SegRAVIR’s building blocks are residual blocks
consisting of two 3× 3 convolutional layers and an identity skip
connection that adds the input of the block to the convolutional
outputs. Each convolutional layer with kernel W is followed
by a Rectified Linear Unit (ReLU) and a batch normalization
BN γ,β with learnable parameters γ and β:

C(i, j) = BN γ,β

(
Re

(
+1∑

t=−1

+1∑
l=−1

K[t, l]W [i− t, j − l]

))
,

(1)
where C and K denote the input and output of the convolution
layer, respectively, and i, j, t, l are pixel indices. Additionally,
the output of each convolution is fed into a dropout layer for
regularization. SegRAVIR’s encoder spans across 4 different
resolutions, each of which consists of a residual block followed
by a convolutional layer with a stride of 2 and appropriate
padding to reduce the resolution of learned representations by a
factor of 2. At its lowest resolution, the output of the convolution
layer is fed into 3 consecutive residual blocks and then into the
decoder.

SegRAVIR’s decoder has 4 corresponding resolutions
consisting of transposed convolutional layers with a stride of
2 and appropriate padding to increase the resolution of learned
representations by a factor of 2, followed by a residual block. At
each resolution, the output of the residual blocks in the encoder
is added to the output of the corresponding residual block in
the decoder via a skip connection. Finally, the output of the
decoder is fed into two consecutive 3× 3 convolutional layers
with ReLU activation and batch normalization, followed by
a 1× 1 convolutional layer with softmax activation and three
output channels that correspond to background, vein, and artery
classes.

Furthermore, we employ an auxiliary stream that learns to
reconstruct the input images and acts as a regularizer. It is an
auto-encoder that regularizes the shared encoder by learning an
additional proxy task of image reconstruction in order to avoid
overfitting. At each resolution, the outputs of residual blocks in
the main-stream encoder are fed into a decoder that shares the
same architecture as the main-stream decoder, except for the last
three layers which use a 1× 1 convolutional layer followed by a
ReLU activation function. The output of the auxiliary stream has
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Fig. 2. SegRAVIR consists of a main stream for segmenting the arteries and veins as well as an autoencoder that learns to reconstruct the input
and acts as a regularizer. The architectural building blocks are depicted at bottom —Conv, TrConv, and ResBlock denote convolution, transposed
convolution, and residual blocks, respectively.

the same size as the input image; hence, a proper image-based
reconstruction loss can be employed at the original resolution.

Unlike a typical U-Net, the SegRAVIR model leverages resid-
ual blocks in both the encoder and decoder of the main stream
and benefits from three residual blocks in the bottleneck of the
architecture, thus enabling the capture of fine-grained details of
the retinal vasculature. Moreover, its auxiliary stream regularizes
the segmentation outputs, further improving performance. Fig. 2
provides additional SegRAVIR architectural details.

B. SegRAVIR Loss Function

To supervise the outputs of the main stream as well as the
autoencoder of the auxiliary stream, we employ a hybrid loss
function consisting of the following terms:

L = λ1LDice + λ2LCE + λ3LL2, (2)

where λi are weighting parameters associated with the loss
terms. Letting the number of pixels and number of semantic
classes be V and K, respectively, the Dice loss function is
defined as

LDice = 1− 2

K

K∑
k=1

∑V
v=1 Gv,kPv,k∑V

v=1 Gv,k +
∑V

v=1 Pv,k

, (3)

where Pv,k and Gv,k denote the output probability prediction
and corresponding one-hot encoded ground truth for class k at

pixel v. The Cross Entropy (CE) loss is defined as

LCE = − 1

V

V∑
v=1

K∑
k=1

Gv,k logPv,k, (4)

The L2 reconstruction loss of the input image is defined as

LL2 = ‖Xi −Xr‖22. (5)

where Xi and Xr denote the input and reconstructed images,
respectively. WhileLL2 supervises the output of the autoencoder,
a combination of LDice and LCE serves to supervise the output
segmentation of the main stream. The hybrid loss function
enables the learning of different semantics as the LCE and LDice

loss terms capture pixel-wise and region-based information,
respectively.

C. Vessel Width Estimation

From the segmentation predicted by the SegRAVIR network,
our model measures the diameter of the arteries and veins. To
this end, the segmentation probability map is first thresholded,
using a constant value of 0.5, to obtain the medial curves of the
vessels by iteratively identifying and removing border pixels
while maintaining vessel connectivity, in an approach similar to
the thinning algorithm presented by Zhang et al. [49]. Then, the
distance transform of the medial curve mask is multiplied with
the segmentation mask in a pixel-wise manner. The result is the
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Fig. 3. Knowledge distillation strategy. A SegRAVIR network fine-
tuned on color images supervises the output of a SegRAVIR student
network by minimizing the KL divergence of prediction probability distri-
butions.

diameter distance map with respect to the medial curves of the
segmented vessels.

D. Knowledge Adaptation Via Distillation

Knowledge distillation [50], [51], which was originally pro-
posed as a model compression methodology, enables the training
of a smaller student model under the supervision of a larger
pretrained teacher network. We leverage knowledge distillation
as a feature alignment mechanism for the domain adaptation
of RAVIR-pretrained networks to color retinal images. Specifi-
cally, we first use transfer learning to create a teacher network in
the new modality (color) from a pretrained SegRAVIR model.
For this purpose, we use the main stream (encoder and segmenta-
tion decoder) of a SegRAVIR network and initialize the weights
from a previous pretrained checkpoint. However, we replace
the last layer of the network with a 1× 1 convolutional layer
whose weights are randomly initialized, followed by a softmax
activation layer to account for the single output channel of the
target segmentation task (i.e., binary vessel segmentation). We
fine-tune this teacher network on the target image modality.

Furthermore, we create a student network with the same
architecture and supervise its segmentation outputs according
to the soft labels generated by the teacher network predictions.
Fig. 3 overviews the proposed strategy.

Specifically, let ZT ∈ �H×W×2 denote the pixel-wise output
logits of the teacher network. We employ temperature τ scaling
to generate soft labels with smoother probability distributions,
hence enabling the identification of inter-class relationships,
according to

YT =
exp (ZT /τ)∑
exp (ZT /τ)

. (6)

Similarly, we generate soft labels YS by applying temperature
scaling to the output logits ZS of the student network. Conse-
quently, the distillation loss is calculated as

LDistill = λDτ2LKL(YS , YT ) + (1− λD)LCE(YS , G), (7)

where λD is a hyper-parameter, G denotes the segmentation
ground truth, and LKL denotes the KL divergence loss.

As is shown in Section VII, our adaptation via distillation
strategy is more effective than naive transfer learning, since it
addresses the domain gap between the RAVIR dataset and color
fundus image datasets by feature alignment in the target space
through KL divergence minimization.

V. EXPERIMENTS

A. Implementation Details

All the models were implemented in TensorFlow 2.0 [52].
Experiments were performed on an Nvidia Titan RTX GPU,
and an Intel CoreTM i7-7700 K CPU @ 4.20 GHz.

All the networks employ a sliding window approach and
were trained on randomly extracted patches of size 256× 256.
Additionally, we used common data augmentation techniques
such as random rotations, flipping, and change of contrast in
order to increase the available training samples. We trained all
the networks for 600 epochs and used the Adam optimization
algorithm [53] with minibatches of size 6 and an initial learning
rate of 0.001 that is reduced by a factor of 2 every 50 epochs.

In all experiments, the network is evaluated on a validation
set consisting of 4 images from the original 26 images, and the
instance with the best average F1 score on the artery and vein
classes is used for testing.

We used a grid search approach and found the following
optimal values for the hyper-parameters in (2): λ1 = λ2 = 1.0
and λ3 = 0.001. These hyper-parameters enable the balancing
of their respective loss terms so as to facilitate fast convergence
to optimal solutions. In addition, for the hyper-parameters in
(7), we use τ = 3 and λD = 0.1. All the baseline methods were
implemented by adopting their official released repositories. For
all the baseline experiments, we used a combination of Dice and
CE as the training loss function.

B. Evaluation Metrics

1) Segmentation: To assess the accuracy of model predic-
tions, we used various evaluation metrics, including Sensitivity
(SE), Specificity (SP), Accuracy (Acc), Precision (PR), Recall
(RE), Area Under the Receiver Operating Characteristics (ROC)
Curve (AUC), and the F1 score, which is the same as the Dice
coefficient in the context of image segmentation.

2) Width Estimation: We refer to the diameter of the vessel
as twice the maximum distance to its medial axis. To asses the
accuracy of diameter estimations, we employ the Mean Absolute
Percentage Error (MAPE) defined as

MAPE =
1

N

N∑
m=1

∣∣∣∣ym − ŷm
ym

∣∣∣∣ , (8)

where N , ŷm, and ym denote the total number of cases, predic-
tions, and ground truth values, respectively.

VI. RESULTS

In this section, we first present quantitative and qualitative
comparisons between the SegRAVIR model and competing
methodologies on the RAVIR dataset as well as on the RITE
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TABLE IV
QUANTITATIVE COMPARISON OF SEMANTIC SEGMENTATION PERFORMANCE ON THE RAVIR DATASET

TABLE V
QUANTITATIVE COMPARISON OF SEMANTIC SEGMENTATION PERFORMANCE

ON THE RITE DATASET

dataset [11]. Then we report the pixel-wise diameter profiles
of SegRAVIR-segmented arteries and veins with quantitative
error analysis. Finally, we present the benchmarks of pretrained
RAVIR networks on three publicly available color datasets,
the DRIVE [10], STARE [9], and CHASE_DB1 [12] datasets,
and demonstrate the effectiveness of our proposed distillation
methodology.

A. Retinal Artery and Vein Segmentation

As reported in Table IV, we compared the SegRAVIR
model against competing deep learning-based segmentation ap-
proaches on the RAVIR dataset. Evidently, SegRAVIR outper-
forms these methods as judged by all metrics for artery and
vein classes with a healthy margin. In terms of Dice score, Seg-
RAVIR outperforms CE-NET, IterNet and AG-Net by 16.28%,
26.71% and 27.48% for artery segmentation and by 16.28%,
26.71% and 27.48% for vein segmentation, respectively. Fig. 4
presents a qualitative comparison of the semantic segmentation
outputs of SegRAVIR, CE-Net, and U-Net. Specifically, Seg-
RAVIR yields more accurate vessel topology (i.e., thickness and
orientation) segmentation with higher pixel-wise classification
accuracy.

Table V presents quantitative performance benchmarks of
SegRAVIR and other competing approaches for retinal artery
and vein classification on the RITE dataset [11]. SegRAVIR
outperforms previous state-of-the-art approaches in terms of
accuracy, sensitivity, and specificity. Fig. 5 provides a qualitative
comparison between segmentation outputs of SegRAVIR and
the method of Hemelings et al. [40] on the RITE test set.

TABLE VI
MEASURED DIAMETERS (IN MICRONS) OF SEGMENTED ARTERIES AND

VEINS IN THE RAVIR TEST SET

MAPE: Mean Absolute Percentage Error.

B. Vessel Width Estimation

Table VI presents a quantitative comparison of the measured
diameters using the segmentation outputs of SegRAVIR and
competing approaches. Using the pixel-wise annotated masks,
the reference average diameter of the arteries and veins in the
test set of the RAVIR dataset were measured as 97.93± 8.62
and 113.98± 13.93, respectively. According to our analysis,
SegRAVIR can accurately measure the diameter of the vessels
and it achieves the smallest MAPE among the competing ap-
proaches. Specifically, in comparison to CE-Net, Iter-Net, and
DU-Net, respectively, SegRAVIR is on average 13.20%, 22.73%
and 31.78% more accurate in terms of MAPE for the measured
diameter of arteries and 16.28%, 26.71% and 27.48% in terms
of MAPE for the measured diameter of veins. Fig. 6 presents
qualitative comparisons of reference and SegRAVIR estimated
diameter maps.

C. Knowledge Distillation

Using the final pretrained student SegRAVIR model in our
knowledge distillation framework described in Section IV-
D, we fine-tuned and tested the network on three publicly
available datasets of color images, DRIVE [10], STARE [9],
and CHASE_DB1 [12]. Fig. 7 shows example of SegRAVIR
segmentation outputs on DRIVE and CHASE_DB1 datasets.
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Fig. 4. Qualitative comparison of segmentation outputs on the RAVIR test set. (a) Input image. (b) Semantic Labels. (c) SegRAVIR. (d) CE-Net.
(e) R2U-Net. (f) U-Net. The artery and vein classes are indicated by red and blue, respectively.

TABLE VII
QUANTITATIVE COMPARISON OF SEGMENTATION PERFORMANCE ON THE DRIVE, CHASE_DB1, AND STARE DATASETS

Table VII presents a quantitative comparison between the seg-
mentation performance of our SegRAVIR model and state-of-
the-art models: R2U-Net [25], DU-Net [26], and IterNet [34].

By all evaluation metrics, SegRAVIR has achieved new state-
of-the-art results on the DRIVE, STARE [9], and CHASE_DB1
datasets.
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Fig. 5. Qualitative comparison of segmentation outputs on the RITE
test set. (a) Reference labels. (b) SegRAVIR. (c) Hemelings et al. [40].
The artery and vein classes are indicated by red and blue, respectively.

Fig. 6. Qualitative comparisons of pixel-wise width maps (measured in
microns), with the red and blue masks denoting artery and vein classes,
respectively. (a) SegRAVIR segmentation output. (b) Reference width
maps. (c) Computed width maps.

TABLE VIII
EFFECT OF VARIOUS LOSS FUNCTIONS ON THE SEGMENTATION

PERFORMANCE OF SEGRAVIR IN TERMS OF DICE SCORE

VII. ABLATION STUDY

In Table VIII, we evaluate the effectiveness of each term of
SegRAVIR’s loss function (2). Our proposed hybrid loss func-
tion, which incorporates Dice and CE losses for the main stream
and L2 loss for the auxiliary stream, achieves consistently better
segmentation performance for both the artery and vein classes.
On average, it outperforms SegRAVIR networks trained with
Dice, CE, and combined Dice and CE losses by 2.77%, 2.24%,
and 1.02%, respectively. We hypothesize that the dominance of

TABLE IX
QUANTITATIVE COMPARISON OF DIFFERENT PRETRAINING STRATEGIES ON

THE DRIVE, CHASE_DB1 AND STARE DATASETS

Dice and CE losses is due to combined improvements in artery
and vein pixel-wise classification and mask prediction by the
CE and Dice losses, respectively.

In Table IX, we present the segmentation performance of
SegRAVIR, with different pretraining strategies, on the DRIVE,
STARE [9], and CHASE_DB1 datasets. To validate the effec-
tiveness of our proposed knowledge distillation approach, we
compared against the RAVIR network pretrained on the RAVIR
dataset as well as the network with random weight initialization.
On the DRIVE and STARE datasets, our approach yields 2.12%
and 4.55% improvements in Dice score, respectively, relative to
random weight initialization and 1.31% and 2.58% relative to
pretrained weight initialization. Similarly, on the CHASE_DB1
dataset, our approach outperforms random and pretrained weight
initialization by 6.71% and 2.86% in terms of the Dice score,
respectively.

VIII. DISCUSSION

We have tackled the problem of semantic segmentation of
retinal arteries and veins in IR imagery. According to our exten-
sive experiments, the SegRAVIR model outperforms competing
approaches, evidently excelling in accurately delineating both
arteries and veins. Since the latter usually manifest as larger
vessels, all methods showed a better performance in segmenting
veins compared to arteries. Our study reveals that the two im-
portant issues in segmenting retinal IR images are maintaining
structural consistency across the vessels and correctly distin-
guishing between arteries and veins. SegRAVIR addresses these
challenges by introducing an additional auxiliary stream that
learns to reconstruct the input image via an encoder shared with
the main stream and by enforcing a combined Dice and CE loss
function that improves both pixel-level accuracy and contour
delineation. Although, some of the competing models leverage
attention modules to further localize desired retinal structures,
our experiments did not reveal significant performance gains, if
any.

Our experiments show that SegRAVIR can successfully seg-
ment major arteries and veins while properly capturing the
fine-grained structural details of smaller vessels. Furthermore,
we have quantitatively studied the problem of vessel diameter
estimation using the segmentation results of our model. Results
show that the segmentation outputs of SegRAVIR achieve the
smallest MAPE error for both arterioles and venules and can be
leveraged for precise vascular diameter analysis. In particular,
such a measurement tool enables the study of morphological
changes of retinal arterioles and venules and opens the door
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Fig. 7. Example SegRAVIR segmentation outputs for images in the test sets of the DRIVE (first three columns) and CHASE_DB1 datasets. From
top, the rows show input images, groundtruth labels, and segmentations.

to creating early predictive models for the diagnosis of various
anomalies such as diabetic and hypertensive retinopathy.

We have explored the segmentation of retinal vessels
in other imaging modalities. SegRAVIR outperforms the
previous state-of-the-art approaches to retinal artery and vein
segmentation based on the RITE dataset [11], hence validating
the generalizability of our approach to other datasets. In addition,
we proposed a knowledge distillation approach to domain
adaptation of RAVIR-pretrained models. Although naive
pretraining on the RAVIR dataset improves the segmentation
performance on color datasets, our approach significantly
improves this performance baseline. As a result, our model
establishes new state-of-the-art performance benchmarks on
the DRIVE [10], STARE [9], and CHASE_DB1 [12] datasets.
This indicates that our RAVIR dataset can be leveraged to
address the annotated data scarcity problem in this domain, and
our SegRAVIR model can be effectively used for multi-modal
segmentation across different domains.

IX. CONCLUSION

In summary, RAVIR is a new retinal IR image dataset that
has engendered SegRAVIR, a novel, deep learning model for the
fully-automated semantic segmentation and quantitative analy-
sis of retinal vasculature. SegRAVIR can accurately segment
both arteries and veins without additional preprocessing or
post-processing, and its output enables precise vessel diameter
mensuration critical to the quantitative assessment of retinal
vasculature. Furthermore, via a knowledge distillation approach,
our dataset and model can be effectively applied to retinal vascu-
lature segmentation based on other imaging modalities. This en-
ables new opportunities in retinal image analysis while helping
alleviate the problem of annotated data scarcity in this domain.
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