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Abstract. We introduce a new paradigm for automatic medical image analysis that 
adopts concepts from the field of Artificial Life. Our approach prescribes 
deformable organisms, autonomous agents whose objective is the segmentation and 
analysis of anatomical structures in medical images. A deformable organism is 
structured as a ‘muscle’-actuated ‘body’ whose behavior is controlled by a ‘brain’ 
that is capable of making both reactive and deliberate decisions. This intelligent 
deformable model possesses an ‘awareness’ of the segmentation process, which 
emerges from a conflux of perceived sensory data, an internal mental state, 
memorized knowledge, and a cognitive plan. We develop a class of deformable 
organisms using a medial representation of body morphology that facilitates a 
variety of controlled local deformations at multiple spatial scales. Specifically, we 
demonstrate a deformable ‘worm’ organism that can overcome noise, incomplete 
edges, considerable anatomical variation, and occlusion in order to segment and 
label the corpus callosum in 2D mid-sagittal MR images of the brain. 

1 Introduction 
The automatic segmentation and labeling of anatomical structures in medical images is a 
persistent problem that continues to defy solution. There is consensus within the medical 
image analysis research community that the development of general-purpose automatic 
segmentation algorithms will require not only powerful bottom-up, data-driven 
processes, but also equally powerful top-down, knowledge-driven processes within a 
robust decision-making framework that operates across multiple levels of abstraction 
[2]. Deformable models, one of the most actively researched model-based segmentation 
techniques [5], feature a potent bottom-up component founded in estimation theory, 
optimization, and physics-based dynamical systems, but their top-down processes have 
traditionally relied on interactive initialization and guidance by knowledgeable users. 
Attempts to fully automate deformable model segmentation methods have so far been 
less than successful at coping with the enormous variation in anatomical structures of 
interest, the significant variability of image data, the need for intelligent initialization 
conditions, etc. 
 The time has come to shift our attention to what promises to be a critical element in 
any viable, highly automated solution: the decision-making framework itself. Existing 
decision-making strategies for deformable models are inflexible and do not operate at an 
appropriate level of abstraction. Hierarchically organized models, which shift their focus 
from structures associated with stable image features to those associated with less stable 
features, are a step in the right direction [4,9]. However, high-level contextual 



knowledge remains largely ineffective because it is intertwined much too tightly with the 
low-level optimization-based mechanisms. It is difficult to obtain intelligent, global (i.e., 
over the whole image) model behavior throughout the segmentation process from such 
mechanisms. In essence, current deformable models have no explicit awareness of where 
they (or their parts) are in the image or what their objectives are at any time during the 
optimization process. 
 It is our contention that we must revisit ideas for incorporating knowledge that 
were explored in earlier systems (e.g., [14]), and develop new algorithms that focus on 
top-down reasoning strategies which may best leverage the powerful bottom-up feature 
detection and integration abilities of deformable models and other modern model-based 
medical image analysis techniques.  We further contend that a layered architecture is 
appropriate, where the high-level reasoning layer has knowledge about and control over 
the low-level model (or models) at all times. The reasoning layer should apply an active, 
explicit search strategy that first looks for the most stable image features before 
proceeding to less stable image features, and so on. It should utilize contextual 
knowledge to resolve regions where there is a deficiency of image feature information. 
 To achieve these goals, we introduce a new paradigm for automatic medical image 
analysis that adopts concepts from the emerging field of Artificial Life. In particular, we 
develop deformable organisms, autonomous agents whose objective is the segmentation 
and analysis of anatomical structures in medical images. A deformable organism is 
structured as a ‘muscle’-actuated ‘body’ whose behavior is controlled by a ‘brain’ that is 
capable of making both reactive and deliberate decisions. This intelligent deformable 
model possesses a non-trivial ‘awareness’ of the segmentation process, which emerges 
from a conflux of perceived sensory data, an internal mental state, memorized 
knowledge, and a cognitive plan.  By constructing deformable organisms in a layered 
fashion, we are able to separate the knowledge-driven model-fitting control functionality 
from the data-driven, local image feature integration functionality, exploiting both for 
maximal effectiveness. 

1.1 Artificial Life Modeling 

The Artificial Life (ALife) modeling approach has been applied successfully to produce 
realistic computer graphics models of plants and animals [13]. Artificial animals are 
relevant to deformable organisms. Autonomous agents known as “artificial fishes” [12] 
serve to illustrate the key functional components of artificial animals: bodies that 
comprise muscle actuators, sensory organs (eyes, etc.) and, most importantly, brains 
consisting of motor, perception, behavior, learning and cognition centers. Controllers in 
the motor center coordinate muscle actions to carry out specific motor functions, such as 
locomotion and sensor actuation. The perception center employs attention mechanisms 
to interpret sensory information about the dynamic environment. The behavior center 
realizes an adaptive sensorimotor system through a repertoire of behavior routines that 
couple perception to action in meaningful ways. The learning center in the brain enables 
the artificial animal to learn motor control and behavior through practice and sensory 
reinforcement. The cognition center enables it to think. 
 To manage their complexity, artificial animal models are best organized 
hierarchically, such that each successive modeling layer augments the more primitive 
functionalities of lower layers. At the base of the modeling hierarchy (see Fig 1a), a 
geometric modeling layer represents the morphology and appearance of the animal. 
Next, a physical modeling layer incorporates biomechanical principles to constrain the 



geometry and simulate biological tissues. Further up the hierarchy is a motor control 
layer that motivates internal muscle actuators in order to synthesize lifelike locomotion. 
Behavioral and perceptual modeling layers cooperate to support a reactive behavioral 
repertoire. At the apex of the modeling pyramid is a cognitive modeling layer, which 
simulates the deliberative behavior of higher animals, governs what an animal knows 
about itself and its world, how that knowledge is acquired and represented, and how 
automated reasoning and planning processes can exploit knowledge to achieve high-
level goals. 

1.2 An Artificial Life Modeling Paradigm for Medical Image Analysis 

Viewed in the context of the artificial life modeling hierarchy (Fig. 1a), current 
automatic deformable model-based approaches to medical image analysis include 
geometric and physical modeling layers only (in interactive deformable models, such as 
snakes, the human operator is relied upon to provide suitable behavioral level and 
cognitive level support). At the physical level, deformable models interpret image data 
by simulating dynamics or minimizing energy terms, but the models themselves do not 
monitor or control this optimization process except in a most primitive way. At the 
geometric level, aside from a few notable exceptions [11], deformable models are not 
generally designed with intuitive, multi-scale, multi-location deformation ‘handles’. 
Their inability to perform global deformations, such as bending, and other global 
motions such as sliding and backing up makes it difficult to develop reasoning or 
planning strategies for these models at the correct level of abstraction [5]. 
 In more sophisticated deformable models, prior information is used to constrain 
shape and appearance, as well as the statistical variation of these quantities [1,10]; 
however, these models have no explicit awareness of where they are and, consequently, 
the effectiveness of these constraints is dependent upon model starting conditions. The 
lack of awareness also prevents the models from knowing when to trust the image 
feature information and ignore the constraint information and vice versa. The constraint 
information is therefore applied arbitrarily. Furthermore, because there is no active, 
explicit search for stable image features, the models are prone to latching onto incorrect 
features [1] simply due to their proximity and local decision-making. Once this latching 
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Fig. 1. (a) The ALife modeling pyramid (adapted from [12]). (b) A deformable 
organism: The brain issues ‘muscle’ actuation and perceptual attention commands. 
The organism deforms and senses image features, whose characteristics are 
conveyed to its brain. The brain makes decisions based on sensory input, memorized 
information and prior knowledge, and a pre-stored plan, which may involve 
interaction with other organisms. 
 



occurs, the lack of control of the fitting procedure prevents the model from correcting 
the misstep. The result is that the local decisions that are made do not add up to 
intelligent global behavior.  
 To overcome the aforementioned deficiencies while retaining the core strengths of 
the deformable model approach, we add high-level controller layers (a ‘brain’) on top of 
the geometric and physical (or deformation) layers to produce an autonomous 
deformable organism (Fig. 1b). The intelligent activation of these lower layers allows 
the organism to control the fitting/optimization procedure. The layered architecture 
approach allows the deformable organism to make deformation decisions at the correct 
level of abstraction. 
 The perception system of the deformable organism comprises a set of sensors that 
provide information. Any type of sensors can be incorporated, from edge strength and 
edge direction detectors to snake ‘feelers’. Sensors can be focused or trained for specific 
image features and image feature variation in a task-specific way; hence, the organism 
can disregard sensory information superfluous to its current behavioral needs. 
 Explicit feature search requires powerful, flexible and intuitive model deformation 
control. We achieve this with a set of ‘motor’ (i.e. deformation) controllers, which are 
parameterized procedures dedicated to carrying out a complex deformation function, 
such as successively bending a portion of the organism over some range of angles or 
stretching part of the organism forward some distance. 
 The organism is ‘self-aware’ (i.e. knows where it and its parts are and what it is 
seeking) and therefore it effectively utilizes global contextual knowledge. The organism 
begins by searching for the most stable anatomical features in the image before 
proceeding to less stable features. Once stable features are found and labeled, the 
organism uses neighboring information and prior knowledge to determine the object 
boundary in regions known to provide little or no feature information.  
 Because the organism carries out active, explicit searches for object features, it is 
not satisfied with the nearest matching feature but looks further within a region to find 
the best match, thus avoiding local minimum solutions. Furthermore, by carrying out 
explicit searches for features we ensure correct correspondence between the model and 
the data. If a feature cannot be found, the organism flags the situation. Subsequently, if 
multiple plans exist, another plan could potentially be selected and the search for the 
missing feature postponed until further information is available.  

2 A Deformable Organism for 2D MR Brain Image Analysis 
To demonstrate the potential of our framework for medical image analysis, we have 
developed a deformable “worm” organism that can overcome noise, incomplete edges, 
considerable anatomical variation, and occlusion in order to segment and label the 
corpus callosum (CC) in 2D mid-sagittal MR images of the brain. We will now describe 
in detail the layered architecture for this particular deformable organism. 

2.1 Geometric Representation 

As its name suggests, the deformable worm organism is based on a medial 
representation of body morphology [3] that facilitates a variety of controlled local 
deformations at multiple spatial scales. In this shape representation scheme, the CC 
anatomical structure is described with four shape profiles derived from the primary 
medial axis of the CC boundary contour. The medial profiles describe the geometry of 



the structure in a natural way and provide general, intuitive, and independent shape 
measures. These profiles are: a length profile � �L m , an orientation profile � �O m , a 
left (with respect to the medial axis) thickness profile � �

lT m , and a right thickness 
profile � �

rT m  where 1,2, ,m N� �  and N  is the number of medial nodes. The 
length profile represents the distances between consecutive pairs of medial nodes, and 
the orientation profile represents the angles of the edges connecting the pairs of nodes. 
The thickness profiles represent the distances between medial nodes and their 
corresponding boundary points (Fig. 2, Fig. 3)1. 
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Fig. 2. (a) CC anatomical feature labels overlaying a 
reconstruction of the CC using the medial shape profiles shown 
in Fig. 3. (b) Diagram of shape representation. 

Fig. 3.  Example medial shape 
profiles: (a) length, (b) 
orientation, (c) left and (d) 
right thickness profiles. 

2.2 Motor System 

Shape Deformation Actuators. In addition to affine transformation abilities (translate, 
rotate, scale), we control organism deformation by defining deformation actuators in 
terms of the medial shape profiles (Fig. 4). Controlled stretch (or compress), bend, and 
bulge (or squash) deformations are implemented as deformation operators acting on the 
length, orientation, or thickness profiles, respectively. Furthermore, by utilizing a 
hierarchical (multiscale) and regional principal component analysis to capture the shape 
variation statistics in a training set [3], we can keep the deformations consistent with 
prior knowledge of possible shape variations. Whereas general, statistically-derived 
shape models produce global shape variation modes only [1,10], we are able to produce 
spatially-localized feasible deformations at desired scales, thus supporting our goal of 
intelligent deformation planning. 
 Several operators of varying types, amplitudes, scales, and locations can be applied 
to any of the length, orientation, and thickness shape profiles (Fig. 5a-d). Similarly, 
multiple statistical shape variation modes can be activated, with each mode acting at a 
specified amplitude, location and scale of the shape profiles (Fig. 5e-h). In general, 
operator- and statistics-based deformations can be combined (Fig. 5i) and expressed as 

 d d dls dls dlst dlst
l s t

p p M w k�

� ���� � � �� ����� �
�� �   (1) 

                                                           
1 Currently we construct medial profiles only from the primary medial axis and have not 
considered secondary axes. This may prevent the CC worm organism from accurately representing 
highly asymmetrical (with respect to the primary axis) parts of some corpora callosa. We also 
realize that our medial shape representation needs improvement near the end caps. We are 
currently exploring these issues, as well as issues related to the extension of our model to 3D, and 
we intend to make full use of the considerable body of work of Pizer et al [6,7,8] on these topics. 



where p   is a shape profile, d  is a deformation type (stretch, bend, left/right bulge), i.e. 
� � � � � � � � � �� �: , , ,l r
dp m L m O m T m T m , p  is the average shape profile, k  is an 

operator profile (with unity amplitude), l  and s  are the location and scale of the 
deformation, t  is the operator type (e.g. Gaussian, triangular, flat, bell, or cusp), �  is 
the operator amplitude, the columns of M are the variation modes for a specific d , l , 
and s , and w  contains variation mode weights. Details can be found in [3]. 
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Fig. 4. Introducing a bulge on 
the upper boundary of the CC 
by applying a deform-ation 
operator on the upper thickness 
profile, � �

rT m . (a) � �
rT m  

before and (c) after applying 
the operator. (b) The 
reconstructed shape before and 
(d) after the operator.  
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Fig. 5. Examples of controlled deformations: (a)-(c) Operator-
based bulge deformation at varying locations/amplitudes/scales. 
(d) Operator-based stretching with varying amplitudes over entire 
CC. (e)-(g) Statistics-based bending of left end, right end, and 
left half of CC. (h) Statistics-based bulge of the left and right 
thickness over entire CC. (i) From left to right: (1) mean shape, 
(2) statistics-based bending of left half, followed by (3) locally 
increasing lower thickness using operator, followed by (4) 
applying operator-based stretch and (5) adding operator based 
bend to right side of CC. 

 
Deformation (Motor) Controllers. The organism’s low-level motor actuators are 
controlled by motor controllers. These parameterized procedures carry out complex 
deformation functions such as sweeping over a range of rigid transformation parameters, 
sweeping over a range of stretch/bend/thickness amplitudes at a certain location and 
scale, bending at increasing scales, moving a bulge on the boundary etc. Other high-level 
deformation capabilities include, for example, smoothing the medial/left/right 
boundaries, interpolating a missing part of the thickness profile, moving the medial axis 
to a position midway between the left and right boundaries, and re-sampling the model 
by including more medial and boundary nodes. 



2.3 Perception System 

Different parts of the organism are dynamically assigned sensing capabilities and thus 
act as sensory organs (SOs) or receptors. The locations of the SOs are typically confined 
to the organism’s body (on-board SOs) such as at its medial or boundary nodes, at 
curves or segments connecting different nodes. In our implementation, the SOs are made 
sensitive to different stimuli such as image intensity, image gradient magnitude and 
direction, a non-linearly diffused version of the image, an edge detected (using Canny’s 
edge detector) image, or even the result of a Hough transform. In general, a wide variety 
of image processing/analysis techniques can be applied to the original image. 

2.4 Behavioral/Cognitive System  

The organism’s cognitive center combines sensory information, memorized information, 
and instructions from a pre-stored segmentation plan to carry out active, explicit 
searches for object features by activating ‘behavior’ routines. Behavior routines are 
designed based on available organism motor skills, perception capabilities, and available 
anatomical landmarks. For example, the routines implemented for the CC worm 
organism include: find-top-of-head, find-upper-boundary-of-CC, find-genu, find-
rostrum, find-splenium, latch-to-upper-boundary, latch-to-lower-boundary, find-fornix, 
thicken-right-side, thicken-left-side, back-up. The behavior routines subsequently 
activate the deformation controllers to complete a stage in the plan and bring the 
organism closer to its intention of object segmentation.  
 The segmentation plan provides a means for human experts to incorporate global 
contextual knowledge. It contains instructions on how best to achieve a correct 
segmentation by optimally prioritizing behaviors. If we know, for example, that the 
corner-shaped rostrum of the CC is always very clearly defined in an MRI image, then 
the find-rostrum behavior should be given a very high priority. Adhering to the 
segmentation plan and defining it at a behavioral level affords the organism with an 
awareness of the segmentation process. This enables it to make effective use of prior 
shape knowledge – it is applied only in anatomical regions of the target object where 
there is a high level of noise or known gaps in the object boundary edges, etc. In the next 
section we describe the segmentation plan for the CC organism to illustrate this ability to 
harness global contextual knowledge. 

3 Results 
When a CC deformable worm organism is released into a 2D sagittal MRI brain image, 
it engages in different ‘behaviors’ as it progresses towards its goal. Since the upper 
boundary (Fig. 2a) of the CC is very well defined and can be easily located with respect 
to the top of the head, the cognitive center of the CC organism activates behaviors to 
first locate the top of the head and then move downwards (through the gray and white 
matter) in the image space to locate the upper boundary (Fig. 6.1-5). Next, the organism 
bends to latch to the upper boundary and activates a find-genu routine, causing the CC 
organism to stretch and grow along this boundary towards the genu (Fig. 6.6-7). Once 
the genu is located, the find-splenium routine is activated and the organism stretches and 
grows in the opposite direction (Fig. 6.11). The genu and splenium are easily detected by 
looking for a sudden change in direction of the upper boundary towards the middle of 
the head.   



 Once the genu is found, the organism knows that the lower boundary opposite to 
the genu is well defined so it backs up and latches to the lower boundary (Fig. 6.8). It 
then activates the find-rostrum behavior that tracks the lower boundary until it reaches 
the distinctive rostrum (Fig. 6.8-10). At the splenium end of the CC, the organism backs 
up and finds the center of a circle that approximates the splenium end cap (Fig. 6.12). 
The lower boundary is then progressively tracked from the rostrum to the splenium 
while maintaining parallelism with the organism’s medial axis in order to avoid latching 
to the potentially occluding fornix (Fig. 6.13-14). However, the lower boundary may still 
dip towards the fornix, so a successive step is performed to locate where, if at all, the 
fornix occludes the CC, by activating the find-fornix routine (making use of edge 
strength along the lower boundary, its parallelism to the medial axis, and statistical 
thickness values). Thus, prior knowledge is applied only when and where required. If the 
fornix does indeed occlude the CC, any detected dip in the organism’s boundary is 
repaired by interpolating neighboring thickness values. The thickness of the upper 
boundary is then adjusted to latch on to the corresponding boundary in the image (Fig. 
6.15-17). At this point the CC organism has almost reached its goal; however, the medial 
axis is not in the middle of the CC organism (Fig. 6.18), hence the medial axis is re-
parameterized by positioning the medial nodes halfway between the boundary nodes 
(Fig. 6.19-20). Finally the lower and upper boundaries are re-located again to obtain the 
final segmentation result (Fig. 6.21).  
 In addition, Fig. 7 demonstrates the detection and repairing of the fornix. Fig. 8 
demonstrates the organism’s self-awareness. Fig. 9 shows other segmentation results and 
several validated examples are also shown in Fig. 10. 
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Fig. 6. Intelligent CC organism progressing through a sequence of behaviors to segment the CC. 
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Fig. 7. (a) Before and (b) after detecting and repairing the fornix dip. (c) The gradient magnitude. 

 



 

   
Fig. 8. The CC organism’s self-awareness
makes it capable of identifying landmark parts.

 Fig. 9. Example segmentation results. 

 

Fig. 10.  Example segmentation results (top), also shown (in black) over manually segmented 
(gray) CC (bottom). 

 

4 Conclusions 
Robust, automatic medical image analysis requires the incorporation and intelligent 
utilization of global contextual knowledge. We have introduced a new paradigm for 
medical image analysis that applies concepts from artificial life modeling to meet this 
requirement. By architecting a deformable model-based framework in a layered fashion, 
we are able to separate the ‘global’ model-fitting control functionality from the local 
feature integration functionality. This separation allows us to define a model-fitting 
controller or ‘brain’ in terms of the high-level anatomical features of an object rather 
than low-level image features. The layered-architecture approach also provides the brain 
layer with precise control over the lower-level model deformation layer. The result is an 
intelligent organism that is continuously aware of the progress of the segmentation, 
allowing it to effectively apply prior knowledge of the target object. We have 
demonstrated the potential of this approach by constructing a Corpus Callosum “worm” 
organism and releasing it into MRI brain images in order to segment and label the CC.  
 Several interesting aspects of our approach are currently in consideration for 
further exploration. These include extending our model to 3D, designing a motion 
tracking plan and releasing an organism into time-varying image ‘environments’ (i.e. 4D 
images), exploring the use of multiple plans and plan selection schemes, and exploring 
the application of learning algorithms, such as genetic algorithms, to assist human 
experts in the generation of optimal plans. Another potentially important research 
direction is the use of multiple organisms that intercommunicate contextual image 
information (i.e. are ‘aware’ of one another).  
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