Virtual Cinematography
Using Optimization and Temporal Smoothing

Alan Litteneker
University of California, Los Angeles
alitteneker@cs.ucla.edu

ABSTRACT

We propose an automatic virtual cinematography method that takes
a continuous optimization approach. A suitable camera pose or path
is determined automatically by computing the minima of an ob-
jective function to obtain some desired parameters, such as those
common in live action photography or cinematography. Multiple
objective functions can be combined into a single optimizable func-
tion, which can be extended to model the smoothness of the optimal
camera path using an active contour model. Our virtual cinematog-
raphy technique can be used to find camera paths in either scripted
or unscripted scenes, both with and without smoothing, at a rela-
tively low computational cost.

CCS CONCEPTS

« Computing methodologies — Computer graphics; Anima-
tion; « Mathematics of computing — Continuous optimization;

KEYWORDS

virtual cinematography, optimization, camera motion

ACM Reference format:

Alan Litteneker and Demetri Terzopoulos. 2017. Virtual Cinematography
Using Optimization and Temporal Smoothing. In Proceedings of MiG ’17,
Barcelona, Spain, November 8-10, 2017, 6 pages.
https://doi.org/10.1145/3136457.3136467

1 INTRODUCTION

The problem of virtual cinematography is one of the oldest in 3D
computer graphics. The settings chosen for a virtual camera in-
trinsically affect both what objects are visible and how the viewer
perceives them. In general, the goal of any declarative virtual cine-
matography system is to automatically select camera settings that
match a user specified set of parameters for the final rendered
frame.

However, the demands of even the simplest of photographic
and cinematographic techniques require sophisticated parameters
that may be difficult to quantify at best [Datta et al. 2006]. Given
the inherent subjectivity of these art forms, users may frequently

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MiG ’17, November 8-10, 2017, Barcelona, Spain

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.

ACM ISBN 978-1-4503-5541-4/17/11...$15.00
https://doi.org/10.1145/3136457.3136467

Demetri Terzopoulos
University of California, Los Angeles
dt@cs.ucla.edu

disagree both on how well a frame matches a particular aesthetic,
and on the relative importance of aesthetic properties in a frame.

As such, virtual cinematography for scenes that are planned
before delivery to the viewer, such as with 3D animated films made
popular by companies such as Pixar, is generally solved manu-
ally by a human artist. However, when a scene is even partially
unknown, such as when playing a video game or viewing a pro-
cedurally generated real-time animation, some sort of automatic
virtual cinematography system must be used.

The type of system with which the present work is concerned
uses continuous objective functions and numerical optimization
solvers. As an optimization problem, virtual cinematography has
some difficult properties: it is generally nonlinear, non-convex,
and cannot be efficiently expressed in closed form. Furthermore,
ensuring smoothness in camera paths can amplify the difficulty of
this problem as the dimensionality of the search increases.

2 RELATED WORK

As previously mentioned, a diverse set of systems have been devel-
oped in this field [Christie et al. 2005]. The following are some of
the projects most relevant to our work:

A number of systems have been developed that employ contin-
uous optimization methods [Drucker and Zeltzer 1995; Gleicher
and Witkin 1992]. Issues such as the sensitive nature of the shot
weighting and difficulty with over-constraining led to the use of
stochastic optimization [Abdullah et al. 2011; Burelli et al. 2008], as
well as the development of systems based on boolean constraints
[Bares et al. 2000] and logical reasoning [Funge et al. 1999]. Some
researchers have even attempted to control in-game cameras, with
varied success [Burelli 2012; Halper et al. 2001].

There have also been more lightweight methods, such as se-
lecting shots from predefined libraries of geometry configurations
[Elson and Riedl 2007], or by assuming preprocessed elements of
environment geometry will remain constant over the motions of a
scene [Lino et al. 2010].

Efficiently producing occlusion-free and collision-free camera
poses or paths has proven problematic for several researchers. Cam-
Droid [Drucker and Zeltzer 1995] supported the avoidance of col-
lisions and occlusions through an expensive preprocessing of the
scene geometry, which required the scene to remain static while
the camera moved.

More recent work has taken a purely stochastic approach to
occlusion satisfiability [Ranon and Urli 2014] or omitted support
for collisions and occlusions altogether [Lino and Christie 2015],
instead focusing on efficiency over a limited set of shot parameters.
While much of this work has been restricted to static poses or simple
interpolated paths, there has been some work on path smoothness
thus far limited to specific types of splines or scene actions. [Assa
et al. 2008; Galvane et al. 2015]

https://doi.org/10.1145/3136457.3136467
https://doi.org/10.1145/3136457.3136467

MiG 17, November 8-10, 2017, Barcelona, Spain

3 VIRTUAL CINEMATOGRAPHY SYSTEM

Our prototype virtual cinematography system operates based on a
continuous objective function that corresponds to a user-specified
set of shot parameters. When operating on a moving scene, this
function must be extended to handle variable parameterization as
well as the modeling of smoothing. Once this objective function
has been fully constructed, our system attempts to minimize the
function using standard optimization techniques. The system is
integrated with Unreal Engine 4 for rendering and user input.

3.1 Objective Functions

To find a camera pose that matches the desired shot parameters, our
system must be able to evaluate how well a particular camera pose
matches the given shot parameters. This is done with an objective
function f : RN - R for each shot parameter. To simplify the
notation, these functions will be denoted as f(x) despite requiring
different numbers and types of parameters.

Multiple shot parameters are combined into a single objective
function f(x) = Z?:k ar fr(x) as a weighted sum of the their as-
sociated objective functions, a strategy that critically allows for
compromises between shot parameters for which the minima do
not precisely intersect. The influence of each parameter can be
tuned by adjusting the values of a.

Evaluating the same functions over an entire camera path re-
quires the parameterization of x over time to x(t), which can be
evaluated as }; f(x(t;)) over the set of discrete keyframes.

3.2 Temporal Smoothing

To model the inertia and momentum viewers expect from real-
world cameras, we extend the user-specified temporal objective
function with an active contour model [Kass et al. 1988]. In this
augmented model, our system attempts to minimize the energy
functional

E(x(t)) = Eint(x(t)) + Eext(x(2)) 1
comprising an internal energy
Bux(0) = 5 [el + plxo)ar @

where « and f are given constants and the overstruck dots denote
differentiation with respect to ¢, and an external energy

Eeu(x(1)) = f(x(1)). ©)

Determining suitable values for and f generally requires ex-
perimental parameter tuning. If either is set too high, the resultant
camera path may violate the desired parameters, while too low a
setting may fail to alleviate the undesirable artificiality. It was found
experimentally that @ = 0.01 and f = 0.2 produced satisfactory
results.

3.3 Optimization Techniques

Given the nonlinear nature of many of our objective functions,
finding a solution analytically is impossible for any moderately
complex parameter set. As long as a given objective function is
convex, a simple gradient descent (GD) algorithm can be used.
However, this is generally inadequate as the underlying objective
functions that must be optimized are likely to be non-convex and
therefore cause our system to be caught in local minima. Simulated

Alan Litteneker and Demetri Terzopoulos

annealing (SA) provides a potential solution. While even quenched
SA is less sensitive to local minima, the solutions it produces are
far less precise than those found by GD when the latter does find
the global minimum. By running an SA optimizer before a GD
optimizer, the robustness of the former can be combined with the
precision of the latter.

Optimizing for camera paths is a straightforward extension of
optimizing for static poses. Without smoothing from the active
contour model, a temporal objective function can be optimized by
running the optimization algorithms locally on each frame. Op-
timizing with smoothing is somewhat more involved. Each time
interval must first be initialized with a locally computed rough
optimum that ignores the smoothing, then gradient descent can be
performed such that every component of VE(x(t)) is computed for
every time step t before any new values can be set.

3.4 Use Cases

While there are many different ways of utilizing the cinemato-
graphic tools outlined above, our system supports two primary
categories of use cases, which are labeled as scripted and unscripted
scenarios.

3.4.1 Scripted Scenarios. In a scripted scenario, our system at-
tempts to find a satisfactory camera path for a preplanned scene
before any part of it is to be displayed to the viewer. As this is an
offline operation, our system can take as much time as is necessary
to find a satisfactory solution. Furthermore, complete knowledge of
all past, current, and future states of the scene are available at every
instant of time. This is analogous to the traditional preproduction
workflow of a live action or animated film.

Scripted scenarios can be solved in a straightforward manner by
the optimization strategy described in Section 3.3.

3.4.2 Unscripted Scenarios. In an unscripted scenario, the goal
of our system is to find a camera pose for the current instant in
time given complete knowledge of the current and past states of
the scene, but without any direct knowledge of the future. This is
an online operation during the playback of the scene; therefore, our
system must be able to find a satisfactory solution in real time given
the viewer’s desired frame rate. This is analogous to the shooting
of an unscripted documentary or news material, or to video game
camera control.

Without smoothing by an active contour model, the first frame
camera pose is set either by the user or by running SA, then GD is
run every frame starting from the values of the previous frame.

Unscripted scenarios with smoothing are significantly trickier,
since in order for the active contour model to work effectively, our
system must know something of the unknown future. As our cur-
rent system is lacking contextual or behavioral data, as employed by
[Halper et al. 2001] to form predictions more precisely, the predic-
tion scheme currently supported is a Taylor series approximation
where, for future keyframes t1, .. ., t,,

N dk
X = Yl - @

where d*x(t)/dt* is the k™-order derivative of x(¢). To alleviate
instability stemming from discrete time steps, our system calculates

Virtual Cinematography Using Optimization and Temporal Smoothing

the necessary derivatives as local averages

d*x(t) 1 b d (= A) dF (= A+ 1)
ik MA; ; dek-1 drk-1 > ®

where Ay = t; —t;4+1. Of course, this is a tradeoff as too large a value
of M can create an undesirable sense of variable inertia. Values of
M =10 and A; = 0.1 sec were used.

Once these predictions are made, the same types of optimization
techniques can be used to find a suitable camera path through the
predicted period, and the first future keyframe x(#;) can be used as
the next camera state.

4 PREDEFINED SHOT PARAMETERS

While any valid objective function can be input by the user, our sys-
tem supports common cinematic and photographic compositional
aesthetics by providing a set of predefined shot parameter types,
modeled as novel objective functions. These mimic the types of shot
descriptions commonly used on “shot lists” in the preproduction of
a film by live action directors and cinematographers.

While the components of our system integrated from the Unreal
Engine rely on its particular coordinate system (left-handed, z-up,
scale, etc.), the functions listed here are written to be as generic
as possible. As several rules require the projection of a point onto
the image plane, the function II(R%) — R? is used to denote such a
projection from world space to screen space, where any point p that
will appear in frame will have |v| < 1,Vov € II(p). Note that this
projection function must have knowledge of the current camera
parameters (e.g., position, orientation, field of view, etc.), which are
not explicitly listed as parameters for many functions.

All of the functions described below are point-based, meaning
that all details of the scene are collected in the form of observing
the position, orientation, etc., of specific points connected to objects
of interest in the scene. This requires that complex elements in the
scene be represented by multiple points. This point-based model
varies from the explicit geometric models of [Bares et al. 2000;
Jardillier and Languénou 1998], where each camera pose is evalu-
ated based on observations of geometric primitives approximating
complex objects, as well as from the rendering-based methods of
[Abdullah et al. 2011; Burelli et al. 2008], where each camera pose
is evaluated by analyzing a full rendering of the scene from that
pose.

4.1 Visibility

An object the user desires to be visible must appear on-screen,
but this apparently simple behavior requires two different types
of parameters, denoted frame bounds and occlusion, both of which
must be satisfied for an object to be visible.

4.1.1 Frame Bounds. The frame bounds rule is simply that any
point that the user desires to be visible must appear inside the
bounds of the frame. In many circumstances, some points are com-
monly required to be inset from the edge of the frame, a property
commonly called headroom in live action cinematography. For hu-
man subjects, too much room between the top of the head and the
edge of the frame causes the subject to appear small and insignif-
icant, while too little causes the subject to appear restricted and
boxed in [Brown 2013, p. 52], as is shown in Figure 1.

MiG ’17, November 8-10, 2017, Barcelona, Spain

*“

o

Figure 1: A frame that was specified to have too much head-
room, as chosen by our system.

Given world space point p and constants xiow < Xnigh, Where
—Xlow = Xnigh = 1 ensures a point is simply in frame and 0 <
(Ixtowl> Xnign) < 1 will produce headroom, the frame-bounds rule
can be evaluated as

)=, g, ©)
x€ll(p)
where
(x = Xiow)® X < Xiow;
g(x) =40 Xlow < X < Xhighs (7)

(x - xhigh)z X > Xhigh-

4.1.2 Occlusion and Collision. The occlusion rule is simply that
there must be an unoccluded line of sight from the camera to an
object that the user desires to be visible. A common distinction is
made between clean shots where all of an object is unoccluded and
dirty shots where only part of object is unoccluded.

Similarly, the collision rule simply states that the camera must
not collide with scene elements. Just as it is generally undesirable
for real world cameras to pass through walls and actors, users of
virtual cameras generally expect their cameras not to pass through
apparently solid virtual matter.

Unfortunately, building suitable objective functions for occlu-
sion and collision is much more complicated. Unlike all of the other
functions described, these parameters represent an observation
about the geometry of the scene as a whole and therefore cannot
be defined in the same concise analytic style used elsewhere. Fur-
thermore, there will be a discontinuity in any direct observation
of visibility at the boundary of occlusion and collision. To address
these issues, our system provides an n-dimensional linear inter-
polator that, given camera position ¢ and point position p, can be
expressed as

fle) = gs(c), (®)
where
a

et —c¢ by 1- et +c; u
9i(c) = 5——9gi-1(c”) + ————gi-1(c%).)
cf

a

Ci —¢ i

MiG 17, November 8-10, 2017, Barcelona, Spain

Alan Litteneker and Demetri Terzopoulos

wan’

Figure 2: Examples of a close-up shot (left) and a wide shot
(right), both chosen by our system.

Here, c? and c? are the closest sample locations on axis i such that
b _ b _ : :
c? <cjandc; > c; and c}l =c/ = cj,Vj # i, and

g0(c) = B(c, p), (10)

where

B(e,p) = {

1 if the path from c to p is occluded; (11)

0 if the path from c to p is not occluded.

As this function is not analytically differentiable, differentiation is

computed numerically as % e W with Ax = 1cm.
To improve smoothness, our system supports the convolution of

the samples of the interpolator by a Gaussian kernel, which can be

expressed mathematically as changing go(c) to

1
go(C)—WM(C)- (12)
Here,
K2 gay A
hi()= Y| e ez MmO, (13)
j=—K/2

where A is the set of convolution step sizes, U is the set of bases
for ¢, and hy(c) = B(c, p). Values K = 7, 0 = 1, and A = 25 cm are
used. Of course, the convolution requires more samples than its
unconvolved counterpart, decreasing efficiency.

Note that in all uses, B(c, p) is sampled in a uniform grid with
steps that are specified at function construction. Samples in the cur-
rent search neighborhood can be fetched on demand, then cached
in a hashmap for efficient retrieval in later computations. This ap-
proach differs from [Drucker and Zeltzer 1995] in that it requires no
preprocessing of the scene geometry, does not require the occluding
or colliding geometry to remain static, and can scale to scenes of
any size, given a utility for sampling B(c, p) that is equally efficient
in scenes of any size.

4.2 Shot Size

The amount of space an object occupies in the frame reflects its
importance in the scene. For human subjects, this is usually ex-
pressed in terms of how much of a particular person is in frame.
For example, a view of a person’s entire body, commonly called
a wide or long shot, is frequently used to establish the relative
geometry of objects in a scene, while a view of only their head and
shoulders, commonly called a close-up shot, is often used to show
dialog [Bowen and Thompson 2013, p. 8—11]. Examples of both are
shown in Figure 2.

While there are several different ways of evaluating this rule
using projective geometry, most tend to suffer from severe instabil-
ity given even moderately suboptimal inputs. Given object points

Figure 3: Examples of a shot from a low vertical angle (left)
and a profile angle (right) chosen by our system.

a and b, camera position ¢, and angle 6, the most stable objective

function! we have found is
2
(a-c)-(b-c))) . (1)

a,b,c,0) = |0 — arccos |0 —
A) (([la—cl| |[b—cl|

As described above, the object points a and b are chosen to be the
edges of the object to be in frame (e.g., top of head and mid chest for
a close-up shot). For most purposes, the value of 6 can be chosen
to be the camera’s vertical field of view. However, when headroom
is desirable for the same points (see Section 4.1.1), this must be
decreased somewhat so as to avoid unnecessary parameter conflict.

4.3 Relative Angles

The angle from which an audience are shown a particular object
can dramatically change the way that an object or character is
viewed. This can generally be divided into two categories, vertical
and profile angles, examples of which are shown in Figure 3.

Objects, and people especially, appear more powerful, intimidat-
ing, or ominous when viewed from below, and conversely more
weak, frightened, or small when viewed from above. This relative
vertical angle is often used to demonstrate the changing relation-
ships between characters in a story, making each relative rise or
decline visually clear to the audience [Bowen and Thompson 2013,
p. 34-39].

The way in which people are perceived is strongly affected by
the angle of view relative to the direction in which they are looking,
or profile angle. In general, characters that are viewed directly from
the front are felt to be more connected to the viewer than characters
viewed in profile, mimicking the way humans tend to face directly
towards things upon which they are focused [Bowen and Thompson
2013, p. 40-43].

Given object point p, camera position ¢, unit object up direction
u, and desired angle 6 relative to unit object look direction d, the
objective function for vertical angle is

2
p-c¢
(p,c,u,0) = (G—arccos (— u)) , (15)
Jw Tp — el
while the profile angle function is

p—mw—w~w—c.d»2
Ip—u(p-o)-w-cl 7))

f(p,c,u,d,0) = (9 — arccos (
16)

!For example, the function f(a, b) = (1 - |(a)y —TI(b)y)? is highly unstable, where
the subscript denotes the y component of the vector.

Virtual Cinematography Using Optimization and Temporal Smoothing

Figure 4: An example of a frame specified for an actor not to
have adequate look space, as chosen by our system.

4.4 Rule of Thirds

A standard rule of thumb in photographic composition is to place
important objects near the third lines, both vertical and horizontal,
in the frame. The most important objects in the scene are often
framed nearest the intersections of these lines [Brown 2013, p. 51].
All the example frames shown in this section conform to this pa-
rameter.

Given a point p in world space as well as constants 0 < xg < 1
and 0 < a < 1, this parameter is modeled as

— (x + b)? (x - b)?
f(p)_xezn‘zp) (x+b)?+a " (x-b2+a (17)

where
) z(xg—a) +\/4 (xgé_ a)2+12 (x§+a)2' .

To use the standard third lines, xo should be set to 1/3. Selecting a
value for a is a bit trickier, as too high a setting causes the function
to affect only points in the immediate vicinity on-screen while
too low a setting can cause the penalty for |x| < x¢ to decrease
significantly. It was found experimentally that a = 0.07 produced
satisfactory results.

4.5 Look Space

A common technique used to balance a shot is to give substantial
space between a character and the frame bound in the direction
they are looking, a property that has been given numerous names in
the cinematographic literature, including “look space”, “lead space”,
“nose room”, “action room”, etc. When this space is not provided,
as is shown in Figure 4, viewers tend to perceive the character as
psychologically on edge or boxed in, a property that can sometimes
be utilized to interesting compositional effect [Brown 2013, p. 52].

Given object point p, unit object look direction d, camera position
¢, and unit camera right direction cg, the look space parameter can
be evaluated using the visibility frame bounds objective function
fuis(p) from Section 4.1.1, as

F®) = fuo 1) + 0+ D) = TIP)

IIT(p + er) —~T(p)I)~

(19)

MiG ’17, November 8-10, 2017, Barcelona, Spain

5 RESULTS

All of the described tools and techniques were implemented in a
single-threaded prototype camera control system that was inte-
grated with Unreal Engine 4.9, running online with the engine’s
standard game thread. Several different experimental scenes were
then tested for both scripted and unscripted scenarios on a desk-
top computer with a 3.07 GHz processor and an Nvidia GTX 980
graphics card.

In all experiments, each camera pose required that our system
optimize over 5 variables—position in R3, yaw, and pitch. This
required that each shot had a static user-specified field of view
and aspect ratio. In principle, our system is capable of optimizing
over both static variables as well as camera roll, but we have not
attempted to do so.

Note that for all the scripted scenes tested, a keyframe rate of 40
per second was subjectively found to produce a sufficiently smooth
camera path. This is partially a side effect of the speed of action,
which was often over 3 m/s. Scenes with slower action could use a
lower keyframe density.

5.1 Speed

Measuring the speed of our system is difficult as it entirely depends
on the tightness of the satisfaction boundaries. There is a tradeoff
between processor time and solution quality, so a user willing to
endure slower performance can set a higher bar for parameter
satisfaction.

For most of the scripted scenes tested, a satisfactory unsmoothed
camera path could be found using approximately 3,000 iterations of
simulated annealing, followed by approximately 2,000 iterations of
gradient descent, taking about 1.15 seconds per frame. With smooth-
ing, the same two-phase optimization can be used to roughly locally
optimize using about 50-75% of the iterations required without
smoothing, followed by 1,000-1,200 iterations of gradient descent
with smoothing at a total cost of about 1.75 seconds per frame.

In unscripted experiments, the unsmoothed algorithm was sub-
jectively found to be capable of finding satisfactory solutions using
100 optimization iterations of gradient descent at an average of
60 frames per second. The smoothed algorithm was found to pro-
duce a subjectively satisfactory solution—given the predicition of
4 keyframes with t = 0.25 sec and with 10 iterations of gradient
descent to initialize each keyframe, followed by another 10 itera-
tions of active contour model gradient descent—at an average of
25 frames per second, which is more than fast enough to support
real-time usage.

5.2 Camera Paths

A demonstrative scene involved a character running around an
open area, where the parameter set was configured for the camera
to follow the character from the front. At one point in the scene, the
character passes close enough to a wall that requires deflecting the
camera from the optimal path. The path of the camera, as shown
in Figure 5 (top), is similar in all use cases tested.

An example of a scene in which our system met with more mixed
success was also noted. In this scene, a character runs past a set of
pillars while the camera follows him with a long lens in profile. As
the optimal camera path for the relative angle parameter becomes
occluded by the pillars, the system must compromise between the

MiG ’17, November 8-10, 2017, Barcelona, Spain

Figure 5: Overhead views of the camera paths computed for a
simple moving scene (top) and a more complex scene where
the camera’s optimal path is blocked by a number of pil-
lars (bottom). Color key: Green is unscripted-unsmoothed,
yellow is unscripted-smoothed, red is scripted-unsmoothed,
and blue is scripted-smoothed.

occlusion parameter and the relative angle parameter. As shown
in Figure 5 (bottom), the paths of the various use cases vary much
more significantly, and each suffers from its own particular issue.

The unscripted-unsmoothed strategy becomes stuck when it
comes to the first occlusion boundary, while the unscripted-smoothed
strategy manages to find its way around the first occlusion to trail
the actor from a distance. While the latter solution seems intuitively
better, the user has not explicitly specified which is preferable.

Meanwhile, both of the scripted strategies attempt to balance
more evenly between all parameters, resorting to jagged solutions
that momentarily collide with the scene geometry. However, these
solutions represent a technically fairer compromise between the
desired shot parameters.

6 FUTURE WORK

While we have received anecdotal feedback from users of the cur-
rent prototype, we have not attempted to run a proper user study
examining whether the rules and algorithms described are satisfac-
tory for the rigors of professional use. Even the design of such a user
study would be nontrivial [Lino et al. 2014]. The expressiveness
of the system can likely be increased by including more common
cinematographic parameters, such as frame balance, leading lines,

Alan Litteneker and Demetri Terzopoulos

separation, contrast, and depth of field, as would adding additional
methods for combining multiple parameters.

Additionally, the integration of other optimization algorithms
would likely improve overall performance and accuracy. Specializ-
ing the camera model for specific objective function types has been
shown to increase efficiency [Lino and Christie 2015]. In unscripted
scenarios, more accurate and stable predictions of future states
could dramatically expand the use of multiple elements.

In real-world cinematography, actors are frequently positioned
based on the physical constraints on the camera in the environment
along with the content of the scene, a process that to our knowledge
no existing automated cinematography system has attempted to
emulate. The adjustment of character positioning may necessitate
a significantly different optimization approach.

REFERENCES

Rafid Abdullah, Marc Christie, Guy Schofield, Christophe Lino, and Patrick Olivier.
2011. Advanced Composition in Virtual Camera Control. In Smart Graphics.
Springer, Berlin, 13-24.

Jackie Assa, Daniel Cohen-Or, I-Cheng Yeh, Tong-Yee Lee, and others. 2008. Motion
Overview of Human Actions. ACM Transactions on Graphics (TOG) 27, 5, Article
115 (2008), 10 pages.

William Bares, Scott McDermott, Christina Boudreaux, and Somying Thainimit. 2000.
Virtual 3D Camera Composition From Frame Constraints. In Proc. 8th ACM Inter-
national Conference on Multimedia. 177-186.

Christopher J. Bowen and Roy Thompson. 2013. Grammar of the Shot. Taylor &
Francis.

Blain Brown. 2013. Cinematography: Theory and Practice: Image Making for Cinematog-
raphers and Directors. Taylor & Francis.

Paolo Burelli. 2012. Interactive Virtual Cinematography. Ph.D. Dissertation. IT Univer-
sity of Copenhagen.

Paolo Burelli, Luca Di Gaspero, Andrea Ermetici, and Roberto Ranon. 2008. Vir-
tual Camera Composition with Particle Swarm Optimization. In Smart Graphics.
Springer, Berlin, 130-141.

Marc Christie, Rumesh Machap, Jean-Marie Normand, Patrick Olivier, and Jonathan
Pickering. 2005. Virtual Camera Planning: A Survey. In Smart Graphics. Springer,
Berlin, 40-52.

Ritendra Datta, Dhiraj Joshi, Jia Li, and James Z. Wang. 2006. Studying Aesthetics
in Photographic Images Using a Computational Approach. In Computer Vision —
ECCV 2006. Springer, Berlin, 288-301.

Steven M. Drucker and David Zeltzer. 1995. CamDroid: A System for Implementing
Intelligent Camera Control. In Proc. 1995 ACM Symposium on Interactive 3D Graphics.
139-144.

David K. Elson and Mark O. Riedl. 2007. A Lightweight Intelligent Virtual Cinematogra-
phy System for Machinima Production. In Proc. Artificial Intelligence and Interactive
Digital Entertainment Conf. 8-13.

John Funge, Xiaoyuan Tu, and Demetri Terzopoulos. 1999. Cognitive Modeling: Knowl-
edge, Reasoning and Planning for Intelligent Characters. In Proc. ACM SIGGRAPH.
29-38.

Quentin Galvane, Marc Christie, Christophe Lino, and Rémi Ronfard. 2015. Camera-
on-Rails: Automated Computation of Constrained Camera Paths. In Proc. 8th ACM
SIGGRAPH Conference on Motion in Games. ACM, 151-157.

Michael Gleicher and Andrew Witkin. 1992. Through-the-Lens Camera Control.
Computer Graphics 26, 2 (1992), 331-140. (Proc. ACM SIGGRAPH ’92).

Nicolas Halper, Ralf Helbing, and Thomas Strothotte. 2001. A Camera Engine for
Computer Games: Managing the Trade-Off Between Constraint Satisfaction and
Frame Coherence. Computer Graphics Forum 20, 3 (2001), 174-183.

Frank Jardillier and Eric Languénou. 1998. Screen-Space Constraints for Camera
Movements: The Virtual Cameraman. Computer Graphics Forum 17, 3 (1998), 175—
186.

Michael Kass, Andrew Witkin, and Demetri Terzopoulos. 1988. Snakes: Active Contour
Models. International Journal of Computer Vision 1, 4 (1988), 321-331.

Christophe Lino and Marc Christie. 2015. Intuitive and Efficient Camera Control with
the Toric Space. ACM Trans. Graph. 34, 4, Article 82 (July 2015), 12 pages.

Christophe Lino, Marc Christie, Fabrice Lamarche, Guy Schofield, and Patrick Olivier.
2010. A Real-Time Cinematography System for Interactive 3D Environments. In
Proc. 2010 ACM SIGGRAPH/EG Symposium on Computer Animation. 139-148.

Christophe Lino, Rémi Ronfard, Quentin Galvane, and Michael Gleicher. 2014. How
Do We Evaluate the Quality of Computational Editing Systems?. In Proc. AAAT
Workshop on Intelligent Cinematography And Editing. 35-39.

Roberto Ranon and Tommaso Urli. 2014. Improving the Efficiency of Viewpoint
Composition. IEEE Transactions on Visualization and Computer Graphics 20, 5
(2014), 795-807.

	Abstract
	1 Introduction
	2 Related Work
	3 Virtual Cinematography System
	3.1 Objective Functions
	3.2 Temporal Smoothing
	3.3 Optimization Techniques
	3.4 Use Cases

	4 Predefined Shot Parameters
	4.1 Visibility
	4.2 Shot Size
	4.3 Relative Angles
	4.4 Rule of Thirds
	4.5 Look Space

	5 Results
	5.1 Speed
	5.2 Camera Paths

	6 Future Work
	References

