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Abstract. Lesion segmentation is an important problem in computer-
assisted diagnosis that remains challenging due to the prevalence of
low contrast, irregular boundaries that are unamenable to shape pri-
ors. We introduce Deep Active Lesion Segmentation (DALS), a fully
automated segmentation framework that leverages the powerful nonlin-
ear feature extraction abilities of fully Convolutional Neural Networks
(CNNs) and the precise boundary delineation abilities of Active Contour
Models (ACMs). Our DALS framework benefits from an improved level-
set ACM formulation with a per-pixel-parameterized energy functional
and a novel multiscale encoder-decoder CNN that learns an initialization
probability map along with parameter maps for the ACM. We evaluate
our lesion segmentation model on a new Multiorgan Lesion Segmenta-
tion (MLS) dataset that contains images of various organs, including
brain, liver, and lung, across different imaging modalities—MR and CT.
Our results demonstrate favorable performance compared to competing
methods, especially for small training datasets.

Keywords: Lesion segmentation · Active contour model · Level sets ·
Deep learning

1 Introduction

Active Contour Models (ACMs) [6] have been extensively applied to computer
vision tasks such as image segmentation, especially for medical image analysis.
ACMs leverage parametric (“snake”) or implicit (level-set) formulations in which
the contour evolves by minimizing an associated energy functional, typically
using a gradient descent procedure. In the level-set formulation, this amounts
to solving a partial differential equation (PDE) to evolve object boundaries that
are able to handle large shape variations, topological changes, and intensity
inhomogeneities. Alternative approaches to image segmentation that are based
on deep learning have recently been gaining in popularity. Fully Convolutional
Neural Networks (CNNs) can perform well in segmenting images within datasets
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(1) Brain MR (2) Liver MR (3) Liver CT (4) Lung CT
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(c) U-Net Output

Fig. 1. Segmentation comparison of (a) medical expert manual with (b) our DALS and
(c) U-Net [9], in (1) Brain MR, (2) Liver MR, (3) Liver CT, and (4) Lung CT images.

on which they have been trained [2,5,9], but they may lack robustness when cross-
validated on other datasets. Moreover, in medical image segmentation, CNNs
tend to be less precise in boundary delineation than ACMs.

In recent years, some researchers have sought to combine ACMs and deep
learning approaches. Hu et al. [4] proposed a model in which the network learns
a level-set function for salient objects; however, they predefined a fixed weighting
parameter λ with no expectation of optimality over all cases in the analyzed set
of images. Marcos et al. [8] combined CNNs and parametric ACMs for the seg-
mentation of buildings in aerial images; however, their method requires manual
contour initialization, fails to precisely delineate the boundary of complex shapes,
and segments only single instances, all of which limit its applicability to lesion
segmentation due to the irregular shapes of lesion boundaries and widespread
cases of multiple lesions (e.g., liver lesions).

We introduce a fully automatic framework for medical image segmentation
that combines the strengths of CNNs and level-set ACMs to overcome their
respective weaknesses. We apply our proposed Deep Active Lesion Segmentation
(DALS) framework to the challenging problem of lesion segmentation in MR
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and CT medical images (Fig. 1), dealing with lesions of substantially different
sizes within a single framework. In particular, our proposed encoder-decoder
architecture learns to localize the lesion and generates an initial attention map
along with associated parameter maps, thus instantiating a level-set ACM in
which every location on the contour has local parameter values. We evaluate
our lesion segmentation model on a new Multiorgan Lesion Segmentation (MLS)
dataset that contains images of various organs, including brain, liver, and lung,
across different imaging modalities—MR and CT. By automatically initializing
and tuning the segmentation process of the level-set ACM, our DALS yields
significantly more accurate boundaries in comparison to conventional CNNs and
can reliably segment lesions of various sizes.

2 Method

2.1 Level-Set Active Contour Model with Parameter Functions

We introduce a generalization of the level-set ACM proposed by Chan and Vese
[1]. Given an image I(x, y), let C(t) =

{
(x, y)|φ(x, y, t) = 0

}
be a closed time-

varying contour represented in Ω ∈ R2 by the zero level set of the signed distance
map φ(x, y, t). We select regions within a square window of size s with a charac-
teristic function Ws. The interior and exterior regions of C are specified by the
smoothed Heaviside function HI

ε (φ) and HE
ε (φ) = 1 − HI

ε (φ), and the narrow
band near C is specified by the smoothed Dirac function δε(φ). Assuming a uni-
form internal energy model [1], we follow Lankton et al. [7] and define m1 and
m2 as the mean intensities of I(x, y) inside and outside C and within Ws. Then,
the energy functional associated with C can be written as

E(φ) =
∫

Ω

δε(φ(x, y, t))
(

μ|∇φ(x, y, t)| +
∫

Ω

WsF (φ(u, v, t)) du dv

)
dx dy,

(1)
where μ penalizes the length of C (we set μ = 0.1) and the energy density is

F (φ) = λ1(u, v)(I(u, v) − m1(x, y))2HI
ε (φ)

+ λ2(u, v)(I(u, v) − m2(x, y))2HE
ε (φ).

(2)

Note that to afford greater control over C, in (2) we have generalized the
scalar parameter constants λ1 and λ2 used in [1] to parameter functions λ1(x, y)
and λ2(x, y) over the image domain. Given an initial distance map φ(x, y, 0)
and parameter maps λ1(x, y) and λ2(x, y), the contour is evolved by numerically
time-integrating, within a narrow band around C for computational efficiency,
the finite difference discretized Euler-Lagrange PDE for φ(x, y, t) (refer to [1]
and [7] for the details).

2.2 CNN Backbone

Our encoder-decoder is a fully convolutional architecture (Fig. 2) that is tailored
and trained to estimate a probability map from which the initial distance func-
tion φ(x, y, 0) of the level-set ACM and the functions λ1(x, y) and λ2(x, y) are
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Fig. 2. The proposed DALS architecture. DALS is a fully automatic framework with-
out the need for human supervision. The CNN initializes and guides the ACM by its
learning local weighted parameters.

computed. In each dense block of the encoder, a composite function of batch
normalization, convolution, and ReLU is applied to the concatenation of all
the feature maps [x0, x1, . . . , xl−1] from layers 0 to l − 1 with the feature maps
produced by the current block. This concatenated result is passed through a
transition layer before being fed to successive dense blocks. The last dense block
in the encoder is fed into a custom multiscale dilation block with 4 parallel con-
volutional layers with dilation rates of 2, 4, 8, and 16. Before being passed to the
decoder, the output of the dilated convolutions are then concatenated to create
a multiscale representation of the input image thanks to the enlarged receptive
field of its dilated convolutions. This, along with dense connectivity, assists in
capturing local and global context for highly accurate lesion localization.

2.3 The DALS Framework

Our DALS framework is illustrated in Fig. 2. The boundaries of the segmentation
map generated by the encoder-decoder are fine-tuned by the level-set ACM that
takes advantage of information in the CNN maps to set the per-pixel parameters
and initialize the contour.

The input image is fed into the encoder-decoder, which localizes the lesion
and, after 1 × 1 convolutional and sigmoid layers, produces the initial segmenta-
tion probability map Yprob(x, y), which specifies the probability that any point
(x, y) lies in the interior of the lesion. The Transformer converts Yprob to a Signed
Distance Map (SDM) φ(x, y, 0) that initializes the level-set ACM. Map Yprob is
also utilized to estimate the parameter functions λ1(x, y) and λ2(x, y) in the
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Table 1. MLS dataset statistics. GC: Global Contrast; GH: Global Heterogeneity.

Organ Modality # Samples MeanGC VarGC MeanGH VarGH Lesion radius (pixels)

Brain MRI 369 0.56 0.029 0.907 0.003 17.42 ± 9.516

Lung CT 87 0.315 0.002 0.901 0.004 15.15 ± 5.777

Liver CT 112 0.825 0.072 0.838 0.002 20.483 ± 10.37

Liver MRI 164 0.448 0.041 0.891 0.003 5.459 ± 2.027

energy functional (1). Extending the approach of Hoogi et al. [3], the λ func-
tions in Fig. 2 are chosen as follows:

λ1(x, y) = exp
(

2 − Yprob(x, y)
1 + Yprob(x, y)

)
; λ2(x, y) = exp

(
1 + Yprob(x, y)
2 − Yprob(x, y)

)
. (3)

The exponential amplifies the range of values that the functions can take. These
computations are performed for each point on the zero level-set contour C. Dur-
ing training, Yprob and the ground truth map Ygt(x, y) are fed into a Dice loss
function and the error is back-propagated accordingly. During inference, a for-
ward pass through the encoder-decoder and level-set ACM results in a final
SDM, which is converted back into a probability map by a sigmoid layer, thus
producing the final segmentation map Yout(x, y).

Implementation Details: DALS is implemented in Tensorflow. We trained it on
an NVIDIA Titan XP GPU and an Intel R© CoreTM i7-7700K CPU @ 4.20 GHz.
All the input images were first normalized and resized to a predefined size of 256×
256 pixels. The size of the mini-batches is set to 4, and the Adam optimization
algorithm was used with an initial learning rate of 0.001 that decays by a factor
of 10 every 10 epochs. The entire inference time for DALS takes 1.5 s. All model
performances were evaluated by using the Dice coefficient, Hausdorff distance,
and BoundF.

3 Multiorgan Lesion Segmentation (MLS) Dataset

As shown in Table 1, the MLS dataset includes images of highly diverse lesions in
terms of size and spatial characteristics such as contrast and homogeneity. The
liver component of the dataset consists of 112 contrast-enhanced CT images of
liver lesions (43 hemangiomas, 45 cysts, and 24 metastases) with a mean lesion
radius of 20.483 ± 10.37 pixels and 164 liver lesions from 3 T gadoxetic acid
enhanced MRI scans (one or more LI-RADS (LR), LR-3, or LR-4 lesions) with a
mean lesion radius of 5.459 ± 2.027 pixels. The brain component consists of 369
preoperative and pretherapy perfusion MR images with a mean lesion radius of
17.42 ± 9.516 pixels. The lung component consists of 87 CT images with a mean
lesion radius of 15.15 ± 5.777 pixels. For each component of the MLS dataset,
we used 85% of its images for training, 10% for testing, and 5% for validation.
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Table 2. Segmentation metrics for model evaluations. Box and whisker plots are shown
in Fig. 3. CI denotes the confidence interval.

Dataset: Brain MR Lung CT

Model Dice CI Hausdorff CI BoundF Dice CI Hausdorff CI BoundF

U-Net 0.776 ± 0.214 0.090 2.988 ± 1.238 0.521 0.826 0.817 ± 0.098 0.0803 2.289 ± 0.650 0.53 0.898
CNN Backbone 0.824 ± 0.193 0.078 2.755 ± 1.216 0.49 0.891 0.822 ± 0.115 0.0944 2.254 ± 0.762 0.6218 0.900
Level-set 0.796 ± 0.095 0.038 2.927 ± 0.992 0.400 0.841 0.789 ± 0.078 0.064 3.27 ± 0.553 0.4514 0.879
DALS 0.888 ± 0.0755 0.03 2.322 ± 0.824 0.332 0.944 0.869 ± 0.113 0.092 2.095 ± 0.623 0.508 0.937

Dataset: Liver MR Liver CT

Model Dice CI Hausdorff CI BoundF Dice CI Hausdorff CI BoundF

U-Net 0.769 ± 0.162 0.093 1.645 ± 0.598 0.343 0.92 0.698 ± 0.149 0.133 4.422 ± 0.969 0.866 0.662
CNN Backbone 0.805 ± 0.193 0.11 1.347 ± 0.671 0.385 0.939 0.801 ± 0.178 0.159 3.813 ± 1.791 1.6 0.697
Level-set 0.739 ± 0.102 0.056 2.227 ± 0.576 0.317 0.954 0.765 ± 0.039 0.034 3.153 ± 0.825 0.737 0.761
DALS 0.894 ± 0.0654 0.036 1.298 ± 0.434 0.239 0.987 0.846 ± 0.090 0.0806 3.113 ± 0.747 0.667 0.773
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Fig. 3. Box and whisker plots of: (a) Dice score; (b) Hausdorff distance.

4 Results and Discussion

Algorithm Comparison: We have quantitatively compared our DALS against
U-Net [9] and manually-initialized level-set ACM with scalar λ parameter con-
stants as well as its backbone CNN. The evaluation metrics for each organ are
reported in Table 2 and box and whisker plots are shown in Fig. 3. Our DALS
achieves superior accuracies under all metrics and in all datasets. Furthermore,
we evaluated the statistical significance of our method by applying a Wilcoxon
paired test on the calculated Dice results. Our DALS performed significantly
better than the U-Net (p < 0.001), the manually-initialized ACM (p < 0.001),
and DALS’s backbone CNN on its own (p < 0.005).

Boundary Delineation: As shown in Fig. 4, the DALS segmentation contours
conform appropriately to the irregular shapes of the lesion boundaries, since
the learned parameter maps, λ1(x, y) and λ2(x, y), provide the flexibility needed
to accommodate the irregularities. In most cases, the DALS has also success-
fully avoided local minima and converged onto the true lesion boundaries, thus
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(a) Brain MR

(b) Liver CT

(c) Liver MR

(d) Lung CT

Fig. 4. Comparison of the output segmentation of our DALS (red) against the U-Net
[9] (yellow) and manual “ground truth” (green) segmentations on images of Brain MR,
Liver CT, Liver MR, and Lung CT on the MLS test set. (Color figure online)

(a) Labeled Img (b) Level- set (c) Our DALS (d) λ1(x, y) (e) λ2(x, y)

Fig. 5. (a) Labeled image. (b) Level-set (analogous to scalar λ parameter constants).
(c) DALS output. (d), (e) Learned parameter maps λ1(x, y) and λ2(x, y).

enhancing segmentation accuracy. DALS performs well for different image char-
acteristics, including low contrast lesions, heterogeneous lesions, and noise.

Parameter Functions and Backbone CNN: The contribution of the parameter
functions was validated by comparing the DALS against a manually initialized
level-set ACM with scalar parameters constants as well as with DALS’s back-
bone CNN on its own. As shown in Fig. 5, the encoder-decoder has predicted the
λ1(x, y) and λ2(x, y) feature maps to guide the contour evolution. The learned
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maps serve as an attention mechanism that provides additional degrees of free-
dom for the contour to adjust itself precisely to regions of interest. The segmen-
tation outputs of our DALS and the manual level-set ACM in Fig. 5 demonstrate
the benefits of using parameter functions to accommodate significant boundary
complexities. Moreover, our DALS outperformed the manually-initialized ACM
and its backbone CNN in all metrics across all evaluations on every organ.

5 Conclusion

We have presented Deep Active Lesion Segmentation (DALS), a novel frame-
work that combines the capabilities of the CNN and the level-set ACM to yield
a robust, fully automatic medical image segmentation method that produces
more accurate and detailed boundaries compared to competing state-of-the-art
methods. The DALS framework includes an encoder-decoder that feeds a level-
set ACM with per-pixel parameter functions. We evaluated our framework in
the challenging task of lesion segmentation with a new dataset, MLS, which
includes a variety of images of lesions of various sizes and textures in differ-
ent organs acquired through multiple imaging modalities. Our results affirm the
effectiveness our DALS framework.
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