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Purpose: The authors aimed to develop and validate an automated algorithm for epicardial fat volume
(EFV) quantification from noncontrast CT.
Methods: The authors developed a hybrid algorithm based on initial segmentation with a multiple-
patient CT atlas, followed by automated pericardium delineation using geodesic active contours. A
coregistered segmented CT atlas was created from manually segmented CT data and stored offline.
The heart and pericardium in test CT data are first initialized by image registration to the CT
atlas. The pericardium is then detected by a knowledge-based algorithm, which extracts only the
membrane representing the pericardium. From its initial atlas position, the pericardium is modeled
by geodesic active contours, which iteratively deform and lock onto the detected pericardium. EFV
is automatically computed using standard fat attenuation range.
Results: The authors applied their algorithm on 50 patients undergoing routine coronary calcium
assessment by CT. Measurement time was 60 s per-patient. EFV quantified by the algorithm
(83.60±32.89 cm3) and expert readers (81.85±34.28 cm3) showed excellent correlation (r = 0.97,
p < 0.0001), with no significant differences by comparison of individual data points (p= 0.15). Voxel
overlap by Dice coefficient between the algorithm and expert readers was 0.92 (range 0.88–0.95).
The mean surface distance and Hausdorff distance in millimeter between manually drawn contours
and the automatically obtained contours were 0.6±0.9 mm and 3.9±1.7 mm, respectively. Mean
difference between the algorithm and experts was 9.7%±7.4%, similar to interobserver variability
between 2 readers (8.0%±5.3%, p= 0.3).
Conclusions: The authors’ novel automated method based on atlas-initialized active contours accu-
rately and rapidly quantifies EFV from noncontrast CT. C 2015 American Association of Physicists
in Medicine. [http://dx.doi.org/10.1118/1.4927375]

Key words: epicardial fat, atlas-based segmentation, registration, active contours, line detection,
noncontrast CT

1. INTRODUCTION

Epicardial fat is a particular depot of visceral fat around
the heart, which is enclosed by the visceral pericardial sac.1

Recent studies have shown a correlation between epicardial fat
volume (EFV) and various manifestations of coronary artery
disease, including adverse cardiovascular events,2–4 myocar-
dial ischemia,5,6 coronary artery stenosis,7,8 adverse plaque

characteristics,9–11 metabolic syndrome,12 and atrial fibrilla-
tion.13,14 Since epicardial fat is emerging as an important factor
for cardiovascular risk stratification, it would be desirable to
be able to accurately and noninvasively quantify it for a given
patient in clinical practice. Epicardial fat can be visualized in
noncontrast cardiac CT performed for assessment of coronary
calcium, which is a low-cost, noninvasive scan with a low
radiation burden.15 However, epicardial fat is not assessed in
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F. 1. (a) Epicardial fat (red, closest to the heart within the pericardium), thoracic fat (red and yellow, fat around the heart - which includes epicardial and
extra-pericardial fat). (b) Pericardium indicated by arrows.

routine clinical practice, primarily due to the absence of a
robust, automated quantification algorithm.

As illustrated in Fig. 1(a), epicardial fat (red) is the part of
the thoracic fat (red and yellow) enclosed by the pericardium
which is a tough double layered membrane that covers the
heart. Epicardial fat is inside the pericardium and surrounds
the coronary arteries directly, which makes it more correlated
with coronary artery disease and thus has higher predictive
value for cardiovascular risk stratification than thoracic fat
which includes less related fat tissue outside the pericardium.
There are two layers of the pericardial sac: the outermost
fibrous pericardium and the inner serous pericardium. On
noncontrast CT scans, the fibrous pericardium is identified
as a thin curvilinear line of soft tissue density, well seen
anterior to the right ventricle and in front of the right
atrioventricular groove, where it is bordered by mediastinal
and subepicardial fat of negative densities [Fig. 1(b)]. It is
less often visible lateral to the left ventricle and in front of the
interventricular groove. Pericardium is often not fully visible
in CT images, which makes the detection of the boundaries
of epicardial fat difficult. Thus, automated quantification
of epicardial fat volume is particularly challenging since it
requires identification of the pericardium, in addition to the
thoracic cavity, and the heart.

Several investigators have reported methods for the quan-
tification of only thoracic fat but not for the epicardial fat.
Dey et al.16 investigated semiautomated thoracic fat quanti-
fication from noncontrast CT. In this work, the lungs were
first segmented by anterior sampling and adaptive threshold
region-growing, followed by delineation of the inner contours
of the thoracic cavity and determination of the cardiac bound-
ing box. Yalamanchili et al.17 described a thoracic fat quan-
tification algorithm that used a classification-based method
to discriminate fat from other tissues. The tissue classifier
was constructed with three binary support vector machine
(SVM) classifiers which are trained separately for different
tissues (fat, muscle/blood, calcium). This method achieved an

average overlap rate of 78% with expert annotations. Isgum
et al.18 have recently presented a multiatlas-based automated
method for segmenting the heart, but not the pericardium for
the purposes of coronary calcium quantification.

In several recent studies of epicardial fat, the pericardium
has been traced manually by expert readers, which is time-
consuming, requiring 7–10 min/patient.1–6

In the present study, we propose an automated algorithm
for the measurement of EFV from noncontrast CT, which
is based on a combination of registrations to multiatlas and
geodesic active contours. This approach strictly follows the
anatomic definition of the epicardial fat by local delineation
of its boundaries (pericardium) with active contours, while
preserving robustness by acquiring the global location and
shape of the object from multiatlas. To validate the new
algorithm, we compare its performance to that of experienced
clinical readers.

2. OUR APPROACH

In this section, we present detailed description of the
individual steps, including multiatlas segmentation method for
the initial segmentation of the heart region and pericardium,
pericardium detection, followed by geodesic active contours
deformation.

Figure 2 shows the main steps of the algorithm. A
noncontrast CT atlas (multiatlas) is first created from multiple
coregistered noncontrast CT datasets in which the cardiac
region and pericardium are manually segmented. Then, the
global location and shape of the pericardium are initialized by
combination of multiple registrations and label propagation
from the multiatlas to the test noncontrast CT data [Fig. 2(b)].
Subsequently, the pericardium detection process [Fig. 2(c)]
identifies the candidates for pericardial voxels, In the next step,
the initial multiatlas boundaries are deformed by the geodesic
active contours,19 which are driven by the pericardium
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F. 2. Main steps of the algorithm (a) input image (3D volume), (b) rough location of pericardium obtained from multiple co-registered atlases (contour), (c)
pericardium detection, (d) the multi-atlas initialization (red, contour below pericardium) and refined pericardium segmentation (blue, contour on pericardium),
(e) epicardial fat quantification, (f) expert manual tracing shown for comparison.

detection results [Fig. 2(d)]. Finally, the volume of the
epicardial fat is computed [Fig. 2(e)] within the pericardial
sac boundaries using preset fat attenuation thresholds.16

2.A. Multiatlas segmentation

The multiatlas segmentation determines the initial location
and shape of the heart and pericardium. The atlas was
created from multiple patient scans (N = 10; 5 men and
5 women). For the atlas creation, on all transverse slices,
2D pericardial contours were manually traced by an expert
cardiologist physician within the superior and inferior limits
of the heart (Fig. 3). A 3D binary volume mask was generated
from the 2D contours. Both atlas creation (Fig. 4) and
target image segmentation are achieved by image registration.
The nonlinear registration required for the atlas creation is
computationally expensive. For the purpose of initial rough
heart region segmentation, we accelerated the registration

F. 3. An example of manually segmented contour on an atlas image.

process by coregistering all the atlas images to a randomly
selected primary atlas image with high image quality (low
noise and no motion artifacts), as chosen by an expert
radiologist. During segmentation of test patient data, only one
transformation is computed between the primary atlas image
and the patient image. This transformation is then applied to
all the images in the atlas. This approach requires only one
registration, with possibly lower segmentation accuracy.

The rigid and nonrigid registration problem is formulated
as an optimization problem with respect to combined affine
and B-spline transformations µ minimizing the difference
between the target images and the reference image,

µ= argmin
µ

C[µ;U(p),A(p)], (1)

F. 4. Flowchart of the atlas creation procedure.
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where µ is the transformation aligning atlas A(µ(p)) to target
image U(p), p denotes a voxel, and C is the negative mutual
information.20

To obtain the rough binary segmentation of the pericardium
S(p), the labels Si are propagated to the test image according
to spatially varying decision fusion weights18 that define the
contribution of each atlas by measuring the similarity between
the transformed moving atlas after registration and the target
image. The similarity is measured by the absolute difference
Di between the transformed moving atlas and the target image,

Di(p)= |Ai(µ(p))−U(p)|,∀i. (2)

To determine how much a propagated label in each atlas
image should contribute to the segmentation, weights λi were
calculated as follows:

λi(p)= 1
Di(p)×gσ1(p)+ ϵ

, (3)

where gσ1(p) is a Gaussian kernel of scale sigma that smooths
the local estimate of the registration and ϵ is a small value
to avoid division by zero. The resulting propagation label is
determined by a weighted average of the transformed binary
segmentation Si(µ),

S(p)= 1
N
i=1

λi(p)

N
i=1

λi(p)Si(µi(p)). (4)

2.B. Pericardium detection

To accurately localize the pericardium in the test image,
S(p) is transformed to a geodesic active contour model19

driven by image features that indicate where the active
contours should stop evolving. However, a traditional line
detection responds to all edge structures21 such as boundaries
of the myocardium, edges between the heart and lungs, and
outlines of the spine, but it does not respond sufficiently
to the poorly visualized pericardium (Fig. 5). In a study of
260 patients by Delille et al.,22 the maximal thickness of the
normal pericardium was 2 mm for 95% of cases. Therefore, the
width of the pericardium on the image in unit of pixel can be
calculated by the physical thickness of the pericardium divided
by the physical size of the pixel. For instance, for our image
data, which have a physical pixel size of 0.68×0.68 mm2 on
each transverse slices, we can calculate the maximal width of
pericardium in pixel by 2 mm/(0.68 mm/pixel)≈ 3 pixels. As
a result, we can set constant values to the width parameter in
the pericardium detector described below. We have designed
a feature detector that responds only to the pericardium, based
on recent work in this area.21 By examining the convolution
response of a first-order derivative of Gaussian (DOG) to the
signal with the cross section of a bright line, a dark line,
and edge, respectively, we found that the DOG response can
distinguish these three patterns. As a result, we can extract
only the center of the bright lines by filtering out other patterns
in the convolution response using

EP(x,y)=



r(x−d,y)+ |r(x+d,y)|, r(x−d,y)> 0 and r(x+d,y)< 0,
0, otherwise.

(5)

In Eq. (5), d is the half-width of the line to be detected,
r(x,y) = (−x/

√
2πσ3

2

) (
e−(x

2/2σ2
2)
)
× I(x,y) for |x | ≤ 3σ2,|y |

≤ L/2, σ2 is the standard deviation of the Gaussian function,
and L is the length of the filter in the y direction. A fixed
value of d can be used for pericardium detection because the
width of the pericardium does not vary much across different
subjects.22 The response is then double thresholded23 to obtain
the centerline of the pericardium T(EP(x,y)), as shown in
Fig. 5(h). The pericardium detection result is then used as
the external image-dependent force in the stopping function
of the level-set geodesic flow. The stopping function g(I) is
defined as

g(I)= 1
1+ |T(EP(x,y))+▽I | , (6)

which is responsible for stopping the contour at the pericar-
dium without interference from other anatomical structures.
In the above stopping function, T(EP(x,y)) is the detected
pericardium centerline and ▽I is the gradient of the test
image. The active contours can then lock onto the pericardium
under the guidance of our stopping function after several
iterations (<200 in our experiments) of evolving. We also

implemented gradient vector flow (GVF) snake,24 after initial
atlas-based segmentation, to compare against our geodesic
active contour method. We used gradient vector flow generated
from the gradient image and pericardium detection on each
transverse slice to direct the deformation of the snake. After
the segmentation of the pericardium, a previously established
threshold of −190 to −30 CT units (i.e., Hounsfield units)12

is applied to fat-containing voxels within pericardial sac.
This is the standard attenuation range for adipose tissue in
noncontrast CT and has been validated by previous inves-
tigators.12,25–29 Using the same threshold range, very good
interscanner reproducibility for quantification of epicardial fat
volume has been shown by Nakazato et al., in 23 patients.30

The fat tissue voxels are then summed to provide epicardial
fat volume in milliliters. Figure 6 summarizes the whole
automatic quantification process.

2.C. Analysis of algorithm performance

Pearson’s correlation, Bland–Altman comparison, and the
paired t-test were used to compare the volume enclosed by
the pericardium obtained by our algorithm to the ground truth
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F. 5. Comparison of edge/line detection methods: [(a) and (e)] input synthetic and cardiac CT images, [(b) and (f)] Canny edge detection results: respond to
edges between any objects with different intensities. [(c) and (g)] Gradient vector values: respond to intensity change in any directions, especially the boundary
of the heart. [(d) and (h)] Our pericardium detection result: respond mostly to the pericardial sac.

determined by expert manual quantification. The overall Dice
coefficient was used to measure the voxel overlap rate between
them. We also calculated ten individual local Dice coefficients
that describe the performance of our algorithm on different

F. 6. The overall flowchart of the algorithm.

parts of the heart. To demonstrate that the pericardium
detection and active contours deformation algorithms greatly
improved the accuracy of the quantification results, we
provided the results calculated without the above two methods.

3. EXPERIMENTAL RESULTS
3.A. Image data

We analyzed consecutive noncontrast CT data collected for
the routine assessment of coronary calcium, at the Cedars-
Sinai Medical Center. Institutional Review Board (IRB)
authorization for retrospective analysis and patient consent
for such retrospective analysis was obtained in all cases. The
CT images were acquired on a 4-slice multislice CT scanner
(Siemens VolumeZoom) or an electron beam CT scanner
(GE Imatron e-Speed) using a standard prospectively ECG-
triggered imaging protocol for coronary calcium scoring.31

Each CT dataset comprised 50–60 image slices with a space
resolution of 512×512 pixels of size 0.68×0.68 mm2 and
a slice thickness of 2.5–3.0 mm. The datasets were selected
from consecutive, asymptomatic patients undergoing standard
coronary calcium scoring, and they were free of motion
artifacts.

3.B. Parameter settings

By analyzing the properties of the image and searching
in the parameter space, the best results were obtained with
the following parameter setting. In multiple coregistered
atlas segmentation, multiresolution approach was used (first
with matrix size of 256 and then full-resolution 512 matrix)
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for both affine and nonrigid B-spline registrations, in each
of which 512 iterations of the stochastic gradient descent
optimizer were performed. To estimate the derivative of the
mutual information, 4096 image samples were used; they
were randomly chosen for every iteration. For both affine and
nonrigid registrations, 32 histogram bins were used. Gaussian
smoothing with σ1= 2 voxels was performed on the difference
image Di before determining the weights for decision fusion.
In pericardium detection, the filter [Eq. (5)] used d = 3 voxels
as the half-width of the line to be detected, L = 12 voxels as
the length of the filter in the y-direction, and σ2 = 2 voxels
which is the standard deviation of the Gaussian function. In
geodesic active contour segmentation, the propagation scaling
is 0.6, curvature scaling is 3.0, advection scaling is 1.0,
maximum RMS error is 0.02, and number of iterations on
each slice is 500. The gradient vector flow snake requires two
parameters, which are used to generate the gradient vector
flow external force field to drive the snake algorithm: the
number of iterations (200) and the noise level of the input
image (2000.0).

3.C. Results

Our algorithm was applied to 50 CT datasets described
above. To compare the automatic quantification results with
expert manual delineation, two experienced cardiac imaging
readers, using consensus reading, manually traced the peri-
cardium for all patient datasets. The time required for each
expert to perform these tracings was about 10 min/case.

Epicardial fat volume for the 50 test datasets was 83.60
± 32.89 cm3 as measured by our automated algorithm and
81.85± 34.28 cm3 according to the expert manual quan-
tification, with no significant difference by comparison of
individual data points (p = 0.15). The Bland–Altman plot
[Fig. 7(a)] showed a positive bias of 1.75 cm3 and the 95%
limits of agreement ranged from −18.43 to 14.91 cm3 with
49 out of the 50 test cases within the limits of 2 standard
deviations. The algorithm quantification results were in

excellent correlation (R = 0.97, p < 0.0001) with the ground
truth measurements (Fig. 8). The mean Dice coefficient was
0.92 (range 0.88–0.95). The mean surface distance and Haus-
dorff distance in millimeter between manually drawn contours
and the automatically obtained contours were 0.6±0.9 mm
and 3.9±1.7 mm, respectively. Mean percentage difference
between the algorithm and experts was 9.7%±7.4%, similar to
the interobserver variability between 2 readers (8.0%±5.3%,
p= 0.3).

In another experiment performed on the same dataset, we
disabled the pericardium detection and geodesic active con-
tours deformation process in our algorithm to show that these
two steps improved the performance of our previous atlas-
based method32 significantly. Without pericardium detection
and geodesic active contours deformation process, epicardial
fat volume was underestimated as 63.55±29.17 cm3 which
was significantly different from the expert manual quantifi-
cation results (p < 0.0001). The Bland–Altman [Fig. 7(b)]
showed a large negative bias of −19.61 cm3 and 95% limits
of agreement ranged from −49.49 to 12.89 cm3 which was
wider than that of the proposed method. The quantified volume
by atlas had a lower correlation (R = 0.89, p < 0.0001) with
the expert results. The average Dice coefficient was 0.88
(range 0.74–0.91). The mean surface distance and Hausdorff
distance in millimeter were 1.0±1.1 mm and 5.5±2.7 mm,
respectively, which were both significantly different from
the results from our hybrid algorithm (p < 0.0001). Mean
percentage difference between the atlas-only algorithm and
experts was 26.5%± 15.9% which was significantly larger
than our proposed method (p < 0.0001) and the interobserver
difference (p < 0.0001). A multiatlas segmentation method,
weighted decision fusion with atlas selection (WDFS),18 has
been proved effective for cardiac and aortic segmentation.
We implemented and compared this method with our hybrid
approach. The results are detailed in Table I. To summarize,
the performance of WDFS method on our 50 test cases using
current 10 patient atlas images was lower than our proposed
hybrid method and slightly higher than “multiatlas only”

F. 7. Bland–Altman plot for epicardial fat quantification (comparison between the performances with/without pericardium detection and geodesic active
contours deformation). (a) The proposed algorithm: the bias was +1.75 cm3 and the 95% limits of agreement ranged from −18.43 to 14.91 cm3. (b) Use
multiatlas initial segmentation only: the bias was −19.61 cm3 and 95% limits of agreement ranged from −49.49 to 12.89 cm3.
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F. 8. Correlation between our algorithm and expert measurements.

method. The computation time was increased and proportional
to the number of registrations performed.

In the experiment testing whether GVF snakes24 can
better handle complex anatomic structure in the superior and
inferior sections of the heart, we replaced geodesic active
contours with GVF snakes in our algorithm. With GVF snakes,
epicardial fat volume was estimated as 69.89± 37.48 cm3

which was significantly lower compared to the expert manual
quantification results (p < 0.0001). While the correlation
was high (R = 0.94, p < 0.0001) for this method, the bias
was −11.96 cm3 and 95% limits of agreement ranged from
−37.19 to 13.27 cm3 which was wider than that of the
proposed method. The average Dice coefficient was 0.88
(range 0.72–0.95). The mean surface distance and Hausdorff
distance in millimeter were 1.0±0.8 mm and 5.6±2.7 mm,
respectively, which are both significantly different from the
results from our hybrid method (p < 0.01, p < 0.0001).
Percentage difference from the experts was slightly higher
than that of our hybrid method. Therefore, the overall
performance of GVF snake is slightly worse than that of the
currently utilized method.

To illustrate the performance of the proposed algorithm
in individual cases, we show three examples of our fat
quantification results. Two of them (Figs. 9 and 10) were
obtained from the 49 cases within the gray zone in the
Bland–Altman plot (Fig. 8) and the third one is the largest

outlier (Fig. 11) on which the algorithm had the worst
performance. The Dice coefficient of the three cases was
0.9168 in Fig. 9, 0.9453 in Fig. 10, and 0.8806 in Fig. 11.
In each figure, automatic epicardial fat segmentation results
are in the first row and expert tracing of the pericardium
is shown in the second row. As we can see from Figs. 9
and 10, the algorithm correctly detected the pericardium and
segmented out the epicardial fat bounded by it. Figure 11
demonstrates the worst performance among the 50 test
CT datasets. The contour which should overlap with the
pericardium went beyond the imaged pericardium, which led
to overestimation of the epicardial fat volume. In the superior
section [Figs. 11(a) and 11(d)], the contour was overdeformed
due to unsuccessful registration. Note also that some of the
epicardial fat voxels are incorrectly identified in the middle of
the heart due to the noisy data. We found that these CT data
had minor reconstruction truncation artifacts compared with
other normal coronary calcium score scans including those
in our atlas. This was also a severely obese patient (body
mass index (BMI) = 38 kg/m2), which contributed to the big
difference in the image appearance compared with the cases
included in the atlas as well as noisy data due to severe photon
attenuation in this patient. Significant difference between atlas
images and target images, artifacts, and high image noise
may cause unsuccessful rigid and nonrigid registration which
can introduce incorrect initialization for the active contours.
Even if the pericardium detector successfully identified the
pericardium, the active contours will not evolve to lock onto
it starting from a location far away from the pericardium.
This restriction is needed to avoid the contours evolving to
other objects when there is no visible pericardium. Most cases
with obesity in our experiment had EFV accurately quantified.
There were 9 cases out of 50 with BMI over 30 kg/m2 (obese
category). The mean difference of fat volume quantified for
obesity group was 10.0%±12.3% which was not significantly
larger than the overall mean difference 9.7%±7.4%.

In Fig. 12, we measured the local Dice coefficient by
grouping the transverse slices from superior to inferior into
10 regions and calculating Dice coefficient for each region
separately. It can be seen that the algorithm works very
well on the middle regions but loses some accuracy in
the outside regions especially in the superior section. The

T I. Performance comparison among the pure multiatlas-based method, WDFS method, multiatlas with GVF snakes, and proposed method.

Multiatlas only WDFS Multiatlas and GVF snakes Proposed method

EFV (cm3) 63.55±29.17a,b 69.08±36.11a,b 69.89±37.48a,b 83.60±32.89c

Mean difference (%) 26.5±15.9b 12.7±10.3b 11.6±9.6 9.7±7.4
Bias (cm3) −19.61 −11.16 −11.96 1.75
95% LoA (cm3) −49.49 to 12.89 −41.28 to 15.73 −37.19 to 13.27 −18.43 to 14.91
Correlation (R) 0.89b 0.91b 0.94 0.97
Dice coefficient 0.88 (range 0.74–0.91) 0.89 (range 0.76–0.92) 0.88 (range 0.72–0.95) 0.92 (range 0.88–0.95)
Mean surface distance (mm) 1.0±1.1b 1.0±0.9b 1.0±0.8b 0.6±0.9
Hausdorff distance (mm) 5.5±2.7b 5.1±2.9b 5.6±2.7b 3.9±1.7

aSignificantly different from expert results, p < 0.0001.
bSignificantly different from the current proposed method, p < 0.0001.
cNot significantly different from expert results, p = 0.15.
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F. 9. Epicardial fat segmentation example with Dice coefficient 0.9168 and quantification results 60.2 cm3 by the algorithm and 58.4 cm3 by experts.
(a)–(c) are expert pericardium tracing results on sample slices in superior section, middle section, and inferior section of the heart, respectively. (d)–(f) are the
corresponding pericardium tracing results by our automated algorithm. (g)–(i) are automated epicardial fat segmentation results, in which epicardial fat (fat
tissue close to heart within the pericardium) was labeled with mask.

complex anatomy in the superior section of the heart, where
the pericardium is attached to aorta pulmonary veins and
arteries, is a major contributor to this problem. There was
also less agreement in the inferior sections. It should be
also noted that in both superior and inferior sections there
is increased operator variability in placement of the reference
boundaries, which is likely contributing to the apparent lower
segmentation accuracy. Additionally, the contours bounding
the pericardium in the superior and inferior sections have
much less area than those in the middle part. Thus, they do
not contribute significantly to the overall Dice coefficient.

This performance was achieved in 60 s on a standard
Windows PC (2.8 GHz CPU, 2GB RAM). On average, 11 s

was used for rigid image registration, 24 s for nonrigid
registration, and 25 s for the evolution of active contours.

4. DISCUSSION

Automated robust segmentation of subtle anatomical
features in images is one of the biggest challenges in
accurate epicardial fat quantification. Some work has been
previously reported in this area. Figueiredo et al.33 proposed a
semiautomatic method for epicardial fat quantification. Their
segmentation algorithm sweeps the anterior region from 0◦ to
180◦ registering the higher intensity point along each direction
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F. 10. Epicardial fat segmentation example with Dice coefficient 0.9453 and quantification results 91.4 cm3 by the algorithm and 92.6 cm3 by experts.
(a)–(c) are expert pericardium tracing results on sample slices in superior section, middle section, and inferior section of the heart, respectively. (d)–(f) are the
corresponding pericardium tracing results by our automated algorithm. (g)–(i) are automated epicardial fat segmentation results, in which epicardial fat (fat
tissue close to heart within the pericardium) was labeled with mask.

to find control points belonging to the pericardium that appears
in the image as a very thin line. In their method, users
must manually set control points for spline interpolation in
order to localize the pericardium line. Following this step,
epicardial fat is quantified by considering only the pixels
in the fat window of the CT image. Another semiautomatic
method was proposed by Coppini et al.,34 in which the task is
separated into 2 steps. In the first step, an analysis of the
epicardial fat intensity distribution is carried out in order
to define suitable thresholds for a first rough segmentation.
In the second step, a variational formulation of level set
methods including a specially designed region homogeneity
energy based on Gaussian mixture models is used to recover

the spatial coherence and smoothness of fat deposits. This
method also requires an expert observer to scroll the slices
between the atrioventricular sulcus and the apex and to
place control points on the pericardium. Shahzad et al.35

proposed an automated epicardial fat quantification method
using a multiatlas segmentation approach,36 similar to the
atlas-based initialization part in our method. The authors
registered an atlas created with CTA data to the noncontrast
test CT scans to segment the pericardium. In our study in a
different population, we have shown (Sec. 3.B) by comparing
to the multiatlas segmentation part of our algorithm that global
registration of the heart region may not guarantee alignment of
the pericardium, and the later two steps (pericardium detection
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F. 11. Example of the worst performance on a patient with severe obesity (body mass index= 38 kg/m2) with Dice coefficient 0.8806 and quantification results
180.7 cm3 by the algorithm and 193.4 cm3 by experts (a)–(c) are expert pericardium tracing results on sample slices in superior section, middle section, and
inferior section of the heart, respectively. (d)–(f) are the corresponding pericardium tracing results by our automated algorithm. (g)–(i) are automated epicardial
fat segmentation results, in which epicardial fat (fat tissue close to heart within the pericardium) was labeled with mask.

and active contours) significantly improve the performance.
While we compared to consensus reading by two experts in our
study, rather than to independent experts, we achieved slightly
higher Dice coefficient (0.92 vs 0.89), higher correlation (0.97
vs 0.91), and lower bias (1.75 vs 16.6 cm3), which could be
the result of postatlas refinement of our algorithm. In their
approach, volume registration is performed on each of the
atlas cases to achieve EFV quantification in one subject, which
may be computationally demanding.

In contrast to these previous methods, we have applied a
knowledge-based thin membrane detection method to detect
the visible part of the pericardium. In order to accurately
lock the segmentation contours onto the pericardium, we used

active contour model driven by the pericardium detection
result supported by the robust localization of the inner thoracic
cavity and pericardium with a fast multiatlas registration
method. To lock the contour precisely to the pericardium,
we initialize active contours from the atlas labels and drive it
using a pericardium detector that extracts only the pericardium
in the images. In addition, in our approach when the multiatlas
is created, individual atlas scans are coregistered to a primary
image in order to avoid a costly one-to-all registration for
the test image. As a result, when segmenting a single test
image, the time-consuming registration process is performed
only once. Although the atlas-based segmentation result is
sensitive to the registration error between the primary atlas

Medical Physics, Vol. 42, No. 9, September 2015



5025 Ding et al.: Automated epicardial fat volume quantification from noncontrast CT 5025

F. 12. Local Dice coefficient from inferior section to superior section.

and the patient data, we used coregistered atlas to restrict
the computation time. In our study, the initial atlas-based
alignment was visually assessed for each case in our study
and was found to be correctly aligned. It is also useful to
note that the coregistered atlas-based segmentation is only
the rough initialization of the heart position and shape, not
the final contour which is expected to be accurate. We
have validated the effect of pericardium detection and active
contours deformation process in increasing the accuracy
of the algorithm by comparing the performance to our
atlas-based method32 and gradient vector flow snakes on
the same datasets (see Sec. 3.B). With only the multiatlas
segmentation, EFV was significantly underestimated, which
caused lower correlation, dice overlap, and higher bias. The
two Bland–Altman plots (Fig. 7) drawn under the same scale
and Table I illustrate the improvements in performance. To our
knowledge, ours is the first method to use such atlas-initialized
active contours to segment subtle anatomical features such as
the pericardium. The atlas incorporate prior information may
be changed by users, which may allow our framework to
be applicable to contrast-enhanced cardiac CT, particularly
coronary CT angiography.

There are some limitations in our approach. The selection
of cases used to create the atlas may affect the performance
of the initial segmentation of the heart and pericardium,
which is a common limitation among atlas-based methods.
We randomly selected the primary atlas instead of performing
leave-one-out or cross-validation analysis on the atlas sets
which might result in better performance. Sufficient number
and diversity in atlas cases may enable the algorithm to have
better performance on a wider range of test data. Nevertheless,
the use of the geodesic active contours as a second step in our
algorithm should minimize this problem.

5. CONCLUSION

Our hybrid approach of atlas registration and active
contour segmentation proves to be effective for the accurate

delineation of subtle image features such as the pericardium,
while it preserves the location and shape of the anatomical
structure of interest. This method will allow physicians and
researchers to quantify the epicardial fat volume in patients
quickly, largely without minimal user intervention.
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