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Abstract We present a space robotic system capable of
capturing a free-flying satellite for the purposes of on-orbit
satellite servicing. Currently such operations are carried out
either manually or through discrete-event scripted control-
lers. The manual approach is costly and exposes astronauts
to danger, while the scripted approach is tedious and brit-
tle. Consequently, there is substantial interest in performing
these operations autonomously, and the work presented here
is a step in this direction. To our knowledge, ours is the only
satellite-capturing system that relies on vision and cognition
to deal with an uncooperative satellite. Our innovative sys-
tem combines visual perception (object identification, recog-
nition, and tracking) with high-level reasoning in a hybrid
deliberative/reactive computational framework. The reaso-
ning module, which encodes a model of the environment,
performs deliberation to control the perception pipeline—
it guides the vision system, validates its performance, and
suggests corrections when vision is performing poorly. Fur-
thermore, it advises the behavioral controller to carry out its
tasks. Reasoning and related elements, among them inten-
tion, context, and memory, are responsible for the robustness
and reliability of the overall system. We demonstrate our pro-
totype system controlling a robotic arm that autonomously
captures a free-flying satellite in a realistic laboratory setting
that faithfully mimics on-orbit conditions.
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1 Introduction

Since the earliest days of the computer vision field, resear-
chers have struggled with the challenge of effectively combi-
ning low-level vision with artificial intelligence (AI). Some
of the earliest work involved the combination of image ana-
lysis and symbolic AI to construct robots capable of autono-
mous, task-driven operation [31,36]. These early attempts
met with limited success, in part because the vision pro-
blem is hard [43]. The focus of vision research then shif-
ted from vertically-integrated vision systems to low-level
vision modules. Currently available low- and intermediate-
level vision algorithms are sufficiently competent to support
subsequent levels of processing. Consequently, there now is
renewed interest in high-level vision, which is necessary if
we are to realize autonomous robots capable of performing
useful talks in dynamic, unpredictable environments.

In this paper, we report on research in the domain of space
robotics. In particular, we design a visually guided robotic
system capable of autonomously performing the challenging
task of capturing a non-cooperative, free-flying satellite for
the purposes of on-orbit satellite servicing. Our innovative
system features object recognition and tracking combined
with high-level symbolic reasoning within a hybrid delibera-
tive/reactive computational framework, called the Cognitive
Controller (CoCo).

The work reported herein was done in collaboration with
MD Robotics, Ltd.(currently MDA Space Missions), a Cana-
dian company that has supported human space flight since
the early 1980s through advanced robotic systems, such as
the Space Shuttle’s Canadarm and the Mobile Servicing Sys-
tem for the International Space Station. The company, which
undertakes extensive R&D projects in-house and through
collaborations with universities and research institutions,
regards autonomy as a necessary capability for future space
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robotics missions. The reported work was done as part of the
ROSA (Remote Operation with Supervised Autonomy) pro-
ject [17], which arose from this long-term vision. ROSA’s
goal is to advance the state of the art (operator commands
and discrete-event scripted control) by making possible a
remote system that can perform decisions in real time within a
dynamic environment using high-level artificial intelligence
techniques combined with robotic behavioral control and
machine vision.

1.1 On-orbit satellite servicing

On-orbit satellite servicing is the task of maintaining and
repairing a satellite in orbit. It extends the operational life of
the satellite, mitigates technical risks, reduces on-orbit losses,
and helps manage orbital debris. Hence, it is of interest to
multiple stakeholders, including satellite operators, manu-
facturers, and insurance companies [13,28]. Although repla-
cing a satellite is more cost-effective in some cases, on-orbit
servicing is critical for more expensive satellite systems, such
as space-based laser and global positioning system constella-
tions, or for one-of-a-kind systems like the Hubble telescope,
which costs $2.5 billion. As early as the 1980s, the National
Aeronautics and Space Administration realized the impor-
tance of on-orbit servicing for protecting their assets in space
[28].

Currently, on-orbit satellite servicing operations are car-
ried out manually; i.e., by an astronaut. However, manned
missions are usually very costly and there are human safety
concerns.1 Furthermore, it is currently impracticable to carry
out manned on-orbit servicing missions for satellites in geo-
synchronous equatorial orbit (GEO), as the space shuttle can
not reach them. Unmanned, tele-operated, ground-controlled
missions are infeasible due to communications delays, inter-
mittence, and limited bandwidth between the ground and the
servicer. A viable alternative is to develop the capability of
autonomous on-orbit satellite servicing.

1.2 Autonomous satellite rendezvous and docking

A critical first phase of any on-orbit satellite servicing mis-
sion, be it for the purpose of refueling, reorbiting, repai-
ring, etc., involves rendezvousing and docking with the satel-
lite. From the perspective of the software responsible for
controlling the sensory apparatus and robotic manipulator,
the rendezvousing step is the most interesting and challen-
ging. Once the satellite is secured, we can assume a static
workspace and handle the remaining steps using more pri-
mitive scripted controllers [17]. Most national and internatio-

1 The Hubble telescope captured the imagination of the public during its
highly publicized repair missions, which were carried out by astronauts.
By some estimates, these repairs cost taxpayers as much as $12 billion.

nal space agencies realize the important role of autonomous
rendezvous and docking (AR&D) operations in future space
missions and now have technology programs to develop this
capability [19,45].

Autonomy entails that the on-board controller be capable
of estimating and tracking the pose (position and orienta-
tion) of the target satellite and guiding the robotic manipu-
lator as it (1) approaches the satellite, (2) maneuvers itself
to get into docking position, and (3) docks with the satellite.
The controller should also be able to handle anomalous situa-
tions, which might arise during an AR&D operation, without
jeopardizing its own safety or that of the satellite. Another
requirement that is desirable for space operations is that of
sliding autonomy, where a human operator can take over the
manual operation of the robotic system at any level of the
task hierarchy [10,40]. Sliding autonomy enhances the relia-
bility of a complex operation and it expands the range and
complexity of the tasks that a robotic system can undertake.

1.3 Contributions

In this paper, we develop a visually-guided AR&D system
and validate it in a realistic laboratory environment that emu-
lates on-orbit lighting conditions and target satellite drift. To
our knowledge, ours is the only AR&D system that uses
vision as its primary sensory modality and can deal with an
uncooperative target satellite. Other AR&D systems either
deal with target satellites that communicate with the servi-
cer craft about their heading and pose, or use other sensing
aids, such as radar and geostationary position satellite sys-
tems [33].

Our system features CoCo, a new hybrid robot control fra-
mework that combines a behavior-based reactive component
and a logic-based deliberative component. CoCo draws upon
prior work in AI planning, plan-execution, mobile robotics,
ethology, and artificial life. Its motivation comes from the
fact that humans, who are sophisticated autonomous agents,
are able to function in complex environments through a com-
bination of reactive behavior and deliberative reasoning. We
demonstrate that CoCo is useful in advanced robotic systems
that require or can benefit from highly autonomous opera-
tion in unknown, non-static surroundings, especially in space
robotics where large distances and communication infra-
structure limitations render human teleoperation exceedingly
difficult. In a series of realistic laboratory test scenarios, we
subject our CoCo AR&D system to anomalous operational
events, forcing its deliberative component to modify existing
plans in order to achieve mission goals. The AR&D control-
ler demonstrates the capacity to function in important ways
in the absence of a human operator.

Our AR&D prototype meets the operational requirements
by controlling the visual process and reasoning about the
events that occur in orbit. The system functions as follows:
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Fig. 1 Images acquired during satellite capture. The left and center
images were captured using the shuttle bay cameras. The right image
was captured by the end-effector camera. The center image shows the
arm in hovering position prior to the final capture phase. The shuttle

crew use these images during satellite rendezvous and capture to locate
the satellite at a distance of approximately 100 m, to approach it, and to
capture it with the Canadarm—the shuttle’s manipulator

First, captured images are processed to estimate the cur-
rent position and orientation of the satellite (Fig. 1). Second,
behavior-based perception and memory units use contextual
information to construct a symbolic description of the scene.
Third, the cognitive module uses knowledge about scene
dynamics encoded using the situation calculus to construct
a scene interpretation. Finally, the cognitive module formu-
lates a plan to achieve the current goal. The scene description
constructed in the third step provides a mechanism to verify
the findings of the vision system. Its ability to plan enables
the system to handle unforeseen situations.

The performance of the system results from the coopera-
tion of its components, including low-level visual routines,
short and long-term memory processing, symbolic reaso-
ning, and the servo controllers of the robotic arm used to
capture the satellite. Competent, reliable low-level visual
routines are essential for meaningful higher-level proces-
sing. Consequently, the AR&D system depends upon the
reliable operation of the low-level object recognition, tra-
cking, and pose-estimation routines. The AR&D system is
able to handle transient errors in the low-level visual rou-
tines, such as momentary loss of tracking, by using short-term
memory facilities. However, it cannot accomplish the task
when the low-level vision algorithms altogether fail to track
the satellite, in which case the high-level routines abort the
mission. Stable servoing routines that account for the mani-
pulator’s dynamics are vital for a successful AR&D mission.
Hence, the AR&D prototype developed here assumes that
the robotic arm can servo competently under the guidance of
the higher level modules. Although we have not proved the
correctness of the reasoning module, it appears in practice to
meet the task requirements—autonomous and safe satellite
rendezvous and docking.

1.4 Overview

The remainder of this paper is organized as follows: In the
next section we present relevant prior work. We then present
the CoCo framework in Sect. 3. Section 4 explains the visual

servo behaviors for the task of satellite capturing. Section 5
describes the satellite recognition and tracking module. We
explain the reactive module in Sect. 6. Sections 7 and 8 des-
cribe the deliberative and the plan execution and monitoring
modules, respectively. Section 9 describes the physical setup
and presents results. Finally, Sect. 10 presents our conclu-
sions.

2 Related work

Early attempts at designing autonomous robotic agents
employed a sense-model-plan-act (SMPA) architecture with
limited success [31,38,39]. The 1980s saw the emergence of
a radically different, ethological approach to robotic agent
design, spearheaded by Brooks’ subsumption architecture
[9] and the mantra “the world is its own best model”. Most
notable among modern ethological robots is Sony Corpo-
ration’s robotic dog, AIBO [7], which illustrates both the
strengths (operation in dynamic/unpredictable environments)
and the weaknesses (inability to reason about goals) of the
strict ethological approach. Hybrid architectures, containing
both deliberative and reactive components, first appeared in
the late 1980s. A key issue is how to interface the two com-
ponents. Autonomous robot architecture (AuRA) binds a set
of reactive behaviors to a simple hierarchical planner that
chooses the appropriate behaviors in a given situation [5].
In Servo subsumption symbolic (SSS), a symbolic planner
controls a reactive module [12]. In ATLANTIS, the delibe-
rative module advises the reactive behaviors [2,16].

The state of the art in space robotics is the mars exploration
rover, Spirit, that visited Mars in 2004 [30]. Spirit is prima-
rily a tele-operated robot that is capable of taking pictures,
driving, and operating instruments in response to commands
transmitted from the ground, but it lacks any cognitive or
reasoning abilities. The most successful autonomous robot
to date that has cognitive abilities is “Minerva,” which takes
visitors on tours through the Smithsonian’s National Museum
of American History; however, vision is not Minerva’s
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primary sensory modality [11]. Minerva relies on other sen-
sors, including laser range finders and sonars. Such sen-
sors are undesirable for space operations, which have severe
weight/energy limitations.

Like ATLANTIS, CoCo consists of both deliberative and
reactive modules, featuring a reactive module that performs
competently on its own and a deliberative module that guides
the reactive module. CoCo was originally inspired by expe-
rience implementing self-animating graphical characters for
use in the entertainment industry. In particular, our approach
was motivated by the “virtual merman” of Funge et. al. [15],
which augments a purely behavioral control substrate [42]
with a logic-based deliberative layer employing the situation
calculus and interval arithmetic in order to reason about dis-
crete and continuous quantities and plan in highly dynamic
environments. CoCo differs in the following ways: first, its
deliberative module can support multiple specialized plan-
ners such that deliberative, goal-achieving behavior results
from the cooperation between more than one planner. The
ability to support multiple planners makes CoCo truly tas-
kable. Second, CoCo features a powerful and non-intrusive
scheme for combining deliberation and reactivity, which
heeds advice from the deliberative module only when it is
safe to do so. Here, the deliberative module advises the reac-
tive module through a set of motivational variables. Third,
the reactive module presents the deliberative module with a
tractable, appropriately-abstracted interpretation of the real
world. The reactive module constructs and maintains the abs-
tracted world state in real-time using contextual and temporal
information.

A survey of work about constructing high-level descrip-
tions from video is found in [20]. Knowledge modeling for
the purposes of scene interpretation can either be handcrafted
[3] or automatic [14] (i.e., supported by machine learning).
The second approach is not immediately feasible in our appli-
cation since it requires a large training set, which is difficult
to gather in our domain, in order to ensure that the system
learns all the relevant knowledge, and it is not always clear
what the system has learnt. The scene descriptions construc-
ted in [4] are richer than those constructed by our system;
however, they do not use scene descriptions to control the
visual process and formulate plans to achieve goals.

3 CoCo control framework

CoCo is a three-tiered control framework that consists of
deliberative, reactive, and plan execution and monitoring
modules (Fig. 2). The deliberative module encodes a
knowledge-based domain model and implements a high-level
symbolic reasoning system. The reactive module implements
a low-level behavior-based controller with supporting per-
ception and memory subsystems. The reactive module is

Deliberative Module

Plan Execution &
Monitoring Module

Reactive Module
Behavior routines & 

action selection
MotivationsAbstracted world

state

Plan execution/monitoring

Knowledge base Planners

Fig. 2 CoCo three-tiered architecture

responsible for the immediate safety of the agent. As such,
it functions competently on its own and runs at the highest
priority. At the intermediate level, the plan execution and
monitoring module establishes an adviser–client relationship
between the deliberative and reactive modules (Fig. 3).

In typical hybrid control frameworks, the reactive module
serves as a mechanism to safely execute commands produ-
ced through high-level reasoning [12,25] (a notable excep-
tion is [6]). A reactive module is capable of much more as
is shown by Tu and Terzopoulos [44], Blumberg [8], and
Arkin [7], among others. Agre and Chapman [2] observe that
most of our daily activities do not require any planning what-
soever; rather, deliberation occurs when a novel, previously
unseen situation is encountered. This further highlights the
importance of a reactive module in any autonomous robot.
CoCo features an ethologically inspired behavior based reac-
tive system fashioned after those developed for autonomous
characters in virtual environments [41,44].

In CoCo, the deliberative module advises the reactive
module on a particular coarse of action through motivational
variables. In contrast to other control architectures where the
deliberative module replaces the action selection mechanism
built into the reactive module [16], our approach provides a
straightforward mechanism for providing high-level advice
to reactive behavior without interfering with the action selec-
tion mechanism built into the reactive module.

Figure 2 illustrates the AR&D system realized within the
CoCo framework. The satellite recognition and tracking rou-
tines compute the position and orientation of the satellite and
supply the perceptual input to the reactive module, where the
servo behaviors that control for the kinematic and dynamic
actions of the robotic manipulator provide the relevant motor
skills.

4 Motor skills: visual servo behaviors

Satellite rendezvous and docking operations, like all space
missions, place stringent requirements on the safety of both
the astronauts and the equipment. Therefore, these missions
adhere to strict operational guidelines and fully scripted and
rehearsed activities. The Mobile Servicing Systems Guide
for International Space Station Robotic Systems [21] defines
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Reactive Module
(Perception, Memory, & Behaviors)

Plan Execution and Control Module

Symbolic Deliberation Module

Satellite Recognition &
Tracking System

Robotic ManipulatorStereo Camera Pair

Visual
Servo

}
}
}

CoCo

System Hardware

Support Software

Manned/Teleoperated
missions

Blind scripts
(Error detection with
minimal error handling)

Behavior controller
(Reflexive behaviors,
error handling)

Autonomous operation
(Plan generation, reasoning,
scene interpretation,
error handling)

Fig. 3 CoCo system architecture. The satellite rendezvous and
docking system comprises an ethologically-inspired behavior module
guided by a deliberative module with high-level reasoning abilities. We
list the mission capabilities corresponding to different levels of control
on the left. The degree of autonomy increases as we add more levels of
control. At the lowest level, for example, an operator uses the live video
feed from the stereo camera pair to tele-operate the robotic manipulator
(a.k.a. the chaser robot or the servicer) to dock with the target satel-
lite. At the next level of control, visual servo routines that depend upon
the target satellite pose estimation module enable the robotic manipu-
lator to automatically capture the target satellite. Here, the lack of error

handling capability renders the operation brittle at best. Besides, the
system requires a detailed mission script. The addition of the reactive
module results in a more robust autonomous operation, as the reflexive
behaviors allow the system to respond to the various contingencies that
might arise in its workspace. Still, however, the system can not formu-
late plans through deliberation to achieve its goals. Consequently, the
system requires a mission script. The top-most level of control boasts
the highest degree of autonomy. Here, the symbolic deliberation module
enables the system to generate the mission script on the fly through rea-
soning

approach trajectories and envelops as well as mission stages
for robotic manipulators during contact operations. During a
manned satellite capture operation, an astronaut controls the
robotic arm and moves the end-effector through a sequence
of way points, which are defined relative to the target satellite.
These way points are defined so as to reduce the time that the
end-effector spends in close proximity to the target satellite.

AR&D operations will most likely follow the operatio-
nal guidelines developed for manned operations, especially
the concepts of way points, incremental alignment, and stay-
out zones. Jasiobedzki and Liu [27] divide a satellite capture
operation into six phases (Fig. 4): (1) visual search, (2) moni-
tor, (3) approach, (4) stationkeep, (5) align, and (6) capture,
which comply with the robotic manipulator approach guide-
lines prescribed in [21]. During the visual search phase, the
cameras are pointed in the direction of the target satellite,
and images from the cameras are processed to compute an
initial estimate of the position and orientation of the satellite.
The monitor phase fixates the cameras on the detected satel-
lite while maintaining distance between the satellite and the
end-effector. The approach phase reduces the distance bet-
ween the end-effector and the target satellite while keeping
the cameras focused on the target. During stationkeeping,
the distance between the end-effector and the target is pre-
served and the cameras are kept locked onto the target. The
align phase controls all six degrees of freedom, aligning the
end-effector with the docking interface of the target satellite.

Finally, in the capture phase, the end-effector moves in to
dock with the satellite.

Jasiobedzki and Liu [27] also developed visual servo
behaviors corresponding to the six phases identified above.
Pose-based servo algorithms that minimize the error between
the desired pose and the current pose of the end-effector
implement the visual servo behaviors. Poses are defined with
respect to the end-effector or the target satellite. During tele-
operated missions, the desired poses are set by the opera-
tor; whereas, during autonomous operation the desired poses
are selected by the active servo behavior, such as monitor,
approach, etc. Likewise, the higher-level controller can also
set the desired poses, especially when the vision system is
failing, to move the end-effector along a particular trajec-
tory. The vision system, which estimates the transformation
between the current pose and the desired pose, provides the
error signal for the pose based servo routines. The visual
servo behaviors provide the motor skills that are essential for
successful satellite rendezvous and docking missions.

5 Visual sensors: satellite recognition and tracking

The satellite recognition and tracking module (Fig. 5) pro-
cesses images from a calibrated passive video camera-pair
mounted on the end-effector of the robotic manipulator and
estimates the relative position and orientation of the target
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Fig. 4 Six phases during a satellite rendezvous and docking opera-
tion [27]
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Fig. 5 Satellite recognition and tracking system

satellite [24]. It supports medium and short range satellite
proximity operations; i.e., approximately from 6 to 0.2 m.
The minimum distance corresponds to the separation bet-
ween the camera and the satellite in contact position.

The vision algorithms implemented rely mostly on the pre-
sence of natural image features and satellite models. During
the medium range operation, the vision system cameras view
either the complete satellite or a significant portion of it (left

image in Fig. 6), and the system relies on natural features
observed in stereo images to estimate the motion and pose
of the satellite. The medium range operation consists of the
following three configurations:

• Model-free motion estimation In the first phase, the vision
system combines stereo and structure-from-motion to
indirectly estimate the satellite motion in the camera refe-
rence frame by solving for the camera motion, which is
the opposite of the satellite motion [37].

• Motion-based pose acquisition The second phase
performs binary template matching to estimate the pose
of the satellite without using prior information [18]. It
matches a model of the observed satellite with the 3D data
produced by the last phase and computes a six degree of
freedom (DOF) rigid transformation that represents the
relative pose of the satellite. The six DOFs are solved in
two steps. The first step, which is motivated by the obser-
vation that most satellites have an elongated structure,
determines the major axis of the satellite. The second
step solves for the remaining four DOFs—the rotation
around the major axis and the three translations—through
exhaustive 3D template matching over the four DOFs.

• Model-based pose tracking The last phase tracks the
satellite with high precision and update rate by iterati-
vely matching the 3D data with the model using a version
of the iterative closest point algorithm [23]. This scheme
does not match high-level features in the scene with the
model at every iteration. This reduces its sensitivity to
partial shadows, occlusion, and local loss of data caused
by reflections and image saturation. Under normal opera-
tive conditions, model based tracking returns an estimate
of the satellite’s pose at 2 Hz with an accuracy on the
order of a few centimeters and a few degrees.

The short range operation consists of one configuration,
namely visual target based pose acquisition and tracking. At
close range, the target satellite is only partially visible and
it cannot be viewed simultaneously from both cameras (the
center and right images in Fig. 6); hence, the vision system
processes monocular images. The constraints on the approach
trajectory ensure that the docking interface on the target satel-
lite is visible from close range. Markers on the docking inter-
face are used to determine the pose and attitude of the satellite
efficiently and reliably at close range [24]. Here, visual fea-
tures are detected by processing an image window centered
around their predicted locations. These features are then mat-
ched against a model to estimate the pose of the satellite.
The pose estimation algorithm requires at least four points to
compute the pose. When more than four points are visible,
sampling techniques choose the group of points that gives the
best pose information. For the short range vision module, the
accuracy is on the order of a fraction of a degree and 1 mm
right before docking.
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Fig. 6 Images from a sequence
recorded during an experiment
(left image at 5 m; right at 0.2 m)
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The vision system returns a 4 × 4 matrix that specifies
the relative pose of the satellite, a value between 0 and 1
quantifying the confidence in that estimate, and various flags
that describe the state of the vision system.

The vision system can be configured on the fly depen-
ding upon the requirements of a specific mission. It provides
commands to activate/initialize/deactivate a particular confi-
guration. At present this module can run in four different
configurations, which may run in parallel. Each configura-
tion is suitable for a particular phase of the satellite servicing
operation and employs a particular set of algorithms. Active
configurations share the sensing and computing resources,
which reduces the mass and power requirements of the vision
system, but can adversely affect its overall performance.

6 The reactive module

CoCo’s reactive module is a behavior-based controller that
is responsible for the immediate safety of the agent. As such,
it functions competently on its own and runs at the highest
priority. At each instant, the reactive module examines sen-
sory information supplied by the perception system, as well
as the motivational variables whose values are set by the
deliberative module, and it selects an appropriate action. Its
selection thus reflects both the current state of the world and
the advice from the deliberative module. The second res-
ponsibility of the reactive module is to abstract a continuum
of low-level details about the world and present a tractable
discrete representation of reality within which the delibera-
tive module can effectively formulate plans. CoCo’s reac-
tive module comprises three functional units: perception,
memory, and behavior (Fig. 7). This functional decomposi-

tion is intuitive and facilitates the design process. The reactive
module is implemented as a collection of asynchronous pro-
cesses (Table 1), which accounts for its real-time operation.

6.1 Perception center

From an implementational point of view, one can imagine
two extremes: one in which a single process is responsible
for computing every feature of interest, and the other in
which every feature is assigned its own sensing process. In
the first scenario, the overall speed of sensing is determined
by the feature that takes the longest time to compute, whe-
reas a higher process management overhead is associated
with the second scenario to ensure that the sensed values are
coherent. For a particular application, it is up to the designer
to decide how best to implement the perception system. We
chose the second approach where various routines process
different perceptual inputs asynchronously in order to com-
pute higher order features, which are then immediately avai-
lable for subsequent processing. Each data item is assigned
a timestamp and a confidence value between 0 and 1, and it
is managed by the memory center, which is responsible for
preventing other processes from using outdated or incorrect
information.2

The perception center manages the vision system which
was described in Sect. 5. It decides which vision modules
to activate and how to combine the information from these
modules depending on their characteristics, such as proces-
sing times, operational ranges, and noise. In addition, the

2 Working memory is sometimes referred to as the short term memory
or STM.

123



F. Qureshi, D. Terzopoulos

Table 1 Four classes of
asynchronous processes
(behaviors) constitute the
reactive module

Class Input Output Functional unit

1 External External Behavior center (reflex actions)

2 External Internal Perception center (sensing)

3 Internal External Behavior center (motor commands)

4 Internal Internal Memory center (mental state maintenance)
Behavior center (high level behaviors)
Perception center (sensor fusion)

perception center incorporates an attention mechanism that
gathers information relevant to the current task, such as the
status of the satellite chaser robot, the docking interface sta-
tus, and the satellite’s attitude control status. The perception
center processes the raw perceptual readings that appear at its
inputs, constructs appropriate perceptual features, and stores
them in the working memory (memory center) for later use
by the behavior center during action selection and behavior
execution. A perceptual reading is either from an actual phy-
sical sensor (e.g., the docking interface sensor) or the result
of a multi-stage operation (e.g., the target satellite’s posi-
tion and orientation). Each perceptual reading is processed
independently. Consequently, different perceptual features
become available to the reactive module as soon as they are
computed.

The perception center includes daemon processes for
every perceptual input (Figs. 8, 9). The daemon processes,
which awaken whenever new information arrives at their
input ports, assign a confidence value to the readings, times-
tamp them, and push them up the perception pipeline for
subsequent processing. The confidence value for a reading is
in the range [0, 1], where 0 reflects a total lack of confidence
and 1 reflects absolute certainty. It is computed either by the
associated daemon or by the process responsible for produ-
cing the perceptual reading in the first place. For instance,
the vision routines determine the confidence for the estima-
ted position and orientation of the satellite and the daemon
responsible for the docking interface sensor assigns a value
of 1 to each new reading it receives from the sensor.

6.1.1 Communicating with the vision module

Figure 9 shows the interface to the vision sub-system. Long
range vision operates anywhere between 20 and 5 m, and
the maximum separation between the mock-up satellite and
robotic arm is roughly 6 m. To estimate the position and orien-
tation of the satellite, the perception center uses contextual
information, such as the current task, the predicted distance
from the target satellite, the operational ranges of the various
configurations, and the confidence values returned by the
active configurations. The perception center is responsible
for the transitions between the different vision configura-
tions, and it also performs a sanity check on the operation

Physical Sensors

Docking
Interface

Status
Attitude
Control

Daemons

Enabled/disabled Ok/error Engaged/disengaged

Working
Memory

<Value,Time,Confidence>

<Enabled,t,1.0> <Ok,t,1.0> <Engaged,t,1.0>

Passege of
Time

Passege of
Time

Passege of
Time

Memory
Management

Fig. 8 Daemon processes for monitoring and reading satellite attitude
control, docking interface, and robotic arm status sensors. The daemons
that collect information from the sensors are associated with the percep-
tion center (bottom row), whereas those that operate upon the working
memory belong to the memory center (top two rows)

of the vision sub-system. A decision about whether or not to
accept a new pose reading from an active vision module is
made by thresholding the confidence value of the reading.
The minimum acceptable confidence value for a medium
range estimate is 0.3 and it is 0.6 for a short range estimate.
These threshold values reflect the expected performance cha-
racteristics of the vision system and are selected to impose
more stringent performance requirements on the vision sys-
tem when the robotic arm is in close proximity to the target
satellite.

An αβ tracker validates and smoothes the pose readings
from the vision configurations (See [34] for details). The
validation is done by comparing the new pose against the
predicted pose using an adaptive gating mechanism. When
new readings from the vision system consistently fail the vali-
dation step, either the vision system is failing or the satellite
is behaving erratically and corrective steps are needed. The
αβ tracker thus corroborates the estimates of the visual rou-
tines. In addition, it provides a straightforward mechanism
for compensating for visual processing delays by predicting
the current position and orientation of the target satellite.
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Fig. 9 The perception center is in charge of the vision system that
implements satellite identification, recognition, and tracking routines.
The deamon processes associated with the visual processing awakens
when new vision readings become available and copy the new readings
into the working memory. The vision readings are validated and smoo-
thed using an αβ tracker. A fuzzy logic based sensor fusion scheme
combines the readings when multiple vision configurations are active.
A passage-of-time behavior associated with the satellite pose informa-
tion implements a forgetting mechanism, which prevents the reactive
system from using out-dated information

6.1.2 Visual processing handover

In the final stages of a successful satellite capture operation,
the distance between the robotic arm and the target satellite
can vary anywhere from around 6–0 m. The perception cen-
ter is responsible for transitioning the visual tracking task
from the medium to the short range module as the robotic
arm approaches the target satellite and vice versa as it pulls
back. The perception center uses the estimated distance of
the target satellite and the confidence values returned by the
active vision configurations to decide which vision module
to activate/deactivate.

The strategy for controlling the transition between medium
and short range vision modules is based on the following
intuitions:

• Since the vision modules are designed to perform reliably
only in their operational ranges, a vision module whose
estimate falls outside of its operational range should not
be trusted.

• When the estimates returned by the active vision module
nears its operational limits, activate the more reliable
vision module. The operational range of a vision module
and the estimated distance of the target satellite deter-
mines the suitability of the vision module. For example,
when the medium range vision module is active and the
target distance estimate is less than 2 m, the short range

vision module is activated. The short range vision module
uses the current pose of the satellite as estimated by the
medium range module to initialize satellite tracking.

• A vision module that is currently tracking the target satel-
lite should not be deactivated unless another vision
module has successfully initiated target tracking.

• Avoid unnecessary hand-overs.

We describe the hand-over strategy between different
vision modules in [34]. Figure 10 shows the operational sta-
tus of the vision module during a typical satellite capture
mission. Initially, the medium range vision module is tra-
cking the target; however, as the robotic arm approaches the
satellite and the distance to the satellite decreases below 2 m,
the short range module is activated. Once the short range
vision module successfully locks onto the satellite and com-
mences visual tracking, the medium range vision module is
deactivated to conserve energy.

6.1.3 Target pose estimation using multiple visual
processing streams

To improve the quality of target pose estimates and to ensure
smooth transition between different vision modules, we have
implemented a fuzzy logic based sensor fusion scheme that
combines pose estimates from active vision modules [34].
The sensor fusion scheme takes into account target pose
estimates along with their associated confidences and the
operational ranges of the vision modules to compute a weigh-
ted sum of the pose estimates from the active modules.
Currently, it works only with short and medium range vision
modules.3

The position p of the satellite is given by

p = wps + (1 − w)pm, (1)

where 0 ≤ w ≤ 1 is the weight assigned to the short-range
module’s estimate and which is determined by the fuzzy logic
based controller, and ps and pm are the position estimates
for the short and medium range modules, respectively. Simi-
larly, we combine the orientation estimates from the short and
medium range vision modules by expressing the orientation
as quaternions and interpolating between them using w:

q = (qsq−1
m )wqm, (2)

where qs and qm are the rotation estimates from the short
and medium range vision modules, respectively [34]. When
w is 0 the computed pose of the target is the medium range
estimate, whereas when w is 1, it is the estimate returned

3 The long range vision module is used only initially to locate and iden-
tify the target. Once the target is identified, the medium range module
takes over. At present, the long and medium range vision modules do
not operate concurrently.
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Fig. 10 a Medium range vision
hands over target tracking to the
short range vision module as the
chaser moves closer to the
target. b The prediction error of
the αβ tracker. The fuzzy logic
based sensor fusion scheme
fuses the information from
active vision modules to form a
single coherent target pose
estimate
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by the short range module. The details of the sensor fusion
module are provided in [34].

6.2 Behavior center

The behavior center manages the reactive module’s behavio-
ral repertoire. This by no means a trivial task involves arbitra-
tion among behaviors. The reactive module supports multiple
concurrent processes, and arbitrates between them so that
the emergent behavior is the desired one. We have, howe-
ver, benefited from dividing the reactive module into three
components (perception, behavior, and memory), minimi-
zing behavior-interaction across the components, thus sim-
plifying the management of behaviors.

At each instant, the action selection mechanism chooses
an appropriate high level behavior by taking into account
the current state of the world and the motivations. The cho-
sen action then activates lower level supporting behaviors,
as necessary. The current state of the world takes precedence
over the motivations, i.e., the reactive module will follow the
advice from the deliberative module only when the condi-
tions are favorable. When no motivation is available from the
deliberative module, the action selection mechanism simply
chooses a behavior that is the most relevant, usually one that
ensures the safety of the agent.

6.2.1 Motivational variables

The behavior controller maintains a set of internal mental
state variables, which encode the motivations of the robo-
tic arm: (1) search, (2) monitor, (3) approach, (4) align,
(5) contact, (6) depart, (7) park, (8) switch, (9) latch, (10)
sensor, and (11) attitude control. The mental state variables
take on values between 0 and 1, and at each instant the action
selection mechanism selects the behavior associated with
the motivational variable having the highest value. Priority
among the different motivations resolves behavior selection
conflicts when multiple motivations have the same magni-
tudes. Once the goal associated with a motivational variable is

fulfilled, the motivational variable begins to decrease asymp-
totically to zero.4 A similar approach to action selection is
used by Tu [44] in her artificial fish and by Shao [41] for his
autonomous pedestrians.

We model a level-of-interest to prevent one behavior from
excluding other behaviors while it infinitely pursues an unat-
tainable goal [8]. A maximum cutoff time is specified for
each motivational variable and if, for whatever reason, the
associated goal is not fulfilled within the prescribed cutoff
time, the value of the motivational variable starts to decay
to 0 (Fig. 11). We also employ a Minsky/Ludlow [29] model
of mutual inhibition to avoid behavior dither; a situation
where the action selection keeps alternating between two
goals without ever satisfying either of them. Mutual inhi-
bition is implemented by specifying a minimum duration for
which a behavior must remain active and by initially increa-
sing the value of the associated motivation variable (Fig. 12).

The values of the motivational variables are calculated as
follows:

mt =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

max
(
0, mt−1 − da∆t

(
1 − dbm2

t−1

))

when t > tc or the associated behavior
achieves its goal,

min
(

1, mt−1 + ga∆t
(

em2
t−1 − gb

))

when the associated behavior is first initiated,

where 0 ≤ ga ,gb,da ,db ≤ 1 are the coefficients that control
the rate of change in the motivational variables, which are set
empirically to 0.5, 0.99, 0.05, and 0.99, respectively.5 ∆t is
the time step. The values of a motivational variable at time
t and t − ∆t are mt and mt−1, respectively. The associated
cutoff time is tc. The cutoff time for a particular motivation

4 This is consistent with the “drive reduction theory” proposed by
Hull [22], whose central theme is that drive (motivation) is essential
in order for a response to occur; furthermore, a response is chosen so
as to reduce (or satisfy) the most pressing drive.
5 In a more general setting the values of the coefficients can be chosen
on a per-motivation basis.
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Fig. 11 Priority among motivations and level-of-interest modeling.
The deliberative module sets the value of motivational variables moni-
tor a and capture b to 1. The action selection mechanism selects the
monitor behavior, which has a higher priority than the approach beha-
vior. The monitor behavior fails to achieve its objectives within the
prescribed time, the motivational variable monitor begins to decay to 0.

When the value of the monitor variable is less than that of the approach
variable, the approach behavior is activated. In this particular scenario,
the approach behavior did not meet its objectives within the prescri-
bed time and the approach variable decreases to zero. In either case,
the decay in the motivational variables is due to the level-of-interest
modeling

Fig. 12 Mutual inhibition. The
monitor behavior has a higher
priority than the approach
behavior; however, when the
approach behavior is active, it
inhibits the monitor behavior for
some prescribed time and
prevents the monitor behavior
from becoming active. After the
inhibition period, the monitor
behavior becomes active,
deactivating the approach
behavior

0

1

ac
tiv

e

0

1

time time

sa
tis

fie
d

0 20 40 60 80 100 120 140 160 180

0 20 40 60 80 100 120 140 160 180

0 20 40 60 80 100 120 140 160 180

0 20 40 60 80 100 120 140 160 180

0

1
monitor

va
lu

e

0

1

pe
rc

ep
tu

al
su

pp
or

t

ac
tiv

e
sa

tis
fie

d
va

lu
e

pe
rc

ep
tu

al
su

pp
or

t

0

1

0

1

0 20 40 60 80 100 120 140 160 180

0 20 40 60 80 100 120 140 160 180

0 20 40 60 80 100 120 140 160 180

0 20 40 60 80 100 120 140 160 180

0

1
approach

0

1

(a) (b)

depends upon two factors: the motivation in question and
whether or not other motivational variables are greater than 0:

tc =
{

t1 when other motivational variables, > 0

t2 otherwise,

where 0 > t1 > t2 > ∞.
The higher-level deliberative module suggests an action

to the reactive module by setting the relevant motivational
variable(s) to 1 or 0. Any parameters associated with the
suggested action are passed directly to the behavior linked to
the motivational variable. It is up to the reactive module to
decide whether or when to execute the suggested action by
activating the associated behavior. Furthermore, the reactive
module is not responsible for communicating its decision or
status to the deliberative module. The plan execution and
monitoring module determines whether or not the suggested
action was ever executed or that it failed or succeeded through
the abstracted world state (Fig. 13).

A consequence of the design proposed here is that
the behavior-based reactive module is oblivious to the exis-
tence of the deliberative and plan execution and monito-
ring modules. The sole agenda of the reactive module is

to minimize the internal motivational variables by activa-
ting appropriate behaviors. The system operates at a dimini-
shed capacity when higher level modules are disabled. Built
into the reactive module is a provision for overriding the
action selection mechanism during a teleoperated mission;
i.e., when the system is being controlled by an astronaut.

6.3 Memory center

The memory center manages the short-term memory of the
agent. It holds the relevant sensory information, motivations,
state of the behavior controller, and the abstracted world state.
At each instant, it copies whatever new sensory information
is available at the perception center, and it provides a conve-
nient way of handling perception delays. At any moment,
the memory center has a time-delayed version of the sensory
information, and it projects this information to the current
instant. Thus, the behavior center need not wait for new sen-
sory information; it can simply use the information stored
in the memory center, which is responsible for ensuring that
this information is valid.

The memory center uses two behavior routines (per fea-
ture), self-motion and passage-of-time, to ensure the currency
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Fig. 13 a Perceptual support:
monitor behavior is deactivated
when perceptual support for the
monitor behavior vanishes.
b The approach behavior
initially increases the approach
variable to encourage
persistence, and the approach
variable decreases as the
approach behavior is doing its
job
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and coherence of the information. The robot sees its environ-
ment egocentrically. External objects change their position
with respect to the agent as it moves. The self-motion beha-
vior routine constantly updates the internal world represen-
tation to reflect the current position, heading, and speed of
the robot.

Each perceptual feature is represented as a tuple 〈Value,
Timestamp, Confidence〉 in the working memory. Value repre-
sents the present value of the feature, Timestamp stores the
time at which the feature was generated, and Confidence ∈
[0, 1] is the current confidence value of the feature. In the
absence of new readings from the perception center, the confi-
dence in the world state should decrease with time (Fig. 14).
How the confidence in a particular feature decreases depends
on the feature (e.g., the confidence in the position of a dyna-
mic object decreases more rapidly than that of a static object)
and the penalty associated with acting on the wrong infor-
mation.6

The ability to forget outdated sensory information is criti-
cal to the overall operation of the reactive module, providing
a straightforward mechanism to prevent it or the delibera-
tive module from operating upon inaccurate, or worse, incor-
rect information, and can be used to detect sensor failures.
The confidence value for a perceptual feature tends to zero
in the absence of fresh information from the relevant sensor.
The lack of new information from a sensor can be construed
as a malfunctioning sensor, particularly for sensors, such as
the docking interface status sensor, that periodically send new
information to the perception center.

6.3.1 Abstracted world state (AWS)

The reactive module requires detailed sensory information,
whereas the deliberative module employs abstract informa-
tion about the world. The memory center filters out unne-
cessary details from the sensory information and generates
the abstracted world state which expresses the world sym-
bolically (Fig. 15). The abstracted world state is a discrete,

6 Decreasing confidence values over time is motivated by the decay
theory for short term (working) memory proposed by Peterson and
Peterson in 1959 [32].
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Fig. 15 The abstracted world state represents the world symbolically.
For example, the satellite is either Captured, Close, Near, Medium, or
Far. In the memory center, the conversion from numerical quantities to
symbols takes into account the current state of the agent

multi-valued representation of an underlying continuous
reality.

Discretization involves dividing a continuous variable into
ranges of values and assigning the same discrete value to all
values of the continuous variable that fall within a certain
range. Discretization, however, is not without its problems.
When the value of the continuous variable hovers about a
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discretization boundary, the discretized value can switch back
and forth between adjacent discrete values, which can pose
a challenge for a process that relies on the stability of a dis-
crete variable. We address this problem by imitating hyste-
resis during the discretization operation. We illustrate our
strategy in Fig. 16a, where variable y resists a change from
α to β and vice-versa; thereby, avoiding alternating between
the two values when the value of x fluctuates about 0.5. A
related approach is taken when converting binary (or dis-
crete multi-valued) sensory information to binary (or multi-
valued) fluents. Consider, for example, mapping a binary
variable x ∈ [0, 1] to y ∈ [α, β],
y =

{
α if x = 0
β if x = 1

.

The value of y does not faithfully follow the value of x .
Rather, the value of y is only switched from α to β when

x

y

10 0.5 t

x
1

0

y= y=

(a) (b)

Fig. 16 Emulating hysteresis during discretization. a y is a discreti-
zation of x that takes values between 0 and 1. If y is α and the value
of x > 0.5 + ∆, y becomes β. Otherwise, if y is β and the value of
x < 0.5 − ∆, then y becomes α. b x ∈ [0, 1] is mapped to y ∈ [α, β].
The state y = α indicates that x = 0 and y = β indicates that x = 1.
The variable y resists changing its value from α to β and vice-versa,
which allows y to exhibit more stable behavior by ignoring spurious
changes in x

the value of x is consistently 1. Similarly, the value of y is
switched from β to α when the value of x stays at 0.

Using the above scheme, we convert continuous sensory
information, such as the estimated distance from the satellite
and the estimated speed of the satellite, as well as binary
values, such as the status of the latch, to appropriate fluents
that comprise the abstracted world state. The list of fluents is
provided in Table 2.

7 The deliberative module

The deliberative module endows our agent with the abi-
lity to plan its actions, so that it can accomplish high-level
tasks that are too difficult to carry out without “thinking
ahead.” To this end, the deliberative module maintains a set
of planners, each with its own knowledge base and plan-
ning strategy. Generally, the world behaves much more
predictably at higher levels of abstraction. Hence, each plan-
ner understands the world at an abstract level, which makes
reasoning tractable, as opposed to ill-conceived attempts to
formulate plans in the presence of myriad low-level details.
The lowest level of abstraction for a particular planner is
determined by the reactive module explicitly through the
abstracted world state and implicitly through the behaviors
that it implements. The latter constitute the basis (grounded
actions) of the plans generated by the deliberative module.
For any application, it is essential to choose the right level of
abstraction (Table 2).

Symbolic logic provides the right level of abstraction for
developing high level planners that elegantly express abs-
tract ideas. We advocate using a high-level agent language,
such as GOLOG [26], to develop planners for the deliberative

Table 2 The abstracted world state for the satellite servicing task

Fluents/arity Values Description

fStatus/1 On/off Status of the servicer

fSatPosConf/1 Yes/no Confidence in the estimated pose of the satellite

fSatPos/1 Near/medium/far/contact Distance from the satellite

fSatSpeed/1 Yes/no Whether the satellite’s relative speed is within the acceptable limits

fLatch/1 Unarmed/armed Status of the latch (docking interface)

fSatCenter/1 Yes/no Whether the satellite is in the center of the field of view

fSatAlign/1 Yes/no Whether servicer is aligned with docking interface of the satellite

fSensor/2 Short/medium, on/off Current configuration of the vision system

fError/1 Sensor/shadow/any/no Error status

fSatContact/1 False/true Whether satellite is already docked

fSatAttCtrl/1 On/off Whether or not the satellite’s attitude control is active

fSun/1 Front/behind Location of the Sun relative to the servicer

fRange/1 Near/far Distance from the satellite

The choice of fluents describing the abstracted world state depends upon the target application
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Table 3 Primitive actions available to the planner that creates plans to accomplish the goal of safely capturing the target satellite

Actions/#args Arguments’ values Description

aTurnon/1 On/off Turns on the servicer

aLatch/1 Arm/disarm Enables/disables the latching mechanism

aErrorHandle/1 Informs the operator of an error condition

aSensor/2 Medium/near, On/off Configures the vision system

aSearch/1 Medium/near Initiates medium/short visual search sequence

aMonitor/0 Initiates monitor phase

aAlign/0 Initiates align phase

aContact/0 Moves in to make contact

aGo/3 Park/medium/near, Park/medium/near, Vis/mem Moves to a particular location using either current infor-
mation from the vision system (if vision system is working
satisfactorily) or relying upon the mental state

aSatAttCtrl/1 Off/on Asks ground station to turn off the satellite attitude control

aCorrectSatSpeed/0 Informs the operator that the satellite is behaving erratically

module. Consequently, the deliberative module comprises
high-level, non-deterministic GOLOG programs whose exe-
cution produce the plans for accomplishing the task at hand.
GOLOG is a logic programming language for dynamic
domains with built-in primitives (fluents) to maintain an
explicit representation of the modeled world, on the basis
of user supplied domain knowledge. The domain knowledge
consists of what actions an agent can perform (primitive
action predicates), when these actions are valid (precondition
predicates), and how these actions affect the world (succes-
sor state predicates). GOLOG provides high level constructs,
such as if-then-else and non-deterministic choice, to specify
complex procedures that model an agent and its environ-
ment. A GOLOG program can reason about the state of the
world and consider various possible courses of action before
committing to a particular choice, in effect performing deli-
beration. The GOLOG language has been shown to be well
suited to applications in high-level control of robotic sys-
tems, industrial processes, software agents, etc. An advantage
of GOLOG over traditional programming languages like C
is that programs can be written at a much higher level of
abstraction. GOLOG is based on a formal theory of action
specified in an extended version of the situation calculus [35],
so GOLOG programs can be verified using theorem proving
techniques. A prototype GOLOG interpreter for SWI-Prolog
[1] is presented in [34]. We treat GOLOG programs as plan-
ners; hence, in the remainder of this paper we will use the
term planner and GOLOG program interchangeably.

The symbolic reasoning module comprises two specia-
list planners. Planner A is responsible for generating plans
to achieve the goal of capturing the target satellite. Plan-
ner B attempts to explain the changes in abstracted world
state. It effectively produces high level explanations of what
might have happened in the scene (workspace). The primitive
actions available to the two planners are listed in Tables 3

and 4, respectively. The planners experience the world
through the fluents (AWS) listed in Table 2.

On receiving a request from the plan execution and moni-
toring module, the deliberative module selects an appropriate
planner, updates the planner’s world model using the abstrac-
ted world state, and activates the planner. The planner com-
putes a plan, which is a sequence of zero (when the planner
cannot come up with a plan) or more actions, to the delibe-
rative module, which then forwards it to the plan execution
and monitoring module. Each action of an executable plan
contains execution instructions, such as which motivational
variables to use, and specifies its preconditions and postcon-
ditions.

7.1 Scene interpretation

The cognitive vision system monitors the progress of the
current task by examining the AWS, which is maintained
in real-time by the perception and memory module. Upon
encountering an undesirable situation, the reasoning module
tries to explain it by constructing an interpretation. If the
reasoning module successfully finds a suitable interpretation,
it suggests appropriate corrective steps; otherwise, it suggests

Table 4 Primitive actions available to the planner that constructs abs-
tract, high-level interpretations of the scene by explaining how the AWS
is evolving

Actions/#args Arguments’ values Description

aBadCamera/0 Camera failure

aSelfShadow/0 Self-shadowing phenomenon

aGlare/0 Solar glare phenomenon

Sun/1 Front/behind The relative position of the Sun

aRange/1 Near/medium Distance from the
satellite

123



Intelligent perception and control for space robotics

the default procedure for handling anomalous situations. The
default error handling procedure for our application, like all
space missions, is to safely abort the mission, i.e., to bring
the robotic manipulator to its rest position while avoiding
collisions with the target satellite. The procedure for finding
explanations is as follows:

1: Construct plans that account for the current error condi-
tions by using the knowledge encoded within the error
model.

2: Sort these plans in ascending order according to their
length. (We disregard the default plan, which usually has
a length of 1.)

3: for all Plans do
4: Simulate plan execution; this consists of querying the

perception and memory unit or asking the operator.
5: if The execution is successful then
6: The current plan is the most likely explanation.
7: Break
8: end if
9: end for

10: if No explanation is found then
11: The default plan is the most likely explanation.
12: end if
13: Generate a solution based on the current explanation; this

requires another round of reasoning.
14: if The solution corrects the problem then
15: Continue doing the current task.
16: else
17: Abort the current task and request user assistance.
18: end if

A fundamental limitation of the proposed scene interpre-
tation strategy is that it requires a detailed error model—i.e.,
a knowledge base of what might go wrong and how—and
for a general scene it might be infeasible to acquire this
knowledge. Space missions, however, can benefit from the
approach, since they are usually studied in detail for months
and sometimes, years by a team of engineers and scien-
tists who run through all the foreseeable scenarios. Indeed,
on-orbit missions are carefully planned and highly scripted
activities. Furthermore, they generally take place in unclut-
tered environments, so the number of possible events can be

managed. Therefore, our framework appears to be useful for
vision-based robotic systems for AR&D.

7.2 Cooperation between active planners

The planners cooperate to achieve the goal—safely captu-
ring the satellite. The two planners interact through a plan
execution and monitoring unit to avoid undesirable interac-
tions. Upon receiving a new “satellite capture task” from the
ground station, the plan execution and monitoring module
activates Planner A, which generates a plan that transforms
the current state of the world to the goal state—a state where
the satellite is secured. Planner B, on the other hand, is only
activated when the plan execution and monitoring module
detects a problem, such as a sensor failure. Planner B gene-
rates all plans that will transform the last known “good” world
state to the current “bad” world state. Next, it determines the
most likely cause for the current fault by considering each
plan in turn. After identifying the cause, Planner B suggests
corrections. In the current prototype. Possible corrections
consist of “abort mission,” “retry immediately,” and “retry
after a random interval of time” (the task is aborted if the
total time exceeds the maximum allowed time). Finally, after
the successful handling of the situation, Planner A resumes
(Tables 5, 6).

8 Plan execution and monitoring module

The Plan Execution and Monitoring (PEM) module inter-
faces the deliberative and reactive modules. It initiates the
planning activity in the deliberative module when the user has
requested the agent to perform some task, when the current
plan execution has failed, when the reactive module is stuck,
or when it encounters a non-grounded action that requires
further elaboration. The execution is controlled through pre-
conditions and postconditions specified by the plan’s actions.
Together, these conditions encode plan execution control
knowledge. At each instant, active actions that have either
met or failed their postconditions are deactivated, then un-
executed actions whose preconditions are satisfied are activa-
ted (Fig. 17). Together the preconditions and postconditions
constitute the plan execution control knowledge.

Table 5 A linear plan generated by the GOLOG program to capture the target

Starting world state:
fStatus(off) ∧ fLatch(unarmed) ∧ fSensor(all,off) ∧ fSatPos(medium) ∧ fSatPosConf(no) ∧ fSatCenter(no)

∧ fAlign(no) ∧ fSatAttCtrl(on) ∧ fSatContact(no) ∧ fSatSpeed(yes) ∧ fError(no)

Execution result:
aTurnon(on) → aSensor(medium,on) → aSearch(medium) → aMonitor → aGo(medium,near,vis) →

aSensor(short,on) → aSensor(medium,off) → aAlign → aLatch(arm) → aSatAttCtrl(off) → aContact

The GOLOG program is provided in [34]
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Table 6 Planner B uses the error model to determine possible expla-
nations of an error condition

Starting world state:
fRange(unknown) ∧ fSun(unknown) ∧ fSatPosConf(yes)

Proposed explanation 1: aBadCamera

Proposed explanation 2: aSun(front) → aGlare

Proposed explanation 3: aRange(near)→aSun(behind)→aSelfShadow

The plan execution and monitoring module executes these plans in
sequence to pick the most likely cause of the error. A solution is sug-
gested once the cause of the error is identified

from previous action

Failed

Success

Check
Preconditions

Execute

Progress

Success

Check
Postconditions

Failed

to next action

Plan Failed

Plan FailedProgress

Grounded Action (Reactive Module)
Conditional Action (Plan-execution Module)
Heirarchical Action (Deliberative Module)

Fig. 17 The plan execution and monitoring module sequentially exe-
cutes each action. It checks the current action’s preconditions until
they succeed or fail. If they succeed, it enters the current action’s
execution/postcondition-check loop, wherein it activates the current
action’s execution code until the postconditions either succeed or fail.
Upon success, it proceeds to the next action

The PEM module can handle linear, conditional, and hie-
rarchical plans; thereby, facilitating the sliding autonomy
capability of the overall controller (Fig. 18). Plans construc-
ted by the deliberative module have a linear structure. Every
action of the plan is directly executable on the reactive
module, and each action must succeed for the plan to achieve
its objectives. Scripts uploaded by human operators usually
have a conditional/hierarchical structure. For conditional
plans, it is not sufficient to execute each action in turn, rather
the outcome of an action determines which of the remaining
actions to execute next. On the other hand, in hierarchical
plans some actions acts as macros that represent other plans
that have to be computed at runtime. The plan execution and
monitoring module handles linear, conditional, and hierar-
chical plans through the following plan linearization process
(Fig. 18):

1: if Current action is “grounded” (i.e., directly executable
on the reactive module) then

go(l1,l2) pick(0) go(l2,l3) drop(())

Reactive Module 

Suggesting a grounded action to the reactive module 

 PEM suggests a grounded action to the
reactive module

go(l1,l2)

pick(0) go(l2,l3) drop(())

search(0) go(cur,l3) drop(())pick(0)

If O is at l2 

go(l1,l2) search(0) go(cur,l3) drop(())pick(0)

Run-time linearization of conditional plan 

PEM evaluates the condition, and the out-come
determines which actions are chosen

go(l1,l2) go(l2,l3) drop(())

openhand closehandreach(0)

pick(0)

go(l1,l2) go(l2,l3) drop(())

Run-time completion of incomplete plans 

At run-time, the PEM expands the non-grounded
action as a linear plan

(a)

(b)

(c)

Fig. 18 PEM module executing linear, conditional, and hierarchical
plans

2: Send to the reactive module.
3: else if Current action is “conditional” (e.g., a sensing

action, etc.) then
4: Evaluate condition and pick the next action based on

the outcome.
5: else if Current action is “non-grounded” (i.e., it requires

further elaboration) then
6: Perform elaboration and replace the hierarchical action

with the outcome (plan stitching).
7: else
8: Unknown action type. Plan execution failure.
9: end if

The PEM module can execute multiple actions concur-
rently; however, it assumes that the plan execution control
knowledge for these plans will prevent race conditions, dead-
locks, and any undesirable side affects of concurrent execu-
tion.
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8.1 Plan execution control knowledge

The PEM relies upon execution control knowledge to pro-
perly execute a plan. Execution control knowledge is defined
over the abstracted world state, and it consists of conditions
that must hold before, during, or after an action (or a plan).
Some of these conditions span the entire plan while others
are action-dependent. Together these conditions answer the
following questions that are vital for the correct execution
of a plan:

• Plan validity (a plan might become irrelevant due to some
occurrence in the world).

• Action execution start time.
• Now.
• Later.
• Never; the plan has failed.

• Action execution stop time.
• Now; the action has either successfully completed or

failed.
• Later; the action is progressing satisfactorily.

For our application, the plan execution control knowledge
is readily available in the form of precondition action axioms
and successor state axioms.

9 Results

We have developed and tested the CoCo AR&D system in
a simulated virtual environment, as well as in a physical lab
environment at MDA Space Missions, Ltd., that faithfully
reproduces on-orbit movements and the illumination condi-
tions of the space environment—strong light source, very
little ambient light, and harsh shadows. The physical setup
consisted of the MD Robotics, Ltd., proprietary “Reuseable
Space Vehicle Payload Handling Simulator,” comprising two
Fanuc robotic manipulators and the associated control soft-
ware. One robot with the camera stereo pair mounted on its
end effector acts as the servicer. The other robot carries a
grapple-fixture-equipped satellite mock-up and synthesizes
realistic satellite motion.

The capture procedure is initiated by a single high-level
command from the ground station. Upon receiving the com-
mand, the system initializes the long-range vision module
to commence a visual search procedure. Once the satellite
is found, and its identity confirmed, the system guides the
robotic arm to move closer to the satellite. The performance
of the long-range vision module deteriorates as the separa-
tion between the robotic arm and the satellite decreases due
to the fact that the cameras are mounted on top of the end-
effector. In response, the cognitive vision system turns on the
medium range vision module and it turns off the long-range

vision module to conserve power once the medium range
system is fully initialized and reliably tracking the satellite.
Next, the robotic is arm tries to match the satellite’s linear
and angular velocities, a procedure known as station kee-
ping. Then, short-range vision processing is initiated, and a
message is sent to the ground station to turn off the satel-
lite’s attitude control system. The robotic arm should not
capture a satellite whose attitude control system is functio-
ning, as that might destroy the satellite, the robotic arm, or
both. When the attitude control system is inactive, the satel-
lite begins to drift; however, the robotic arm follows it by
relying upon the short-range vision system. Upon receiving
a confirmation from the ground station that the satellite’s atti-
tude control system is off, the robotic arm moves in to make
contact.

We performed 800 test runs in the simulated environment
and over 25 test runs on the physical robots. For each run,
we randomly created error conditions (see Table 7), such as a
vision system failure and/or hardware failures. The cognitive
vision controller gracefully handled all of them and met its
requirements; i.e., safely capturing the satellite using vision-
based sensing (Fig. 6 shows example sensed images) while
handling anomalous situations. The controller never jeopar-
dized its own safety nor that of the target satellite. In most
cases, it was able to guide the vision system to re-acquire
the satellite by identifying the cause and initiating a sui-
table search pattern. In situations where it could not resolve
the error, it safely parked the manipulator and informed the
ground station of its failure.

Figure 19 shows a satellite capture sequence in the lab,
where the servicer was able to capture the satellite without
incident.

During the capture sequence shown in Fig. 20, we simula-
ted a vision system failure. The servicer gracefully handled
the error by relying upon its cognitive abilities and success-
fully captured the satellite. When there is an error, such as
a vision system failure, the reactive system responds imme-
diately and tries to increase its separation from the satellite.
In the absence any new perceptual information, the system
relies upon its time-aware and context-sensitive mental state.
Meanwhile, the deliberation module is using its knowledge
base to explain the error and suggest a recovery.

Figure 21 shows a simulated satellite rendezvous seque-
nce. Upon receiving a dock command from the ground sta-
tion, the servicer initiates a visual search behavior, which
points the cameras towards the incoming satellite (Fig. 21a,b).
Once the satellite’s identity is confirmed, the servicer begins
to approach it (Fig. 21c). Initially, the servicer only has infor-
mation about the position of the satellite; however, as it
approaches the satellite, it activates the medium vision
module. The medium range vision processing estimates
the orientation of the satellite. The servicer aligns itself with
the grapple fixture of the satellite, following an arc around
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Table 7 CoCo handled these
error conditions that were
randomly generated during
various test runs

Vision system errors Hardware errors

Camera failure Grapple fixture error

Self shadowing Joints error (critical)

Solar glare Satellite’s attitude control error

Failed transition between vision modules

Fig. 19 The servicer robot
captures the satellite using
vision in harsh lighting
conditions like those in orbit

Fig. 20 Despite a simulated
vision system failure, the
servicer robot captures the
satellite using vision by making
use of its cognitive abilities. On
the right of each frame, we show
the view from the simulation
environment that runs the
controller code. The simulation
environment communicates with
the physical robots over the
network. Here, the wireframe
represents the position of the
satellite as estimated by the
robotic arm. The 3D model of
the satellite represents the actual
position of the satellite
according to the sensors on the
Fanuc robot arm. The gray
cylinder represents the position
of the chaser robot end-effector
according to the telemetery
information. Note that the
estimated position is maintained
in the absence new perceptual
information (Frames 3 and 4).
A vision failure was induced by
shutting off the ambient light

(Frame 1) Recieved a capture command. (Frame 2) Target acquired.

(Frame 3) Approaching target. (Frame 4)Vision system failure.

(Frame 5) Safety manuever: departure. (Frame 6) Target re-aquired.

(Frame 7) Approaching target. (Frame 8) Aligning with the docking interface.

(Frame 9) Station keeping. (Frame 10) Moving in to make contact.

(Frame 11) Accounting for satellite drift. (Frame 12) Successful contact!

the satellite to avoid the delicate solar panels (Fig. 21d–f).
The servicer initiates stationkeeping, where it matches
the position and orientation of the satellite (Fig. 21g). At
this stage, the servicer’s view is limited to the grapple fix-
ture mounted on the satellite, as the cameras are mounted
on the docking mechanism of the servicer. Therefore, the
servicer activates the short range vision module. Finally, it
moves towards the satellite to make contact and capture it
(Fig. 21h).

10 Conclusion

Like the earliest machine vision systems [31,36], future
applications of vision will require more than just image ana-
lysis. They will also need a high-level AI component to guide
the vision system in a deliberate, task-appropriate manner,
to diagnose sensing problems, and to take corrective actions.
The AI system must rely on a low-level reactive component
responsible for sensorimotor control.
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Fig. 21 Satellite rendezvous
simulation

(a) Searching for the target. (b) Target identified; Long range vision.

(c) Moving towards the target. (d) Aligning with the docking interface
while avoiding the solar panels.

(e) Aligning with the docking interface. (f) Aligning with the docking interface.

(g) Making contact. (h) Target captured.

We have demonstrated such a system in the domain of
space robotics, specifically in the context of on-orbit satellite
autonomous rendezvous and docking. Our practical vision-
based robotic system interfaces object recognition and
tracking with classical, logic-based AI through a behavior-
based perception and memory unit. Using its reactive senso-
rimotor and deliberative reasoning abilities, it successfully
performs the complex task of autonomously capturing a free-
orbiting satellite in harsh illumination conditions. In most of
our simulation tests as well as in a commercial robotic lab

environment that emulates the relevant real-world conditions,
when prompted by a single high-level command our system
successfully captured the target satellite while dealing with
anomalous situations.
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