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Abstract
Spiking neural networks (SNNs) are comprised of artificial neurons that, like their biological counterparts, communicate
via electrical spikes. SNNs have been hailed as the next wave of deep learning as they promise low latency and low-power
consumption when run on neuromorphic hardware. Current deep neural network models for computer vision often require
power-hungry GPUs to train and run, making them great candidates to replace with SNNs.We develop and train a biomimetic,
SNN-driven, neuromuscular oculomotor controller for a realistic biomechanical model of the human eye. Inspired by the ON
and OFF bipolar cells of the retina, we use event-based data flow in the SNN to direct the necessary extraocular muscle-driven
eye movements. We train our SNN models from scratch, using modified deep learning techniques. Classification tasks are
straightforward to implement with SNNs and have received the most research attention, but visual tracking is a regression
task. We use surrogate gradients and introduce a linear layer to convert membrane voltages from the final spiking layer into
the desired outputs. Our SNN foveation network enhances the biomimetic properties of the virtual eye model and enables it to
perform reliable visual tracking. Overall, with event-based data processed by an SNN, our oculomotor controller successfully
tracks a visual target while activating 87.3% fewer neurons than a conventional neural network.

Keywords Deep learning · Bio-inspired vision · Visual tracking · Spiking neural networks

1 Introduction

The human visual system is an astounding computational
machine. Photons impact the retina and neural processing
in the visual cortex enables the performance of multiple
visual tasks quickly, with high precision, and using very lit-
tle energy. Artificial neural network (ANN)-based computer
vision algorithms have come far in emulating the perfor-
mance of the visual cortex. Spiking neural networks (SNNs),
comprised of interconnected neurons that, like their bio-
logical counterparts, communicate via electrical spikes, are
hailed as the “third wave of deep learning” [1]. Many tra-
ditional AI tasks can be achieved with SNNs implemented
using the appropriate hardware, which is referred to as “neu-
romorphic” and currently takes the form of neuromorphic
chips [2].

We explore the design and training of an SNN in a com-
puter vision task. Our work builds upon the development of a
realistic, biomechanical simulation model of the human eye
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with a comprehensive set of ocular organs and a neuromuscu-
lar oculomotor control system [3, 4] (Fig. 1). The overarching
objective of our work is to enhance the biological realism
of the oculomotor controller, particularly the deep neural
network within the perception subsystem of the controller,
which was referred to in [5] as the foveation LiNet (locally
connected irregular network). Although the biomimetic eye
model can synthesize realistic eye motion, the “neurons”
comprising the ANNs in its oculomotor controller are only
high-level abstractions of biological neurons. Our goal is to
enhance the biological realism through the use of spiking
neurons interconnected to form SNNs. To this end, we first
explore how to encode the relevant signals into spike trains. It
remains unclearwhether the human visual systemuses rate or
latency encoding [6], both of which we consider in our work.
Additionally, we train our SNN on event-based sensory data,
which emulates the on-off bipolar cells of the retina.

The present paper is an extended version of publication
[7].
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Fig. 1 a Cross section of a detailed model of the left eye (image from
[3]). Black dots indicate the positions of retinal photoreceptors on the
hemispherical fundus of the eyeball. b Noisy log-polar distribution of
the retinal photoreceptors. c Ray tracing in the eye model (image from
[3]) computes the photoreceptor irradiance responses by casting rays
from the photoreceptors through the finite-aperture pupil and out into
the 3D scene.dThe neuromuscular oculomotor control system (adapted
from [3]), comprised of sensory (top) and motor (bottom) subsystems,
wherein (a) rays are cast from the positions of photoreceptors on the
retina (b), from which an optic nerve vector (ONV) of photoreceptor

responses is computed. Shallow neural networks 1 (c) and 2 (e) input
the ONV and output pupil (d) and lens (f) muscle activations respon-
sible for luminance and focal accommodation, respectively. The ONV
also feeds the foveation deep neural network DNN 1 (g) highlighted in
red, implemented as a LiNet, which we replace with a spiking neural
network. It outputs gaze angle changes, �θ and �φ, required to track
a moving visual target observed in the visual field. These are input to
the neuromuscular deep neural network DNN 2 (h), which outputs the
activation signals (i) that drive the extraocular muscles to produce the
required eye movements (color figure online)

2 Related work

Traditional computer vision tasks are being addressed with
SNNs. MNIST handwritten digit classification is a popular
benchmark [8], but SNNs also performwell onmore complex
datasets such as ImageNet. An SNN based on VGGNet has
achieved a top-5 error rate of 30.04, whereas the state-of-

the-art ANN achieved a top-5 error rate of 29.48 [9]. Other
complex models such as ResNet have been trained to work
directly with spiking input from a DVS camera [10].

However,many researchers prefer to avoid training SNNs.
This has prompted research into converting trained ANNs
into SNNs [11]. The main advantage of this approach is that
one need not work around the non-differentiability of the
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spiking activation function and can effectively train a model
with standard deep learning techniques. Now, almost any
existing neural network layer can be converted into a spiking
equivalent, including convolution and softmax layers [12].
These converted models may have slightly higher error rates,
but they can offer about a 2× reduction in the number of
operations when compared to the original ANNs. However,
we aim to train SNNs directly rather than convert them from
trained ANNs, because our goal is to explore event-based
data in a biologically plausible setting.

Binary networks [13] are an interesting intermediate
between ANNs and SNNs. In a binary network, each neu-
ron outputs a 1 or −1. As in SNNs, this eliminates floating
point multiplication with weight values. However, there is no
option for a neuron to output 0; i.e., not to spike.Usually SNN
neurons are restricted to output 0 or 1, but we also allow for
outputs of −1 to model inhibitory neurons. Also, binary net-
works are not temporal functions, so they lack the biological
inspiration of SNNs that we investigate in this project. The
aspect of computation over time opens the door to exploring
more biologically inspired learning algorithms in our future
work.

To date, most computer vision research with SNNs has
been directed at classification problems, often stated in the
literature as being more amenable to SNNs than regression
problems. This is due to the fact that there exists consensus on
how to interpret spike trains so as to classify an input, but not
on how to interpret them to represent continuous quantities.
Published work on regression using SNNs is scarce and the
approach has been to convert trained SNNmodels intoANNs
[14, 15]. By contrast, we train our SNN from scratch and
offer an alternative approach to creating an output layer for
a regression problem.

Subsequent to the initial publication of our work [7],
Henkes et al. [16] also addressed the use of SNNs for regres-
sion. They also employ themembrane voltages from the final
layer of neurons to output a continuous value. However, they
introduce a population voting layer,which is an extra step that
lacks clear motivation compared to our approach. Moreover,
they test their network with non-spiking inputs.

Balachandar and Michmizos [17] had a similar goal of
using an SNN to track a target, but using a DVS camera.
They propose an approach to training using reinforcement
learning.

2.1 Hardware

Graphics processing units (GPUs), the workhorses of deep
learning-based artificial intelligence using ANNs, are opti-
mized for highlyparallelizedmultiply-and-accumulate (MAC)
operations on floating point numbers and they consume large
amounts of electrical power.By contrast, neuromorphic chips
take advantage of the fact that spiking activation functions

output only 1’s and 0’s and hence consume much lower
power. They are also optimized for the asynchronous nature
of spikes and can run new types of learning algorithms. There
is still research into what hardware to use, but basically, neu-
romorphic chips contain interconnected arrays of “neurons.”
Each cell stores its weight value, unlike in a GPU where the
weights must be fetched from memory. This hardware is not
accessible to us at this time, but certain major corporations,
such as Intel, continue to invest significantly into the research
and development of neuromorphic chips.

3 The eyemodel and its neuromuscular
oculomotor controller

In this section, we review the eye model (Fig. 1a) and its
neuromuscular oculomotor controller (Fig. 1d), focusing on
the foveation deep neural network (DNN) (Fig. 1d(g)) that
we replace with an SNN.

Like a biological retina, our virtual retina is situated at
the fundus of the eye and has cone-like photoreceptors that
sense red, green, and blue light from the scene. The N pho-
toreceptors are nonuniformly distributed according to a noisy
log-polar distribution

dk = eρ j

[
cos(αi )

sin(αi )

]
+

[N (μ, σ 2)

N (μ, σ 2)

]
, for 1 ≤ k ≤ N, (1)

where N (μ, σ 2) denotes IID-sampled Gaussian noise of
meanμ andvarianceσ 2. This distribution, shown in (Fig. 1b),
places most of the photoreceptors centrally. It also forms a
foveal region that supports high acuity central vision, with
visual resolution progressively diminishing toward the reti-
nal periphery. We use N = 14,400 photoreceptors to speed
up simulation and training, but the number can in principle
be scaled up to match human retinas (which have about 6M
cone photoreceptors for normal color vision and about 120M
rod photoreceptors for monochrome low-light vision [18]).

To compute the amount of light registered by each
photoreceptor, per the ray tracing procedure of computer
graphics [19] rays are cast from the positions of photorecep-
tors on the retinal surface, refracted through the deformable
lens of the eye, through the pupil, again diffracted through
the cornea, and out into the 3D environment to recursively
intersect with environmental objects in the scene and sam-
ple the light sources (Fig. 1c). The computed color values
returned determine the irradiance at each photoreceptor and
are stacked to form a 3N = 43,200-dimensional vector
referred to [20] as the optic nerve vector (ONV).

The next step is one of processing analogous to that done
in the brain’s visual cortex. Convolutional neural networks
(CNNs), which abstractly model neuronal connectivity in
the visual cortex, have enabled much progress in com-
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Fig. 2 The LiNet architecture. We have a 14,400 RGB photoreceptor
retina that outputs the 43,200-dimensional ONV. Neurons in the first
layer combine inputs from a fixed number of nearby photoreceptors
within receptive fields, a connectivity pattern that is repeated in succes-
sive layers. The receptive fields naturally enlarge out from the denser
foveal center to the sparser retinal periphery

puter vision. In CNNs, each neuron is connected only to
its neighboring neurons in the previous layer, thereby form-
ing “receptive fields.” The stylized, highly regular receptive
fields of conventional CNNs exploit the fact that ordinary
images are structured as rectangular arrays of pixels. By con-
trast, the much more biomimetic photoreceptor distribution
on the retina in our eye model is an irregular, foveated distri-
bution, and the ONV exiting the retina is simply a vector of
photoreceptor responses rather than a CNN-compatible 2D
pixel-array image.

Consequently, [3] generalizedCNNsby introducing locally
connected irregular networks, or “LiNets” [5] (Fig. 2). Neu-
rons have associated positions within the visual field and
each neuron is connected only to the n nearest neurons in the
previous layer, thus forming overlapping circular receptive
fields at the retinal level. The number of neurons in successive
layers is scaled down by a factor f . Like CNNs, LiNets con-
sume far less memory than comparably sized fully connected
networks, thus accommodating retinas with large numbers of
photoreceptors. However, unlike CNNs, the receptive fields
of neurons within a given layer do not share weights (i.e.,
they are not convolutional), so the memory requirements of
LiNets are generally greater than those of CNNs.

In addition to the retina, lens, pupil, and cornea, the
biomimetic eye model includes the six extraocular (EO) con-
tractilemuscles. The cornea and deformable lens focus visual
targets onto the retina while the EO muscles drive the eye
movements necessary to foveate and track visual targets in
motion. Each muscle requires a time-varying motor acti-
vation signal that stimulates it to contract. An oculomotor
controller is responsible for producing the muscle activation
signals that drive the eye movements needed to accomplish
the visual task of interest. The oculomotor control system
comprises a sensory subsystem and a motor subsystem, as

shown in Fig. 1d. The ONV is input to the foveation DNN,
implemented as a LiNet. It outputs �θ and �φ, desired
changes in the horizontal and vertical gaze angles relative
to the eye’s current gaze direction. These feed the neuromus-
cular DNN that produces an activation signal for each of the
six EO muscles to actuate the desired eye movement.

4 Spiking neurons

In this section, we introduce the basics of spiking neural
networks and we explain how to encode inputs to spiking
neurons and interpret their outputs in order to perform a
regression.

In ANNs, the connection, or synapse, between two neu-
rons has an associated weightw that is tuned during training.
For an L-layerANN, theweightmatrix connecting layer l−1
to layer l is Wl where 1 < l ≤ L . The output xl−1 of the
previous layer is multiplied withWl and biases bl are added;
i.e., al = Wlxl−1+bl . Finally, a rectified linear unit (ReLU)
activation function is applied: xl = max(0, al). Note that
all neurons in the previous layer that are connected to a spe-
cific neuron are referred to as presynaptic neurons while all
neurons connected to it in the next layer are postsynaptic
neurons.

Figure 3 illustrates the spiking neuron. The inputs are time
varying and take the formof spike trains,which are sequences
of 1’s and 0’s. All spike trains in the network are the same
length, which is treated as a hyperparameter. Each spiking
neuron maintains as a state variable the membrane voltage

U (t) = βU (t − 1)︸ ︷︷ ︸
decay

+WX(t)︸ ︷︷ ︸
input

− S(t − 1)UT︸ ︷︷ ︸
reset

, (2)

where matrix W stores the weights and tensor X stores the
presynaptic inputs, and where the spiking activation function
is

S(t) =
{
1 if U (t) > UT

0 otherwise
= H(U (t) −UT ), (3)

where H denotes the Heaviside step function. U (t) used to
calculate the membrane voltage of a neuron at timestep t+1.
If a presynaptic neuron spikes, the corresponding synapse
weight is added to this membrane voltage. If no spikes are
input to the neuron, the membrane voltage decays exponen-
tially. This decay is controlled by a hyperparameter β. If U
exceeds a certain threshold UT , then the neuron outputs a
spike and resets U to zero.

This model is known as the leaky integrate-and-fire (LIF)
neuron, so named because it “leaks” voltage in the absence
of an input (Fig. 4). It is available in snnTorch [21], a Python
package built on PyTorch, which we employ in our work.
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Fig. 3 Internals of a spiking neuron. Each weight can only be multiplied by a 1 or a 0, eliminating the need for expensive multiply-and-accumulate
(MAC) instructions

Fig. 4 Demonstration of a LIF neuron. Input spikes to the neuron are
at the top, the neuron’s membrane voltage is in the middle, and output
spikes are at the bottom. The threshold voltage is denoted by the dashed
red line.We verify that themembrane voltage increases when there is an
input spike and that there is an output spike when the membrane voltage
crosses the threshold. A reset occurs after each output spike, represented
by the steep decrease in the membrane voltage. There is also a slight
leak of membrane voltage in the absence of any input spikes (such as
around timestep 6)

To summarize, anSNNdiffers from the conventionalANN
in two fundamental ways: the ANN’s activation function is
replaced by one that outputs only ones and zeros, and the
SNN’s input and output signals vary over time. At the neuron
level, spiking neuronsmaintain a dynamicmembrane voltage
while traditional neurons have a static weight value.

4.1 Encoding the input signals

SNNs expect time-varying inputs. Moreover, the floating
point numbers that represent the RGB light intensity at any
retinal photoreceptor must be meaningfully converted into
“spikes;” i.e., a time series of zeroes and ones. This is known

as converting data from the “frame” domain to the “spiking”
domain, and we explore two main conversion schemes.

As we previously stated, our ONV is a vector of dimen-
sion 43,200. In addition to generating spiking inputs, we also
introduce what we refer to as the Delta-ONV, or D-ONV for
short; instead of having the retina register light intensities
at the current timestep, it registers the difference between
ONV values at the current and previous timesteps. In other
words, the eye detects only the changes in the scene thatman-
ifest in intensity changes at the retinal photoreceptors. These
changes are also referred to as “event-based” data. Note that
the D-ONV exhibits positive values at photoreceptors that
register brighter and negative values if they register darker.
This results in sparse input data as the eye need not repeat-
edly re-process what has already been sensed. The D-ONV is
more biologically accurate, since ganglion cells in the retina
emit spikes only when there is an intensity change in the
visual field [22].

4.1.1 Rate encoding

Rate encoding encodes a neuron’s firing frequency. Each
input value to the encoder falls in the range [0, 1], repre-
senting the probability that the neuron will spike at a given
timestep. At each timestep, we perform a Bernoulli trial to
determine if the neuron will spike. Each of the RGB color
channels in the ONV is already in the range [0, 1]. With the
D-ONV, however, we have values in the range [−1, 1]. We
take the absolute value of the probability, and if a spike is
generated from a negative probability, it will carry a value of
−1 instead of 1. This means that neurons in the next layer
will decrease their internal voltages if they receive a spike
with value −1. Before being turned into spikes, the inputs x
to the rate encoder can also be scaled by a gain g, which we
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treat as a hyperparameter. The new input becomes gx and is
clipped to 1. Larger gains yield a smoother decrease in loss
and better training performance. Thismakes sense intuitively
because more spikes are created in the input layer, giving
downstream neurons more opportunities to fire. However,
larger gains also lead to higher validation loss (manifesting
in our application as difficulty in tracking visual targets). We
limit g to 2.0, meaning that photoreceptors with values 0.5
and above spike at every timestep.

4.1.2 Latency encoding

Latency encoding focuses on the timing of spikes rather than
the spiking frequency. Each neuron is allowed to fire once in
the simulated time interval; neurons with higher probabilities
of firing emit their spike earlier than neuronswith lower prob-
abilities. This encoding method results in sparser inputs to
the SNNwhen compared to rate encoding and, consequently,
also makes it more difficult for the model to converge.

4.2 Outputs

Aproblem associatedwith using SNNs is related to interpret-
ing the output spike trains. For classification scenarios, each
output neuron is associated with one possible class. The out-
put spike trains are then integrated over a number of timesteps
and the output class label is that of the neuron with the most
spikes. However, our application is a regression scenario that
produces continuous signal outputs, �θ and �φ, modifying
two gaze angles. Thus far, there has been no standard way
to interpret spikes as floating point values. We utilize a lin-
ear layer to transform outputs from our SNN into the desired
angular modifications. An idea that has not been explored
much is to utilize the membrane voltages of the final layer.
We pass each neuron’s membrane voltage at the last timestep
through a linear transformation that outputs our two angular
changes. This helps with backpropagation learning, as the
network can learn what membrane voltages it should target
having at the end of the computation. Note that the network
outputs values at each timestep, but our predicted values are
the model’s outputs at the final timestep.

5 The SLiNet model

5.1 Architecture

Webase our SNNarchitecture on the LiNet thatwas designed
for this task by [5]. The existing LiNet DNN has five locally
connected layers plus one final fully connected layer. Each
layer has 1/5 the number of neurons of the previous layer. To
build our spiking LiNet, or SLiNet (Fig. 5), we start with a
4 layer foveation LiNet and replace the ReLU neurons with

spiking neurons. We retain the fully connected output layer
to transform themembrane voltages into the two gaze angles.

5.2 Training

Our training data set consists of 22.5K data points. We use
20K to create a training set and set aside 2.5K for validation.
There is no testing set as we evaluate our work through the
simulation of the eye model. The data points are collected
from the eye model itself. The ball visual target is positioned
at random locations in the visual field and the corresponding
ONVs are collected. The ground truth labels are the angular
displacements between the eye’s current gaze direction and
that of the ball in the visual field. To create the D-ONV data
set, we subtract each ONV from its predecessor.

For the LiNet, we used a factor f = 5, meaning each layer
has one fifth the number of neurons of the previous layer. We
conducted a hyperparameter sweep and used k = 25 neurons
in each receptive field. We re-trained the LiNet using a batch
size of 16 and a learning rate of 0.001. No regularization was
added to the model, and the weights were initialized with He
initialization.We used the same hyperparameter values when
training our SLiNet.

We trained our models for around 100 epochs, which is
about when the loss values start to plateau. We observed that
the LiNet achieves loss values an order of magnitude smaller
than the spikingmodels. However, the latter still converged to
low-loss values. The LiNet validation loss was much higher
when using the D-ONV, which bodes possible trouble gen-
eralizing to our test scenarios.

We treated β as a hyperparameter, although it can also
be trained in different ways. We chose not to tune it on a
per-layer or individual neuron basis with backpropagation.
However, we did treat the threshold voltage for each neuron
as a trainable parameter. By default, all neuron thresholds
were set to 1.0, but we found that randomly initializing these
thresholds to values in the range [0, 1] yields the best results.

When a neuron outputs a spike, we can either reset the
membrane voltage to zero or subtract the threshold voltage
from the currentmembrane voltage.We refer to these options
as “reset” and “subtract,” respectively. With the latter, the
neuron will have a nonzero membrane voltage if it had accu-
mulated a large amount of voltage before the spike, whereas
the former results in sparser spiking and potential energy
savings, but it presents a bigger challenge to learning as it is
more lossy. We used the subtraction method in our neurons.

5.2.1 Number of timesteps

The length of the spiking input is a hyperparameter of our
SLiNet. It determines how many timesteps each neuron
is afforded to accumulate voltage and emit spikes. More
timesteps allowmore downstreamneurons to fire, whichmay

123



Biomimetic oculomotor control with spiking neural networks Page 7 of 14 14

Fig. 5 Architecture of our foveation Spiking LiNet, or SLiNet. The first
three layers correspond to those of the LiNet, but unlike the LiNet’s
conventional neurons, they employ spiking neurons (yellow). The final
layer passes the membrane voltages through a linear transform whose
output represents the changes in gaze angles, �θ and �φ (color figure
online)

help computation, but consume more energy to run. Con-
versely, models using a lower number of timesteps may train
quickly, but will have difficulty converging to a low enough
loss value. The typical number of timesteps ranges from the
hundreds to thousands. After conducting a hyperparameter
sweep, we empirically found that 20 timesteps sufficed for
our model to converge. More timesteps increased training
difficulty and did not seem to affect performance.

5.2.2 Surrogate gradients

On the backpropagation pass, we encounter the Heaviside
step function in the spiking activation function (3). Its deriva-
tive is 0 everywhere except at the time of the spike, when it is
infinite. This is the main barrier to deep learning with spiking
neural networks, as the gradient will either be 0 or infinity
after reaching this function in the backward pass. snnTorch
handles this by passing through the gradient when there is
a spike or 0 otherwise. This enables some learning, but is
inadequate for our task.We experimentedwith surrogate gra-
dients, which are functions that approximate the Heaviside
step function but are differentiable everywhere [23]; we use
the spiking activation in the forward pass, but the surrogate
gradient on the backward pass. The approximation of choice
is the fast sigmoid function, so namedas it is faster to compute
than the standard sigmoid function. We found that our model
fails to converge without the use of a surrogate gradient.

5.2.3 Loss calculation

The SLiNet computation graph can be unrolled like that
of a recurrent neural network (RNN), so backpropagation
through time (BPTT) is used during training. The SLiNet
can also be encouraged to reach correct outputs at earlier
timesteps by collecting the output from each timestep, cal-
culating the loss at each timestep, and summing all of these

losses together. This unfortunately requires more memory
than our GPU affords, so we could not experiment with this
method. Because our model required a relatively low num-
ber of timesteps to run, we utilized BPTT and looked back
through all 20 timesteps.

5.3 Inference

During inference, we feed an input ONV to the model, let it
simulate for 20 timesteps, then collect the output. The neural
membrane voltages are reset to zero before processing each
subsequent ONV. We unfortunately cannot determine how
long it takes to run a timestep on neuromorphic hardware as
we currently have none at our disposal.

5.4 On converting an ANN

The ideas from this chapter are relevant only if one is train-
ing a SLiNet from scratch, which is the approach taken in
this thesis. However, we did want to compare the perfor-
mance of our trained SLiNet to that of one converted from
an ANN. Inspired by [24], we tried an approach where we
first scaled the weights and biases as an initialization step.
We then trained this model on the data using the fast sig-
moid surrogate gradient. Unfortunately, this model failed to
converge. Hence, we cannot report on differences between
training and converting a SLiNet on our object tracking task.

6 Experiments

We validated the operation of our foveation SLiNet using
both the ONV and the D-ONV, comparing against the LiNet
performance as a baseline.

6.1 Eyemovements

The fixation test does not involve anymovement of the visual
target. We kept the target fixed in a location directly in front
of the eye and observed how well it is kept fixated in the
foveal region of the retina. An unrealistic model would fixate
perfectly, whereas a more plausible model would allow the
target to drift slightly around the foveal region. These small
movements are similar to micro-saccades in human eyes.

The smooth pursuit test continuously moves the target in
both the horizontal θ and vertical φ directions. Figure 6a
compares the performance of the models when using the
ONV. The LiNet performsmuch better here, tracking the ball
almost perfectly. The eye still successfully tracks the target
with the SLiNet, but it fixates on a position a few degrees off
from the center of the ball. In Fig. 6b, we plot the eye gaze
that results from using the D-ONV. Here, the LiNet strug-
gles to keep the target in the center of its visual field while
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Fig. 6 The smooth movement of the target compared to the eye’s gaze
direction using the SLiNet and LiNet foveation networks: a the LiNet
performs better using the ONV, but the SLiNet also tracks the target;
b the SLiNet is significantly better at tracking the target when using a
D-ONV. Comparison of the saccadic movement of the target with the
eye’s gaze direction: c both models have similar performance, and are

able to track the ball accurately; d the LiNet drifts away from the tar-
get after the 4th saccadic movement, whereas the SLiNet successfully
tracks the target with a slightly noisy movement. Note that the jumps
in the black trace correspond to the ball target rapidly shifting to new
locations in the visual field

the SLiNet tracks its motion well. However, the motion that
results from using the SLiNet is also more noisy due to the
aforementioned micro-saccadic perturbations. Our SLiNet,
albeit noisy, tracks the target successfully using either the
ONV or D-ONV.

In the saccade test, the eye moves rapidly to fixate on new
visual target locations. To re-create this movement, we allow
the eye to fixate on the ball and then rapidly shift it to a
new location within the visual field. In Fig. 6c, we input an
ONV to our two models. They exhibit similar performances,
successfully tracking the target and keeping it focused on the
center of the retina.Whenusing theD-ONV, shown inFig. 6d,
we see a difference between the two models. The SLiNet
tracks the target better, exhibiting the same noisy motions
as in the smooth motion test; however, the LiNet causes the
eye to drift away from the target after about four consecutive
saccadic motions. Our SLiNet, albeit noisy, tracks the target
successfully. It also keeps the target in the center of the fovea
when using the D-ONV, unlike the LiNet.

6.2 Comparison to human eyemovements

We next compare the angular movements of our eyemodel to
those of real human subjects. We use two movement patterns
for the target. The human recordings for smooth movement
come from thework of [25],while the recordings for saccadic
movement come from [26].We first compare the angular dis-
placements that result from moving our target sinusoidally
in the horizontal direction. As shown in Fig. 7b, both models
successfully track the ball when using the ONV. Themotions
are relatively smooth,whereas the curve from the human sub-
ject (Fig. 7a) includes noisymovement. Our SLiNet produces
these noisymovementswhenusing theD-ONV(Fig. 7c). The
LiNet realistically causes the eye to drift away. For saccadic
motion, the angular displacements in Fig. 7e, f are not as
close to that of the human subject in Fig. 7d. There is a slight
overshoot in all the curves, albeit not as pronounced as in the
human curve.
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Fig. 7 Comparison of angular displacements on horizontal sinusoidal motion: a human; b ONV input; c D-ONV input. Comparison of angular
displacements on saccadic motion: d human; e ONV input; f D-ONV input

7 Discussion

Our contributions have been as follows:

1. We devised a novel foveation LiNet, based on SNNs,
which we called the SLiNet, to enable the oculomotor
control of our biomimetic eyemodel. Unlike the previous
network for this model [3], ours yielded an event-based
sensory system that responds only to changes in the light
intensities sensed by the eye rather than to the absolute
intensity values themselves. This is more biologically
accurate and creates a sparser input to the oculomotor
controller.

2. To accomplish the above, we designed an SNN archi-
tecture that can solve a regression task, which is more
difficult than the classification tasks to which SNNs have
typically been applied.

3. Unlike the typical deployment of previous SNNs, we
trained our SliNet from scratch. To this end,

(a) we considered rate and latency encoding, the two
most commonly used encoding methods, and found
the best encoding parameters for each method, and

(b) we used a surrogate gradient to solve the “dead neu-
ron problem” and enable the use of standard deep
learning optimization techniques.
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Table 1 Comparing the percentage of neurons activated in each layer
of the LiNet and the SLiNet when run on an ONV that stimulates the
maximum number of neurons

Layer Number of neurons LiNet activations
(%)

SLiNet activations
(%)

1 8640 32 2.4

2 1728 21 7

3 345 33 17

4 69 39 45

5 13 31 –

An activated neuron in the LiNet outputs a nonzero value while an
activated neuron in the SLiNet outputs at least one spike in the simulated
time interval. There are significantly fewer activated neurons in the
first few layers when using the SLiNet, thus demonstrating the sparse
computation that results from using the D-ONV and spiking neurons.
Overall, in this example, the SLiNet activates 12.7% of the number of
neurons activated in the LiNet

4. The work of Nakada et al. [3] (see also [4]) developed the
biomimetic eye model and demonstrated its biological
accuracy by testing it on different types of eyemovements
(saccade, fixation, and smooth pursuit).Weused the same
experimental regimen to test our SLiNet’s performance
on both conventional and event-based data.

7.1 Comparison with the LiNet

Unfortunately, we did not have access to neuromor-
phic hardware to validate the low-power benefit claims of
SLiNets. Instead, we analyze the sparsity of computation in
a SLiNet versus the LiNet. We look at the number of neu-
rons in each layer that have a nonzero activation in the LiNet
and the number of neurons that emit at least one spike in the
SLiNet.

Running our networks on a specific ONV input, we see a
similar amount of activated neurons in the LiNet and SLiNet.
However, with the corresponding D-ONV, the SLiNet uses
much fewer neurons in the first few layers, which contain
most of them. We summarize these results in Table 1.

While the performance of our SLiNet is not as smooth
as that of the LiNet, our model is able to track the target
accurately. Surrogate gradients are a practical workaround
for training SNNs. They allow us to reach a low enough loss
value for the model to be useful. It is also important to note
that the SLiNet still tracks the target using the event-based
D-ONV even though it is a more sparse representation of the
input. This is an indication that current ANN methods may
be simplified with the use of event-based data.

7.2 Limitations

In an ANN, one can look at the weights to get a sense of what
a particular neuron is contributing to an inference. Compared

to ANNs, SNNs are more difficult to interpret. This is partly
due to the difficulty of analyzing spike trains to determine the
functions of individual neurons, analogous to the difficulty
in studying the brain.

We mentioned earlier that the neuron membrane voltages
are reset to zero before the processing of each input. This
strays from a biological neuron, which may maintain some
state between computations. Our model is therefore not a
continuous processor analogous to the visual cortex.

In the same vein, our regression method involves reading
the membrane voltages of the final layer of neurons. This
is equivalent to looking inside a neuron to get an output,
which is not plausible in the brain. Therefore, the pooling
techniques employed by [16, 27] may be more biologically
plausible.

Finally, we have shown that the event-based D-ONV is a
good way to reduce the computation required for this task.
However, it may not be as suitable to other tasks performed
by the visual system, such as estimating distance or even
classification. A better model of the eye would process both
raw light data and event-based data.

8 Conclusions

Wehavemade two significantmodifications to thebiomimetic
eye model of [4, 5, 20]: (1) we replaced the foveation LiNet
with a more biologically plausible spiking neural network
(SNN), and (2) we trained our SLiNet on event-based data,
enabling the eye to detect changes in the scene to perform
visual tracking. When run on a challenging ONV, the event-
based SLiNet uses only 12.7% of the neurons of its ANN
counterpart. Furthermore, our spike encoding method emu-
lates the processing done by biological neurons. Moreover,
the backpropagation training of an SNN from scratch to solve
a regression task was a novel achievement.

8.1 Future work

Weare interested in augmenting the similarity of our network
structure to that of the human visual system. This would
involve emulating the processing performed in the retina,
optic nerve, and V1 cortex.

It also remains to incorporate two SLiNet-controlled eyes
in the biomechanical human musculoskeletal model of [20].
For binocular vision, the ONV is still a rather crude approx-
imation since the visual system splits input from each eye
into left and right regions at the optic chiasm. Exploring new
architectures to process the visual input in this manner may
offer interesting solutions.

Our network structure enables experimentation with bio-
logically inspired, unsupervised learning techniques. In
particular, spike timing-dependent plasticity (STDP), orHeb-
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bian learning, has shown promise [28]. Winner-take-all
(WTA) circuits that make use of inhibition are also an inter-
esting extension of our approximation of inhibitory spiking
behavior.

Finally, all the SNNs in our work were emulated using
GPU hardware. Given access to neuromorphic hardware, we
would like to verify the power and latency improvements
of our hybrid SNNs. We would also like to verify if our
output spike interpretation method scales to other regression
problems.
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Appendix A: The biomimetic eyemodel

This “Appendix” provides additional details about the
biomimetic eye model of [3], which is summarized in Fig. 1.

Appendix A.1: Ocular organs andmuscles

Light enters the eye through the pupil, and the iris is the
muscle that controls the amount of light that makes its way
to the retina. The iris is controlled in the simulation by two
muscles: the pupillary sphincter, which constricts the pupil,
and the pupillary dilator, which opens up the pupil. The pupil
constricts when there is a large amount of light and it dilates
when there is a low amount.

The cornea and lens serve to refract light to focus it onto
the retina. Similar to the iris, the lens lengthens and short-

ens. The lens lengthens to focus on more distant objects and
shortens to focus on closer objects.

Three pairs of extraocular (EO) muscles work together
to move the eyeball with three degrees of freedom. One
pair controls horizontal movement, one pair controls vertical
movement, and the last pair creates a twisting motion.

All the muscles are simulated as Hill-type models.

Appendix A.2: Oculomotor control system

A single muscle activation signal dilates and constricts the
pupil. This activation is provided by a shallow fully con-
nected neural network whose architecture is shown in Fig. 8.
Unlike the iris, the lens is modeled with damped springs. It
uses the same shallow neural network architecture as the iris
and uses one activation value to control lens curvature. The
neural network that controls the EO muscles is a deep, fully

Fig. 8 The shallow, fully connected neural network architecture
(labeled SNN 1 and SNN 2 in Fig. 1d). Used to control the pupil and
the lens. I1 to In represent the ONV intensities that are input to the
network. A change in muscle activation is output, which is added to the
current activation value and passed back as input for the next timestep.
Due to this connection, the network is recurrent. Diagram from [3]

Fig. 9 The 6-layer, fully connected neural network used to control the
EO muscles (labeled DNN 2 in Fig. 1d). The current muscle activation
values and angular displacement of the target are input to the network.
Like the controller depicted in Fig. 8, this controller outputs changes in
muscle activations and is recurrent. Diagram from [3]
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Fig. 10 Foveation DNN architecture. A LiNet backbone is followed by
a fully connected layer that outputs �θ and �φ. Diagram from [3]

Fig. 11 The RC circuit representation of a leaky integrate-and-fire neu-
ron

connected network, shown in Fig. 9. Like the other muscle
controllers, it outputs an activation value for each of the six
muscles inducing them to contract. The neural networks are
implemented as fully connected, recurrent models. Finally,
the foveation DNN is illustrated in Fig. 10.

Appendix B: Mathematics of SNNs

To implement an SNN, we use the Python package snnTorch
[21]. The main way that SNNs differ from conventional
ANNs is that the activation function only outputs either a
1 (a “spike”) or a 0 (no spike) and that inputs vary over time.
Neurons maintain an internal voltage that increases when
their inputs spike and decays in the absence of input spikes.
These changes, whose equations are detailed below, allow
SNNs to replace floating point multiplications with simple
additions because synapse weights are only multiplied by 1’s
or 0’s.

Appendix B.1: Spiking neuron circuit model

The fundamental unit of an SNN is the leaky integrate-and-
fire (LIF) neuron. It can be represented as an RC circuit, as

shown in Fig. 11. From the circuit, using Kirchoff’s current
law, we obtain

Iin(t) = IR + IC . (4)

Next, we derive equations for IR and IC by defining V ,
the voltage across the resistor, and Q, the charge on the
capacitor. Using Ohm’s law, I = V /R, and the relationship
Q = CUmem(t), we write equations for the resistor,

IR(t) = Umem(t)

R
, (5)

and the capacitor,

IC (t) = dQ

dt
= C

dUmem(t)

dt
. (6)

Placing these definitions into our original equation,we obtain

Iin(t) = Umem(t)

R
+ C

dUmem(t)

dt
(7)

and

RC
dUmem(t)

dt
= −Umem(t) + RIin(t). (8)

The units of the RHS are in voltage, while the term dUmem(t)
dt

is in units of voltage/time. Therefore, the units of RC must
be in time, and we refer to this as the time constant τ . This is
a standard ordinary differential equation. Solving it analyti-
cally to determine thatUmem(t) = U0e

−t
τ would not be useful

in a discrete-time neural network. Instead, starting from

τ
dU (t)

dt
= −U (t) + RIin(t), (9)

we use the definition of the derivative to write

τ
U (t + �t) −U (t)

�t
≈ −U (t) + RIin(t) (10)

and, ultimately,

U (t + �t) ≈ U (t) + �t

τ
(−U (t) + RIin(t)). (11)

With the above, we achieve the desired neuronmodel with
a membrane potential that increases with input current and
decays in the absence of any input. The equation involves
many hyperparameters, which would be difficult to tune.
Therefore, the snnTorch package simplifies the equation as
follows:

U (t + �t) =
(
1 − �t

τ

)
U (t) + �t

τ
RIin(t). (12)
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We remove a term by assuming that Iin(t) = 0, as this input
current will be replaced by the presynaptic inputs to the neu-
ron, thus obtaining

U (t + �t) =
(
1 − �t

τ

)
U (t). (13)

Next, we denote the decay rate (1− �t
τ

) = β (with�t << τ

for reasonable accuracy) to write

U (t + �t) = βU (t). (14)

Because we want to work with discrete timesteps, we can
assume �t = 1. We also assume that R = 1 in order to
reduce the number of hyperparameters. Thus, we have the
usable equation

U (t + 1) = βU (t) + WX(t + 1), (15)

where W is a learnable parameter that weighs input spikes
X . With S(t) as our spiking function, we add a term to reset
the membrane voltage when a neuron outputs a spike, and
our final equation is

U [t + 1] = βU (t)︸ ︷︷ ︸
decay

+WX(t + 1)︸ ︷︷ ︸
input

− S(t)UT︸ ︷︷ ︸
reset

, (16)

with

S[t] =
{
1 if U (t) > UT ,

0 otherwise.
(17)

Figure 12 contains a code comparison between a simple
fully connected ANN and an SNN.

Appendix B.2: Loop unroll

From a computational graph perspective, SNNs are very sim-
ilar to recurrent neural networks (RNNs), and can be unrolled
by timestep. We therefore use backpropagation through time
(BPTT) to train our networks. The unrolled computation
graph and additional details are found elsewhere [21].

Appendix B.3: Neuron parameters

We detail more neuron design choices regarding the type of
spiking neuron that we use in our work:

Inhibition is an interesting option. In real neurons, the
activation of one neuron can inhibit other neurons fromfiring.
Our more traditional architecture would have very sparse
spiking with this type of learning enabled, so we do not use
it. However, spiking RNNs may benefit from this feature.

Fig. 12 Code comparison between a fully connected ANN (a) and
SNN (b). Differences in b include the addition of spiking neurons,
time-varying input, and the incorporation of a linear transformation of
the membrane voltages from the last spiking layer. Note that “lif” is a
layer of spiking neurons and that “fc” is a fully connected layer. A LIF
neuron outputs a tuple with two values: a spike (or lack thereof) and the
current membrane voltage

Neurons can also be distinguished by what is known as
their order. A second-order neuron accounts for the fact that
when a presynaptic neuron fires, it takes time for the signal
to reach the current neuron. This is accounted for by adding a
second hyperparameterα. Thesemodels aremore complex to
train and resulted in higher loss values, so we use first-order
spiking neurons in our work.
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