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Abstract 

Computer animation through the numerical simulation of physics-based 
graphics models offers unsurpassed realism, but it can be computation
ally demanding. This paper demonstrates the possibility of replacing the 
numerical simulation of nontrivial dynamic models with a dramatically 
more efficient "NeuroAnimator" that exploits neural networks . Neu
roAnimators are automatically trained off-line to emulate physical dy
namics through the observation of physics-based models in action. De
pending on the model, its neural network emulator can yield physically 
realistic animation one or two orders of magnitude faster than conven
tional numerical simulation. We demonstrate NeuroAnimators for a va
riety of physics-based models. 

1 Introduction 

Animation based on physical principles has been an influential trend in computer graphics 
for over a decade (see, e.g., [1, 2, 3]). This is not only due to the unsurpassed realism 
that physics-based techniques offer. In conjunction with suitable control and constraint 
mechanisms, physical models also facilitate the production of copious quantities of real
istic animation in a highly automated fashion. Physics-based animation techniques are 
beginning to find their way into high-end commercial systems. However, a well-known 
drawback has retarded their broader penetration--compared to geometric models, physical 
models typically entail formidable numerical simulation costs. 

This paper proposes a new approach to creating physically realistic animation that differs 
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radically from the conventional approach of numerically simulating the equations of mo
tion of physics-based models. We replace physics-based models by fast emulators which 
automatically learn to produce similar motions by observing the models in action. Our 
emulators have a neural network structure, hence we dub them NeuroAnimators. 

Our work is inspired in part by that of Nguyen and Widrow [4]. Their "truck backer-upper" 
demonstrated the neural network based approximation and control of a nonlinear kinematic 
system. We introduce several generalizations that enable us to tackle a variety of complex, 
fully dynamic models in the context of computer animation. Connectionist approximations 
of dynamical systems have been also been applied to robot control (see, e.g., [5,6]). 

2 The NeuroAnimator Approach 

Our approach is motivated by the following considerations: Whether we are dealing with 
rigid [2], articulated [3], or nonrigid [I] dynamic animation models, the numerical sim
ulation of the associated equations of motion leads to the computation of a discrete-time 
dynamical system of the form StHt = ~[St, Ut, f t ]. These (generally nonlinear) equations 
express the vector St+8t of state variables of the system (values of the system's degrees of 
freedom and their velocities) at time t + r5t in the future as a function ~ of the state vector 
St, the vector Ut of control inputs, and the vector f t of external forces acting on the system 
at time t. 

Physics-based animation through the numerical simulation of a dynamical system requires 
the evaluation of the map ~ at every timestep, which usually involves a non-trivial compu
tation. Evaluating ~ using explicit time integration methods incurs a computational cost of 
O(N) operations, where N is proportional to the dimensionality of the state space. Unfor
tunately, for many dynamic models of interest, explicit methods are plagued by instability, 
necessitating numerous tiny timesteps r5t per unit simulation time. Alternatively, implicit 
time-integration methods usually permit larger timesteps, but they compute ~ by solving a 
system of N algebraic equations, generally incurring a cost of O( N 3 ) per timestep. 

Is it possible to replace the conventional numerical simulator by a significantly cheaper 
alternative? A crucial realization is that the substitute, or emulator, need not compute 
the map ~ exactly, but merely approximate it to a degree of precision that preserves the 
perceived faithfulness of the resulting animation to the simulated dynamics of the physical 
model. Neural networks offer a general mechanism for approximating complex maps in 
higher dimensional spaces [7].1 Our premise is that, to a sufficient degree of accuracy and 
at significant computational savings, trained neural networks can approximate maps ~ not 
just for simple dynamical systems, but also for those associated with dynamic models that 
are among the most complex reported in the graphics literature to date. 

The NeuroAnimator, which uses neural networks to emulate physics-based animation, 
learns an approximation to the dynamic model by observing instances of state transitions, 
as well as control inputs and/or external forces that cause these transitions. By generalizing 
from the sparse examples presented to it, a trained NeuroAnimator can emulate an infinite 
variety of continuous animations that it has never actually seen. Each emulation step costs 
only O(N2) operations, but it is possible to gain additional efficiency relative to a numer
ical simulator by training neural networks to approximate a lengthy chain of evaluations 
of the discrete-time dynamical system. Thus, the emulator network can perform "super 

I Note that q, is in general a high-dimensional map from RS+u + f t---7 RS, where s, u, and f denote 
the dimensionalities of the state, control, and external force vectors. 
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timesteps" b.t = n6t, typically one or two orders of magnitude larger than 6t for the com
peting implicit time-integration scheme, thereby achieving outstanding efficiency without 
serious loss of accuracy. 

3 From Physics-Based Models to NeuroAnimators 

Our task is to construct neural networks that approximate <P in the dynamical system. We 
propose to employ backpropagation to train feed forward networks N<l>, with a single layer 
of sigmoidal hidden units, to predict future states using super time steps b.t = n6t while 
containing the approximation error so as not to appreciably degrade the physical realism of 
the resulting animation. The basic emulation step is St+~t = N <l> [st, Ut, ftl. The trained 
emulator network N<l> takes as input the state of the model, its control inputs, and the 
external forces acting on it at time t, and produces as output the state of the model at 
time t + t1t by evaluating the network. The emulation process is a sequence of these 
evaluations. After each evaluation, the network control and force inputs receive new values, 
and the network state inputs receive the emulator outputs from the previous evaluation. 
Since the emulation step is large compared with the numerical simulation step, we res ample 
the motion trajectory at the animation frame rate, computing intermediate states through 
linear interpolation of states obtained from the emulation. 

3.1 Network Input/Output Structure 

Fig. lea) illustrates different emulator input/output structures. The emulator network has 
a single set of output variables specifying St+~t. In general, for a so-called active model, 
which includes control inputs, under the influence of unpredictable applied forces, we em
ploy a full network with three sets of input variables: St. Ut. and ft. as shown in the figure. 
For passive models, the control Ut = 0 and the network simplifies to one with two sets of 
inputs, St and ft. In the special case when the forces f t are completely determined by the 
state of the system St. we can suppress the f t inputs, allowing the network to learn the ef
fects of these forces from the state transition training data, thus yielding a simpler emulator 
with two input sets St and Ut. The simplest type of emulator has only a single set of in
puts St. This emulator suffices to approximate passive models acted upon by deterministic 
external forces. 

3.2 Input and Output Transformations 

The accurate approximation of complex functional mappings using neural networks can 
be challenging. We have observed that a simple feedforward neural network with a single 
layer of sigmoid units has difficulty producing an accurate approximation to the dynamics 
of physical models. In practice, we often must transform the emulator to ensure a good 
approximation of the map <P. 

A fundamental problem is that the state variables of a dynamical system can have a large 
dynamic range (in principle, from -00 to +(0). To approximate a nonlinear map <P ac
curately over a large domain, we would need to use a neural network with many sigmoid 
units, each shifted and scaled so that their nonlinear segments cover different parts of the 
domain. The direct approximation of <P is therefore impractical. A successful strategy is 
to train networks to emulate changes in state variables rather than their actual values, since 
state changes over small timesteps will have a significantly smaller dynamic range. Hence, 
in Fig. 1 (b) (top) we restructure our simple network N <l> as a network N ~ which is trained 
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Figure 1: (a) Different types of emulators. (b) Transforming a simple feedforward neural 
network Net> into a practical emulator network N4, that is easily trained to emulate physics
based models. The following operators perform the appropriate pre- and post-processing: 
T~ transforms inputs to local coordinates, T~ normalizes inputs, T~ unnormalizes outputs, 

T~ transforms outputs to global coordinates, T~ converts from a state change to the next 
state (see text and [8] for the details). 

to emulate the change in the state vector ~St for given state, external force, and control 
inputs, followed by an operator T~ that computes St+t>.t = St + ~St to recover the next 
state. 

We can further improve the approximation power of the emulator network by exploiting 
natural invariances. In particular, since the map !f> is invariant under rotation and transla
tion, we replace N~ with an operator T~ that converts the inputs from the world coordinate 
system to the local coordinate system of the model, a network N~ that is trained to emulate 
state changes represented in the local coordinate system, and an operator T~ that converts 
the output of N~ back to world coordinates (Fig. I (b) (center». 

Since the values of state, force, and control variables can deviate significantly, their effect 
on the network outputs is uneven, causing problems when large inputs must have a small 
influence on outputs. To make inputs contribute more evenly to the network outputs, we 
normalize groups of variables so that they have zero means and unit variances. With nor
malization, we can furthermore expect the weights of the trained network to be of order 
unity and they can be given a simple random initialization prior to training. Hence, in 
Fig. l(b)) (bottom) we replace N~ with an operator T~ that normalizes its inputs, a net
work N4, that assumes zero mean, unit variance inputs and outputs, and an operator T~ 
that unnormalizes the outputs to recover their original distributions. 

Although the final emulator in Fig. 1 (b) is structurally more complex than the standard 
feed forward neural network Net> that it replaces, the operators denoted by T are completely 
determined by the state of the model and the distribution of the training data, and the 
emulator network N4, is much easier to train. 

3.3 Hierarchical Networks 

As a universal function approximator, a neural network should in principle be able to ap
proximate the map !f> for any dynamical system, given enough sigmoid hidden units and 
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training data. In practice, however, the number of hidden layer neurons needed and the 
training data requirements grow quickly with the size of the network, often making the 
training of large networks impractical. To overcome the "curse of dimensionality," we have 
found it prudent to structure NeuroAnimators for all but the simplest physics-based models 
as hierarchies of smaller networks rather than as large, monolithic networks. The strategy 
behind a hierarchical representation is to group state variables according to their dependen
cies and approximate each tightly coupled group with a subnet that takes part of its input 
from a parent network. 

3.4 Training NeuroAnimators 

To arrive at a NeuroAnimator for a given physics-based model, we train the constituent 
neural network(s) through backpropagation on training examples generated by simulating 
the model. Training requires the generation and processing of many examples, hence it 
is typically slow, often requiring several CPU hours. However, once a NeuroAnimator is 
trained offline, it can be reused online to produce an infinite variety of fast animations. 
The important point is that by generalizing from the sparse training examples, a trained 
NeuroAnimator will produce an infinite variety of extended, continuous animations that it 
has never "seen". 

More specifically, each training example consists of an input vector x and an output vector 
y. In the general case, the input vector x = [s6', rl, u6'V comprises the state of the 
model, the external forces, and the control inputs at time t = O. The output vector y = SLl.t 

is the state of the model at time t = 6.t, where 6.t is the duration of the super timestep. 
To generate each training example, we could start the numerical simulator of the physics
based model with the initial conditions So, ro, and uo, and run the dynamic simulation 
for n numerical time steps M such that flt = nl5t. In principle, we could generate an 
arbitrarily large set of training examples {XT; yT}, T = 1,2, ... , by repeating this process 
with different initial conditions. To learn a good neural network approximation N<I> of 
the map CP-, we would like ideally to sample q> as uniformly as possible over its domain, 
with randomly chosen initial conditions among all valid state, external force, and control 
combinations. However, we can make better use of computational resources by sampling 
those state, force, and control inputs that typically occur as a physics-based model is used 
in practice. 

We employ a neural network simulator called Xerion which was developed at the Univer
sity of Toronto. We begin the off-line training process by initializing the weights of N~ 
to random values from a uniform distribution in the range [0, 1J (due to the normalization 
of inputs and outputs). Xerion automatically terminates the backpropagation learning al
gorithm when it can no longer reduce the network approximation error significantly. We 
use the conjugate gradient method to train networks of small and moderate size. For large 
networks, we use gradient descent with momentum. We divide the training examples into 
mini-batches, each consisting of approximately 30 uncorrelated examples, and update the 
network weights after processing each mini-batch. 

4 Results 

We have successfully constructed and trained several NeuroAnimators to emulate a vari
ety of physics-based models (Fig. 2). We used SDIFAST (a rigid body dynamics simu
lator marketed by Symbolic Dynamics, Inc.) to simulate the dynamics of the rigid body 
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(a) (b) (c) (d) 

Figure 2: NeuroAnimators used in our experiments. (a) Emulator of a physics-based model 
of a planar multi-link pendulum suspended in gravity, subject to joint friction forces, exter
nal forces applied on the links, and controlled by independent motor torques at each of the 
three joints. (b) Emulator of a physics-based model of a truck implemented as a rigid body, 
subject to friction forces where the tires contact the ground, controlled by rear-wheel drive 
(forward and reverse) and steerable front wheels. (c) Emulator of a physics-based model of 
a lunar lander, implemented as a rigid body subject to gravitational forces and controlled by 
a main rocket thruster and three independent attitude jets. (d) Emulator of a biomechanical 
(mass-spring-damper) model of a dolphin capable of swimming in simulated water via the 
coordinated contraction of 6 independently controlled muscle actuators which deform its 
body, producing hydrodynamic propulsion forces. 

and articulated models, and we employ the simulator developed in [10] to simulate the 
deformable-body dynamics of the dolphin. 

In our experiments we have not attempted to minimize the number of network weights re
quired for successful training. We have also not tried to minimize the number of sigmoidal 
hidden units, but rather used enough units to obtain networks that generalize well while not 
overfitting the training data. We can always expect to be able to satisfy these guidelines in 
view of our ability to generate sufficient training data. 

An important advantage of using neural networks to emulate dynamical systems is the 
speed at which they can be iterated to produce animation. Since the emulator for a dynam
ical system with the state vector of size N never uses more than O(N) hidden units, it can 
be evaluated using only O(N2) operations. By comparison, a single simulation timestep 
using an implicit time integration scheme requires O(N3) operations. Moreover, a forward 
pass through the neural network is often equivalent to as many as 50 physical simulation 
steps, so the efficiency is even more dramatic, yielding performance improvements up to 
two orders of magnitude faster than the physical simulator. A NeuroAnimator that predicts 
100 physical simulation steps offers a speedup of anywhere between 50 and 100 times 
depending on the type of physical model. 

5 Control Learning 

An additional benefit of the NeuroAnimator is that it enables a novel, highly efficient ap
proach to the difficult problem of controlling physics-based models to synthesize motions 
that satisfy prescribed animation goals. The neural network approximation to the physical 
model is differentiable; hence, it can be used to discover the causal effects that control force 
inputs have on the actions of the models. Outstanding efficiency stems from exploiting the 
trained NeuroAnimator to compute partial derivatives of output states with respect to con
trol inputs. The efficient computation of the approximate gradient enables the utilization of 
fast gradient-based optimization for controller synthesis. 
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Nguyen and Widrow's [4] "truck backer-upper" demonstrated the neural network based 
approximation and control of a nonlinear kinematic system. Our technique offers a new 
controller synthesis algorithm that works well in dynamic environments with changing 
control objectives. See [8, 9] for the details. 

6 Conclusion 

We have introduced an efficient alternative to the conventional approach of producing phys
ically realistic animation through numerical simulation. Our approach involves the learning 
of neural network emulators of physics-based models by observing the dynamic state tran
sitions produced by such models in action. The emulators approximate physical dynamics 
with dramatic efficiency, yet without serious loss of apparent fidelity. Our performance 
benchmarks indicate that the neural network emulators can yield physically realistic ani
mation one or two orders of magnitude faster than conventional numerical simulation of the 
associated physics-based models. Our new control learning algorithm, which exploits fast 
emulation and the differentiability of the network approximation, is orders of magnitude 
faster than competing controller synthesis algorithms for computer animation. 
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