
Fast Neural Network Emulation of Dynamical
Systems for Computer Animation

Radek Grzeszczuk 1 Demetri Terzopoulos 2 Geoffrey Hinton 2

1 Intel Corporation
Microcomputer Research Lab
2200 Mission College Blvd.

Santa Clara, CA 95052, USA

2 University of Toronto
Department of Computer Science

10 King's College Road
Toronto, ON M5S 3H5, Canada

Abstract

Computer animation through the numerical simulation of physics-based
graphics models offers unsurpassed realism, but it can be computation
ally demanding. This paper demonstrates the possibility of replacing the
numerical simulation of nontrivial dynamic models with a dramatically
more efficient "NeuroAnimator" that exploits neural networks . Neu
roAnimators are automatically trained off-line to emulate physical dy
namics through the observation of physics-based models in action. De
pending on the model, its neural network emulator can yield physically
realistic animation one or two orders of magnitude faster than conven
tional numerical simulation. We demonstrate NeuroAnimators for a va
riety of physics-based models.

1 Introduction

Animation based on physical principles has been an influential trend in computer graphics
for over a decade (see, e.g., [1, 2, 3]). This is not only due to the unsurpassed realism
that physics-based techniques offer. In conjunction with suitable control and constraint
mechanisms, physical models also facilitate the production of copious quantities of real
istic animation in a highly automated fashion. Physics-based animation techniques are
beginning to find their way into high-end commercial systems. However, a well-known
drawback has retarded their broader penetration--compared to geometric models, physical
models typically entail formidable numerical simulation costs.

This paper proposes a new approach to creating physically realistic animation that differs

Emulation for Animation 883

radically from the conventional approach of numerically simulating the equations of mo
tion of physics-based models. We replace physics-based models by fast emulators which
automatically learn to produce similar motions by observing the models in action. Our
emulators have a neural network structure, hence we dub them NeuroAnimators.

Our work is inspired in part by that of Nguyen and Widrow [4]. Their "truck backer-upper"
demonstrated the neural network based approximation and control of a nonlinear kinematic
system. We introduce several generalizations that enable us to tackle a variety of complex,
fully dynamic models in the context of computer animation. Connectionist approximations
of dynamical systems have been also been applied to robot control (see, e.g., [5,6]).

2 The NeuroAnimator Approach

Our approach is motivated by the following considerations: Whether we are dealing with
rigid [2], articulated [3], or nonrigid [I] dynamic animation models, the numerical sim
ulation of the associated equations of motion leads to the computation of a discrete-time
dynamical system of the form StHt = ~[St, Ut, f t]. These (generally nonlinear) equations
express the vector St+8t of state variables of the system (values of the system's degrees of
freedom and their velocities) at time t + r5t in the future as a function ~ of the state vector
St, the vector Ut of control inputs, and the vector f t of external forces acting on the system
at time t.

Physics-based animation through the numerical simulation of a dynamical system requires
the evaluation of the map ~ at every timestep, which usually involves a non-trivial compu
tation. Evaluating ~ using explicit time integration methods incurs a computational cost of
O(N) operations, where N is proportional to the dimensionality of the state space. Unfor
tunately, for many dynamic models of interest, explicit methods are plagued by instability,
necessitating numerous tiny timesteps r5t per unit simulation time. Alternatively, implicit
time-integration methods usually permit larger timesteps, but they compute ~ by solving a
system of N algebraic equations, generally incurring a cost of O(N 3) per timestep.

Is it possible to replace the conventional numerical simulator by a significantly cheaper
alternative? A crucial realization is that the substitute, or emulator, need not compute
the map ~ exactly, but merely approximate it to a degree of precision that preserves the
perceived faithfulness of the resulting animation to the simulated dynamics of the physical
model. Neural networks offer a general mechanism for approximating complex maps in
higher dimensional spaces [7].1 Our premise is that, to a sufficient degree of accuracy and
at significant computational savings, trained neural networks can approximate maps ~ not
just for simple dynamical systems, but also for those associated with dynamic models that
are among the most complex reported in the graphics literature to date.

The NeuroAnimator, which uses neural networks to emulate physics-based animation,
learns an approximation to the dynamic model by observing instances of state transitions,
as well as control inputs and/or external forces that cause these transitions. By generalizing
from the sparse examples presented to it, a trained NeuroAnimator can emulate an infinite
variety of continuous animations that it has never actually seen. Each emulation step costs
only O(N2) operations, but it is possible to gain additional efficiency relative to a numer
ical simulator by training neural networks to approximate a lengthy chain of evaluations
of the discrete-time dynamical system. Thus, the emulator network can perform "super

I Note that q, is in general a high-dimensional map from RS+u + f t---7 RS, where s, u, and f denote
the dimensionalities of the state, control, and external force vectors.

884 R. Grzeszczuk, D. Terzopoulos and G. E. Hinton

timesteps" b.t = n6t, typically one or two orders of magnitude larger than 6t for the com
peting implicit time-integration scheme, thereby achieving outstanding efficiency without
serious loss of accuracy.

3 From Physics-Based Models to NeuroAnimators

Our task is to construct neural networks that approximate <P in the dynamical system. We
propose to employ backpropagation to train feed forward networks N<l>, with a single layer
of sigmoidal hidden units, to predict future states using super time steps b.t = n6t while
containing the approximation error so as not to appreciably degrade the physical realism of
the resulting animation. The basic emulation step is St+~t = N <l> [st, Ut, ftl. The trained
emulator network N<l> takes as input the state of the model, its control inputs, and the
external forces acting on it at time t, and produces as output the state of the model at
time t + t1t by evaluating the network. The emulation process is a sequence of these
evaluations. After each evaluation, the network control and force inputs receive new values,
and the network state inputs receive the emulator outputs from the previous evaluation.
Since the emulation step is large compared with the numerical simulation step, we res ample
the motion trajectory at the animation frame rate, computing intermediate states through
linear interpolation of states obtained from the emulation.

3.1 Network Input/Output Structure

Fig. lea) illustrates different emulator input/output structures. The emulator network has
a single set of output variables specifying St+~t. In general, for a so-called active model,
which includes control inputs, under the influence of unpredictable applied forces, we em
ploy a full network with three sets of input variables: St. Ut. and ft. as shown in the figure.
For passive models, the control Ut = 0 and the network simplifies to one with two sets of
inputs, St and ft. In the special case when the forces f t are completely determined by the
state of the system St. we can suppress the f t inputs, allowing the network to learn the ef
fects of these forces from the state transition training data, thus yielding a simpler emulator
with two input sets St and Ut. The simplest type of emulator has only a single set of in
puts St. This emulator suffices to approximate passive models acted upon by deterministic
external forces.

3.2 Input and Output Transformations

The accurate approximation of complex functional mappings using neural networks can
be challenging. We have observed that a simple feedforward neural network with a single
layer of sigmoid units has difficulty producing an accurate approximation to the dynamics
of physical models. In practice, we often must transform the emulator to ensure a good
approximation of the map <P.

A fundamental problem is that the state variables of a dynamical system can have a large
dynamic range (in principle, from -00 to +(0). To approximate a nonlinear map <P ac
curately over a large domain, we would need to use a neural network with many sigmoid
units, each shifted and scaled so that their nonlinear segments cover different parts of the
domain. The direct approximation of <P is therefore impractical. A successful strategy is
to train networks to emulate changes in state variables rather than their actual values, since
state changes over small timesteps will have a significantly smaller dynamic range. Hence,
in Fig. 1 (b) (top) we restructure our simple network N <l> as a network N ~ which is trained

Emulation/or Animation 885

-"-
IlJ ., !

I ... ~
....!L. : -

r--.

;;~ N4 G u I ~ Y ,
, I ! _______________________ _____________________________ ~_~J

1- ------ - - - --- ---- -------------------------------------I

;;~ N' ~ Ut I x ~ y y:

: NcJ): t _____ _ ____________________________ _ _ ______ _ ____________ J

-I I
I t I.
I, I T' ~ N" T'J T' T" I''''' u, I X X 1$ Y Y y:

: NcJ): , _____ _ ________ _ _______ __ _ _ _ ____ _ ____ _______ _ _ __ _ _ _ _ _ __ _ J

(a) (b)

Figure 1: (a) Different types of emulators. (b) Transforming a simple feedforward neural
network Net> into a practical emulator network N4, that is easily trained to emulate physics
based models. The following operators perform the appropriate pre- and post-processing:
T~ transforms inputs to local coordinates, T~ normalizes inputs, T~ unnormalizes outputs,

T~ transforms outputs to global coordinates, T~ converts from a state change to the next
state (see text and [8] for the details).

to emulate the change in the state vector ~St for given state, external force, and control
inputs, followed by an operator T~ that computes St+t>.t = St + ~St to recover the next
state.

We can further improve the approximation power of the emulator network by exploiting
natural invariances. In particular, since the map !f> is invariant under rotation and transla
tion, we replace N~ with an operator T~ that converts the inputs from the world coordinate
system to the local coordinate system of the model, a network N~ that is trained to emulate
state changes represented in the local coordinate system, and an operator T~ that converts
the output of N~ back to world coordinates (Fig. I (b) (center».

Since the values of state, force, and control variables can deviate significantly, their effect
on the network outputs is uneven, causing problems when large inputs must have a small
influence on outputs. To make inputs contribute more evenly to the network outputs, we
normalize groups of variables so that they have zero means and unit variances. With nor
malization, we can furthermore expect the weights of the trained network to be of order
unity and they can be given a simple random initialization prior to training. Hence, in
Fig. l(b)) (bottom) we replace N~ with an operator T~ that normalizes its inputs, a net
work N4, that assumes zero mean, unit variance inputs and outputs, and an operator T~
that unnormalizes the outputs to recover their original distributions.

Although the final emulator in Fig. 1 (b) is structurally more complex than the standard
feed forward neural network Net> that it replaces, the operators denoted by T are completely
determined by the state of the model and the distribution of the training data, and the
emulator network N4, is much easier to train.

3.3 Hierarchical Networks

As a universal function approximator, a neural network should in principle be able to ap
proximate the map !f> for any dynamical system, given enough sigmoid hidden units and

886 R. Grzeszczuk. D. Terzopoulos and G. E. Hinton

training data. In practice, however, the number of hidden layer neurons needed and the
training data requirements grow quickly with the size of the network, often making the
training of large networks impractical. To overcome the "curse of dimensionality," we have
found it prudent to structure NeuroAnimators for all but the simplest physics-based models
as hierarchies of smaller networks rather than as large, monolithic networks. The strategy
behind a hierarchical representation is to group state variables according to their dependen
cies and approximate each tightly coupled group with a subnet that takes part of its input
from a parent network.

3.4 Training NeuroAnimators

To arrive at a NeuroAnimator for a given physics-based model, we train the constituent
neural network(s) through backpropagation on training examples generated by simulating
the model. Training requires the generation and processing of many examples, hence it
is typically slow, often requiring several CPU hours. However, once a NeuroAnimator is
trained offline, it can be reused online to produce an infinite variety of fast animations.
The important point is that by generalizing from the sparse training examples, a trained
NeuroAnimator will produce an infinite variety of extended, continuous animations that it
has never "seen".

More specifically, each training example consists of an input vector x and an output vector
y. In the general case, the input vector x = [s6', rl, u6'V comprises the state of the
model, the external forces, and the control inputs at time t = O. The output vector y = SLl.t

is the state of the model at time t = 6.t, where 6.t is the duration of the super timestep.
To generate each training example, we could start the numerical simulator of the physics
based model with the initial conditions So, ro, and uo, and run the dynamic simulation
for n numerical time steps M such that flt = nl5t. In principle, we could generate an
arbitrarily large set of training examples {XT; yT}, T = 1,2, ... , by repeating this process
with different initial conditions. To learn a good neural network approximation N<I> of
the map CP-, we would like ideally to sample q> as uniformly as possible over its domain,
with randomly chosen initial conditions among all valid state, external force, and control
combinations. However, we can make better use of computational resources by sampling
those state, force, and control inputs that typically occur as a physics-based model is used
in practice.

We employ a neural network simulator called Xerion which was developed at the Univer
sity of Toronto. We begin the off-line training process by initializing the weights of N~
to random values from a uniform distribution in the range [0, 1J (due to the normalization
of inputs and outputs). Xerion automatically terminates the backpropagation learning al
gorithm when it can no longer reduce the network approximation error significantly. We
use the conjugate gradient method to train networks of small and moderate size. For large
networks, we use gradient descent with momentum. We divide the training examples into
mini-batches, each consisting of approximately 30 uncorrelated examples, and update the
network weights after processing each mini-batch.

4 Results

We have successfully constructed and trained several NeuroAnimators to emulate a vari
ety of physics-based models (Fig. 2). We used SDIFAST (a rigid body dynamics simu
lator marketed by Symbolic Dynamics, Inc.) to simulate the dynamics of the rigid body

Emulation/or Animation 887

(a) (b) (c) (d)

Figure 2: NeuroAnimators used in our experiments. (a) Emulator of a physics-based model
of a planar multi-link pendulum suspended in gravity, subject to joint friction forces, exter
nal forces applied on the links, and controlled by independent motor torques at each of the
three joints. (b) Emulator of a physics-based model of a truck implemented as a rigid body,
subject to friction forces where the tires contact the ground, controlled by rear-wheel drive
(forward and reverse) and steerable front wheels. (c) Emulator of a physics-based model of
a lunar lander, implemented as a rigid body subject to gravitational forces and controlled by
a main rocket thruster and three independent attitude jets. (d) Emulator of a biomechanical
(mass-spring-damper) model of a dolphin capable of swimming in simulated water via the
coordinated contraction of 6 independently controlled muscle actuators which deform its
body, producing hydrodynamic propulsion forces.

and articulated models, and we employ the simulator developed in [10] to simulate the
deformable-body dynamics of the dolphin.

In our experiments we have not attempted to minimize the number of network weights re
quired for successful training. We have also not tried to minimize the number of sigmoidal
hidden units, but rather used enough units to obtain networks that generalize well while not
overfitting the training data. We can always expect to be able to satisfy these guidelines in
view of our ability to generate sufficient training data.

An important advantage of using neural networks to emulate dynamical systems is the
speed at which they can be iterated to produce animation. Since the emulator for a dynam
ical system with the state vector of size N never uses more than O(N) hidden units, it can
be evaluated using only O(N2) operations. By comparison, a single simulation timestep
using an implicit time integration scheme requires O(N3) operations. Moreover, a forward
pass through the neural network is often equivalent to as many as 50 physical simulation
steps, so the efficiency is even more dramatic, yielding performance improvements up to
two orders of magnitude faster than the physical simulator. A NeuroAnimator that predicts
100 physical simulation steps offers a speedup of anywhere between 50 and 100 times
depending on the type of physical model.

5 Control Learning

An additional benefit of the NeuroAnimator is that it enables a novel, highly efficient ap
proach to the difficult problem of controlling physics-based models to synthesize motions
that satisfy prescribed animation goals. The neural network approximation to the physical
model is differentiable; hence, it can be used to discover the causal effects that control force
inputs have on the actions of the models. Outstanding efficiency stems from exploiting the
trained NeuroAnimator to compute partial derivatives of output states with respect to con
trol inputs. The efficient computation of the approximate gradient enables the utilization of
fast gradient-based optimization for controller synthesis.

888 R. Grzeszczuk, D. Terzopoulos and G. E. Hinton

Nguyen and Widrow's [4] "truck backer-upper" demonstrated the neural network based
approximation and control of a nonlinear kinematic system. Our technique offers a new
controller synthesis algorithm that works well in dynamic environments with changing
control objectives. See [8, 9] for the details.

6 Conclusion

We have introduced an efficient alternative to the conventional approach of producing phys
ically realistic animation through numerical simulation. Our approach involves the learning
of neural network emulators of physics-based models by observing the dynamic state tran
sitions produced by such models in action. The emulators approximate physical dynamics
with dramatic efficiency, yet without serious loss of apparent fidelity. Our performance
benchmarks indicate that the neural network emulators can yield physically realistic ani
mation one or two orders of magnitude faster than conventional numerical simulation of the
associated physics-based models. Our new control learning algorithm, which exploits fast
emulation and the differentiability of the network approximation, is orders of magnitude
faster than competing controller synthesis algorithms for computer animation.

Acknowledgements

We thank Zoubin Ghahramani for valuable discussions leading to the idea of the rotation and transla
tion invariant emulator, which was crucial to the success of this work. We are indebted to Steve Hunt,
John Funge, Alexander Reshetov, Sonja Jeter and Mike Gendimenico at Intel, and Mike Revow, Drew
van Camp and Michiel van de Panne at the University of Toronto for their assistance.

References

[1] D. Terzopoulos, 1. Platt, A. Barr, K. Fleischer. Elastically deformable models. In M.e. Stone,
ed., Computer Graphics (SIGGRAPH '87 Proceedings), 21 , 205-214, July 1987.

[2] J.K. Hahn: Realistic animation of rigid bodies. In J. Dill, ed., Computer Graphics (SIGGRAPH
'88 Proceedings) , 22, 299-308, August 1988.

[3] J.K. Hodgins, w.L. Wooten, D.e. Brogan, J.F. O' Brien. Animating human athletics. In R. Cook,
ed., Proc. of ACM SIGGRAPH 95 Conf, 71-78, August, 1995.

[4] D. Nguyen, B. Widrow. The truck backer-upper: An example of self-learning in neural net
works. In Proc. Inter. Joint Conf Neural Networks , 357-363. IEEE Press, 1989.

[5] M. I. Jordan. Supervised learning and systems with excess degrees of freedom. Technical
Report 88-27, Univ. of Massachusetts, Comp.& Info. Sci. , Amherst, MA, 1988.

[6] K. S. Narendra, K. Parthasarathy. Gradient methods for the optimization of dynamical systems
containing neural networks. IEEE Trans. on Neural Networks, 2(2):252-262, 1991.

[7] G. Cybenko. Approximation by superposition of sigmoidal function . Math. of Control Signals
& Systems, 2(4):303-314, 1989.

[8] R. Grzeszczuk. NeuroAnimator: Fast Neural Network Emulation and Control of Physics-Based
Models . PhD thesis, Dept. of Compo Sci., Univ. of Toronto, May 1998.

[9] R. Grzeszczuk, D. Terzopoulos, G. Hinton. NeuroAnimator: Fast neural network emulation
and control of physics-based models. In M. Cohen, ed., Proc. of ACM SIGGRAPH 98 Conf,
9-20, July 1998.

[10] X. Th, D. Terzopoulos. Artificial fishes : Physics, locomotion, perception, behavior. In A. Glass
ner, ed., Proc. of ACM SIGGRAPH 94 Conf , 43- 50. July 1994.

