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A crucial goal of machine vision is the computation of mathematical models describing the
shapes of objects appearing in images. In this paper we formulate a broadly applicable class of
models which may be viewed as deformable bodies composed of an abstract elastic material. The
models are matched to images through the action of external forces which deform the bodies from
their prescribed natural states and impart motions toward desired equilibrium configurations. Forces
are typically derived from images, but they can also be applied interactively by the user (say, by
means of a pointing device) or abstracted from physical phenomena (such as gravity).

A prior example of a deformable model is the thin plate model used for surface reconstruction
from sparse visual data [1]. From its naturally planar state at depth Z = 0, the thin plate surface
is deformed to an equilibrium configuration Z = Z(z,y) by localized forces due to ideal springs
attached to depth constraints. The model is characterized by a variational principle involving the
minimigation of a deformation energy functional. ‘

This paper focuses on the formulation of variational principles that characterize a more sophis-
ticated class of deformable models, based on an extension of the controlled-continuity constraint
functionals proposed in [2|. The generalized models have d deformational degrees of freedom, each
with a parametric dimensionality of order p. The degrees of freedom may, for example, denote
Euclidean n-space positions or displacements of the model’s points. For the case of surface recon-
struction [1, 2|, the deformable model is embedded in n = 3-space (X,Y,Z), d = 1 (the depth
displacement Z) and p = 2 (the image coordinates (z,y)).

The matching to images of deformable models of different dimensionalities will be illustrated
with three new applications [3]. The simplest of these is “intensity-edge-seeking” deformable con-
tours embedded in images (p = 1, d = 2, n = 2} [4]. The second is signal matching;-specifically
correspondence matching of stereo images or motion sequences (p = 2, d = 2, n = 3) [5]. The
third and most complex is the direct reconstruction of 3D objects from monocular images using a
composite 3D model, a deformable tubular shell (p = 2, d = 3, n = 3) surrounding a deformable

spine (p=1,d = 3, n = 3) [6].

Generalized Deformable Models

Let x = (z!,...,z?) € RP be a point in parameter space. Let {1 be a subset in R? with boundary 411
A model is given by the image of the set {1 under the regular mapping v(x) = (vi(x),...,va(x)) :
1 c RP — RE. Let ¥ © R% be a space of admissible deformations. A general deformable model of
order ¢ > 0 minimizes in ¥ the deformation energy functional &, : v € ¥ — R where

£(v) = z_lz = [ w

! f
1 Ji:m N --Jp

I v(x)

J1 Jp
dz7t ... 0y

dx+LP[v(x)}dx. (1)

Here, 7 = (J1,...,Jp) i8 a multi-index with Ji=n+...+Jp,and P: R4 — R is a generalized
potential function associated with the externally applied force field.

In addition to the potential, the model is controlled by the vector w(x) of distributed parameter
functions w;(x). For instance, a discontinuity of order k < ¢ is permitted to occur at Xo in the limit
as w;{(x%o) — O for || > k (see [2]). Elastic properties including natural rest states (natural lengths
and curvatures) can be prescribed through suitable choices of w(x). A ¢ = 2 order deformation
model is employed in the applications described below.
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Application 1: Image Contour Models

Our first goal is to design a deformable contour model which is attracted to salient features in an
image I(z,y). Visualize the model as a “snake” that has an affinity for extended intensity maxima,
minima, or edges, and which can be guided across the image by user-controlled forces (Fig. 1) (3, 4]

To formulate the model weset p =1 and parameterize the contour by x = s where s € [0,1]. The
model is embedded in n = 2 dimensional image space (z,y). A d = 2-dimensional mapping v(s) =
(z(s),y(s)) will be used, whose components denote image coordinates. The energy of deformation
of the contour is given by

£2(v) = /nwl(a)qv,[z + wa() Ve ? + P(v)ds. (2)

Here, wy (s) controls “tension” while wsy{s) controls “rigidity.” Setting wy(s0) = wa(so) = O permits
a position discontinuity and setting wz{3¢) = O permits a tangent discontinuity to occur at 3o.

We associate with the contour a metric function L(s) which prescribes the natural arc length
of the snake (measured in the image) as a function of s. This is accomplished by defining wi{s) =

22 + y2 — L{s). The natural curvature C(s) is prescribed by defining wa(s) = x{s) — C(s) where

«(s) is curvature along the curve. k

The contour will have an affinity for darkness or brightness if Plv(s)] = +{Gqy * I(v(s))]s
depending on the sign, and for intensity changes if Plv(s)] = —|V[G, I{v(s)))|, where G, *
denotes the image convolved with a (Gaussian) smoothing filter whose characteristic width is o.

Figure 1. Dark contour is an edge-seeking snake that has attached itself to object boundaries. Snake is
deformed (right) by a user-controlled spring force.

Application 2: Signal Matching; Stereo and Motion Correspondence

Given a set of similar signals that have been deformed with respect to one another, the signal
matching problem is to recover the deformation. Important signal matching problems include stereo
and motion correspondence matching and a variety of registration problems including template
matching. A general treatment of this problem for an arbitrary number of multidimensional signals
is given in [5. Here, we consider the special case of matching two 2D images I, (z,y) and Ix(z,y),
which applies to stereo and motion correspondence problems. Fig. 2 shows the result of matching a
deformable model for the disparity field to a stereopair.

In this particular case, p = 2, d = 2, and n = 3. The components of the mapping v(z,y) =
(vl(x,y),vg(z,y)), with (z,y) € O = [0,1] x (0,1}, represent the displacement (disparity) in the

horizontal z and vertical y directions respectively. The deformation energy is given by

: r
52(")=f J wy (229) (val? = Vo ) + wa(2,0)([Vaa P+ 2vay [P + vy P) = POV} dzdy. (3)
0
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Figure 2. Stereopair and final state of the piecewise continuous disparity model rendered as a 3D surface
with superimposed (left) image intensities.

The parameter functions wy and wa control the tension and rigidity of the deformation model (2]

and discontinuity reconstruction requires that they be estimated during matching (see Fig. 2).
The generalized potential function is Plv(z,y)] = Ko[L (v(z,y)), I2(z,y)|, a measure of the

local dissimilarity of the two images around (z,y). In [5] we employ normalized, windowed cross-

correlation of the images smoothed by a filter with characteristic width o.

Application $: 3D Object Reconstruction

Finally, we consider the problem of 3D object reconstruction from monocular images. Here, we are
interested in the restricted case of objects having quasi axial symmetry, with relatively little surface
texture, and in general position before a contrasting background {3, 6]. Our approach is to match a
3D deformable model, having compatible symmetry, to an object’s occluding contours in the image
I{n,€). The model has two compounents, a shell and a spine. Both components are ¢ = 2 order
functionals with d = 3 deformational degrees of freedom representing the n = 3-space positions
(X,Y,Z) of material points.

Fig. 3 illustrates the reconstruction of a crook-necked squash from its image. After the user
initializes the spine’s projection in the image, the shell grows due to internal expansion forces. As the
model deforms, its configuration in 3-space is dynamically projected onto the image {using computer
graphics techniques), where its boundaries are subject to image-based forces; specifically, they are
attracted by and lock onto significant image gradients. The mutually inverse processes of computer
vision and computer graphics are coupled together to solve the reconstruction problem [3]; visual
processing constrains and guides the reconstruction process, while graphical processing is necessary
to apply the constraints and to provide the user with visual feedback.

The spine is a deformable space curve. For a configuration v(s) = (X(s),Y(s), Z(s)) its de-
formation energy is given by a functional like (2), but where v(s) has dimensionality d = 3. The
natural arc length of the spine is prescribed by wy(s) = \/X? + Y2 + Z} — L(s) and the natural
curvature by wz(s) = &(3) — C(s).

The shell is composed of deformable sheet material. The deformation energy of the configuration
v(z,y) = (X(z,9), Y (2,y), Z(z,y)) is given by the p = 2 parameter functional

€a(v) = / / /n wy0lVal? + wo,1 vy [? + wa0|Vas|? + 2wi s |[Vay? + wozlVyyl® + P(v) dzdy. (4)
g

The natural metric of the sheet along each parameter curve is prescribed by the functions w1 0(z,¥) =
(X2+Y2+22)2~Lyo(z,y) and wo,i(z,y) = (X2+Y2 ~}~Z;)1/2 ~Lo,1(z,y). Analogous expressions
for wy0(z,y), w1,(z,y), and wg,2{z,y) determine its natural curvatures.
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Figure 3. Reconstruction of a 3D model. Left to right: squash image; user initialized spine and shell;

reconstructed squash.

A tubular shell is created by prescribing boundary conditions on two opposite edges of the sheet
that effectively “seam” these edges together. Two forces of interaction are introduced between the
shell and the spine: the first coerces the spine into a central position within the shell, while the
second predisposes the shell to radial symmetry around the spine. The two open ends of the shell
are cinched shut by the introduction of end-constricting force terms, thereby creating & sausage-like
surface. These internal forces are formulated in [6].

Finally, the generalized potential Plv(z,y)] = —7(z,9)|V[Gs * I{Tl[v(z,y)])]| imparts on the
shell boundary an affinity for steep image intensity changes. The weighting function {(z,y) is
nongero only for material points (z,y) near occluding boundaries of the shell, which are selected by
setting v{z,y) = 1— li-n(z,y)| if this dot product is small (< 0.05), where n(z,y) is the unit normal
of the shell at (z,y) and i is the anit normal of the image plane. II[v(z,y)| denotes a projection of
the material point 3-space coordinates (X(z,9),Y(z,¥), Z({z,y)) into the image plane (7, §).
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