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Abstract—The low-level interpretation of images provides con-
straints on 3-D surface shape at multiple resolutions, but typically only
at scattered locations over the visual field. Sparse constraints from
many sources collect into visible-surface representations where, as a
precursor to higher-level visual tasks, intermediate-level processing re-
constructs multiscale surface shape information at every image point.
This paper develops a computational theory of visible-surface repre-
sentations. The visible-surface reconstruction process that computes
these quantitative representations unifies formal solutions to the key
problems of 1) integrating multiscale constraints on surface depth and
orientation from multiple visual sources, 2) interpolating dense,
piecewise smooth surfaces from these constraints, 3) detecting surface
depth and orientation discontinuities to impose boundary conditions
on interpolation, and 4) structuring large-scale, distributed surface
representations to achieve computational efficiency. Visible-surface re-
construction is an inverse problem. A well-posed variational formula-
tion results from the use of a controlled-continuity surface model. Dis-
continuity detection amounts to the identification of this generic model’s
distributed parameters from the data. Finite element shape primitives
yield a local discretization of the variational principle. The result is an
efficient algorithm for visible-surface reconstruction. The algorithm
deploys numerical relaxation in multigrid hierarchies and is suited to
implementation on massively parallel networks of locally intercon-
nected processors. Several applications contribute to an empirical
evaluation of the framework.

Index Terms—Discontinuity detection, finite elements, multigrid re-
laxation, multiresolution methods, multisource integration, piecewise
continuous reconstruction, regularization, variational principles, vis-
ible-surface representations.

I. INTRODUCTION

VER 30 years ago, J. J. Gibson made a seminal con-

jecture: human visual perception in the natural en-
vironment amounts to perception of visible surfaces [26].
The representation of visible surfaces has since attracted
considerable interest as an intermediate goal of compu-
tational vision. A variety of low-level visual processes
participate in the recovery of the 3-D information from
2-D image data. The information contributed by each pro-
cess partially constrains the shapes of visible surfaces.
These constraints collect into visible-surface representa-
tions where intermediate-level processing takes place. The
result is a dense, explicit description of the shapes and
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configurations of visible surfaces. Visible-surface repre-
sentations may be the basis of surface perception and they
can provide quantitative information vital to higher-level
surface analysis and object recognition tasks [40]. The
computational vision literature describes several visible-
surface representations, including depth and needle maps
[34], intrinsic images [2], 25-D sketches [41], and mul-
tiresolution representations [51].

This paper develops a computational approach to inter-
mediate-level vision. The visible-surface reconstruction
process proposed for generating and dynamically updat-
ing visible-surface representations, a generalization of the
distributed, data-driven algorithm developed in [51], uni-
fies the following four computational goals [52].

1) Integration: The visible-surface reconstruction pro-
cess integrates local surface shape constraints from mul-
tiple sources and it fuses this information across multiple
scales of resolution. The human visual system provides
evidence for the importance of integration. It copes with
a broad range of spatial structure in natural scenes by gen-
erating multiscale surface shape constraints through mul-
tiple spatial frequency channels [11]. Moreover, it coor-
dinates two categories of low-level shape estimation
processes [40]: The first, ‘‘correspondence’’ processes
such as stereopsis and structure-from-motion, typically
involves multiple image frames separated by relatively
small space-time intervals. Correspondence processes
triangulate interframe spatiotemporal disparities between
corresponding surface features to derive depth con-
straints—estimates of range from the viewer to positions
on visible surfaces. The second category comprises the
“*shape-from’’ processes, which can operate on single im-
age frames. By accounting for the projective distortion of
imaged surface properties such as shading, texture, and
bounding contours, these processes derive orientation
constraints—estimates of local surface attitude relative to
the viewer. The visible-surface reconstruction process re-
solves ambiguities, and it counteracts the detrimental ef-
fects of noise and inaccuracies by integrating multireso-
lution depth and orientation constraints.

2) Interpolation: The visible-surface reconstruction
process continuously propagates the integrated shape in-
formation into regions lacking <hape constraints. Image
representations make explicit certain local features (edges,
markings, texture boundaries, etc.) correlated to salient
events on physical surfaces. Since these features do not
occur densely over the visual field, constraints generated
by the low-level shape estimation processes will also be
scattered over a subset of image points. The human visual
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Fig. 1. A sparse random dot stereogram. Binocular fusion elicits a percept
of dense planar surfaces. A central, opaque, textured surface is perceived
suspended nearer in depth over a similarly textured background. Vivid
depth discontinuities separate the dense surfaces.

system, however, systematically interprets sparse visual
stimuli, such as random dot stereograms (see Fig. 1), as
dense, coherent 3-D surfaces, even when the dot density
is reduced so that depth is indeterminate over as much as
98 percent of the visible surface area (see, e.g., the psy-
chophysical study [18]). The interpolatory action of the
visible-surface reconstruction process accounts for this
phenomenon of ‘‘filling in the gaps.’’

3) Discontinuities: The visible-surface reconstruction
process collects into discontinuity maps all low-level in-
formation about surface discontinuities, including inten-
sity, texture, and motion boundary fragments. The pro-
cess autonomously refines these maps, detecting and
localizing additional surface discontinuities. Perceptually
crucial are depth discontinuities, typically contours along
which a surface in the scene occludes itself or another
surface, as well as orientation discontinuities along
creases or cusps of a continuous surface. Accordingly,
random dot stereograms not only give impressions of co-
herent surfaces, but they also elicit vivid percepts of sur-
face discontinuities at abrupt disparity changes (see Fig.
1). The refined discontinuity maps computed by the visi-
ble-surface reconstruction process provide (dynamic)
boundary conditions which limit the interpolation of shape
constraints.

4) Efficiency: The visible-surface reconstruction pro-
cess must efficiently produce large quantities of numerical
shape information. Visible-surface representations form
and evolve in real time, in spite of the immense compu-
tational burden associated with surface reconstruction at
foveal resolution. Massive, fine-grained parallelism ap-
pears to be the most viable computational architecture for
this purpose. However, a characteristic limitation of mas-
sively parallel hardware is the lack of high bandwidth
connections except between neighboring processors. The
consequent propagation delays, however, can severely
hamper global exchange of information across large vi-
sual representations. The visible-surface reconstruction
process overcomes this potential inefficiency by employ-
ing multiresolution relaxation within a hierarchy of sur-
face representations each attuned to a range of spatial
scales [51], [55].

II. MATHEMATICAL BAsIS OF VISIBLE-SURFACE
RECONSTRUCTION
Let the true distance from the viewer to visible surfaces

be represented as z = Z(x, y), a function of the image
coordinates x and y. Low-level visual processes generate

a set of noise corrupted surface shape estimates (i.e., con-
straints) { ¢; } which can be expressed using the notation

= °Bi[Z(x’ )’)] + €, (1)

where £; denotes measurement functionals of Z(x, y) and
¢; denotes associated measurement errors. An abstract
statement of the visible-surface reconstruction problem is:
reconstruct from the available constraints {¢; } the depth
function Z(x, y) along with an explicit representation of
its discontinuities over the visual field.

A. Regularizing the Inverse Problem

Visible-surface reconstruction is a nontrivial inverse
problem. First, coincident but slightly inconsistent shape
estimates from different visual processes will locally
overdetermine surface shape. Second, sparse constraints
scattered over the visual field restrict surface shape lo-
cally, but do not determine it uniquely everywhere; there
remain infinitely many feasible surfaces. Third, shape es-
timates are subject to errors, and high spatial frequency
additive noise, regardless how small its (RMS) ampli-
tude, can locally perturb the surface (orientation) radi-
cally.

The inverse problem is ill-posed because the above three
considerations preclude any prior guarantee that the so-
lution will exist, or that it will be unique, or that it will
be stable with respect to measurement errors. The regu-
larization method [57], [44], [56] provides a systematic
approach to reformulating this ill-posed inverse problem
as a well-posed and effectively solvable variational prin-
ciple.

Let JC be a linear space of admissible functions. Let
8 (v) be a stabilizing functional which measures the (lack
of) smoothness of a function v € JC. Let ® (v) be a pen-
alty functional on 3C which provides a measure of the
discrepancy between v and the given constraints. The
regularized visible-surface reconstruction problem is for-
mulated according to the following variational principle
[51]:

VPI: Find u € 3C such that

&(u) = inf &(v), (2)
vell
where the energy functional
&(v) = 8(v) + ®(v). (3)

The solution u (x, y) characterizes the best reconstruction
of the depth function Z(x, y) as the smoothest admissible
function v € JC which is most compatible with the avail-
able constraints. When the solution exists, it satisfies the
Euler-Lagrange equations which express the necessary
condition for the minimum as the vanishing of the first
variational derivative 6, of the energy functional:

6,8(u) = 6,8(u) + 6, (u) = 0.

The next two sections examine S (v) and ®@ (v).

(4)

B. A Controlled-Continuity Surface Model

To accomplish the reconstruction, the stabilizing func-
tional imposes generic continuity conditions on functions
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admissible as possible solutions. Such conditions are ten-
able inasmuch as the coherence of matter tends to give
rise to continuous or smooth surfaces relative to the view-
ing distance over some spatial resolution range.

Controlled-continuity stabilizers which provide local
control over the continuity of the solution enable the prob-
lem to be regularized while preserving surface discontin-
uities. The controlled-continuity stabilizer of order 2 in
two dimensions suffices in reconstructing nominally C'
continuous surfaces (continuously varying surface nor-
mal) along with explicit depth and orientation discontin-
uities. The stabilizer is given by

$,00) = 2 | | oCe ) {r(e ) (2 + 208 4 03)
(5)

2

+[1 = 7(x, y)] (07 + v%)} dx dy,
where @ C ®? denotes the image domain, and p(x, y)
and 7(x, y) are real-valued weighting functions whose
range is [0, 1]. Assuming natural (i.e., free) boundary
conditions on 9, the variational derivative of (5) in the
interior of  is given by

2 2 2

d d d
6,8,.(v) = e (poyy) + 2 axdy (unvy) + e (moyy)

a a
- 5); (nvx) - g} (TIl’y), (6)
where p(x, y) = p(x, y)7(x, y) and 7(x, y) =
p(x,y)[1 —71(x, )]

With 8 (v) = 8,,(v) in (3), the values of the continuity
control functions p(x, y) and 7(x, y) at any point (x, y)
€ Q determine the local continuity of # (x, y) at that point:
lim,, yy~0 S, (v) locally characterizes a membrane
spline, a C° surface that need only be continuous;
lim, (, yy -1 8,,(v) locally characterizes a thin-plate spline,
a C' surface which is continuous and has continuous first
derivatives; lim,(, y) 0 S, (V) characterizes a locally dis-
continuous surface.' Intermediate values of p(x, y) and
7(x, y) locally characterize a hybrid C' ““thin-plate sur-
face under tension,”” where p(z, y) is a spatially varying
surface ‘‘cohesion’” and [1 — 7(x, y)] is the spatially
varying surface ‘‘tension’’ [53], [56].

Hence, the continuity control functions p(x, y) and
7(x, y) constitute an explicit representation of depth and
orientation discontinuities, respectively, over the visual
field Q. A subsequent section examines the automatic
identification of these functions to estimate discontinu-
ities unknown a priori but implicit in the data {c; }.

C. A Penalty Functional

A reasonable penalty functional for (3) is the weighted
Euclidean norm

®(v) =1 2 o(Li[v] - Ci)2*

]

(7)

'To have the intended effect on the continuity of the solution u(x, y) to
VPI, p(x, y) and 7(x, y) must vanish on a set of nonzero measure. In the
discrete formulation of the problem (see below) the finite element surface
primitives automatically provide the necessary finite support.
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where the «; are nonnegative real-valued constraint pa-
rameters. For a; = 1/ Ao? with X\ a proportionality factor,
this functional is in fact optimal for independently distrib-
uted measurement errors ¢; in (1) with zero means and
variances 7.

Measurement functionals for surface reconstruction may
be synthesized from point evaluation of generalized kth-
order derivatives: £; [v] = (3*v/3x73y* /) | (4., cqs fOr
j=0,1, -, k. Hence, zeroth-order (evaluatidn) func-
tionals £;[v(x, y)] = v(x;, y;) serve to model the set of
local depth constraints ¢; = v(x;, y;) + € = d(y,y;, fori
€ D. The local surface orientation, determined by the
components of the surface normal n(x;, y;) = [v.(x;,
¥i ), vy(x;, y;), —1], is handled in turn by the two first-
order derivative functionals £; [v(x, y)] = v, (x;, y;) and
L [v(x,y)] = vy(x;, y;). This yields analogous expres-
sions for the local orientation constraints: the set ¢; =
U (xi, ¥i) + € = Pn.y)» fori € P, and the set ¢; = v,(x;,
Vi) + € = Gy fori € Q. It is straightforward to syn-
thesize additional functionals—e.g., involving directional
or higher-order derivatives (for curvature constraints,
etc.).

The penalty functional used in the sequel is written as

2
(P(v) = %EL:) adi[v(-xh yi) — d(.xf.yi)]

2
+ % Ig’:, Ap,; [vx(xi’ yi) - p(xl'._\’i)]
2
+ 7‘ iE;Q a(Ii [Uy(xi’ yi) - q():i._\'i)] > (8)

where the «; parameters are now distinguished as oy,
ay,, and ay,.

D. Physical Interpretation

A physical model of variational principle VPI is illus-
trated in Fig. 2. The controlled-continuity stabilizer
models an elastic surface whose energy of deformation
8,,(v) compels its shape to vary smoothly almost every-
where (but not at discontinuities). Constraints apply forces
in the z direction which deflect the surface from its nom-
inally planar state; the penalty functional ® (v) is the to-
tal deformation energy of a set of ideal springs attached
to the constraints. The infrastructure of scattered depth
constraints determine the deflection u(x, y) of the elastic
surface at equilibrium, as illustrated by Fig. 2(a). The
height of the constraint encodes the magnitude of the local
depth estimate. The tightness of each constraint is con-
trolled by the associated spring stiffness ;. Fig. 2(b) il-
lustrates an orientation constraint coercing the local sur-
face normal; the constraint parameters a, and o, control
the spring stiffness.

E. Existence, Uniqueness, and Stability of the Solution

Existence, uniqueness, and stability of the solution u (x,
y) to VPI are guaranteed when the functional &, (v) =
8,,(v) + ®(v) is a norm in the admissible space JC.
Now, &,,(v) is a priori only a seminorm in 3C, (a partic-
ular class of Sobolev spaces); the null space 91 of func-
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(a) (b)

Fig. 2. The physical model. (a) Thin-plate surface under tension and depth
constraints. (b) Local influence of an orientation constraint.

tions v that it maps to zero is at worst (for the thin-plate
case, 7 = 0) the space of all polynomials over ®?* of de-
gree one or less [56]. The penalty functional ® (v) will
make &,,(v) a norm, however, provided it at least con-
strains JT to a unique linear polynomial. This will be the
case if £; includes evaluation functionals at 3 points de-
fining a unique linear polynomial (an 9l-unisolvent set).
It is possible to prove the following [53]:

The solution u(x, y) to VPI will exist, be unique, and
stable given at least

1) three noncolinear depth constraints, or

2) two depth constraints and a single p or g constraint,
or

3) a single depth constraint and a single p and g con-
straint, or

4) asingle p and g constraint with the ‘‘center of grav-
ity”’ of the surface fixed.

At least one of these conditions is satisfied in practice,
due to the large number of constraints typically provided
by the low-level shape estimation processes (the center of
gravity can be constrained when necessary). Thus the vis-
ible-surface reconstruction problem VP! is well-posed in
practice: hence, for preset p(x, y) and 7(x, y) the plate/
spring system possesses a unique state of stable equilib-
rium—the minimal energy state u(x, y).

III. IDENTIFICATION OF SURFACE DISCONTINUITIES

It is natural to view the problem of detecting surface
discontinuities as one of distributed parameter identifica-
tion within a variational formulation of visible-surface re-
construction [56] (distributed parameter identification is a
problem of widespread interest [45], [16]). The parameter
functions to be identified (estimated from the available
data) are the continuity control functions p (x, y) and 7(x,
y) in the stabilizer (5). The present section proposes two
estimation procedures which dynamically adjust the con-
trolled-continuity model during surface reconstruction
such that its continuity becomes consistent with discon-
tinuities implied by the data. The first procedure detects
discontinuities by locally monitoring sharp defiections in
the evolving surface. The second extends variational prin-
ciple VPI to govern the estimation of discontinuities ac-
cording to generic shape constraints.

A. Discontinuity Identification by Local Validation

Fig. 3 illustrates in cross section a C' continuous por-
tion of reconstructed surface attempting to interpolate over
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L significant inflection

\" insignificant inflections

Fig. 3. Cross-section of reconstructed surface across a depth discontinuity
indicating significant and insignificant surface inflections.

an implicit depth discontinuity. The constraints on either
side of the discontinuity impart opposing bending mo-
ments, thus causing a surface inflection indicated by a sign
change in the total bending moment. This can form the
basis of a validation test for determining those neighbor-
hoods of a solution where the continuity assumption is
invalid. Note also how the surface overshoots the con-
straints because its smoothness opposes the sudden jump
in depth. The spurious inflections are relatively weak and
they may be rejected using a significance measure asso-
ciated with the validation test. A technically suitable mea-
sure having some psychophysical justification may be
based on the depth gradient at an inflection.

For a thin-plate deflection function u(x, y), the bend-
ing moment per unit length parallel to the x — z plane is
proportional to —u,,, while its counterpart parallel to the
y — z plane is proportional to —u,, [50]. The total mo-
ment is M(x, y) = — (U, + u,) = —Au, where A de-
notes the Laplacian operator. A zero-crossing in M may
be interpreted as a significant depth discontinuity if G(x,
y) = |Vu|? = ul + u} exceeds a limit ¢3. The limit ¢,
should be large enough to reject weak inflections, while
no. so conservative as to miss many true depth discontin-
uities. A possible criterion for choosing ¢, is suggested by
Panum’s limiting case; i.e., when a tilted surface begins
to occlude itself from one eye, causing stereopsis to fail.
A tighter criterion is the roughly isotropic disparity gra-
dient limit between fusion and diplopia of approximately
1 (only half the Panum limit), as measured by Burt and
Julesz [15].

An analogous local validation test is devised for ori-
entation discontinuities. Relative extrema of the bending
moment (local extrema of curvature) localize orientation
discontinuities. The associated significance criterion re-
quires the magnitude of the total bending moment | M (x,
y)| of the surface to exceed a (high curvature) limit t,,.
The sign of a bending moment extremum indicates the
sense of the orientation discontinuity; negative indicates
a concave crease, and positive, a convex crease.

The local validation procedure for reconstructing piece-
wise continuous surfaces is as follows.
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1) Reconstruct a tentative C' continuous surface on Q;
i.e., solve VPI with p(x,y) = 7(x,y) = L.

2) Introduce significant depth discontinuities into the
resulting surface; i.e., set p(x, y) = 0 at {(x, y)| M(x,
y) = 0 and G(x, y) > t;} and continue the reconstruc-
tion by solving VPI.

3) Introduce significant orientation discontinuities into
the resulting surface; i.e., set 7{x, y) = 0 at {(x,
y)| VM(x, y) = 0 and | M(x, y)| > t,} and continue
the reconstruction by solving VPI.

4) Repeat steps 2) and 3) with decreasing ¢, and ¢,.

Step 4) sets up an iterative continuation cycle for solv-
ing VP1, where steps 2) and 3) continue using the surface
resulting from the immediately preceding step (here, (4)
becomes a quasilinear equation due to the dependence of
p and 7 not only on position but also on partial derivatives
of u). It is wasteful to compute each approximation to
high accuracy, since it serves only as an initial condition
toward computing a better approximation over the suc-
ceeding cycle.

The local validation procedure is reminiscent of the
common practice of detecting intensity edges in image
functions by applying thresholded local difterence opera-
tions. Since a local edge operator, such as a Laplacian, is
easily corrupted by noise, a smoothing prefilter is usually
applied to the image to improve the response. §,, has an
analogous smoothing effect on scattered, noisy shape con-
straints (standard low-pass filters, such as Gaussians, are
inapplicable to irregular samples). While regularization
based smoothing permits the reliable computation of nu-
merical derivatives in continuous regions [58], the
smoothing property of the tentative surface computed in
step 1) tends to obscure subtle discontinuities [56]. This
problem is also typical of smoothing edge detection op-
erators [39].

B. Discontinuity Identification by Variational Continuity
Control

The second discontinuity identification approach
embeds VPI within an outer variational principle which
estimates the continuity control parameters p(x, y) and
7(x, y). The surface is permitted to crease and fracture in
order to reduce the total energy below the minimum ob-
tainable with a globally C' surface. This resolves the con-
flict between discontinuity identification and regulariza-
tion smoothing.

Variational continuity control is formulated in terms of
the following variational problem:

VP2: Find u, p*, and 7* such that

&(u, p*, *) = inf &(u, p, 7), (9)

where
8w, p, 7) = D(p7) +inf £,(0)  (10)
&, (v) = 8,,(v) + ®(v). (11)

Assuming suitable continuity, u(x, y), p*(x, y), and
7*(x, y) satisfy the coupled, nonlinear Euler-Lagrange
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equations
2

a 9?
6u8(u, ¥, 1'*) = W (p,u_”) + 2 ?ay (;,Lu_(y)

0? 0
+ W (“’u‘\‘y) - 5} (Wx)

—%omJ+m@w>=m

8,6 (u, p*, ) = 7 (ul, + 2ul, + ul)
+ [1 = 7%] (u3 + u})
+ 6, D(p*, %) = 0;
6,8 (u, p*, %) = p*[(uz, + 2u3, + usy)
— (Ul +u))] +6,D(p*, ™) =0,
(12)

with suitable boundary conditions on 9{2.

The functional D ( p, 7) maps p(x, y) and 7(x, y) into
a nonnegative energy. Its role in the outer problem is
analogous to that of 8,,(v) in the inner problem VPI: it
serves as a stabilizer for estimating the continuity control
functions from the available surface shape constraints.
Locally reducing the smoothness of the surface will re-
duce its resistance to sudden deflections imposed by the
data and hence release potential energy; i.e., from (5),
8,.(v) considered as a function of (v, p, 7) decreases as
{§a o(x,y)dxdyand | fq 7(x, y) dx dy decrease. The
introduction of discontinuities must be penalized, how-
ever, because p(x, y) = 0 everywhere would trivially
minimize the energy. The penalty can simply increase
monotonically according to a total discontinuity measure;

e.g.,
D(p, 7) = S Sﬂﬁd[l - p(x, )]

+ B,[1 = 7(x, y)] dx dy, (13)

where 8, and B, are positive energy scaling parameters
for the depth and orientation discontinuity contributions,
respectively.

More interestingly, O ( p, 7) can express a predisposi-
tion for discontinuities arranged along piecewise contin-
uous contours in the x — y plane (making allowances with
regard to the condition in footnote 1). An appealing for-
mulation is in terms of curvilinear controlled-continuity
constraints; for instance,

<§>C B(5) { Bal) eul” + [1 = Bu()] e[} ds. (14)

the curvilinear analog of §,,, where s denotes arc length
along contours ¢(s) = [x(s), y(s)] in C, a collection of
discontinuity contours. Here, locally zeroing @, allows
break points, while locally zeroing 3, allows tangent dis-
continuity points to form in the contours. Again, these
events require energy penalties. Naturally, the embedded
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structure of the variational continuity control problem re-
flects the recursive embedding of visual singularities—
from surfaces to contours to points (see [56]).

Although the inner energy functional &, (v) has a
unique minimum for fixed p and 7 (it is quadratic, convex,
and positive definite, given the conditions of Section II-
E), this will certainly not be the case for &(v, p, 7) in
(10) which permits variation in the continuity control
functions. Embedded variational problems such as VP2
are nonconvex typically and may be nondifferentiable
(e.g., when the distributed parameters do not vary contin-
uously; for instance, their range is the binary set {0, 1}).
The rigorous treatment of such problems is the goal of
nondifferentiable analysis and nonconvex optimization
theory [46], [17], and is beyond the scope of the present
paper. Although applicable, neither deterministic subgra-
dient-type methods nor stochastic optimization techniques
[21] have been attempted here. Instead, a discrete contin-
uation approach is taken to solving the variational conti-
nuity control problem [61]. A subsequent section pro-
poses an iterative procedure which efficiently computes
good, although not necessarily optimal solutions.

1V. THE DISCRETE SURFACE RECONSTRUCTION
PROBLEM

A closed-form solution to the variational principle for
visible-surface reconstruction is infeasible due to the ir-
regular occurrence of constraints and discontinuities.
Consequently, the continuous problem is approximated by
a discrete variational principle whose solution may be
computed numerically. To this end, the finite element
method [49], [63] is an attractive local approximation
technique [51]. As piecewise shape primitives defined in
the viewer-centered coordinate system of visible-surface
representations, finite elements are computationally com-
patible with the local depth and orientation constraints
provided by the various shape estimation processes and
they readily accommodate the irregular occurrence of
constraints and discontinuities.

Although it is possible to discrete this problem using a
variety of finite elements, including irregularly shaped
isoparametric elements, the discretization will follow a
regular Cartesian samplmg pattern typical of images. The
domain @ C ®? (assumed rectangular without loss of
generality) is tessellated into square element subdomains
with sides of length h. Nodes are located at subdomain
corners where they are shared by adjacent subdomains.
This results in a uniform Cartesian array of nodes that is
well suited to VLSI implementation. The size h of the
elements is adjustable so as to yield a one-to-one mapping
between nodes and image pixels, as well as a geometric
progression of coarser mappings. The nodes {ih, jh} ﬂ
Q are 1ndexed by (1 j) fori =1, ,N"and j =

N where N and N” are the number of nodes along
the X and y axes, respectlvely

The nodal variable v,j = v(ih, jh) denotes the un-
known displacement, or depth, at node (i, j). Taken to-
gether, the N h = N" x Nh nodal variables form the vector
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v" € ®"", to be determined by solving the dlscrete vari-
ational pr1nc1ple Similarly, nodal parameters ol ' = p(ih,
jh) and 77 '; = 7(ih, jh) represent the continuity control
functions, and it is natural to interpret them as together
comprising a discontinuity map in registration with the
reconstructed surface.

A. The Discrete Equations

The reconstructed surface is represented by an assem-
bly of square (nonconforming) finite elements E [51], each
of which is a six-point full quadratic interpolant [see 24)].
v" determines the local interpolants which explicitly rep-
resent depth and orientation everywhere over the surface.
The element leads to the following O (h?) finite difference
type formulas for the required partial derivatives at node

(i, ]):

1
L Ak h .
Uxx = 32 (vier) — 208 + vio,);
h _l h Y B .
Uyy = n2 (vij+1 vij + vij-1);
1
ho_ h h h hoy.
Vyy = P (vi+l,j+l —Vij+1 — Vit + vi,j)’
1
ho_ h hoy.
Uy = E (Ui+1,j - Ui,j)’
ot =2 0k, — o (15)
YT Vij+1 Ui.j)-

Substitution of (15) along with the plecew1se constant
approximation p (x, y) = p,j and 7(x, y) = 1,1 into (5),
and noting that the area of each element is h?, yields the
discrete functional

h

1 T:
ho(ahy _ irj 2
(V") = ) Iz;‘pflj{;l_z' [(U:}‘lﬂ,j - 2”?,‘ + U?—],j)

h h h h 2
+ 2(vf 141 — Uijer — Vigr + i)
h h 2
ij T Ui,j—l)]

2
Uz"',j)

h
+ (Ui,j+1 - 2v

+[1 - Tﬁj][(v?ﬂ.j -

+ (Vi — ”7.1)2]}- (16)

Assuming a one-to-one mapping between nodes and
image pixels, the constraints coincide with nodes (i, j)
of the grid (but not all nodes need be constrained—note,
the general case of a constraint occurring arbitrarily within
an element domain E may be handled easily). To obtain
a discrete expression for ® (v), collect the nodes at which
the various constraints occur in three sets; the set (i, j) €
D at which depth constraints d! ' occur, and the sets (z J)
€ Pand (i, j) € Q at which orientation constraints p, ';jand
qf’,j occur. Using symmetric difference approximations the




TERZOPOULOS: COMPUTATION OF VISIBLE-SURFACE REPRESENTATIONS

discrete form of (8) becomes

1
h E h
) 2 (ij)eD d'j( J

1 h 1 h h h ’
+ 5 (i.jz)eP Qpij <ﬁ (Ui+1,j - Ui*l.j) — Pij

2
1 h 1 h h h
+ E (i,jZ)eQ Ay <ﬁ (Ui.j+l - Ui.jAl) —qij -

(17)

" (v dhy

The energy-minimizing vector of nodal displacements
u" satisfies the equilibrium condition

veh (u") = vst (u") + VO"(u") =0, (18)

where V is the gradient operator [cf. (4)]. This generally

nonlinear system of simultaneous equations reduces to a

linear system for fixed ol j and T ; (i.e., for preset dlSCOl’l-

tinuities), because Sp,(u )isa quadratlc form in the u,‘j.
The basic, discrete surface reconstruction problem
amounts to solving these nodal equations for u".

The nodal equatlon at an arbltrary node (i, j) is given
by (38" (u")/oul;) + (8®" (u")/du};) = 0. Letting

Mf’.j = p?.ijl,j/h2 and 77?1 = Pz;'l.j(l - T?.j), (19)

the partial derivatives are

ash (“h) h
auhr = { u;j — 2“1}"—1.1 + u?—Z.j)“’?—l.j
ij

h h h h
+(=2uiy + dul; = 2uioy ;) pi

+ (“f‘l+2.j —2ul ;i + u?.j)l‘?+l.j

+ (Zuf’. 2u,_|j 2uf'vj_l + 2uf1_1'j,1);1,?_|‘j_,
+ (_2u¢'+l.j + 2”:"'.,‘ + 2“:"'+1,j—| - 214:}",;'—1)#?,;—1
+ (‘zu?.j#l + 2“1;“—|.j+1 + zu?.j - 2"?—1.;’)#?—1,,‘

+ (2uiy e — 2uije — 2uiry + 2“?.;’)!’-?,,’
+ (uf; = 2ufjoy + u?_j—Z)I"*?J_l

+ (—214,}".,'“ + 4u,'<'.j — Zuﬁj—l)#ﬁj
+ (uﬁj+2 — 2uf"j+| + u?.j)l‘li‘l.ﬂl}

+ {(u:lj - ”f"—l,j) -1

+ (u?.j - u?+l.j)"7?.j
+ (u?,j - u?.j—l) ’7?.1—1
+ (uhy = wly )l (20)
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[a discrete version of (6)], and for (i,j)e D N P N Q,

a@h("h) _ h dh
au}vp - (adi.j ij - ad:] )
ij
h
o,
pPi-1j h h I’l 1.j
+ < 4h2 uij — ui—2.j) - ,—11>
al al
Pi+1j h h Pi+1,j
+ < a2 (ui; — uisnj) + P,+|,>
al al
qij—1 h qij—1
+ < 412 (“i.j - ui,j—z) - q,,_1>
h
atﬁ.j+l h aq:;+]
+ e (ui; — uijia) + h qu+l

(21)
B. Computational Molecules

In the discrete equations, pffj and T,h‘j may generally as-
sume values continuously in [0, 1]. Nonetheless, the bi-
nary case in which only the endpoints of this range are
permissible values ({0, 1} indicating {presence, ab-
sence} of discontinuities) suggests the following graphi-
cal interpretation of the nodal equations:

Each term of (20) and (21) in parentheses may be vi-
sualized as a basic computational molecule. Molecules
consist of atoms, indicated by circles, arranged in the spa-
tial grid pattern and containing coefficients of the associ-
ated nodal variable. Fig. 4(a) illustrates the ten plate mol-
ecules obtained from the terms of the first component of
(20), while Fig. 4(b) shows the four membrane molecules
obtained from the terms of the second component. A dou-
ble circle indicates the node (i, j) central to the nodal
equation. Similarly, the depth constraint term in (21)
yields the depth constraint molecule shown in Fig. 5(a).
Associated with the latter is the factor o, jd i jk- The re-
maining orientation constraint terms of (21) yield the ori-
entation constraint molecules and associated factors
shown in Fig. 5(b).

Now visualize the formation of nodal equations as mo-
lecular summation, where the basic molecules combine at
the central node (i, j) with coincident atoms summing
together. Discontinuities, however, requlre molecular in-
hibition: if (i, j) is a discontinuity, lh, or n,, or both are

zero, which inhibits the summation of certain molecules.
Specifically:

1) Plate, depth constraint, and orientation constraint
molecules sum at nondiscontinuity nodes.

2) Membrane and depth constraint molecules sum at
orientation discontinuity nodes.

3) Orientation discontinuities inhibit plate and orien-
tation constraint molecules.

4) Depth discontinuities inhibit all basic molecules.

At an interior node (i, j ), summation leads to the com-
posite nodal molecules illustrated in Fig. 6. If node (i, j)
is also a depth constraint, the depth constraint molecule
and associated constraint factor sum with the nodal mol-
ecule for equation (i, j) shown in Fig. 6(a). Similarly,
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(b)

Fig. 4. (a) Plate molecules. (b) Membrane molecules.
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Fig. 5. (a) Depth constraint molecule. (b) Orientation constraint mole-

cules.

the upper left molecule in Fig. 5(b) sums with the nodal
molecule only if (i — 1,j) € P, the upper right only if (i
+ 1, j) € P, the lower left only if (i,j — 1) € Q, and
the lower right only if (i, j + 1) € Q. Fig. 7 illustrates
nodal molecules which can result from inhibition by dis-
continuities.

Discretizing u(x, y), p(x,y), and 7(x, y) over the same
grid of nodes is convenient for expressing the nodal equa-
tion. However, it is more natural to position depth dis-
continuities on the links half way between nodes pﬁ‘, =

p(kh + (h/2), Ih + (h/2)), since u}; is undefined at a
depth discontinuity. Orientation discontinuities can re-
main coincident with nodes T,j = 7(ih, jh) (since uf’_j is
defined at an orientation discontinuity). Generally, a dis-
continuity inhibits a molecule if it coincides with a con-
stituent atom or link.

Variants of the above summation and inhibition rules

10, NO. 4, JULY 1988

9.
-0
Q.

(b)

Fig. 6. Interior nodal molecules. (a) Molecule at node (i, j) away from

constraints and discontinuities (here p,j = T,J =1 and nodal equauon
is 20/h*)ul;, — (8/h? )(u, o+ uly,, + ul;_, + ulig) +
(2/h)(“—|,1 + u.+1,  t u,h],H + uf'ﬂ,n) +
(1/h%) (ul_ 2+ Ul +ulj o+ u,ﬁz) = 0) (b) Molecule at in-
terior orientation dlscommuny node (i, ;) (here 7/ '; = 0 and nodal equa-
tion 1s4u,/ — ul T Ui T UL T uf'“] = 0). Note that mole-
cules represent h” times 13-point finite difference approximation to
biharmonic (thin plate) operator and 5-point approximation to Laplacian
(membrane) operator [1, p. 885].

Fig. 7. Molecular inhibition at discontinuities. (a) Nodal molecules at
boundary nodes (double circles) near depth discontinuity nodes (X’s).
(b) Nodal molecules at boundary orientation discontinuities (double cir-
cles) next to depth discontinuities (X’s).

are possible. One useful alternative is to create horizontal
or vertical depth discontinuities by introducing adjacent
orientation discontinuities that inhibit only the *‘(—2)—
(4)—(—2)’’ molecules in Fig. 4.

C. Nodal Computations and Multiresolution Relaxation

The system of nodal equations features computationally
desirable properties: its matrix becomes positive definite
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Fig. 8. Structure of the multiresolution surface reconstruction algorithm.
Iterative relaxation processes propagate information within each level.
Coarse-to-fine (prolongation) and fine-to-coarse (restriction) processes
transfer information between levels. Synthetic orientation and depth con-
straints consistent with a hemispherical surface are input (top). Algo-
rithm computes dense multiscale surface representation (bottom).

[for fixed p(x, y) and 7(x, y)] as soon as the available
constraints satisfy the conditions for a well-posed prob-
lem. Moreover, the matrix is sparse (entries predomi-
nantly zero), banded, and symmetric, due to the local
support of the finite element representation. However, its
size N" x N" may become extremely large, since the
number of pixels N" in typical images can range from 10*
to 10° or greater. This combination of properties suggests
the application of iterative techniques which exploit
sparsity, such as relaxation methods [32].
A parallel (Jacobi-type) nodal relaxation computation
at node (i, j ) may be written as follows:
) (1)
). e

h h h h
R+l gl 8 (u ) 9@ (u
u,"j = u,-_j - W

o " ou; ;
where the bracketed superscripts contain the iteration in-
dex and w is a (time) step size. The aforementioned mo-
lecular summation and inhibition rules fully automate the
node-by-node construction of the bracketed term in this
local-support computation. The computation is spatially
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noninvariant and it changes temporally according to per-
turbations in the local structure of constraints and discon-
tinuities. Gauss—Seidel nodal relaxation computations can
be constructed similarly, as was done in [51].

For large problems the nodal relaxation computations
usually suffer from very slow convergence. There exist
efficient algorithms based on multigrid relaxation meth-
ods [31] for a number of visual problems [55], including
interpolation problems involving globally continuous thin-
plate splines [51]. The multiresolution relaxation ap-
proach is well suited to the visible-surface reconstruction
process. Fig. 8 illustrates the structure of a three-level
instance of the multiresolution surface reconstruction al-
gorithm. A considerable simplification of the computa-
tions results from a 2:1 resolution reduction between ad-
jacent levels (members of the hierarchy of embedded finite
element subspaces). The hierarchy of representations and
component processes are coordinated to increase compu-
tational efficiency. A recursive coordination strategy (see,
[51], [55]) was employed in the experiments described
below.

V. EXPERIMENTS WITH THE ALGORITHM

The multiresolution visible-surface reconstruction al-
gorithm was tested on a variety of data sets including syn-
thetic data, structured light (laser) rangefinder data, au-
tomated stereopsis and photometric stereo data from
natural images, and digital terrain model data. This sec-
tion presents selected results ([53] contains more exam-
ples and further details). For all the examples presented,
the intralevel process was Gauss-Seidel relaxation and the
algorithm was started from zero initial approximations on
all the levels. Discontinuity maps have preset borders of
depth discontinuities to introduce natural (free) boundary
conditions.

A. Experiments Involving Preset Discontinuities

Synthetic Data: The first two examples illustrate mul-
tiresolution, piecewise continuous surface reconstructions
from randomly placed depth constraints and prescribed
discontinuities. Fig. 9 presents the reconstruction of a cir-
cular shell and Fig. 10 presents the reconstruction of
stacked circular planes. Fig. 11 shows the reconstruction
from orientation constraints of a pyramidal surface with
orientation discontinuities. Fig. 12 presents the recon-
struction of a hemispherical surface from scattered ori-
entation constraints. Since it is impossible to determine
absolute depth solely from orientation constraints, a rel-
ative-depth reconstruction results, with the center of grav-
ity of the reconstructed surface resting near the x — v
plane. However, the integration of depth constraints with
orientation constraints determines the absolute depth of
the surface, as illustrated by Fig. 13. The constraint val-
ues in this latter example are corrupted by uniformly dis-
tributed noise. With the constraint parameters chosen, the
surface is slightly bumpy on the finest level; the bumpi-
ness can be reduced by decreasing the constraint param-
eter values (loosening the springs of the physical model).
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(a)

Fig. 9. Multiresolution reconstruction of a shell from depth constraints.
(a) Constraints obtained by randomly sampling at three resolutions a
hemisphere with z values scaled by a radial sinusoid. Nodes outside cir-
cular region occupied by constraints were preset depth discontinuities.
(b) Reconstructed surface representation. (Grid dimensions: N’' = N’;'
=17, N% = N'* = 33, N = N = 65. Grid spacings: h, = 0.4, h, =
O.hZ, hy = 0.1. Constraint density: 15 percent. Constraint parameters:
«; =2.0/h;. Computation: 24.25 work units. A work unit is the amount
of computation required per relaxation iteration on the finest level.)
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Fig. 10. Multiresolution reconstruction of stacked circular planes from
depth constraints. (a) Constraints obtained by randomly sampling the
planar surfaces at three resolutions. Depth discontinuities are placed
along circular arcs bounding the planes and along the outer edges of the
grids. (b) Reconstructed surface representation. (Grid dimensions: N
X NI =22 X 17, N% X N = 43 x 33, N x NI* = 85 x 65. Grid
spacings: h; = 0.4, h, = 0.2, h; = 0.1. Constraint density: 15 percent.
Constraint parameters: ozf;‘ = 2.0/h;. Computation: 20.375 work units.)
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Fig. 11. Multiresolution reconstruction of a pyramidal surface from ori-

entation constraints. (a) Constraints at three resolutions—values are con-
stant within each quadrant. Nodes along quadrant boundaries are preset
orientation discontinuities. Outer nodes are present depth discontinui-
ties. (b) Reconstructed surface representation. (Grid dimensions: N?‘ =
N% =17, N® = N’ = 33, N® = N?* = 65. Grid spacings: h; = 0.4,
h, N = 0.2, k; = 0.1. Constraint density: 100 percent. Constraint pa-
rameters: a,’,‘f = ag’ = 4.0/h;. Computation: 19.5 work units.)
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(b)

Fig. 12. Multiresolution of a hemisphere from orientation constraints. (a)

Constraints randomly sampled at three resolutions from a hemisphere.
Nodes outside the hemispherical surface patch were preset depth discon-
tinuities. (b) Reconstructed surface representation. (Grid dimensions:
N = N =17, N* = N = 33, N = N = 65. Grid spacings: h,
= 0.4, h, = 0.2, hy = 0.1. Constraint density: 30 percent. Constraint

parameters: «, = o = 4.0/h;. Computation: 22.125 work units.)
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Fig. 13. Multiresolution reconstruction of the hemisphere from depth and
orientation constraints. (a) Depth constraints and (b) orientation con-
straints consistent with a hemisphere at three resolutions. (c) Recon-
structed surface representation; note the absolute height above the base
plane is obtained. (Grid dimensions: N = N = 7, N" = N = 33,
N{ = N = 65. Grid spacings: h, = 0.4, hy = 0.2, hy = 0.1. Constraint
density: 15 percent. Constraint noise: 10 percent uniform. Constraint
parameters o = 2.0/h;, ap = alf = 4.0/h;. Computation: 17.75 work
units.)

Structured Light Data: The multiresolution algorithn,
was applied to the reconstruction of several objects from
raw range data supplied by a laser rangefinder constructed
at MIT by P. Brou. The scan resolution in the y direction
is half that in the x direction. The examples involve a
four-level surface reconstruction algorithm. The raw ran-
gefinder data were introduced as depth constraints at the
finest level and transferred to the coarser levels by suc-
cessive 2 X 2 averaging between levels. To expediently
segment the objects from the supporting platform, values
smaller than a threshold were treated as depth discontin-
uities. Fig. 14 shows the reconstructed surface of a light-
bulb. The algorithm smoothes the noise in the data and
reconstructs the missing points.

Photometric Stereo Data: The surface reconstruction
algorithm provides a noise resistant technique for com-
puting depth from the surface orientation data provided
by photometric stereo [62]. This is demonstrated using
the image of a toroid (Fig. 15). The photometric stereo
data shown (generated by a program implemented at MIT
by K. Ikeuchi) were introduced as orientation constraints
on a two-level algorithm. Aside from sporadic missing
data, the constraints on the coarse level are dense, while
only every other node on the fine level is a constraint. Fig.
15(c) shows the reconstructed toroid.

Correlation-Based Stereo Data: Fig. 16(a) shows a
stereopair that was input to the correlation-based stereo
program described in [36]. Fig. 16(b) shows the output of
the program. The neutral gray patches indicate regions of
unknown disparity, where the algorithm has failed to pro-
duce a match. Successively averaging by factors of two,
subsampled versions of the disparity data on the finest
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Fig. 14. Reconstruction of a light bulb from range data. (Finest grid di-
mensions: N* x Nﬂ‘ = 257 x 281. Grid spacings:hhI = 0.8, h, = 0.4,
hy = 0.2, and h, = 0.1. Constraint parameters: a,/ = 0.2/h;. Compu-

tation: 9.78 work units.)

(a)

(b) (©

Fig. 15. Reconstruction of a torus from photometric stereo data. (a) Image
of a matte white toroid. (b) Orientation constraints provided by photo-
metric stereo. (c) Reconstructed torus. (Grid dimensions Ni = N =
51 and N = N" = 101. Constraint parameters: o’/ = 4.0/h;. Com-
putation: 52.0 work units.)

level were introduced as input to the multiresolution al-
gorithm on three coarser levels. Relatively small con-
straint parameter values were chosen in order to counter-
act the false matches and noise present in the disparity
data. Fig. 16(c) shows the reconstructions on the three
coarsest levels as 3-D plots (the finest level was too dense
to render as a wire frame surface). Fig. 16(d) shows
isoelevation contour maps of the solution on all levels.
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Fig. 16. Reconstruction of terrain from correlation-based stereo data. (a)
Natural terrain steropair (images: 256 X 256 pixels, quantized to 256
gray levels; courtesy of U.S. Defense Mapping Agency). (b) Output of
correlation-based stereo program (brightness proportional to disparity;
disparity unknown in neutral grey regions). (¢) Reconstructed terrain on
three coarsest levels. (d) Isoelevation contour maps. (Grid dimensions:
N* = N" =33, N" = N = 65, N" = N* = 129, N¥* = N = 257.
Grid spacings: h, = 0.8, h, = 0.4, hy = 0.2, hy = 0.1. Constraint

parameters: o, = 0.0I/hf. Computation: 29.0 work units.)

Feature-Based Stereo Data: The stereopair of Fig.
17(a) was input to a three-channel version of the (zero-
crossing) feature-based stereo program described in [29].
Fig. 17(b) shows the output of the program. Disparity in-
formation is available only along zero crossing contours
at the three finest scales. This disparity data were input to
a four-level surface reconstruction algorithm, with the
constraints on the coarsest level derived by averaging the
constraints from the next finer level. Fig. 17(c) shows the
reconstructions on the three coarsest levels as 3-D plots.
Fig. 17(d) shows isoelevation contour maps of the solu-
tion on all levels.

Digital Terrain Map Data: Fig. 18 presents the appli-
cation of a four-level surface reconstruction algorithm to
contoured terrain elevation data. The data was generated
by J. Mahoney, using a digitizing tablet to trace manually

the isoelevation contours in a map of the Black River
Gorges (published by the UK Ministry of Defense). Fig.
18(b) shows contour plots of the reconstructed terrain on
all levels. The elevations of the reconstructed contours
are chosen halfway between the original constraint con-
tours of Fig. 18(a) to avoid favorable bias. The recon-
structed contours are somewhat smoother than the con-
tours in the published map. The jaggedness introduced by
manual digitization has been reduced; the constraint pa-
rameters regulate the smoothing. Fig. 18(c) shows shaded
images of the reconstructed terrain. Comparison of terrain
reconstructions using the controlled-continuity model
against reconstructions using a simpler membrane spline
model (Laplacian smoothing) indicates that the latter gen-
erally suffers from insufficient smoothness and produces
flat spots across terrain peaks (see also 9D).
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Fig. 17. Reconstruction of terrain from feature-based stereo data. (a) Nat-
ural terrain stereopair (images: 512 X 512 pixels, quantized to 256 lev-
els; courtesy of US Army Engineer Topographic Labs). (b) Output of
feature-based stereo program (contour intensity proportional to dispar-
ity). (c) Reconstructed terrain on three coarsest levels. (d) Isoelevation
contour maps. (Grid dimensions: N¥ = N = 33, N2 = N"2 = 65,
N® = NI = 129, N™ = N = 257. Grid spacings: h, = 0.8, h, = 0.4,
hy = 0.2, hy = 0.1. Constraint parameters: ozZ’ = 0.0l/hf. Computa-

tion: 31.0 work units.)

B. Discontinuity Identification Experiments

When all discontinuities are preset, the discontinuity
map, pﬁj = p(ih, jh) and T,'-’_j = 7(ih, jh), comprises a
fixed part of the input data. More generally, some or all
of the discontinuities are unknown, so the discontinuity
map undergoes refinement during surface reconstruction.
The following experiments involve the automatic identi-
fication of surface discontinuities, first by local valida-
tion, followed by variational continuity control (refer to
Section III).

Local Validation: Fig. 19 illustrates the application ot
the local validation method to a random dot stereogram.
Fig. 19(b) shows the depth constraints generated by a
three-channel version of the feature-based stereo program
[29]. The discontinuities identified using one cycle of lo-

cal validation are superimposed onto the final disparity
maps in Fig. 19(c). Fig. 19(d)~(g) illustrates the steps of
the local validation method in more detail. Fig. 20 illus-
trates a similar experiment using an aerial view stereo-
pair. The results demonstrate the feasibility of identifying
significant discontinuities using local validation, but the
interpolation process can be seen “‘leaking’’ through gaps
due to undetected discontinuities. No single value of the
global limit ¢, can be expected to produce perfect results,
especially with natural imagery. As was suggested in Sec-
tion III-A, however, decreasing the disparity gradient
limit in a sequence of cycles, iterating to near-equlibrium
each time, will elicit increasingly shallow discontinuities.

Variational Continuity Control: Variational continuity
control involves a similar multistep strategy guided by the
energy functional & (v, p, 7) in VP2. The present imple-
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Fig. 18. Reconstruction of digital terrain map data. (a) 256 X 256 digital
contour array input to algorithm (contour brightness proportional to el-
evation; local averaging of finest grid yielded constraints on coarser grids;
patch to lower right indicates a lake). (b) Reconstructed isoelevation

contour map. (c) Shaded terrain representations.
= N =33, N" = Ni* = 65, N\' =

(Grid Dimensions: N7’
N’ = 129, N* = N* = 257. Grid

spacings: h, = 0.8, h; = 0.4, hy = 0.2, hy = 0.1. Constraint parame-

ters: o/ = 0.5/h}.)

mentation employs the following discrete form for the
discontinuity functional O (p, 1) in (10):

D5, ) = (8100 () + BLOL (). ()

where Df"j and Of'.j are relative potential energies of local
discontinuity configurations in the depth and orientation
discontinuity maps, respectively. Fig. 21 illustrates some
configurations and associated energies chosen heuristi-
cally to favor the formation of continuous and smoothly
curving discontinuity contours; higher energies are as-
signed to isolated discontinuities, terminations, sharp
bends, junctions, and discontinuity clumps [25].

The strategy for ‘‘solving’’ VP2 is as follows: The outer
iteration consists of 1) each continuity control parameter
pl; or Tf’_j (in parallel) flips its value in {0, 1 } if this re-
duces the energy &" (10), then 2) given the updated p,'v’v.,- or

]

7! j» the basic surface reconstruction algorithm obtains the
unique minimum of the inner functional (11). First, the
outer iteration identifies depth discontinuities, with BZ ini-
tially set to a high value (to heavily penalize fracture),
then gradually lowered. Next, the outer iteration identi-
fies orientation discontinuities with B" decreasing in the
same way. Orientation discontinuity identification is de-
layed, otherwise the small surface inflections occurring
near undetected depth discontinuities (see Fig. 3) are eas-
ily misconstrued as orientation discontinuities, which re-
tards the optimization process. Fig. 22 illustrates the vari-
ational continuity control approach using a synthetic
example.

The above describes a continuation procedure [61] for
solving VP2, in which B" and B" serve as continuation
variables. VP2 becomes increasingly convex—i.e., sim-
pler—for larger values of these variables. By gradually
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Fig. 19. Reconstruction of a random dot stereogram by local validation.
(a) Synthesized stereogram of four planar surfaces stacked in depth. (b)
Depth constraints for random dot stereogram (finest level dimensions:
320 X 320; constraints on coarsest level obtained by averaging from
finer level). (c) Piecewise continuous disparity maps with detected dis-
continuities (white contours) superimposed. (d)-(g) Local validation
method on a coarse level. (d) Reconstructed C' surface. (e) Zero cross-
ings of discrete bending moment M, = —1/h>(ul_,; + uly,; +
uffj,. + uffj+, - 4uf'_,») (black points). (f) Significanct zero crossings
for which G, > 1, with t, = 1, where Gl = 1/4h* [(uly ,,; - ut_,;)?
+ (uf’_j+| - u,”_J_l)z]. (g) Piecewise continuous surface results from
inserting latter into discontinuity map (by setting associated p,’{, to zero)
and continuing iterative reconstruction process.

(&
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decreasing 8% and B, a trajectory is followed from the
optimum of the simple problem towards a satisfactory
“‘solution’’ to the difficult, nonconvex target problem
(8% and B" small). In general, relatively few of the pffj or
7" j are observed to change at each step, so few iterations
are necessary per step (in a uniprocessor implementation,

computation may be concentrated at nodes near modified
discontinuities). Increasingly accurate discontinuities
emerge as Bf’, and 8" decrease. Once a true discontinuity
appears it tends to persist (a hysteresis effect); thus, be-
yond some minimal BZ and 3" values, a slight increase
will eliminate some spurious discontinuities and release
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(b)

(c) (d)

i

Fig. 20. Local validation applied to piecewise continuous stereo recon
struction. (a) Aerial view stereopair of a hospital complex (images cour
tesy of U. British Columbia, Faculty of Forestry). (b) Disparity contour
on finest level (size 320 X 320) generated by feature based stereo pro
gram (darkness proportional to disparity). (c) Full disparity map gener
ated by surface reconstruction algorithm on finest level. (d) Disconti-
nuities identified on finest level (white contours) superimposed on re-
constructed piecewise continuous disparity map.

additional energy [this occurs in the transition from Fig.
22(f) to (g)]. Although it has achieved the global opti-
mum of VP2 in Fig. 22(h), the continuation procedure can
generally be expected to yield good, although not neces-
sarily optimal solutions. Its deterministic nature and effi-
ciency are attractive.

VI. DiscussioN

This paper has developed a computational theory of vis-
ible-surface representations. The visible-surface recon-
struction process which implements the theory provides a
uniform treatment of integration, interpolation, discontin-
uities, and efficiency, the four computational goals out-
lined in the introduction. The concluding discussion sur-
veys research directly relevant to the computation of
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(@)

(b)

Fig. 21. Some local discontinuity configurations and associated relative
energies. Circles represent nodes (i, j ), while X’s denote discontinuities
(positions where p” or 7” are 0; depth discontinuities occur on links be-
tween nodes while orientation discontinuities coincide with nodes.) (a)
Energies D/, for depth discontinuity configurations (cf. [25]). (b) Ener-
gies Of'J for some orientation discontinuity configurations. Rotating con-
figurations by increments of 90 degrees leaves associated energies unaf-
facted.

m

e

(8 (h)

Fig. 22. Variational continuity control method for piecewise continuous
reconstruction. (a) Scattered depth constraints consistent with sloping
planes meeting discontinuously. (b) Globally C' reconstructed surface
obtained with high 8% and B%. Note smeared depth discontinuities and
rounded orientation discontinuities. (c)-(h) Evolution of the variational
continuity control process. (34 is lowered first to identify depth discon-
tinuities (c)-(g) B" is lowered next to identify orientation discontinuities.
(h) Final piecewise continuous surface.
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visible-surface representations and proposes future re-
search directions.

A. Survey

Barrow and Tenebaum [3], [4] describe an approach to
reconstructing smooth surfaces from noisy visual data.
Their algorithms apply only to a restricted class of sur-
faces, but the intrinsic image model [2] and many of their
ideas regarding its computation have influenced subse-
quent work significantly. Grimson [27], [28] employs an
established surface fitting method for the smooth inter-
polation of visual surfaces from depth constraints. The
method involves the minimization of a particular func-
tional containing second derivatives (Grimson referred to
it as the ‘‘quadratic variation,”’ but it is better known in
the literature as the thin-plate spline) [47]. Brady and Horn
[12] point out that the resulting biharmonic interpolant
characterizes the bending energy of a thin plate (see also
[47]). The thin-plate reconstruction model is developed
further by Terzopoulos [51]. The high quality of thin-plate
interpolating surfaces relative to competing techniques are
responsible for their popularity in engineering applica-
tions (see [47], [56] for references).

A serious drawback of the thin-plate spline, however,
is that its global C! continuity gives rise to undesirable
overshoots near large gradients. Terzopoulos [53] pro-
poses to ameliorate the large gradient problem by intro-
ducing global tension into the surface (controlled by a sin-
gle tension parameter), in analogy to cubic splines in
tension (see also the independent work of Franke [23]).
Another potential problem is the viewpoint noninvariance
of the linear thin-plate approximation, which becomes
significant when large gradients are imposed by very
sparse data [7]. One possible countermeasure is to invoke
the large deflection theory of thin plates [53], [7]. Blake
and Zisserman [8] have made progress against the com-
putational difficulties inherent to this nonlinear model.
Alternatively, viewpoint invariance results without sac-
rificing linearity when the surface is represented para-
metrically as [x(u, v), y(u, v), z(u, v)]; here, the in-
trinsic variables 4 and v no longer correspond to the image
coordinates x and y.

Problems with large gradients are best eliminated by an
explicit treatment of surface discontinuities. The intro-
duction of depth (jump) discontinuities has been at-
tempted with regard to harmonic and biharmonic inter-
polation of geophysical data [9] (see also [14]) and with
regard to distance weighted local surface approximation
for CAGD [24], but irregularly shaped discontinuities
pose difficulties for these schemes. Terzopoulos [52] pre-
sents an approach to piecewise continuous surface recon-
struction from both depth and orientation constraints and
(possibly irregular) discontinuities which is based on
composite variational principles involving local thin-plate
and membrane elements.

These composite variational principles generalize to the
class of controlled-continuity spline models [56], of which
8,, in equation (5) is an instance. Controlled-continuity

433

spline models include as special cases the piecewise
smoothness constraints employed by Blake [6] and Ge-
man and Geman [25] for image restoration (dense data)
and by Marroquin [42] and Koch ef al. [37] for surface
reconstruction (the models in [25], [42] are cast in terms
of Markov random fields). In particular, the functionals
in [6], [25] correspond to piecewise zeroth-order (con-
stant) splines, while those in [37], [42] correspond to
piecewise first-order (harmonic or membrane) splines.
However, a second-order surface model, such as $ o7 18 the
lowest order capable of integrating depth and orientation
constraints and discontinuities.

The surface reconstruction examples presented by Ter-
zopoulos in [52], [53] employ the vocal validation method
for discontinuity detection (Section I1I-A). Langridge [38]
suggests a related scheme for the detection of surface ori-
entation discontinuities based on curvature peaks. Grim-
son and Pavlidis [30] detect discontinuities prior to recon-
struction by monitoring local statistics of the residuals of
a local planar approximation to the depth data. Brady er
al. [13] use 1-D scale space methods along lines of cur-
vature of a reconstructed surface to find discontinuities.

Blake introduces in [6] the idea of including a discon-
tinuity penalty term as part of the minimal energy for-
mulation of the piecewise continuous reconstruction prob-
lem. Geman and Geman [25] introduce an explicit line
process whose role is to favor continuous image intensity
edge configurations. Similar local edge compatibility
rankings favoring continuity have been employed in con-
nection with relaxation labeling curve enhancement pro-
cesses [64], [65]. Marroquin [42] adopts the line process
idea for depth discontinuity detection in surface recon-
struction. The present paper makes use of a line process
in the variational continuity control approach (see Fig.
21). In view of the underlying physical model, the tech-
nique is related to certain computational methods in frac-
ture mechanics for simulating the release of energy along
fractures propagating in solids [63]. Rather than toggling
binary discontinuity variables in a line process, Koch er
al. [37] employ a continuous, nonlinear gain mechanism
to insert depth discontinuities. This mechanism, due to
Hopfield, can be adapted to continuously estimate p(x,
y) and 7(x, y) in VP2. Also of interest is the work of
Mumford and Shah [43], who propose a method (imple-
mented in 1-D) to solve the Euler-Lagrange equations for
smooth boundaries.

The conventional numerical construction of thin-plate
surfaces and other generalized splines is in terms of their
reproducing kernel Hilbert space representation [47]. This
requires the solution of dense systems of equations of size
proportional to the number of point constraints (see [56,
Appendix D] for a summary formulation). Boult and Ken-
der [10] pursue reproducing kernel techniques for surface
reconstruction. Advantages accrue for globally continu-
ous reconstruction when there are relatively few con-
straints or when each constraint is introduced sequen-
tially. It is possible, in principle, to supplement the re-
producing kernel spaces with step functions to treat
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piecewise continuous reconstruction, although the for-
mulation presents difficulties, especially with regard to
estimating irregular discontinuities in multidimensions
[48]. In view of the requirements specific to the compu-
tation of visible-surface representations—very large con-
straint sets, undetermined discontinuities, desirability of
massively parallel implementation, etc.—it appears pref-
erable to apply finite element techniques which yield
sparse systems of equations, as is done in the present pa-
per.

Barrow and Tenenbaum [3], [4] use relaxation while
Grimson [27], [28] uses standard optimization algorithms
for surface interpolation. These iterative algorithms have
parallel variants which are thought to be ‘‘biologically
feasible.”” However, their tendency to be poorly condi-
tioned, even for reconstruction problems of moderate size,
results in very slow convergence. Excruciatingly slow
convergence also limits the size of problem that can be
attempted with optimization via simulated annealing [25],
[42]. Terzopoulos [51] shows that multiresolution surface
reconstruction based on multigrid relaxation methods ac-
celerates convergence dramatically while maintaining bi-
ological feasibility. Cochran and Medioni [19] describe
another implementation of this multiresolution surface re-
construction algorithm. An efficient multigrid algorithm
for reconstructing surfaces from shaded monocular im-
ages is described in [55]. A concurrent multigrid coordi-
nation strategy which solves a coupled, multilevel version
of the variational principle is developed in [54]; the ap-
proach is well suited to massively parallel hardware be-
cause it maintains simultaneous processor activity in all
levels.

B. Research Directions

Alternative organizations of shape information in visi-
ble-surface representations are worthy of further study.
One possible variant is a relative shape representation,
where only the coarsest grid contains absolute depth and
orientation values, while each finer grid contains increas-
ingly detailed perturbations relative to the sum of these
values over all coarser grids. Surface structure parsimon-
iously decomposes into the hierarchy of finite element
subspaces of the multiresolution representation (roughly
analogous to a Fourier decomposition). A relative shape
representation may simplify the multigrid relaxation al-
gorithm by enabling the levels to run virtually indepen-
dently of one another (see [53, Ch. 11] for a detailed dis-
cussion). Another representation of interest is the explicit
depth/slope representation proposed in [33].

The coupling of visual constraints to the surface model
requires further analysis. The surface model can be re-
lated to expectations regarding the class of admissible
surfaces, and a connection exists between the constraint
parameters o; and the statistical properties of noise or in-
accuracy in the data [56]. Assuming that low-level visual
processes can associate a confidence or variance estimate
with each shape constraint, it appears possible to system-
atically assign appropriate values to the constraint param-
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eters. In particular, cross validation techniques [60] may
provide a means of setting A ~! [refer to text after (7)] to
optimally tune the smoothness of the reconstructed sur-
face according to the noise present in the data.

The arbitration of visible-surface reconstruction by
higher-level processes has received insufficient attention.
Among other important functions, an arbitrator could deal
with occasional outliers or massively inconsistent data by
nullifying individual or entire sets of constraint parame-
ters. The straightforward treatment of a particular kind of
rivalry, that due to transparent surfaces is described in
[53, Ch. 11]. The arbitrator monitors the approximation
error betwen reconstructed surface and shape constraints
over broad areas. An excessive error triggers a grouping
process which clusters constraints. Multiple surfaces are
then reconstructed over the same region, one for each ho-
mogeneous constraint population.

The line processes used in the discontinuity detection
experiments are rather primitive. Zucker and Parent [65]
employ a more sophisticated discrete encoding of local
orientation in a relaxation labeling algorithm for contour
detection in images. It appears possible to employ a sim-
ilar encoding in the estimation of surface discontinuities
by variational continuity control via VP2. A continuous
encoding of the local orientations of curvilinear boundary
elements appears even more desirable, but introduces ad-
ditional real-valued nodal parameters in the discontinuity
map.

Analog computation by electrical networks [35] is an
attractive approach to generating visible-surface represen-
tations. The major advantages of large analog networks
are fault tolerance, noise dissipation, and very rapid set-
tling to steady-state (within a few network time con-
stants). Lumped analog networks may be designed sys-
tematically whose steady-state voltages and currents
represent quantities of interest in variational formulations
of visual problems such as surface reconstruction [53],
[44], [37], [33]. The network design process parallels fi-
nite element discretization; one or more electrical devices
may be used to simulate the physical properties of each
finite element [63]. Resistance networks for computing
first order and second order spline interpolants are shown
in Fig. 23.

It remains to explore ensuing processes that generate
stable higher-level shape descriptions which are better
tuned to object recognition. The visible-surface represen-
tation comprises only an intermediate, viewer-centered
description of the 3-D surfaces in scenes, and the goal of
subsequent processing is to abstract a rich set of object-
centered features that are stable through viewpoint
changes. This goal begins with visible-surface analysis,
which is facilitated by the dense, quantitative shape in-
formation provided by visible-surface representations.
This topic is considered further.

A promising approach to visible-surface analysis is to
apply concepts from differential geometry [20]. For in-
stance, according to the fundamental theorem of the local
theory of surfaces (Bonnet), the analytic study of a sur-
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Fig. 23. Analog networks for harmonic and biharmonic interpolation. (a)
Network of resistances r = 1 /h? solves Poisson’s equation for displace-
ment (depth) over a uniform grid of spacing 4. Currents 8i.; determined
by the right-hand side of the equation are injected into each node. Volt-
ages are applied to certain nodes in accordance with the boundary con-
ditions and constraints of the problem. Discontinuities may be inserted
by ‘‘breaking’’ resistors. (b) Two cascaded networks solve the bihar-
monic equation over a uniform grid. Top network solves a Poisson equa-
tion for the bending moment, while bottom network solves a similar
equation for the displacement.

face consists of the study of its two fundamental forms;
L.e., the six fundamental tensor coefficients (not all in-
dependent) as functions of the two independent parame-
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(b)

Fig. 24. Computing intrinsic and extrinsic surface properties in the visi-
ble-surface representation. (a) Computed Gaussian curvature K, ; of re-
constructed lightbulb at four scales. Elliptic points (K > 0) are white,
hyperbolic points (K < 0) are black, and parabolic points (K = 0)
separate regions. (b) Computed principal direction field for reconstructed
lightbulb at the two coarsest scales showing directions of greatest cur-
vature (left) and least curvature (right).

ters of the surface. The fundamental forms are invariant
under changes in surface parameterization, and together
they determine surface shape up to rigid body transfor-
mations, making them ideal foundations for object-cen-
tered representations of surfaces [53, Ch. 11].

The finite element shape representation reduces the
computation of fundamental forms and derived surface
features such as the Gaussian, mean, and principal cur-
vatures to the evaluation of simple algebraic expressions
of neighboring nodal variables [see Appendix, (25)-(28)].
It therefore becomes straightforward to compute the ellip-
tic, hyperbolic, parabolic, umbilic, and planar points, as
well as geodesics, asymptotes, and lines of curvature. Fig.
24 illustrates some of these computations using the recon-
structed surface of the lightbulb. The results demonstrate
the feasibility of reliably computing from visible-surface
representations higher-order intrinsic and extrinsic prop-
erties of surface shape (see also, e.g., [12], [22], [5],
[59]). The reliability is attributable to the controlled-con-
tinuity surface model which overcomes the potentially
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detrimental effects of noise in the data without destroying
discontinuities.

APPENDIX

Denote a vector in ®* by x = [x', x2, x*], and a sur-
face patch by x = x(u', u?) = [x'(«', u?), x2(u', u?),
x3(u', uz)], where (u', 142) is a point in parameter space.
Letx, = dx/0u', x, = 0x/ou’, x,, = 3%x/du' du?, etc.
A tangent vector is given by dx = x, du' + x, du® = x,
du', where the Einstein summation convention is used for
an index occurring both as a superscript and subscript in
a product. The first fundamental form is I = dx - x = x;
x;du' du’ = g; du' du’, where g; = x; - x;fori,j=1,
2 are the first fundamental (metric) tensor coefficients. The
unit normal vector is n = x; X x,/| X, X x,|, and its
differential is the vector dn = n; du'. The second funda-
mental form is II = d*x - n= X n du' du’ = b du'
du’, where b; = x; - nfori, j =1, 2 are the second
fundamental tensor coeflicients.

For the viewer-centered parameterization ' = x' = x
and u> = x> =y, the quadratic finite element v (x, y) |
is expressed as

x(x,y) =[x, y, ax® + by> + cxy + dx + ey +f].
(24)

where the coefficients a to f are uniquely determined by
(15) in terms of six unisolvent nodal variables associated
with each element [51]. Hence,

x; =[1,0,2ax + cy +d];
x, =[0,1,2by + cx + ¢]; x,, =[0,0, 24a];
xy =[0,0,2b]; x;, =x; =10,0,c];

X, X x,
n—= —"———7
| x, X x,|

—[2ax + ¢y +d,2by + cx + e, —1]

)

V2ax + ey + d) + (2by + ex + €)' + 1
yielding the first fundamental tensor coefficients
gn=x "x =1 +(2ax+cy+d)2;
gn =X Xy =1 +(2by+cx+e)2;
g =81 =X " x; = (2ax + ¢y + d)
- (2by + cx + e);

and the second fundamental tensor coefficients

2a
bll:xll.n:_\x,)(xzi;
2b
by = x5 "=m;
¢
by, = by = xp, nz]x—Xx—l’
| 2

where

| x; X x|

=\/(72ax+cy+d)2+(2by+cx+e)2+1.

The fundamental tensor coefficients are therefore simple
algebraic expressions over the element domain; however,
at the central node (0, 0) of the element their values re-
duce to

1 +d? de >
de 1 + e2/)’
and b;(0,0) = (1 +d* + ¢?)

<2ac>
c 2b/)

The normal curvature in the direction du = [du', du’ ]”
is k, = II/I. Let «; and «, be the principal curvatures.
The Gaussian curvature is

bbby, — bi 4ab — c?
K = kK = 7 = 5 5
8182 — 81 (1 +d° +e€)

gij(o’ O) = <
-1/2

. (25)

and the mean curvature is
g=h T K _ b8 — 2b,81, + bngi

2 81182 — 8%2
_2a(1 + €*) — 2cde + 2b(1 + d°?)

(1+d2+e?)” (26)

at the central node. Applying the differential equation for
the lines of curvature,

2
(g1bi — gubn) (du') + (g1bn — gnby) du' du?
2
+ (gi2bn — gnbn) (du®)” =0,

to the finite element, the principal directions at the central
node (0, 0) are given by

du’® —B + VB — 44AC
e tan 6 = 24 , (27)
where
A = 2bde — c(1 + €%);
B =2b(1 +d?*) — 2a(l + €?);
C=c(l +d? — 2ade. (28)

Further details are contained in [53, Ch. 11].
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