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ABSTRACT 

We present a technique for modeling large-scale urban 
environments for virtual human simulation. Our 
approach, which involves a set of hierarchical data 
structures, supports the efficient interaction between 
numerous autonomous pedestrians and their 
environment, including perceptual processing and path 
planning for the purposes of goal directed navigation. As 
a specific implementation of our approach, we develop 
an environmental model of a large train station and 
demonstrate its ability to support the real-time simulation 
of more than a thousand autonomous pedestrians 
engaged in a broad variety of individual and group 
behaviors appropriate to their large-scale urban 
environment. 

INTRODUCTION 

The simulation of pedestrians is a difficult challenge that 
is beginning to capture the attention of researchers and 
practitioners in architecture and urban planning [6,12]. 
The field of computer graphics, in which virtual human 
animation has been an important research interest for 
decades [2,1,8], has contributed technologies 
fundamental to the computer-assisted visualization of 
planned architectural projects, including the automatic 
animation of pedestrians [3,7,9]. 

In our work, we have been developing an autonomous, 
self-animating model of pedestrians capable of 
performing a broad variety of natural activities in 
synthetic urban spaces. To this end, we have adopted a 
comprehensive artificial life approach to addressing the 
problem of pedestrian animation. Our approach is 
inspired most heavily by the work of Tu and Terzopoulos 
[14] on artificial animals and by Funge et al. [4] on 
cognitive modeling for intelligent characters. 

The interaction between a pedestrian and his or her 
environment plays a major role in the animation of 
autonomous virtual humans in synthetic urban spaces. 
This, in turn, depends heavily on the representation and 
(perceptual) interpretation of the environment. 
Organizing the world into a simple list of geometric 
objects might suffice for modeling a small virtual 
environment with only a few environmental objects and 

pedestrians, but it is grossly inadequate when 
attempting to synthesize a large urban space populated 
by numerous pedestrians, such as a busy train station. 

In this paper, we develop a large-scale environment 
model, which includes a sophisticated set of hierarchical 
data structures that support the efficient interaction 
between numerous pedestrians and their complex virtual 
world through fast (perceptual) query algorithms. 

In the remainder of the paper, we first describe our 
virtual environment model in detail. We then explain how 
this model is applied in the implementation of a large-
scale virtual urban environment emulating the cavernous 
interior spaces of a computer reconstruction of New 
York City’s original Pennsylvania Train Station, which 
opened to the public in 1910 and was tragically 
demolished a little over forty years ago.  

VIRTUAL ENVIRONMENT MODEL 

In our system, we represent the virtual environment by a 
hierarchical collection of data structures, including a 
topological map, two types of maps for perception, two 
types of maps for path planning and a set of specialized 
environment objects (Fig. 1). With each of these data 
structures specialized to a different purpose, the 
combination is able to support accurate and efficient 
environmental information storage and retrieval. 

 

Fig. 1.  Hierarchical World Model 
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TOPOLOGICAL MAP 

A graph serves to represent the topological relations 
between different parts of a virtual world. In this graph, 
nodes correspond to environmental regions and edges 
between nodes represent accessibility between regions. 
A region is a bounded volume in 3D-space (such as a 
room, a corridor, a flight of stairs or even an entire floor) 
together with all the objects inside that volume (for 
example, ground, walls, ticket booths, benches, vending 
machines, etc.). We assume that the walkable surface in 
a region may be mapped onto a horizontal plane without 
loss of essential geometric information, such as the 
distance between two locations. Consequently, a 3D-
space may be adequately represented by several planar 
maps, thereby enhancing the simplicity and efficiency of 
environmental queries, as will be described momentarily. 

Another type of connectivity information stored at each 
node in the graph is “path-to-via” information. Suppose 
L(A,T) is the length in number of edges of the shortest 
path from a region A to a different target region T, and 
P(A,T) is the set of paths from A to T of length L(A,T) 
and L(A,T) + 1. Then PT(A,T), the “path-to-via” of A 
associated with T, is a set of pairs defined as follows: 

 PT(A,T)   =   {   ( region B, cost CB )   |  exists p in P(A,T)   &  
                         CB = length of p   &   B is next to A on p   }. 
  
As the name suggests, if (B,CB) is in PT(A,T), then a 
path of length CB from A to T via B exists. In other 
words, PT(A,T) answers the question “To which region 
shall I go, and what cost shall I expect if I am currently in 
A and want to reach T”? Given a graph, the “path-to-via” 
information is computed offline in advance using the 
following incremental algorithm: 

Given G(N,E), a graph with N nodes and E edges: 
1. Initialization:  
    for each node A 
      for each target node T 
        if (A == T) 
          then PT(A,T) = {(A,0)} 
          else PT(A,T) = {} 
2. Collect information associated with paths of length L based 
    on the information associated with paths of length L-1: 
    for length L=1 to N-1 
      for each node A 
        for each target node T 
          for every neighbor node B of A 
             if (X,L-1) is in PT(B,T)     ( Note: X can be any node in G. ) 
               then add (B,L) in PT(A,T) 
3. Keep only low cost entries: 
    for each node A 
       for each target node T 
         let Cmin be the minimal cost in PT(A,T) 
         for each entry E(Y,C) in PT(A,T)   (Y can be any node in G.) 
           if (C > Cmin + 1) 
             then remove E from PT(A,T) 
 

Note that after Step 3 only those entries are stored 
whose cost is minimal or (minimal + 1). In this way we 
can avoid paths with cycles. To understand this, 
consider PT(A,C) for the graph in Fig. 1. C is a direct 

neighbor of A; so (C,1) is clearly an entry of PT(A,C). 
(B,3) is another entry as A-B-A-C is also a possible path 
from A to C. Obviously, A-B-A-C is not desired as it 
contains a cycle. Such paths will automatically be 
removed from the “path-to-via” set after Step 3. 

PERCEPTION MAPS 

Two types of maps support perception queries, one for 
stationary objects and one for mobile objects. The 
following table summarizes their similarities and 
differences, and the next two subsections present the 
details. 

Type #Maps Cell size Update cost Query cost 

Stationary one per 
region 

small 
(~0.3m) 0 

constant, given the 
sensing range and 

acuity 

Mobile one per 
world 

large 
(~5.0m) 

linear in the 
number of 

pedestrians 

constant, given the 
sensing fan and 
max number of 

sensed pedestrians
 

Stationary Objects 

Our definition of a region assumes that we can 
effectively map its 3D space onto a horizontal plane. By 
overlaying a uniform grid on that plane, we make each 
cell correspond to a small area of the region and store in 
that cell identifiers of all the objects that occupy that 
small area. Thus, the grid defines a rasterization of the 
region. This rasterized floor plan simplifies visual 
sensing. The sensing query shoots out a fan of line 
segments whose length reflects the desired perceptual 
range and whose density reflects the desired perceptual 
acuity. Each segment is rasterized onto the grid map 
(Fig. 2, left). Grid cells along each line are interrogated 
for their associated object information. This perceptual 
query takes time that grows linearly with the number of 
lines times the number of cells on each line. Most 
importantly, however, it does not depend on the number 
of objects in the virtual environment. Without the help of 
grid maps, the necessary line-object intersection tests 
would be time consuming given a large, complex virtual 
environment populated by numerous pedestrians. For 
high sensing accuracy, small sized-cells are used. In our 
simulations, the typical cell size of grid maps for 
stationary object perception is 0.2~0.3 meters. 

 

Fig. 2.  Visual Sensing. Left: Sensing stationary objects by 
examining map entries along rasterized eye rays. Right: Sensing 
mobile objects by examining (color-coded) tiers of the sensing fan. 

 

 



Mobile Objects 

A 2D grid map is used for sensing mobile objects 
(typically other pedestrians). Rather than storing one 
map per region, this time a single global grid map 
suffices for the entire environment. In this map, each cell 
stores and updates identifiers of all the pedestrians 
currently within its area. The main purpose of the map is 
to enable the efficient query by a given pedestrian of 
nearby pedestrians that are within its sensing range. The 
sensing range here is defined by a fan as illustrated in 
the right part of Fig. 2. On the mobile object perception 
map, the set of cells wholly or partly within the fan are 
divided into subsets, called “tiers”, based on their 
distance to the pedestrian. Closer tiers will be examined 
earlier. Once a maximum number (currently set to 16) of 
nearby pedestrians are perceived, the sensing is 
terminated. This is intuitively inspired by the fact that 
usually people can pay attention at one time only to a 
limited number of other people, especially those in close 
proximity. Once the set of nearby pedestrians is sensed, 
further information can be obtained by referring to finer 
maps, by estimation, or simply by querying a pedestrian 
of interest. Given the sensing fan and the upper bound 
on the number of sensed pedestrians, this is a constant 
time operation. 

PATH MAPS 

Goal-directed navigation is one of the most important 
abilities of a pedestrian, and path planning enables a 
pedestrian to navigate a complex environment in a 
sensible manner. To facilitate fast and accurate online 
path planning, we use two types of maps with different 
data structures—grid maps and quadtree maps. 

Grid Map 

Grid maps, which are useful in visual sensing, are also 
very useful for path planning. Using the well-known A* 
graph search algorithm [10,13], we can always find a 
shortest path on a grid map if one exists. In our system, 
grid path maps are used whenever a detailed path is 
needed. Suppose D is the direct distance between 
pedestrian H and his target T. Then a detailed path is 
needed for H if D is smaller than a user-defined constant 
Dmax and there are obstacles between H and T. This 
occurs, for instance, when one wants to move from 
behind a chair to its front and sit on it. Clearly, the 
accuracy of the path in this instance depends on the size 
of the cells in the grid path maps. A small cell size 
results in a large search space and, likely, low 
performance. However, detailed paths are usually not 
needed unless the target is very close to the starting 
point. Therefore, chances are that paths are found 
quickly, after the search covers only a small portion of 
the entire search space. Roughly speaking, the space 
that must be searched is bounded by  cellsizeD2

max4  in 
most cases, and the typical values for those constants in 
our current system are Dmax = 5 meters and cellsize = 
0.2~0.3 meters. 

Quadtree Map 

The quadtree map supports fast online path planning. 
Each quadtree map comprises a list of nodes, the 
number of different node cell sizes appearing in the 
map, and a pointer to an associated grid map with small 
cell sizes. Each node of the quadtree [11] stores 
information about its level in the quadtree, the position in 
the world of the region represented by the node, the 
occupancy type (ground, obstacle, seat, etc.), and 
pointers to neighboring nodes, as well as information for 
use during path planning, such as a distance variable 
(indicating how far the region represented by the node is 
from a given start point) and a congestion factor (the 
portion of the region of the node that is occupied by 
pedestrians). 

As Fig. 3 illustrates, the algorithm for constructing the 
quadtree map first builds the list of map levels containing 
nodes representing increasing cell sizes, where the cell 
size of an upper level node is twice as large as that of 
lower level nodes. Higher level nodes, which aggregate 
lower level nodes, are created so long as the associated 
cells are of the same occupancy type, until a level is 
reached where no more cells can be aggregated. 
Usually quadtree maps contain a large number of lower 
level nodes which cover only a small portion of the entire 
region. Such nodes significantly increase the search 
space for path planning. Thus, in the final stage of 
construction, these nodes will be excluded from the set 
of nodes that will participate in online path planning. As 
the area that they cover is small, their exclusion does 
not cause significant accuracy loss. However, in 
occasions when path planning fails because of this 
exclusion, grid maps will be used to find the path, as will 
be described next. 

 

Fig. 3.  Constructing a quadtree map. 

 

Combining the Path Maps 

When used for path planning, quadtree maps have the 
advantage of quick response, while grid path maps are 
good for detailed plans. So quadtree maps are always 
used when detailed paths are not required. Sometimes, 
however, quadtree maps may fail to find a path even 
though one exists. This is because low level nodes on a 
quadtree map are ignored during path search in order to 
decrease the search space. Therefore, paths that must 
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go through some low level nodes cannot be found on a 
quadtree map. To resolve this, we turn to grid path maps 
whenever search fails on a quadtree map. For efficiency 
reasons, a list of grid maps with decreasing cell sizes is 
kept for each region. Gridmap path search starts at the 
coarsest level and progresses down the hierarchy so 
long as the search fails on coarser levels. Although grid 
maps with large cells are likely to merge separate 
objects due to aliasing, and thus cause the search to fail, 
the multiresolution search ascertains that, as long as the 
path exists, the path will always be found on maps with 
smaller cells. The following table compares the average 
performance between the two types of path maps, as 
measured in our experiments.  

Type 

Accuracy 
(smallest 

searchable 
node size) 

Ground 
area 

covered 

Typical 
search 
space 
size 

% of all 
paths 

planned 

% time used 
in a 

simulation 

Quadtree 0.8m 85% ~500 94% 8% 
Grid 0.5~1.0m 100% ~5000 6% 2% 

 

SPECIALIZED ENVIRONMENT OBJECTS 

Many of the environment objects are specialized to 
support quick perceptual queries. For instance, every 
ground object contains an altitude function which 
responds to ground height sensing queries. A bench 
object keeps track of how many people are sitting on it 
and where they sit. By querying nearby bench objects, 
weary virtual pedestrians are able to determine the 
available seat positions and decide where to sit without 
further reference to perceptual maps. Other types of 
specialized objects include queues (where pedestrians 
wait in line), purchase points (where pedestrians can 
make a purchase), entrances/exits, etc. In short, these 
objects provide a higher level interpretation of the world 
that would be awkward to implement with perception 
maps, and this simplifies situation analysis for 
pedestrians when they perform autonomous behaviors. 

PATH PLANNING 

Autonomous virtual pedestrians are capable of 
automatically planning paths around static and dynamic 
obstacles in the environment. When creating grid maps, 
special care must be taken to facilitate efficient updates 
and queries. Polygonal bounding boxes of obstacle 
objects represented on grid maps are enlarged by half of 
the size of a pedestrian’s bounding circle. If the center of 
a pedestrian never enters this “buffer” area, collisions 
will be avoided. This enables us to simplify the 
representation of a virtual pedestrian to a single point, 
which makes most queries simpler. Each pedestrian 
executes a path planning algorithm whose main phases 
are as follows: 1) insert a target into the quadtree map 
and expand the target if necessary; 2) from a given start 
node, try to find any node of the expanded target using 
one of several available search schemes; 3) if the 
search reaches an expanded target node, then back-
track through the visited nodes to construct an initial 
path back to the start node; 4) post-process this initial 

path to compute the final path. In the case that a path 
cannot be found on a quadtree map, the standard A* 
algorithm [10, 13] will be used to find a path on one of 
the grid maps, starting at the coarsest level and 
progressing down the grid map hierarchy, as we 
discussed in the previous section. 

For quadtree maps, our search schemes employ several 
variations of the A* search algorithm. In the conventional 
A* algorithm, the search procedure iteratively gets an 
unvisited (ground) node from a queue, visits it, marks it 
as visited, adds its neighbors to the queue, and repeats 
until the target is reached or the algorithm fails to reach 
the target. As the algorithm progresses, it updates a 
distance variable in each node which indicates the 
approximate distance of the node from the start point. 
After the search succeeds, the distance tags of all the 
visited nodes form a distance field, which back-tracking 
uses to find a shortest path along the distance gradient 
from the target point back to the start point. 
 
The A* algorithm can be applied straightforwardly to plan 
paths on uniform grids. The situation with a quadtree 
map is more complex, however, as the nodes of a 
quadtree map can represent different sized regions. In 
updating the distance variables, we therefore employ the 
actual distances between the centers of adjacent nodes. 
The algorithm can update the distance variables 
efficiently since  the internodal distances increase or 
decrease by a factor of 2 from level to level in the 
quadtree,.  
 
Note that the centers of regions associated with large 
ground nodes in the quadtree are generally further from 
obstacles than those of the small ground nodes. When 
planning paths, virtual pedestrians can keep further 
away from obstacles simply by favoring bigger nodes in 
their path searches. The search algorithm does this by 
appropriately weighting the internodal distances from 
level to level in the quadtree. 
 
The search algorithm also takes the congestion of an 
region into consideration during path planning. The 
congestion factor variables of adjacent nodes are 
incremented and decremented when a pedestrian 
transitions between the regions covered by these nodes. 
If the congestion factor for the node exceeds a preset 
congestion threshold, the internodal distances from that 
node are weighted with a weighting factor greater than 
unity. This associates a greater cost for congested 
nodes, in terms of their distance from a start node, and 
the search backtracking process will avoid that route.   
 
We have designed several variants of the A* algorithm, 
each with its own emphasis. Some variants aim at high 
speed while others always attempt to find shortest paths. 
The virtual pedestrians use all of the variants in order to 
increase the variety of their motions. Our A* variants 
differ in how they maintain the unvisited nodes in the 
queue(s). Variant “SingleQ” is the standard A* algorithm 
for uniform grid maps. It does not find shortest paths in 
quadtrees because it expands quadtree nodes non-



isotropically. “SortedQ” maintains a sorted queue, and 
thus it first visits the frontier node (frontier nodes are 
nodes in the boundary between visited and unvisited 
regions) which is closest to the start node. The 
expansion is more isotropic, but maintaining a sorted 
queue is relatively expensive. SingleQ tends to visit 
larger quantities of smaller nodes in the quadtree, since 
they are more plentiful; hence, the visited region tends to 
grow rather slowly. “MultiQ” maintains a separate queue 
for each level in the quadtree and it visits every level in 
turn; hence, more large nodes are visited sooner than in 
the SingleQ search, improving the search speed. 
“PmultiQ”, is a prioritized MultiQ scheme, which tries to 
visit the largest frontier node first and therefore exhibits 
the fastest growth speed among the four methods. If we 
consider the size of a node to be analogous to the size 
of a road, the PmultiQ scheme finds a path by searching 
along interstate highways first, then all state highways, 
then local roads, etc., until it finds the target. However, 
the path found will not necessarily be optimal. Thus, in 
the order in which the four schemes were presented 
(“SortedQ”, “SingleQ”, “MultiQ”, “PmultiQ” ), the length of 
the paths that they generate are increasingly less 
optimal, but the searches are increasingly more efficient. 
 
To make the search even faster, every target is 
expanded on a quadtree map until it touches any node 
at a certain level Lt. The value of Lt is a trade-off 
between accuracy and efficiency and it is automatically 
determined during map construction. Nodes on and 
above this level will cover a large portion of the entire 
region and there will be significantly fewer of them. 
Target expansion will likely shorten the time needed in 
the search step as nodes at levels lower than Lt 
probably do not have to be visited before the expanded 
target is reached (especially in the case of “PmultiQ”). 
"SortedQ" is used in order for the expansion to be nearly 
isotropic. 

The search step successfully completes its task once it 
has found a node Te that belongs to the expanded 
target. Using the aforementioned back-tracking method, 
the path planning algorithm constructs a path from the 
starting point to Te within the searched area and a path 
from Te to a real target node within the expanded target 
area. By linking these two paths together, we obtain a 
complete path to the target. Finally, the complete path 
will be refined for use by the virtual pedestrian. 
 
PERCEPTUAL PROCESSING 

Our environment model efficiently provides accurate 
perceptual data in response to the perceptual queries 
that may be issued by an autonomous pedestrian. 
Typical queries are explained next in order of increasing 
abstractness. 

Sensing ground height: To ensure that a virtual 
pedestrian’s feet touch the ground in a natural manner, 
especially when climbing stairs or locomoting on uneven 
ground, the pedestrian must query the environment 
model in order to sense the local ground height so that 

the feet can be planted appropriately. Each grid map cell 
contains the height functions of sometimes a few (most 
often a single) ground objects. The greatest height at the 
desired foot location is returned in constant time. 

Visual sensing: As stated earlier (see also Fig. 2), our 
data structures dramatically increase the efficiency of 
the sensing process when a pedestrian must perceive 
static obstacles and nearby pedestrians, which is a 
crucial component of obstacle avoidance. On the 
perception map for static objects, rasterized eye rays are 
used to detect static obstacles. On the perception map 
for dynamic objects, a constant number of neighbor cells 
are examined to identify nearby pedestrians. Both of the 
algorithms are localized and do not depend on the size 
of the world, the number of objects or pedestrians, or 
anything else that increases with world size.  

Planning paths between regions: Here, the “path-to-
via” information is useful in identifying intermediate 
regions that lead to the target region. Any intermediate 
region can be picked as the next region and, by applying 
the path-searching scheme, a path can be planned from 
the current location to the boundary between the current 
region and that next region. The process is repeated in 
the next region, and so on, until it can take place in the 
target region to terminate at the target location. Although 
the extent of the path is global, the processing is local. 

Locating an object: Given a location identifier (say, 
“Track 9”), a search at the object level can find the 
virtual object. This is accomplished in constant time 
using a hash map with location names as keys. As the 
virtual object has an upward reference to its region, it 
can be located quickly (say, under the lower concourse), 
as can nearby objects in that region (say, “Platform 9” 
and “Platform 10”). 

PENN STATION MODEL 

 

We have applied the environmental modeling techniques 
described in the previous section to modeling the 
original Pennsylvania Station of New York City, as was 
mentioned in the introduction.  Fig. 4 shows historical 
photographs of the exterior and interior of the station. 
The raw geometric model (with associated textures) of 
Penn Station is available in MultiGen-Paradigm Inc.’s 
OpenFlight file format. The model was distributed to us 
by Boston Dynamics, Inc. 

  
 Fig. 4.    Original Penn Station, NYC    Waiting Room Interior 



Fig. 5 shows a roofless plan view of the rendered Penn 
Station geometric model with the two-level Concourse at 
the left, the main Waiting Room at the center, and the 
long Arcade at the right. 

 

Fig. 5. Plan view of Penn Station, showing the concourse (left), the 
main waiting room (center), and the arcade (right). Note that the 
station model has a complete ceiling, which has not been rendered 
in this view. 

 

MAP INITIALIZATION AND UPDATE 

The construction of the hierarchical map of a virtual 
environment requires first a manual division of the 3D 
space into regions. The initial graph map for the Penn 
Station model is constructed according to this division 
and the “path-to-via” information of every region is 
computed automatically. For each region, all the objects 
are automatically loaded and abstracted into the 
appropriate maps. For an obstacle, a polygonal 
bounding box is included, while for a ground object, a 
sampled height function is stored. Orientation is 
specified for objects such as chairs, newsstands, and 
vending machines. Special labels are stored for 
platforms/tracks and for trains to different destinations. A 
registered object also stores reference pointers to 
associated representations in coarser-resolution maps. 

Mobile objects and stationary objects are stored in two 
separate grids, which form a composite grid map. 
Hence, objects that never need updating persist after the 
initialization step and more freedom is afforded to the 
mobile object (usually virtual pedestrian) update process 
during simulation steps. When a pedestrian in motion 
transits from one cell to another, the update process 
removes information from the previous cell and adds it to 
the new cell on the grid map. Since we have simplified a 
pedestrian’s representation to a single point, the update 
takes negligible time. 

Fig. 6 presents a visualization of the quadtree map of 
the Concourse area of the station. The lower part of the 
figure also compares paths computed by the four search 
variants of the path planning algorithm discussed in the 
previous section. 

AUTONOMOUS PEDESTRIAN ANIMATION 

Analogous to real humans, our synthetic pedestrians are 
fully autonomous. They perceive the virtual environment 
around them, analyze environmental situations, make 
decisions and behave naturally. Our autonomous human 
characters are structured in accordance with a 
hierarchical character model which, progressing through 
levels of abstraction up the “modeling pyramid”, 
incorporates appearance, motor, perception, behavior, 
and cognition sub-models [4]. The details of the 
perception, behavior, and cognition submodels are 
beyond the scope of this paper. 

To implement the low-level appearance and motor 
levels, we employ a human animation package called 
DI-Guy, which is commercially available from Boston 
Dynamics Inc. [5]. DI-Guy provides a variety of textured 
geometric models of various people. These character 
models are capable of basic motor skills, such as 
walking, jogging, sitting, etc., implemented using IK and 
motion capture techniques. DI-Guy was intended as an 
application that enables users to script the actions of 
human characters manually in space and time. To 
facilitate manual scripting, it provides an interactive 
scripting interface called DI-Guy Scenario, which we do 
not use. However, it also provides an SDK that enables 
each character’s motor repertoire to be controlled by 
external user-specified C/C++ programs.  

By supplementing DI-Guy with our own control programs 
at the perceptual, behavioral, and cognitive levels, we 
have successfully developed a fully self-animating virtual 
human model that is capable of synthesizing a relatively 
rich variety of autonomous behaviors and actions 
associated with pedestrians in urban environments. 

Fig. 7 illustrates frames from large-scale simulations of 
pedestrian behaviors in the main waiting room, 
concourse, and arcade areas of the Penn Station 
synthetic environment. Our simulations demonstrate not 
only conventional crowd behaviors, in our case involving 
over a thousand pedestrians, but various individual 
activities that are typical for pedestrians in a train station.  
These include pedestrians entering the station, 
navigating through portals, queuing at the ticket booths 
to purchase tickets and at vending machines when 
hungry/thirsty, sitting on chairs or benches when tired, 
congregating to watch a dance performance when they 
are interested in some amusement, and eventually 
proceeding to the train platforms down some rather 
narrow stairways. 

CONCLUSION 

We have presented a methodology for modeling large-
scale urban environments that facilitates the animation 
of numerous autonomous virtual pedestrians. In this 
paper, we have focused on the representation of indoor 
urban environments in terms of hierarchical data 
structures—a topological map, grid maps and quadtree 
maps—that support efficient path planning for pedestrian  



 

(a) 

(b) (c) 

(d) (e) 

Fig. 6.  (a) Visualization of the quad-tree map of the concourse’s upper level in the Penn Station environment model. The white quads denote ground 
nodes and the blue ones denote obstacles. The green circle is the start point and the orange circle is the target. (b-e) Comparison of path planning
algorithms on quad-tree maps. Paths planned by using (b) SortedQ, (c) SingleQ, (d) MultiQ, and (e) PmultiQ. The search space is color coded with the 
distance variable values increasing from green to orange. Note that, although the four paths are similar, the sizes of search space are different. (For 
clarity, obstacle quads are not shown in the lower images.) 

 



 

navigation guided by equally efficient perceptual 
processing. 

Our simulations of autonomous pedestrians in a 
reconstruction of New York City’s original Pennsylvania 
Station have included well over one thousand virtual 
pedestrians performing a reasonably broad repertoire of 
activities as autonomous individuals, not as “crowds”. 

It is important to note that our high-level autonomous 
control models are designed to be more or less 
independent of the lower-level human modeling/ 
animation/rendering levels; hence, in principle, any other 
suitable low-level API can serve as a replacement for 
Boston Dynamics’ DI-Guy API in our future work. 
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