
05DHM-55

Environmental Modeling for Autonomous Virtual Pedestrians

Wei Shao and Demetri Terzopoulos
Media Research Lab, Courant Institute, New York University

Copyright © 2005 SAE International

ABSTRACT

We present a technique for modeling large-scale urban
environments for virtual human simulation. Our
approach, which involves a set of hierarchical data
structures, supports the efficient interaction between
numerous autonomous pedestrians and their
environment, including perceptual processing and path
planning for the purposes of goal directed navigation. As
a specific implementation of our approach, we develop
an environmental model of a large train station and
demonstrate its ability to support the real-time simulation
of more than a thousand autonomous pedestrians
engaged in a broad variety of individual and group
behaviors appropriate to their large-scale urban
environment.

INTRODUCTION

The simulation of pedestrians is a difficult challenge that
is beginning to capture the attention of researchers and
practitioners in architecture and urban planning [6,12].
The field of computer graphics, in which virtual human
animation has been an important research interest for
decades [2,1,8], has contributed technologies
fundamental to the computer-assisted visualization of
planned architectural projects, including the automatic
animation of pedestrians [3,7,9].

In our work, we have been developing an autonomous,
self-animating model of pedestrians capable of
performing a broad variety of natural activities in
synthetic urban spaces. To this end, we have adopted a
comprehensive artificial life approach to addressing the
problem of pedestrian animation. Our approach is
inspired most heavily by the work of Tu and Terzopoulos
[14] on artificial animals and by Funge et al. [4] on
cognitive modeling for intelligent characters.

The interaction between a pedestrian and his or her
environment plays a major role in the animation of
autonomous virtual humans in synthetic urban spaces.
This, in turn, depends heavily on the representation and
(perceptual) interpretation of the environment.
Organizing the world into a simple list of geometric
objects might suffice for modeling a small virtual
environment with only a few environmental objects and

pedestrians, but it is grossly inadequate when
attempting to synthesize a large urban space populated
by numerous pedestrians, such as a busy train station.

In this paper, we develop a large-scale environment
model, which includes a sophisticated set of hierarchical
data structures that support the efficient interaction
between numerous pedestrians and their complex virtual
world through fast (perceptual) query algorithms.

In the remainder of the paper, we first describe our
virtual environment model in detail. We then explain how
this model is applied in the implementation of a large-
scale virtual urban environment emulating the cavernous
interior spaces of a computer reconstruction of New
York City’s original Pennsylvania Train Station, which
opened to the public in 1910 and was tragically
demolished a little over forty years ago.

VIRTUAL ENVIRONMENT MODEL

In our system, we represent the virtual environment by a
hierarchical collection of data structures, including a
topological map, two types of maps for perception, two
types of maps for path planning and a set of specialized
environment objects (Fig. 1). With each of these data
structures specialized to a different purpose, the
combination is able to support accurate and efficient
environmental information storage and retrieval.

Fig. 1. Hierarchical World Model

D (hall)

B (arcade)

C (concourse)

A (waiting room)

Perception Maps

Topological
Map

Path Maps
Grid Quadtree

Specialized
Objects Ground Seat Waiting-line

Stationary Mobile

TOPOLOGICAL MAP

A graph serves to represent the topological relations
between different parts of a virtual world. In this graph,
nodes correspond to environmental regions and edges
between nodes represent accessibility between regions.
A region is a bounded volume in 3D-space (such as a
room, a corridor, a flight of stairs or even an entire floor)
together with all the objects inside that volume (for
example, ground, walls, ticket booths, benches, vending
machines, etc.). We assume that the walkable surface in
a region may be mapped onto a horizontal plane without
loss of essential geometric information, such as the
distance between two locations. Consequently, a 3D-
space may be adequately represented by several planar
maps, thereby enhancing the simplicity and efficiency of
environmental queries, as will be described momentarily.

Another type of connectivity information stored at each
node in the graph is “path-to-via” information. Suppose
L(A,T) is the length in number of edges of the shortest
path from a region A to a different target region T, and
P(A,T) is the set of paths from A to T of length L(A,T)
and L(A,T) + 1. Then PT(A,T), the “path-to-via” of A
associated with T, is a set of pairs defined as follows:

 PT(A,T) = { (region B, cost CB) | exists p in P(A,T) &
 CB = length of p & B is next to A on p }.

As the name suggests, if (B,CB) is in PT(A,T), then a
path of length CB from A to T via B exists. In other
words, PT(A,T) answers the question “To which region
shall I go, and what cost shall I expect if I am currently in
A and want to reach T”? Given a graph, the “path-to-via”
information is computed offline in advance using the
following incremental algorithm:

Given G(N,E), a graph with N nodes and E edges:
1. Initialization:
 for each node A
 for each target node T
 if (A == T)
 then PT(A,T) = {(A,0)}
 else PT(A,T) = {}
2. Collect information associated with paths of length L based
 on the information associated with paths of length L-1:
 for length L=1 to N-1
 for each node A
 for each target node T
 for every neighbor node B of A
 if (X,L-1) is in PT(B,T) (Note: X can be any node in G.)
 then add (B,L) in PT(A,T)
3. Keep only low cost entries:
 for each node A
 for each target node T
 let Cmin be the minimal cost in PT(A,T)
 for each entry E(Y,C) in PT(A,T) (Y can be any node in G.)
 if (C > Cmin + 1)
 then remove E from PT(A,T)

Note that after Step 3 only those entries are stored
whose cost is minimal or (minimal + 1). In this way we
can avoid paths with cycles. To understand this,
consider PT(A,C) for the graph in Fig. 1. C is a direct

neighbor of A; so (C,1) is clearly an entry of PT(A,C).
(B,3) is another entry as A-B-A-C is also a possible path
from A to C. Obviously, A-B-A-C is not desired as it
contains a cycle. Such paths will automatically be
removed from the “path-to-via” set after Step 3.

PERCEPTION MAPS

Two types of maps support perception queries, one for
stationary objects and one for mobile objects. The
following table summarizes their similarities and
differences, and the next two subsections present the
details.

Type #Maps Cell size Update cost Query cost

Stationary one per
region

small
(~0.3m) 0

constant, given the
sensing range and

acuity

Mobile one per
world

large
(~5.0m)

linear in the
number of

pedestrians

constant, given the
sensing fan and
max number of

sensed pedestrians

Stationary Objects

Our definition of a region assumes that we can
effectively map its 3D space onto a horizontal plane. By
overlaying a uniform grid on that plane, we make each
cell correspond to a small area of the region and store in
that cell identifiers of all the objects that occupy that
small area. Thus, the grid defines a rasterization of the
region. This rasterized floor plan simplifies visual
sensing. The sensing query shoots out a fan of line
segments whose length reflects the desired perceptual
range and whose density reflects the desired perceptual
acuity. Each segment is rasterized onto the grid map
(Fig. 2, left). Grid cells along each line are interrogated
for their associated object information. This perceptual
query takes time that grows linearly with the number of
lines times the number of cells on each line. Most
importantly, however, it does not depend on the number
of objects in the virtual environment. Without the help of
grid maps, the necessary line-object intersection tests
would be time consuming given a large, complex virtual
environment populated by numerous pedestrians. For
high sensing accuracy, small sized-cells are used. In our
simulations, the typical cell size of grid maps for
stationary object perception is 0.2~0.3 meters.

Fig. 2. Visual Sensing. Left: Sensing stationary objects by
examining map entries along rasterized eye rays. Right: Sensing
mobile objects by examining (color-coded) tiers of the sensing fan.

Mobile Objects

A 2D grid map is used for sensing mobile objects
(typically other pedestrians). Rather than storing one
map per region, this time a single global grid map
suffices for the entire environment. In this map, each cell
stores and updates identifiers of all the pedestrians
currently within its area. The main purpose of the map is
to enable the efficient query by a given pedestrian of
nearby pedestrians that are within its sensing range. The
sensing range here is defined by a fan as illustrated in
the right part of Fig. 2. On the mobile object perception
map, the set of cells wholly or partly within the fan are
divided into subsets, called “tiers”, based on their
distance to the pedestrian. Closer tiers will be examined
earlier. Once a maximum number (currently set to 16) of
nearby pedestrians are perceived, the sensing is
terminated. This is intuitively inspired by the fact that
usually people can pay attention at one time only to a
limited number of other people, especially those in close
proximity. Once the set of nearby pedestrians is sensed,
further information can be obtained by referring to finer
maps, by estimation, or simply by querying a pedestrian
of interest. Given the sensing fan and the upper bound
on the number of sensed pedestrians, this is a constant
time operation.

PATH MAPS

Goal-directed navigation is one of the most important
abilities of a pedestrian, and path planning enables a
pedestrian to navigate a complex environment in a
sensible manner. To facilitate fast and accurate online
path planning, we use two types of maps with different
data structures—grid maps and quadtree maps.

Grid Map

Grid maps, which are useful in visual sensing, are also
very useful for path planning. Using the well-known A*
graph search algorithm [10,13], we can always find a
shortest path on a grid map if one exists. In our system,
grid path maps are used whenever a detailed path is
needed. Suppose D is the direct distance between
pedestrian H and his target T. Then a detailed path is
needed for H if D is smaller than a user-defined constant
Dmax and there are obstacles between H and T. This
occurs, for instance, when one wants to move from
behind a chair to its front and sit on it. Clearly, the
accuracy of the path in this instance depends on the size
of the cells in the grid path maps. A small cell size
results in a large search space and, likely, low
performance. However, detailed paths are usually not
needed unless the target is very close to the starting
point. Therefore, chances are that paths are found
quickly, after the search covers only a small portion of
the entire search space. Roughly speaking, the space
that must be searched is bounded by cellsizeD2

max4 in
most cases, and the typical values for those constants in
our current system are Dmax = 5 meters and cellsize =
0.2~0.3 meters.

Quadtree Map

The quadtree map supports fast online path planning.
Each quadtree map comprises a list of nodes, the
number of different node cell sizes appearing in the
map, and a pointer to an associated grid map with small
cell sizes. Each node of the quadtree [11] stores
information about its level in the quadtree, the position in
the world of the region represented by the node, the
occupancy type (ground, obstacle, seat, etc.), and
pointers to neighboring nodes, as well as information for
use during path planning, such as a distance variable
(indicating how far the region represented by the node is
from a given start point) and a congestion factor (the
portion of the region of the node that is occupied by
pedestrians).

As Fig. 3 illustrates, the algorithm for constructing the
quadtree map first builds the list of map levels containing
nodes representing increasing cell sizes, where the cell
size of an upper level node is twice as large as that of
lower level nodes. Higher level nodes, which aggregate
lower level nodes, are created so long as the associated
cells are of the same occupancy type, until a level is
reached where no more cells can be aggregated.
Usually quadtree maps contain a large number of lower
level nodes which cover only a small portion of the entire
region. Such nodes significantly increase the search
space for path planning. Thus, in the final stage of
construction, these nodes will be excluded from the set
of nodes that will participate in online path planning. As
the area that they cover is small, their exclusion does
not cause significant accuracy loss. However, in
occasions when path planning fails because of this
exclusion, grid maps will be used to find the path, as will
be described next.

Fig. 3. Constructing a quadtree map.

Combining the Path Maps

When used for path planning, quadtree maps have the
advantage of quick response, while grid path maps are
good for detailed plans. So quadtree maps are always
used when detailed paths are not required. Sometimes,
however, quadtree maps may fail to find a path even
though one exists. This is because low level nodes on a
quadtree map are ignored during path search in order to
decrease the search space. Therefore, paths that must

Construct
Node list

Construct Grid Map List

Input:
A Grid Map

Output:
A Quadtree Map

1111

1111

1111

1111

111198

111176

10105 4

10103 2

Invalid 1

1

1

1

1

10

11

Invalid

Invalid

1

3

10

2

4
5
6
7
8
9

11

Find
Neighbors

go through some low level nodes cannot be found on a
quadtree map. To resolve this, we turn to grid path maps
whenever search fails on a quadtree map. For efficiency
reasons, a list of grid maps with decreasing cell sizes is
kept for each region. Gridmap path search starts at the
coarsest level and progresses down the hierarchy so
long as the search fails on coarser levels. Although grid
maps with large cells are likely to merge separate
objects due to aliasing, and thus cause the search to fail,
the multiresolution search ascertains that, as long as the
path exists, the path will always be found on maps with
smaller cells. The following table compares the average
performance between the two types of path maps, as
measured in our experiments.

Type

Accuracy
(smallest

searchable
node size)

Ground
area

covered

Typical
search
space
size

% of all
paths

planned

% time used
in a

simulation

Quadtree 0.8m 85% ~500 94% 8%
Grid 0.5~1.0m 100% ~5000 6% 2%

SPECIALIZED ENVIRONMENT OBJECTS

Many of the environment objects are specialized to
support quick perceptual queries. For instance, every
ground object contains an altitude function which
responds to ground height sensing queries. A bench
object keeps track of how many people are sitting on it
and where they sit. By querying nearby bench objects,
weary virtual pedestrians are able to determine the
available seat positions and decide where to sit without
further reference to perceptual maps. Other types of
specialized objects include queues (where pedestrians
wait in line), purchase points (where pedestrians can
make a purchase), entrances/exits, etc. In short, these
objects provide a higher level interpretation of the world
that would be awkward to implement with perception
maps, and this simplifies situation analysis for
pedestrians when they perform autonomous behaviors.

PATH PLANNING

Autonomous virtual pedestrians are capable of
automatically planning paths around static and dynamic
obstacles in the environment. When creating grid maps,
special care must be taken to facilitate efficient updates
and queries. Polygonal bounding boxes of obstacle
objects represented on grid maps are enlarged by half of
the size of a pedestrian’s bounding circle. If the center of
a pedestrian never enters this “buffer” area, collisions
will be avoided. This enables us to simplify the
representation of a virtual pedestrian to a single point,
which makes most queries simpler. Each pedestrian
executes a path planning algorithm whose main phases
are as follows: 1) insert a target into the quadtree map
and expand the target if necessary; 2) from a given start
node, try to find any node of the expanded target using
one of several available search schemes; 3) if the
search reaches an expanded target node, then back-
track through the visited nodes to construct an initial
path back to the start node; 4) post-process this initial

path to compute the final path. In the case that a path
cannot be found on a quadtree map, the standard A*
algorithm [10, 13] will be used to find a path on one of
the grid maps, starting at the coarsest level and
progressing down the grid map hierarchy, as we
discussed in the previous section.

For quadtree maps, our search schemes employ several
variations of the A* search algorithm. In the conventional
A* algorithm, the search procedure iteratively gets an
unvisited (ground) node from a queue, visits it, marks it
as visited, adds its neighbors to the queue, and repeats
until the target is reached or the algorithm fails to reach
the target. As the algorithm progresses, it updates a
distance variable in each node which indicates the
approximate distance of the node from the start point.
After the search succeeds, the distance tags of all the
visited nodes form a distance field, which back-tracking
uses to find a shortest path along the distance gradient
from the target point back to the start point.

The A* algorithm can be applied straightforwardly to plan
paths on uniform grids. The situation with a quadtree
map is more complex, however, as the nodes of a
quadtree map can represent different sized regions. In
updating the distance variables, we therefore employ the
actual distances between the centers of adjacent nodes.
The algorithm can update the distance variables
efficiently since the internodal distances increase or
decrease by a factor of 2 from level to level in the
quadtree,.

Note that the centers of regions associated with large
ground nodes in the quadtree are generally further from
obstacles than those of the small ground nodes. When
planning paths, virtual pedestrians can keep further
away from obstacles simply by favoring bigger nodes in
their path searches. The search algorithm does this by
appropriately weighting the internodal distances from
level to level in the quadtree.

The search algorithm also takes the congestion of an
region into consideration during path planning. The
congestion factor variables of adjacent nodes are
incremented and decremented when a pedestrian
transitions between the regions covered by these nodes.
If the congestion factor for the node exceeds a preset
congestion threshold, the internodal distances from that
node are weighted with a weighting factor greater than
unity. This associates a greater cost for congested
nodes, in terms of their distance from a start node, and
the search backtracking process will avoid that route.

We have designed several variants of the A* algorithm,
each with its own emphasis. Some variants aim at high
speed while others always attempt to find shortest paths.
The virtual pedestrians use all of the variants in order to
increase the variety of their motions. Our A* variants
differ in how they maintain the unvisited nodes in the
queue(s). Variant “SingleQ” is the standard A* algorithm
for uniform grid maps. It does not find shortest paths in
quadtrees because it expands quadtree nodes non-

isotropically. “SortedQ” maintains a sorted queue, and
thus it first visits the frontier node (frontier nodes are
nodes in the boundary between visited and unvisited
regions) which is closest to the start node. The
expansion is more isotropic, but maintaining a sorted
queue is relatively expensive. SingleQ tends to visit
larger quantities of smaller nodes in the quadtree, since
they are more plentiful; hence, the visited region tends to
grow rather slowly. “MultiQ” maintains a separate queue
for each level in the quadtree and it visits every level in
turn; hence, more large nodes are visited sooner than in
the SingleQ search, improving the search speed.
“PmultiQ”, is a prioritized MultiQ scheme, which tries to
visit the largest frontier node first and therefore exhibits
the fastest growth speed among the four methods. If we
consider the size of a node to be analogous to the size
of a road, the PmultiQ scheme finds a path by searching
along interstate highways first, then all state highways,
then local roads, etc., until it finds the target. However,
the path found will not necessarily be optimal. Thus, in
the order in which the four schemes were presented
(“SortedQ”, “SingleQ”, “MultiQ”, “PmultiQ”), the length of
the paths that they generate are increasingly less
optimal, but the searches are increasingly more efficient.

To make the search even faster, every target is
expanded on a quadtree map until it touches any node
at a certain level Lt. The value of Lt is a trade-off
between accuracy and efficiency and it is automatically
determined during map construction. Nodes on and
above this level will cover a large portion of the entire
region and there will be significantly fewer of them.
Target expansion will likely shorten the time needed in
the search step as nodes at levels lower than Lt
probably do not have to be visited before the expanded
target is reached (especially in the case of “PmultiQ”).
"SortedQ" is used in order for the expansion to be nearly
isotropic.

The search step successfully completes its task once it
has found a node Te that belongs to the expanded
target. Using the aforementioned back-tracking method,
the path planning algorithm constructs a path from the
starting point to Te within the searched area and a path
from Te to a real target node within the expanded target
area. By linking these two paths together, we obtain a
complete path to the target. Finally, the complete path
will be refined for use by the virtual pedestrian.

PERCEPTUAL PROCESSING

Our environment model efficiently provides accurate
perceptual data in response to the perceptual queries
that may be issued by an autonomous pedestrian.
Typical queries are explained next in order of increasing
abstractness.

Sensing ground height: To ensure that a virtual
pedestrian’s feet touch the ground in a natural manner,
especially when climbing stairs or locomoting on uneven
ground, the pedestrian must query the environment
model in order to sense the local ground height so that

the feet can be planted appropriately. Each grid map cell
contains the height functions of sometimes a few (most
often a single) ground objects. The greatest height at the
desired foot location is returned in constant time.

Visual sensing: As stated earlier (see also Fig. 2), our
data structures dramatically increase the efficiency of
the sensing process when a pedestrian must perceive
static obstacles and nearby pedestrians, which is a
crucial component of obstacle avoidance. On the
perception map for static objects, rasterized eye rays are
used to detect static obstacles. On the perception map
for dynamic objects, a constant number of neighbor cells
are examined to identify nearby pedestrians. Both of the
algorithms are localized and do not depend on the size
of the world, the number of objects or pedestrians, or
anything else that increases with world size.

Planning paths between regions: Here, the “path-to-
via” information is useful in identifying intermediate
regions that lead to the target region. Any intermediate
region can be picked as the next region and, by applying
the path-searching scheme, a path can be planned from
the current location to the boundary between the current
region and that next region. The process is repeated in
the next region, and so on, until it can take place in the
target region to terminate at the target location. Although
the extent of the path is global, the processing is local.

Locating an object: Given a location identifier (say,
“Track 9”), a search at the object level can find the
virtual object. This is accomplished in constant time
using a hash map with location names as keys. As the
virtual object has an upward reference to its region, it
can be located quickly (say, under the lower concourse),
as can nearby objects in that region (say, “Platform 9”
and “Platform 10”).

PENN STATION MODEL

We have applied the environmental modeling techniques
described in the previous section to modeling the
original Pennsylvania Station of New York City, as was
mentioned in the introduction. Fig. 4 shows historical
photographs of the exterior and interior of the station.
The raw geometric model (with associated textures) of
Penn Station is available in MultiGen-Paradigm Inc.’s
OpenFlight file format. The model was distributed to us
by Boston Dynamics, Inc.

 Fig. 4. Original Penn Station, NYC Waiting Room Interior

Fig. 5 shows a roofless plan view of the rendered Penn
Station geometric model with the two-level Concourse at
the left, the main Waiting Room at the center, and the
long Arcade at the right.

Fig. 5. Plan view of Penn Station, showing the concourse (left), the
main waiting room (center), and the arcade (right). Note that the
station model has a complete ceiling, which has not been rendered
in this view.

MAP INITIALIZATION AND UPDATE

The construction of the hierarchical map of a virtual
environment requires first a manual division of the 3D
space into regions. The initial graph map for the Penn
Station model is constructed according to this division
and the “path-to-via” information of every region is
computed automatically. For each region, all the objects
are automatically loaded and abstracted into the
appropriate maps. For an obstacle, a polygonal
bounding box is included, while for a ground object, a
sampled height function is stored. Orientation is
specified for objects such as chairs, newsstands, and
vending machines. Special labels are stored for
platforms/tracks and for trains to different destinations. A
registered object also stores reference pointers to
associated representations in coarser-resolution maps.

Mobile objects and stationary objects are stored in two
separate grids, which form a composite grid map.
Hence, objects that never need updating persist after the
initialization step and more freedom is afforded to the
mobile object (usually virtual pedestrian) update process
during simulation steps. When a pedestrian in motion
transits from one cell to another, the update process
removes information from the previous cell and adds it to
the new cell on the grid map. Since we have simplified a
pedestrian’s representation to a single point, the update
takes negligible time.

Fig. 6 presents a visualization of the quadtree map of
the Concourse area of the station. The lower part of the
figure also compares paths computed by the four search
variants of the path planning algorithm discussed in the
previous section.

AUTONOMOUS PEDESTRIAN ANIMATION

Analogous to real humans, our synthetic pedestrians are
fully autonomous. They perceive the virtual environment
around them, analyze environmental situations, make
decisions and behave naturally. Our autonomous human
characters are structured in accordance with a
hierarchical character model which, progressing through
levels of abstraction up the “modeling pyramid”,
incorporates appearance, motor, perception, behavior,
and cognition sub-models [4]. The details of the
perception, behavior, and cognition submodels are
beyond the scope of this paper.

To implement the low-level appearance and motor
levels, we employ a human animation package called
DI-Guy, which is commercially available from Boston
Dynamics Inc. [5]. DI-Guy provides a variety of textured
geometric models of various people. These character
models are capable of basic motor skills, such as
walking, jogging, sitting, etc., implemented using IK and
motion capture techniques. DI-Guy was intended as an
application that enables users to script the actions of
human characters manually in space and time. To
facilitate manual scripting, it provides an interactive
scripting interface called DI-Guy Scenario, which we do
not use. However, it also provides an SDK that enables
each character’s motor repertoire to be controlled by
external user-specified C/C++ programs.

By supplementing DI-Guy with our own control programs
at the perceptual, behavioral, and cognitive levels, we
have successfully developed a fully self-animating virtual
human model that is capable of synthesizing a relatively
rich variety of autonomous behaviors and actions
associated with pedestrians in urban environments.

Fig. 7 illustrates frames from large-scale simulations of
pedestrian behaviors in the main waiting room,
concourse, and arcade areas of the Penn Station
synthetic environment. Our simulations demonstrate not
only conventional crowd behaviors, in our case involving
over a thousand pedestrians, but various individual
activities that are typical for pedestrians in a train station.
These include pedestrians entering the station,
navigating through portals, queuing at the ticket booths
to purchase tickets and at vending machines when
hungry/thirsty, sitting on chairs or benches when tired,
congregating to watch a dance performance when they
are interested in some amusement, and eventually
proceeding to the train platforms down some rather
narrow stairways.

CONCLUSION

We have presented a methodology for modeling large-
scale urban environments that facilitates the animation
of numerous autonomous virtual pedestrians. In this
paper, we have focused on the representation of indoor
urban environments in terms of hierarchical data
structures—a topological map, grid maps and quadtree
maps—that support efficient path planning for pedestrian

(a)

(b) (c)

(d) (e)

Fig. 6. (a) Visualization of the quad-tree map of the concourse’s upper level in the Penn Station environment model. The white quads denote ground
nodes and the blue ones denote obstacles. The green circle is the start point and the orange circle is the target. (b-e) Comparison of path planning
algorithms on quad-tree maps. Paths planned by using (b) SortedQ, (c) SingleQ, (d) MultiQ, and (e) PmultiQ. The search space is color coded with the
distance variable values increasing from green to orange. Note that, although the four paths are similar, the sizes of search space are different. (For
clarity, obstacle quads are not shown in the lower images.)

navigation guided by equally efficient perceptual
processing.

Our simulations of autonomous pedestrians in a
reconstruction of New York City’s original Pennsylvania
Station have included well over one thousand virtual
pedestrians performing a reasonably broad repertoire of
activities as autonomous individuals, not as “crowds”.

It is important to note that our high-level autonomous
control models are designed to be more or less
independent of the lower-level human modeling/
animation/rendering levels; hence, in principle, any other
suitable low-level API can serve as a replacement for
Boston Dynamics’ DI-Guy API in our future work.

ACKNOWLEDGMENTS

The research reported herein was supported in part by
grants from the Defense Advanced Research Projects
Agency (DARPA) of the Department of Defense and
from the National Science Foundation (NSF). We thank
Dr. Thomas Strat of DARPA for his generous support
and encouragement. We also thank Mauricio Plaza-
Villegas for his invaluable contributions to the
implementation and visualization of the Penn Station
environmental model and its integration with the DI-Guy
software.

REFERENCES

1. K. ASHIDA, S. LEE, J. ALLBECK, H. SUN, N. BADLER,
AND D. METAXAS. 2001. Pedestrians: Creating agent
behaviors through statistical analysis of observation
data. In Proceedings of Computer Animation.

2. N.I. BADLER, C.B. PHILLIPS, AND B.L. WEBBER. 1993.
Simulating Humans: Computer Graphics, Animation,
and Control, Oxford University Press.

3. N. FARENC, S. MUSSE, E. SCHWEISS, M. KALLMANN, O.
AUNE, R. BOULIC, AND D. THALMANN. 2000. A
paradigm for controlling virtual humans in urban
environment simulations. Applied Artificial
Intelligence, 14(1):69–91.

4. J. FUNGE, X. TU, AND D. TERZOPOULOS. 1999.
Cognitive modeling: Knowledge, reasoning and
planning for intelligent characters. Proceedings of
SIGGRAPH 99, pg 29–38.

5. J. KOECHLING AND A. CRANE AND M. RAIBERT. 1998.
Applications of realistic human entities using DI-Guy.
Proc. of Spring Simulation Interoperability
Workshop, Orlando, Fl.

6. G. G. LOVAS. 1993. Modeling and simulation of
pedestrian traffic flow. In Modeling and Simulation:
Proceedings of 1993 European Simulation
Multiconference

7. R. METOYER AND J. HODGINS. 2003. Reactive
pedestrian path following from examples. Computer
Animation and Social Agents, pg 149-156.

8. S. MUSSE AND D. THALMANN. 2001. Hierarchical
model for real time simulation of virtual human
crowds. IEEE Transactions on Visualization and
Computer Graphics, 7(2):152–164.

9. H. NOSER, O. RENAULT, D. THALMANN, AND N.
MAGNENAT-THALMANN. 1995. Navigation for digital
actors based on synthetic vision, memory and
learning. Computers and Graphics, 19(1)

10. S. RABIN. 2000 A* Speed Optimizations. Game
Programming Gems, Charles River Media.
Hingham, USA. pp. 272-287.

11. H. SAMET. 1989. Spatial Data Structures. Addison-
Wesley.

12. M. SCHRECKENBERG AND S.D. SHARMA (EDS.). 2001.
Pedestrian and Evacuation Dynamics, Springer-
Verlag.

13. B. STOUT. 2000. The Basics of A* for Path Planning.
Game Programming Gems, Charles River Media.
Hingham, USA. pp. 254-263.

14. X. TU AND D. TERZOPOULOS. 1994. Artificial fishes:
Physics, locomotion, perception, behavior.
Proceedings of SIGGRAPH 94, pg 43–50, July.

 Fig. 7. Waiting Room Concourse / Platforms Arcade

	proc: Proc. 2005 SAE Symposium on Digital Human Modeling for Design and Engineering, Iowa City, Iowa, June, 2005.

