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Figure 1: Our biomechanical system comprises a skeleton, muscles, neural control system, and expressive face.

Abstract

Unlike the human face, the neck has been largely overlooked in the
computer graphics literature, this despite its complex anatomical
structure and the important role that it plays in supporting the head
in balance while generating the controlled head movements that are
essential to so many aspects of human behavior. This paper makes
two major contributions. First, we introduce a biomechanical model
of the human head-neck system. Emulating the relevant anatomy,
our model is characterized by appropriate kinematic redundancy (7
cervical vertebrae coupled by 3-DOF joints) and muscle actuator
redundancy (72 neck muscles arranged in 3 muscle layers). This
anatomically consistent biomechanical model confronts us with a
challenging motor control problem, even for the relatively simple
task of balancing the mass of the head in gravity atop the cervical
spine. Hence, our second contribution is a novel neuromuscular
control model for human head animation that emulates the relevant
biological motor control mechanisms. Incorporating low-level re-
flex and high-level voluntary sub-controllers, our hierarchical con-
troller provides input motor signals to the numerous muscle actua-
tors. In addition to head pose and movement, it controls the tone of
mutually opposed neck muscles to regulate the stiffness of the head-
neck multibody system. Employing machine learning techniques,
the neural networks within our neuromuscular controller are trained
offline to efficiently generate the online pose and tone control sig-
nals necessary to synthesize a variety of autonomous movements
for the behavioral animation of the human head and face.
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1 Introduction

Biomechanics-based animation research continues to expand its
horizons. In the important area of human modeling, substantial
effort has been devoted to the physical simulation and control of
complete anthropomorphic figures (see, e.g., [Faloutsos et al. 2001;
Hodgins et al. 1995]). In an effort to improve realism, researchers
have also been developing increasingly sophisticated biomechan-
ical models of individual body parts, such as hands [Tsang et al.
2005; Albrecht et al. 2003], torsos [Zordan et al. 2004], and es-
pecially faces [Sifakis et al. 2005; Kähler et al. 2001; Lee et al.
1995]. Pacing this progress, multiple efforts have been directed at
the modeling of individual muscles [Irving et al. 2004; Ng-Thow-
Hing 2001; Chen and Zeltzer 1992], the preferred class of actuators
for use in biomechanical modeling.

Given the voluminous literature on human body and facial mod-
eling, it is surprising that the neck has been largely overlooked in
computer graphics. This may be due in part to the complexity of
cervical anatomy and biomechanics. Yet the realistic modeling of
the neck is a significant problem in human animation, because the
neck determines the global movement of the head and face relative
to the body. Indeed, the neck plays a crucial role in supporting the
mass of the head, balanced in gravity, atop the cervical spine while
generating the controlled head movements that are essential to so
many aspects of human behavior.

In this paper, we introduce the first biomechanical model of the
human head-neck musculoskeletal system for computer animation.
In particular, we model the head and each vertebra in the cervical
spine as a dynamic rigid body with appropriate mass distribution
and three rotational degrees of freedom (DOF), coupling the bones
with joints to emulate the biological assembly of interest. The re-
sulting articulated multibody system is actuated by contractile mus-
cles. Each actuator is also modeled biomechanically as a simplified
Hill-type muscle model, which is frequently used in biomechanics
research. The complexity of the musculoskeletal model, especially
its kinematic and muscular redundancy, which imitates that of its bi-
ological counterpart, confronts us with a challenging control prob-
lem. We believe that the best way to tackle this problem is via an
approach inspired by biological motor control mechanisms, all the
more so because our long-term goal is to create lifelike characters
that are able to synthesize a broad range of human motions. Hence,



our second major contribution in this paper is a novel neuromus-
cular control model for human (head) animation that emulates the
relevant biological motor control mechanisms.

A distinctive feature of the mammalian motor control architecture is
that it is hierarchical [Kandel et al. 2000]—multiple neural organs,
such as the cerebral cortex, basal ganglia, cerebellum, and spinal
cord, participate in generating the signals finally transmitted by mo-
tor neurons innervating muscles. This suggests that simple, flat con-
trol strategies may be incapable of synthesizing a large repertoire of
human motions. Hence, we take a hierarchical approach, proposing
a bi-level motor control architecture whose lower level corresponds
to reflex (or feedback) control in the human body, and whose upper
level corresponds to voluntary (or feedforward) control. Our hier-
archical head-neck controller provides the inputs to the numerous
muscle actuators necessary to maintain the stability of the cervical
spine and autonomously generate a variety of head movements for
the behavioral animation of the human head and face.

A key technical contribution of this paper is the development of a
voluntary controller that is able to control independently the pose
and tone of the head-neck musculoskeletal system. By “tone”, we
mean the stiffness or tension of the musculoskeletal system, which
humans can control by coactivating agonist and antagonist muscles.
Our voluntary controller comprises a pose signal generator and a
tone signal generator, the sum of whose outputs yields the volun-
tary, feedforward control signal. Meanwhile, the lower-level, reflex
controller continually monitors the strain and strain rate of each
muscle, generating an involuntary, feedback control signal such that
the muscle can maintain its desired length in the presence of exter-
nal force disturbances.

Our hierarchical control model has additional features of interest.
The computational mechanisms underlying the implementation of
the voluntary controller are artificial neural networks sustained by
machine learning techniques. Neural networks are trained to gen-
erate the appropriate pose and tone control signals necessary for
the musculoskeletal system model to synthesize a variety of au-
tonomous humanlike movements for the behavioral animation of
the head and face. The training data are precomputed by solving re-
peated optimal control problems. Aside from their structural resem-
blance to biological neural networks, our artificial neural networks
are efficient feedforward controllers—once trained offline, they can
do their online jobs orders of magnitude faster than attempting to
solve the corresponding optimal control problems online.

Fig. 1 illustrates our implementation of the above ideas, and more,
as a self-animating virtual human neck, head, and face. In a sim-
ulated physical environment with gravity, our autonomous system
naturally selects, alters, and maintains head pose and gaze direc-
tion, and it can adjust its tone in response to external disturbances.

The remainder of this paper is organized as follows: Section 2 re-
views relevant research in the graphics and biomechanics literature.
Section 3 provides a functional overview of our face-head-neck an-
imation system. Section 4 details our biomechanical musculoskele-
tal model. Section 5 develops our hierarchical, neuromuscular con-
trol framework, including the reflex and voluntary controllers, and
the associated control learning algorithms. Section 6 reports se-
lected results. Section 7 discusses our modeling approach vis-a-vis
alternative schemes. Section 8 presents conclusions and proposes
avenues for future work in our highly fertile domain.

2 Related Work

To our knowledge, there are no prior reports in the computer
graphics literature on the biomechanical modeling and control of

the neck. The closest related effort has been by Monheit and
Badler [1991] who proposed a purely kinematic spine and torso
model, where the total bending angle is distributed to each joint
according to weighting parameters. The neck has been studied
to some extent, however, in the biomechanics and neurophysiol-
ogy literature. Keshner and Peterson [1995] investigated the mul-
tiple neurological mechanisms underlying human head stabiliza-
tion. Vasavada et al. [1998] constructed a 3D human neck muscle
model and measured the moment-generating capacity of each mus-
cle. They visualized human neck motion in their work, but once
again the movement is generated kinematically, with no dynamics.

Chen and Zeltzer [1992] introduced the biomechanical modeling
of muscles for computer animation, modeling muscle tissue with
large finite elements and simulating muscle deformation by apply-
ing a Hill-type force in the muscle. Parametric muscle models have
been proposed that deform geometrically, and they have been used
to simulate skin shape change due to the bulging of underlying mus-
cles using kinematic [Scheepers et al. 1997; Wilhelms and Gelder
1997] and dynamic [Kähler et al. 2001] skin. Recently, more so-
phisticated muscle deformation methods have been proposed, such
as B-spline solids [Ng-Thow-Hing 2001], invertible finite elements
[Irving et al. 2004], and muscle strands [Pai et al. 2005]. We do not
simulate solid muscles in this paper. Our muscle model is strictly a
force generating uniaxial actuator, but it is more complex than those
used by Lee et al. [1995] in their biomechanical face model or by
Tu and Terzopoulos [1994] in their biomechanical fish model.

Albrecht et al. [2003] proposed an anatomy-based hand animation
system where they modeled two types of muscles—geometric mus-
cle for simulating muscle deformation and pseudo-muscle for ac-
tuating bones—but their controller is manually-tuned. Tsang et
al. [2005] proposed a heuristic technique for solving the necessary
muscle activation to acquire target poses for a muscle-actuated hu-
man hand model.

Komura et al. [2000; 1997] computed optimal feedforward muscle
activation levels given several key poses of human lower extremi-
ties for solving inverse kinematics or “physiological retargeting” of
the motion. These references and [Tsang et al. 2005] are relevant to
our work in that they perform inverse dynamics to compute neces-
sary muscle activation level for Hill-type muscle models. However,
their controllers are not as comprehensive as ours, inasmuch as they
disregard muscle coactivation and must solve expensive space-time
optimization problems online, making them impractical for inter-
active, autonomous animation. Also [Tsang et al. 2005] and [Ko-
mura et al. 1997] disregard feedback control. It should be noted
that inverse dynamics does not guarantee stability; in fact, inverse
dynamics control without feedback control can easily become un-
stable even under the slightest disturbance.

Not surprisingly, neuromuscular control approaches are common
in the biomechanics literature. With the advent of artificial neu-
ral networks, researchers have adopted the technique to the study
of human motor learning. For example, Kawato et al. [1987]
constructed a hierarchical neural network that learns inverse dy-
namics of a simple arm model. This forward simulation/learning
model is biomimetic but computationally expensive. Kim and
Hemami [1998] performed a similar study with a simplistic human
head and torso model. In graphics, Yin et al. [2003] briefly men-
tioned the importance of neuromuscular control for animation, but
they performed inverse dynamics analysis of mocap data, and used
this as a feedforward control input. The control scheme itself is es-
sentially computed torque control, a common technique in robotics.
Grzeszczuk et al. [1998] applied artificial neural networks and the
backpropagation learning algorithm to training feedforward con-
trollers for dynamic objects, among them a locomotion controller
for a biomechanical dolphin model.
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Figure 2: Face-Head-Neck System Architecture.

A unique feature of muscle is that its stiffness increases with in-
creasing neural signal. Consequently, by coactivating agonist and
antagonist muscles, humans and other animals can increase stiff-
ness while maintaining pose. They effectively use such tone control
to mitigate instability under external loads or to increase the accu-
racy of the limbs in motor tasks. It is also well known that coac-
tivation occurs when humans learn new motions. Hogan [1984]
studied tone (a.k.a. impedance) modulation by coactivating ago-
nist and antagonist muscles. In computer animation, Neff and Fi-
ume [2002] proposed a joint-actuated control technique in which
they attached two opposing PD feedback controllers to every joint
of an articulated anthropomorphic figure, controlling the tension
and relaxation of the resulting body motion by modulating the two
proportional feedback gains. Their work falls short of our richly
muscle-actuated model in that it does not include feedforward con-
trol and its joint controllers cannot accurately model the character-
istics and functions of real muscles, especially when these muscles
span multiple joints as many neck muscles do.

3 Neck-Head-Face System Overview

Fig. 2 shows the overall architecture of our head-neck system
model, which comprises the skeleton, muscles, and hierarchical
controller. The voluntary sub-controller generates feedforward and
setpoint control signals: The feedforward signal is generated to at-
tain the desired pose and tone. The setpoint signal specifies the
desired strain and strain rate of each muscle, as well as the mag-
nitude of the feedback gain. Comparing the strain and strain rate
against their desired values, the reflex controller generates a feed-
back signal and adds it to the feedforward signal, thus determining
the activation level of each muscle. Given an input activation signal,
each muscle generates a contraction force depending on its length
and velocity. Finally, the skeleton produces articulated motion in
response to the internal muscle forces and external environmental
forces, such as gravity and applied forces. Physics-based animation
is achieved by numerically integrating the equations of motion of
the biomechanical model through time. Including control computa-
tions, our simulation runs about 10 times slower than real time on a
PC with a 3.2 GHz Mobile Intel Pentium 4 CPU and 1 GB of RAM.

Although this paper does not dwell on facial animation, we have
augmented the realism of our biomechanical head-neck model for
the demonstrations that we present in Section 6 by coupling a
biomechanical face model (the lower right box in Fig. 2) to the
front of the skull as shown in Fig. 1. This expressive, behaviorally-
capable face model [Terzopoulos and Lee 2004] is an improved
version of the second-generation biomechanical model reported in
[Lee et al. 1995]. Conceptually, the face model decomposes hier-
archically into several levels of abstraction related to the (FACS)
control of facial expression, the anatomy of facial muscle struc-
tures, the histology and biomechanics of facial tissues, as well as

Bone Mass ks: x,z-axes ks: y-axis
Skull 3.5 50 25

C1–C7 0.21 50–70 25–35

Table 1: Physical parameters of the skeleton. The masses are in
kilograms. The ks quantities are in N ·m/rad. The kd are set to
10% of the corresponding ks. The y axis is in the vertical direction.

facial geometry and appearance. Like our biomechanical model of
the neck, the face model is muscle-driven. Its 44 facial muscles are
arranged in an anatomically consistent manner within the bottom
layer of a synthetic facial soft tissue. The tissue is modeled as a lat-
tice of uniaxial viscoelastic units assembled into multilayered pris-
matic elements with epidermal, dermal, sub-cutaneous fatty tissue,
fascia, and muscle layers. The elements enforce volume preserva-
tion constraints and model contact response against the bone sub-
strate. Expressive facial tissue deformations are animated by nu-
merically simulating the physical response of the element assembly
to the stresses induced by appropriately coordinated facial muscle
contractions. The face simulation runs at real-time, interactive rates
on the aforementioned PC.

4 Musculoskeletal Model

Our musculoskeletal model comprises a model of the skeleton and
a model of the muscles of the neck, which we will describe in turn.

4.1 Skeleton Model

The relevant skeletal structure is modeled as an articulated multi-
body system. It includes a base link, seven cervical bones, C1–C7,
and a skull, as shown in Fig. 3(a). In the human spine, disks are
sandwiched between adjacent vertebrae, allowing 6-DOF motion.
By carefully locating pivot points as in [Kapandji 1974], we sim-
plified each joint to a 3-DOF rotational joint. To each joint angle,
we attach a rotational damped spring in order to model the stiffness
of the ligaments and disks, as follows: τs = −ks(q − q0)− kd q̇,
where q is the joint angle, q0 is the joint angle in the natural, rest
configuration, ks is the spring stiffness, and kd is the damping co-
efficient. The linear damping increases the stability of the system.
Table 1 specifies the physical parameters of the skeleton.

The equations of motions of the skeletal system are

M(q)q̈+ c(q, q̇)+Ksq+Kd q̇−P(q)fP = P(q)fC +J(q)T fe,
(1)

where q, q̇, and q̈ are 24-dimensional vectors containing all the
joint angles (generalized coordinates), the angular velocities, and
the angular accelerations, respectively. Since our muscle model is
massless and purely force-based, the mass of the head is incorpo-
rated into the skull and the mass of the neck is distributed among the
cervical vertebrae. M(q) denotes the inertia matrix of the skeleton.
The vector c(q, q̇) represents the Coriolis forces, centrifugal forces,
and gravity. The diagonal stiffness Ks and damping Kd matrices are
due to the aforementioned rotational springs. Since the equations of
motion (1) are expressed in joint space, J(q) is the Jacobian matrix
that transforms the external force fe into joint torques. The muscle
forces are divided into passive, elastic forces fP produced by the
muscles’ material properties as they are stretched, and active, con-
tractile forces fC generated by the muscles in response to the neural
control signal. The moment arm matrix P(q) maps muscle forces to
joint torques, and it is computed using the principle of virtual work
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Figure 3: Musculoskeletal model. (a) The red dots represent the
pivots of the eight joints of the cervical column. The pivots of ver-
tebra C2 to C7 are in their supporting bones. Geometric mesh data
were acquired from www.3dcafe.com. The deep muscle layer (b),
intermediate muscle layer (c), and superficial muscle layer (d) of
the neck are shown. Table 2 details the muscles and attachments.

[Delp and Loan 1995], as detailed in Appendix A. We compute
q̈ in (1) using Featherstone’s dynamics algorithm and numerically
integrate through time to obtain q̇ and q using the explicit Euler
method.

4.2 Muscular Structure

There are more than 20 types of muscles in the neck, and there are
many muscles of each type. Individual muscles often have multiple
origins and insertions. Since it would be difficult and computation-
ally very costly to model all the muscles accurately, we were moti-
vated to reduce the number of muscles modeled. In an effort to min-
imize the total number of actuators in the synthetic musculoskeletal
system, we first attempted to model only the major superficial mus-
cles of the neck. We discovered, however, that even though these
muscles outnumbered the total number of degrees of freedom of the
system, the system was uncontrollable, apparently because most of
the major muscles span multiple bones. The solution was to daunt-
lessly emulate the considerable muscular redundancy of the target
biological system.

Layer Muscle #m Origin / Insertion w
Longus colli 16 adjacent vertebrae 1.0
(Lc) (anterior vertebral bodies)

Deep Erector 16 adjacent vertebrae 1.0
(E) (behind transverse pro)
Rotator 16 adjacent vertebrae 1.0
(R) (transverse pro / spinous pro)
Scalenus anterior 4 base (lateral) / 2.0
(Sa) C5 C3 (transverse pro)

Inter- Scalenus posterior 4 base (lateral) / 2.0
mediate (Sp) C6 C4 (transverse pro)

Splenius capitis 4 C7 C5 (spinous pro) / 2.0
(Sc) skull (superior nuchal line)
Sternomastoid 2 base (sternum) / 3.0
(Sm) skull (mastoid pro)

Super- Cleidooccipital 2 base (clavicle) / 3.0
ficial (Co) skull (superior nuchal line)

Trapezius 8 base (posterior) / 3.0
(T) C6 C4 C2 (behind spinous pro)

skull (external occipital prot)

Table 2: The subset of neck muscles that are modeled and their ori-
gins/insertions. Legend: number of muscles (#m); strength weight
factor (w); process (pro); protuberance (prot).

Consulting references on anatomy [Warfel 1985; Kapandji 1974],
we incorporated 72 individual muscles into the musculoskeletal
model, as shown in Fig. 3(b)–(d). The neck muscles are arranged in
three layers—deep, intermediate, and superficial. In the deep layer
(Fig. 3(b)), there are a total of 48 muscles, which improve controlla-
bility. Six muscles are attached across each cervical joint, such that
they cover the 3 DOFs of the joint. This increases, if not guaran-
tees, controllability and affords greater freedom to model the major
muscles of the intermediate and superficial layers, each of which
include 12 muscles arranged as shown in Fig. 3(c) and (d).

Notwithstanding the rather large number of modeled muscles, note
that we have disregarded many of the muscles of the neck, such as
the muscles attached to the hyoid bone, in an effort to simplify our
model. Table 2 details the muscular structure of our biomechanical
system.

4.3 Hill-Type Muscle Model

To model each muscle actuator, we employ a popular muscle model
in biomechanics research, which is known as a Hill-type model.
Good introductions to this model can be found elsewhere [Ng-
Thow-Hing 2001; Winters and Crago 2000]. If we assume that the
length of the tendon remains constant as the muscle is stretched,
the muscle force comes from two sources: A parallel element (PE),
which passively produces a restoring force fP due to the material
elasticity of the muscle, and a contractile element (CE), which ac-
tively generates a contractile force fC in response to excitation from
the motor neurons. The total muscle force is: fm = fP + fC.

The PE is modeled as a uniaxial exponential spring:

fP = max(0,ks(exp(kce)−1)+ kd ė),

where ks and kc are elastic coefficients, kd is the damping coeffi-
cient, e = (l − l0)/l0 is the strain of the muscle, with l and l0 its
length and slack length, respectively, and ė = l̇/l0 is the strain rate
of the muscle. Since fP is determined by the state of the muscu-
loskeletal system rather than by its neural activation, it is not treated
as a control input in (1).
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The contractile force from the CE is typically expressed as

fC = aFl(l)Fv(l̇), (2)

where 0 ≤ a ≤ 1 is the activation level of the muscle (i.e., the input
signal from the motor neuron innervating the muscle). Fl denotes
the force-length relation (i.e., the muscle force as a function of its
length) and Fv denotes the force-velocity relation (i.e., the muscle
force as a function of its shortening velocity).

We use a simple, linearized Hill-type model with Fl and Fv as
shown in Fig. 4. In particular, Fl(l) = max(0,kmax(l − lm)), where
kmax is the maximum stiffness of a fully activated muscle and lm
is the minimum length at which the muscle can produce force, and
Fv(l̇) = max(0,1 + min(l̇,0)/vm), where vm is the maximum con-
traction velocity under no load. Per [Ng-Thow-Hing 2001], we set
lm = 0.5l0 and vm = 8l0 sec−1. The coefficient kc is set to 7 for all
the muscles. The coefficients ks, kd , and kmax for each muscle are
scaled by its strength weight factor w, which is set roughly propor-
tional to the cross sectional area of the muscle. Table 2 specifies the
strength weight factors and attachment sites of the muscles.

Note that the original Hill model includes a negative stiffness range
as the muscle is stretched. This range is seldom reached in everyday
movement (see Ch. 7 of [Winters and Crago 2000] and references
therein). It is known that negative stiffness can de-stabilize mus-
culoskeletal systems such as ours. We have avoided this by mod-
ifying the model. Even though our Fl(l) increases monotonically
(the same Fl was used in [Hogan 1984]), the difference relative to
the original Hill model is modest, because the stretch of the neck
muscles is limited by the constrained motions of the bones.

5 Hierarchical Control System

Like the human muscle control architecture, that of our biomechan-
ical neck model is hierarchical. In our system (Fig. 2), the higher-
level voluntary controller (Fig. 5) delivers a kinematic signal (set-
point signal) as well as a dynamic signal (feedforward signal) to the
lower-level reflex controller. The reflex controller then determines
the required motor neural signal for each muscle while monitoring
the state of the muscle, specifically its strain and strain rate. Since
the output signal from the voluntary controller normally changes
more slowly than that of the reflex controller, we can run the two
controllers at different speeds. The hierarchical structure offers a
practical advantage in view of the fact that the computational cost
of the voluntary controller is significantly higher than that of the
reflex controller. In our system, the voluntary controller updates
every 40 milliseconds whereas the reflex controller updates once
per integration time step; i.e., approximately every millisecond.
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Figure 5: The sub-controllers in the voluntary controller.

5.1 Reflex Control

The reflex controller generates a neural activation level a for each
muscle by summing the feedforward signal a f generated by the vol-
untary controller with an internally-generated feedback signal ab
that is computed by comparing the strain and strain rate of each
muscle with their desired values. In terms of its biological basis,
our reflex controller emulates the stretch reflex in human motor
control, which is believed to be modulated by the gamma motor
neural signal and is activated when the muscle is elongated beyond
the desired length [Kandel et al. 2000]. The length and velocity
of the muscle are measured by its proprioceptive sensory organs,
among them the spindles inside the muscle.

Our reflex control model is as follows:

ab = s
(

kp(e− ed)+ kd satm(ė− ėd)
)

, (3)
a = min(1,max(0,a f +ab)),

where kp and kd are proportional and derivative gains, s is the feed-
back gain scaling factor, and e and ė are the muscle’s strain and
strain rate, respectively (given in Section 4.3). Note that s along
with the desired strain ed and desired strain rate ėd are determined
by the setpoint signal generated by the voluntary controller. In our
experience, a large derivative feedback force overwhelms the pro-
portional feedback force and tends to make the system unstable, so
we employ the function

satm(x) =

{

x if |x| < m,
m sgn(x) otherwise,

which saturates its input at the value m (we set m to 2.0). With
this saturated derivative feedback, we found that we can use a rea-
sonable derivative gain kd = 0.05 relative to the proportional gain
kp = 8 without having to decrease the integration time step.

5.2 Voluntary Control and Learning

A distinctive feature of human motor control is that one can increase
the stiffness or tone of the body by coactivating opposing (agonist
and antagonist) muscles. Humans are known to use coactivation to
increase their stability when subjected to external disturbances or to
improve accuracy when performing certain difficult motor control
tasks. From the mechanical perspective, higher tone can be advan-
tageous, because it increases the stiffness of the musculoskeletal
system, thus improving robustness against perturbation. However,
the issue of tone control has been more or less neglected in ani-
mation research [Neff and Fiume 2002]. Biomechanics researchers
have suggested that humans can independently control the coactiva-
tion and movement [Yamazaki et al. 1994]. To emulate this feature
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of human motor control, we have designed our voluntary controller
to be capable of controlling the pose and the tone of the neck inde-
pendently.

In our system, the pose signal ap and tone signal at are indepen-
dently generated by two neural networks, and the feedforward sig-
nal is obtained by summing the two signals:

a f = ap +at .

This separation is possible because the tone signal is computed to
be orthogonal to the pose signal, in the sense that the tone signal
does not affect the pose of the system.

Another distinctive feature is that through trial and error, humans
and other animals are able to learn how to control their muscles in
order to move effectively and efficiently. This can be regarded as
an optimization process that solves for the necessary neural input
to the muscles required to achieve a desired motion [Grzeszczuk
and Terzopoulos 1995]. Throughout this incremental learning pro-
cess, the brain generates increasingly more appropriate motor sig-
nals to accomplish the desired motion and it becomes decreasingly
dependent on feedback control. From the robotics perspective, this
feedforward signal enables the animal to use lower feedback gains,
which enhances the naturalness of the motion, among other factors.
Similarly, the voluntary controller in our system generates its feed-
forward signal through machine learning. In particular, we solve
offline for optimal neural inputs that achieve sampled target poses
and tones, and use them to train neural network controllers to effi-
ciently output optimal solutions online [Grzeszczuk et al. 1998].

5.2.1 Neural Networks

Since the computational structure of artificial neural networks is
based on insights into biological nervous systems, we employ them
in our pose and tone controllers. Moreover, the well-known func-
tion approximating ability of neural networks is attractive and com-
patible with our training strategy. Our offline learning process gen-
erates sample input-output training pairs by solving repeated opti-
mization problems, as we will explain in the subsequent two sec-
tions, and then it trains neural networks on numerous such pre-
computed pairs, thus obtaining a suitable function approximator.
It takes less than 10 hours to train each neural network on our 3.2
GHz CPU PC. Once trained, the neural network can approximate
suitable outputs for particular inputs orders of magnitude faster than
one can hope to do by solving the associated optimization problem.
This makes the trained neural network suitable for online use, es-
pecially for interactive animation.

Fig. 6 shows the fully connected, feedforward neural network that
we employed for our pose and tone controllers. The inputs to the

neural network are the normalized three components of the quater-
nion coordinate h (orientation) of the head. Each neuron is mod-
eled as a sigmoid function, y = tanh(b + ∑k

i=1 wixi), where b is a
bias term and the wi are the weights of the inputs xi from the k neu-
rons in the previous layer. The output of the neural network is the
normalized pose signal ap (or tone signal at ). The dimension of the
network output vector is 72, the total number of muscles. We use
a 3-layer network with two hidden layers of sizes 20 and 40 neu-
rons. The trainable parameters of the network are the weights and
bias terms associated with the neurons, and they are computed us-
ing the backpropagation learning algorithm, as in [Grzeszczuk et al.
1998]. Although free and commercial neural network packages are
available, we used our own simple implementation.

5.2.2 Pose Controller

To train the pose controller neural network, we randomly sample
the head pose space. For the i-th sample pose hi

d , the desired pose
signal ai

p is the solution of the constrained optimization problem

ai
p = argmin

a
‖fw

C‖
2 (4)

subject to c(qi
d ,0)+Ksqi

d −P(qi
d)fp = P(qi

d)fC, a ∈ [0,1]m.

Eq. (4) minimizes weighted muscle contraction forces fw
C = W−1fC,

where W = diag(w1, . . . ,wm) for the m muscles. The strength
weight factors wi (see Table 2) encourage muscle forces in propor-
tion to muscle strengths. The primary constraint in the minimiza-
tion stems from (1) with q̈ = q̇ = 0 (to maintain hi

d statically), fe = 0
(no external forces other than gravity), and with the joint angles
q = qi

d provided by the setpoint signal generator to yield the desired
hi

d (i.e., hi
d = g(qi

d), where g(·) is the forward kinematics function).
To solve (4), we use DONLP2 [Spellucci ], which is based on the
sequential equality constrained quadratic programming method. On
the order of 20,000≈N training pairs {hi

d ,ai
p}

N
i=1 are generated of-

fline to train np using backpropagation.

Given a desired head pose hd , the trained pose controller network
efficiently computes a feedforward signal online to maintain hd
with minimal muscle contraction forces fC:

ap = np(hd).

Given the form of the objective function, np cannot coactivate op-
posing muscles to increase musculoskeletal stiffness.

5.2.3 Tone Controller

Due to muscle redundancy, there are usually many combinations
of muscle coactivations that can increase tone. It remains an open
research problem as to how humans choose opposing muscle coac-
tivations. Instead of formulating some explicit stiffness criterion
that the musculoskeletal system should maximize, our intuitive as-
sumption is that to achieve maximum stiffness one maximizes the
muscle contraction forces while not actuating the musculoskeletal
system. Similarly to np above, the tone neural network nt is trained
offline with on the order of 20,000 ≈ N training pairs {hd ,at}N

i=1,
where the maximum tone signal ai

t is obtained by solving the con-
strained optimization problem

ai
t = argmax

a
‖fw

C‖
2 subject to P(qi

d)fC = 0, a ∈ [0,1]m.

Given a desired head orientation hd and tone parameter c, the tone
signal is computed online using the trained network nt as

at = cnt(hd). (5)



Since we should have a f = ap +at ≤ 1, then 0 ≤ c ≤ 1−max(ap).

It may at first seem surprising that arbitrary tone can be achieved
by simply scaling the output of nt . However, this is to be expected
because the resulting muscle force fC is constrained to lie in the null
space of P(q), thus it does not contribute to the generalized force
τ . Furthermore, this is possible because the muscle force and the
neural signal are linear in the Hill-type model (2); hence, scaling
the neural signal retains the muscle force in the null space of P(q).
Note that, aside from c, the tone signal at depends only on the con-
figuration of the system qd . It is not affected by the external force
field (gravity) or by the global orientation of the system, whereas
the pose control signal does have such dependencies.

5.2.4 Setpoint Signal Generator

Given a desired head pose hd , the setpoint signal generator com-
putes the desired strain ed and strain rate ėd of each muscle. The
former is given by

ed = ng(hd).

Unlike the pose and tone controllers, we do not implement the func-
tion ng as a neural network. Rather, it entails the solution of the
constrained optimization problem

qd = argmin
q

‖qv‖2 subject to hd = g(q), (6)

where qv = V−1q with V = diag(v1, . . . ,vn) and n the number of
joints. Here, vi is the weighting factor of joint qi, which we set to
the range of the joint in accordance with [Hay and Reid 1988], and
g(·) is the forward kinematics function. Having computed qd (i.e.,
the smallest joint angles that achieve hd), we then obtain ed from
g(qd).

Finally, we compute the desired strain rate as

ėd =
ng(hd(t +∆t))−ng(hd(t))

∆t ,

where hd(t) and hd(t + ∆t) are the desired orientation of the head
at time t and at the subsequent time step t +∆t, respectively.

Although simple, the objective in (6) yields natural looking results.
We did not implement the setpoint signal generator as a neural
network for several practical reasons. First, due to its simplicity,
(6) can be solved faster online than by using a neural network.
We solve (6) using the gradient descent method, which typically
achieves the solution within 3 iterations. Second, this direct com-
putation yields an accurate result, whereas a neural network would
incur some error. The error issue is potentially crucial here, as the
setpoint signal serves as a reference signal for feedback control in
the reflex controller.

5.2.5 Head Motion Controller

At the topmost level of our control hierarchy is a voluntary con-
troller that produces movements which take the head from a current
orientation to a desired new orientation. It does its job by providing
a series of commands to the neck feedforward and setpoint signal
generators to modify the pose/tone of the biomechanical system.
We will discuss two approaches next.

Interpolation: Given quaternion representations of initial hi(ti)
and desired final h f (t f ) orientations of the head, a natural trajec-
tory hd(t) from ti ≤ t ≤ t f may be computed as the spherical linear
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Figure 7: An example of the sensorimotor controller following head
motion capture data. The time plots compare the longitudinal θ and
latitudinal φ angles of the synthetic head (controller) and real head
(mocap).

interpolation hd(t) = slerp(r(t),hi,h f ). The interpolation parame-
ter r(t) is determined so that the time derivative of r is bell shaped;
i.e., ṙ(tn) = 1− cos(2πtn), where tn = (t − ti)/(t f − ti). The head
motion controller also modulates the tone c in (5) and feedback gain
scaling factor s in (4) by comparing the actual and desired orienta-
tions of the head. If the total accumulated error over a time window
exceeds a threshold, the controller increases the tone and feedback
gain gradually until the error falls below threshold. By decreas-
ing the error threshold, the neck maintains the pose better and is
stiffer. Conversely, by increasing the error threshold, the neck pro-
duces more relaxed motion and allows greater perturbation during
the movement.

Sensorimotor Control: Although the interpolation generator pro-
duces reasonable head-neck motion for the purposes of charac-
ter animation, an approach that is more consistent with biological
control mechanisms is sensorimotor control. At every command-
generating instant of the voluntary controller, a desired head ori-
entation and velocity command are generated on the fly based on
sensory feedback. For example, given initial hi(ti) and desired final
h f (t f ) orientations of the head, the sensorimotor controller initiates
a head movement towards h f (t f ). The inertia of the head yields a
natural angular acceleration. During movement, the instantaneous
head angle error ‖h f (t f )− h(t)‖ is sensed at a fast rate and cor-
rective “steering” is applied to continually reduce the error. When
the error decreases to below some threshold, the sensorimotor con-
troller begins to slow the head so that it comes to rest in pose h f (t f ).

Fig. 7 shows an example of our sensorimotor controller
tracking head motion capture data from the CMU database
(mocap.cs.cmu.edu—subject #79, motion #83 (shaving)). The se-
quence of head orientations from the motion capture data are set as
target head orientations to the head controller. The head controller
computes the desired head angular velocity as ẋd(t) = (xd(t +d)−
x(t))/d, and the desired orientation as xd(t + ∆t) = x(t)+ ẋd(t)∆t,
where x(t) is the angular representation of the head orientation at
time t, and d is the time in which the system is allowed to reach
the target xd(t + d). In this example, we set d = 10∆t with ∆t =
0.033 sec. Fig. 7 reveals that our dynamic head-neck system fol-
lows the motion capture data while smoothing noise in the data.



(a) Both tone c and feedback
gains s are modulated.

(b) No tone control; only feed-
back gains s are modulated.

Figure 8: Different head motions result depending on the tone con-
trol. (a) and (b) are snapshots taken at the same time with identical
perturbations of the red wagon.

6 Experiments and Results

We have conducted several experiments with our biomechanical,
neuromuscular face-head-neck animation system.

6.1 Basic Simulations

Even with the rotational springs (which represent ligaments and
disks) attached to each cervical joint, the skeletal system appropri-
ately collapses in gravity, exhibiting the expected passive dynam-
ics. Without active control, the complete musculoskeletal system
appropriately collapses as well, albeit in a more damped manner.
However, simulating the passive dynamics of the musculoskele-
tal system was crucial for adjusting the parameters of the 72 mus-
cles. Since each muscle’s stiffness and damping parameters are not
known precisely and, even if they were, since we cannot model all
of the muscles in the neck (thus our actuators must also assume the
roles of neighboring unmodeled muscles), we cannot naively use
empirical data reported in the biomechanics literature. Hence, we
tuned the muscle parameters in our model by visually assessing the
plausibility of the resulting passive dynamics.

With the feedforward and feedback control networks trained, we
ascertained the importance of feedforward control by turning it off
and attempting to animate the head using only feedback control.
With the feedback gain set at its nominal value, feedback control
alone fails to maintain the upright stance of the cervical spine with
the head in balance. However, feedback control is important for
maintaining the stability of the musculoskeletal system.

6.2 Tone Control Experiments

In a different experimental scenario, we apply perturbations to the
base link of the head-neck system that are analogous to riding on a
vehicle over a bumpy road (Fig. 8). As the head motion controller
senses excessive error between the desired and the actual orienta-
tion of the head, it gradually increases the feedback gain s (to its
maximum value of 3.0) and tone c (to its maximum value of 0.4)
until the error drops below an acceptable threshold or until the max-
ima are reached. Not surprisingly, the head wobbles less when both
the tone and feedback gain are increased, compared to increasing
the feedback gain alone. However, we also observed that increasing
the tone alone is insufficient to suppress the wobble. This implies
that reflexive stiffness also plays an important role in the overall
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Figure 9: Head orientation longitudinal angle θ over time during an
impact simulation. When controlled with zero tone signal, c = 0,
(red), the head is perturbed more by the impact with the ball than
when controlled with tone c = 0.2 (blue). All snapshots except for
the lower left one are sampled from the zero tone (red) case.

stiffness of the musculoskeletal system. Appendix B discusses re-
flexive stiffness and intrinsic stiffness.

In a second set of perturbation experiments, we apply with a ball
external impacts to the head under various tone conditions (Fig. 9).
After impact, the head motion controller issues head stopping com-
mands to the lower-level neuromuscular controllers; i.e., set the de-
sired pose to the current pose and the desired velocity to zero. When
the head approaches stationariness, the controller issues a command
for the head to return to its original upright pose. Since the stiffness
of the musculoskeletal system is greater when it increases its tone
by coactivating opposing muscles, it is less perturbed by the same
impact. This illustrates the fact that even passive human motion dif-
fers markedly depending on the internal state of muscle activation.

6.3 Gaze Behavior

Human vision is foveated. The foveal region of the retina, which
spans roughly 5 degrees of visual arc, is specialized for high-acuity,
color vision. To see an object clearly, gaze-shifting eye movements
are usually needed to direct the eye to the visual target. Since the
resulting eye motion disrupts vision, these movements are executed
as quickly as possible and are called saccadic eye movements. As a
visual target moves closer, the two eyes must also converge onto the
target; these are called vergence eye movements. The oculomotor
system, which positions the eyes relative to the head, and its inter-
action with head movement has been the subject of intense research
(see, e.g., [Carpenter 1988]).

Given the significantly greater mass of the head relative to the eye,
head dynamics are much more sluggish than eye dynamics. For
example, in a voluntary head-eye movement to direct the gaze at an
off-axis visual target in the horizontal plane, the eye movement is
an initial high-speed saccade in the direction of the head movement,
presumably to facilitate rapid search and visual target localization,



Figure 10: Head-Eye gaze behavior. Snapshots of the model gazing
at a target in different directions.

followed by a slower return to orbital center, compensating for the
more sluggish head movement that follows.

As Fig. 10 shows, our biomechanical model can synthesize co-
ordinated head-eye movements that emulate at least the primary
head-eye movement phenomena reported in the literature. When
we present a moving visual target (the doll) to the model, the eyes
are directed to make a saccadic ocular rotation (with maximum an-
gular velocity of 200 degrees/sec) to point in the direction of the
visual target relative to the head. Simultaneously, the head motion
sub-controller of the neck neuromuscular controller issues a high-
level command to rotate the head in the direction of the gaze. As the
head executes the desired rotation via the low-level physical simu-
lation, the eyes make a continuous compensatory movement such
that they remain directed at the visual target. Fig. 10 shows the
head gazing at the target in two different directions. Employing a
rule-based behavior routine, the biomechanical face automatically
synthesizes baby-like facial expressions as the eyes and head track
the target. It appears awed when the doll is situated above the head,
pleased when the doll is around eye level and held still, and angry
when the doll is shaken.

6.4 Autonomous Multi-Head Interaction

Fig. 11 illustrates three autonomous face-head-neck systems inter-
acting in a multi-way behavioral facial animation scenario, which
was inspired by a more primitive demonstration in [Terzopoulos
and Lee 2004] not involving neck models. In our version, each
of the faces is supported by our head-neck musculoskeletal sys-
tem, which automatically synthesizes all of the head motions nec-
essary to sustain a highly dynamic multi-way interaction. As in the
above demonstration, the synthesized head movements must coop-
erate with eye movements in order to direct the gaze at visual tar-
gets in a natural manner. The middle head in the figure acts as a
“leader” synthesizing random expressions and alternating its atten-
tion between the other two heads, which act as “followers”. Once
a follower has the leader’s attention, the follower will observe the
leader’s expression and engage in expression mimicking behavior.
However, excessive mimicking will lead to behavior fatigue—the
follower will lose interest in the leader and attend to its fellow fol-
lower. A complete explanation of the behavioral modeling is be-
yond the scope of this paper; reference [Terzopoulos and Lee 2004]
provides additional details.

7 Discussion

Biomechanical musculoskeletal simulation governed by neuromus-
cular and behavioral control layers seems to be the scientifically

Figure 11: Autonomous behavioral-based interaction between three
face-head-neck systems.

principled approach to building self-animating, lifelike characters.
In particular, our head-neck model aspires to be significantly more
biomimetic than simpler joint-torque-driven articulated models in-
spired by robotics [Neff and Fiume 2002; Faloutsos et al. 2001;
Hodgins et al. 1995]. At least for the time being, we believe that
it addresses the modeling challenge at the right level of detail. It
is also compatible with the biomechanical face model that we have
employed in our work and supports simple behavioral animation
in response to interesting external stimuli, such as other face-head-
neck systems. Our work has made progress toward a complete and
fully integrated cervical-craniofacial simulation in anticipation of
an inevitable biomechanical and functional emulation of the entire
human body for the purposes of computer animation.

The salient details of human neck movement cannot easily be mim-
icked using conventional joint-actuated skeletal models. In partic-
ular, the moment-generating capacity of each joint varies—it is de-
termined by the geometry and capacities of the associated muscles.
The muscle itself cannot simply be replaced with a PD-servo—it
has nontrivial passive dynamic and force-generating properties, as
approximated by the Hill model. Our controllers compute the ac-
tivation level of each muscle, and this could provide a natural ap-
proach to simulating local skin deformation due to underlying mus-
cle contraction and bulging [Kähler et al. 2001; Scheepers et al.
1997; Wilhelms and Gelder 1997]. For example, even in a constant
skeletal pose, the sternocleidomastoid and trapezius muscles bulge
as the head reacts to applied forces, producing externally salient
shape changes of the neck. Simpler approaches than ours will no
doubt become increasingly complex as they are augmented in an at-
tempt to capture some of these nuances of human neck movement.

In our work, we used static optimization during the offline train-
ing of the pose controller in order to compute optimal muscle ac-
tivations that generate desired static poses. By contrast, some mo-
tion control schemes employ more costly dynamic optimizations to
solve for optimal actuator input temporal functions that generates
desired output motions. Since most head motions lack vigorous
dynamics, our static optimization yields satisfactory results. More-
over, the difference between static optimization and dynamic opti-
mization may not be significant; in the context of normal human
gait, Anderson and Pandy [2001] argue that static optimization and
dynamic optimization solutions are virtually equivalent.

8 Conclusion and Future Work

We have introduced a biomechanical model of the human head-
neck system. Emulating the relevant anatomy, our model is char-
acterized by kinematic redundancy (7 cervical vertebrae coupled



by 3-DOF joints), as well as muscle actuator redundancy (72 neck
muscles arranged in 3 muscle layers). To control the biomechanical
model for the purposes of human head animation, we developed a
hierarchical neuromuscular control model that mimics the relevant
biological motor control mechanisms. Incorporating a low-level re-
flex sub-controller, an intermediate-level voluntary sub-controller,
and a high-level head motion controller, our novel head-neck con-
trol system not only provides inputs to the numerous muscle actu-
ators, but also affords control over muscle tone, which determines
the stiffness of the craniocervical multibody system independently
of head pose and movement. We showed that it is possible to train
the neural networks in our neuromuscular controller offline so that
they can efficiently generate the online pose and tone control signals
that are required to produce a variety of head movement behaviors
for the autonomous animation of the human head and face.

In view of the complexity of the neck, our biomechanical model is
inevitably incomplete. For some applications, it would be necessary
to model not only additional neck muscles, but also ligaments and
the disks (cartilage filled with a gelatinous substance) that deform to
cushion the vertebrae of the spinal column. A more complete model
would enable us to simulate cervical injuries such as whiplash.

Since bulging muscles play an important role in the externally
salient deformation of flesh, in future work we plan to include dy-
namic neck muscles of anatomically consistent 3D shape and vol-
ume, which bulge appropriately as they contract. We also plan to
wrap the neck in a dynamically simulated skin compatible with the
one on the synthetic face.

We need to tighten the coupling between the biomechanical neck
and face models. Currently, the dynamics of the neck do not ade-
quately propagate to the face or vice versa. A tighter coupling will
yield more interesting dynamic animations of the face, including
facial soft tissue deformations when the head is moved vigorously.

Our pose controller assumes that the global orientation of the mus-
culoskeletal system (i.e., the orientation of the base link) is upright.
In other words, it would not output the proper feedforward signal if
the system is oriented horizontally. In future work, we plan to in-
corporate the global orientation of the system as an additional input
to the pose controller. This will require suitably augmented neural
networks and re-training on augmented data incorporating global
orientation.

Applying the methodology introduced in this paper, it should be
possible to model and animate the necks of lower animals, such as
gorillas, dogs, horses, and even giraffes. Finally, as the demonstra-
tions in Figs. 10 and 11 suggest, a further developed version of our
biomechanical model with refined neuromuscular controllers and
expanded behavioral repertoire shows promise as an essential com-
ponent of future autonomous, intelligent virtual humans.

A Moment Arm Matrix Computation

The moment arm matrix P(q) is defined as τ = P(q)f, where τ =
[τ1, . . . ,τn]T is the vector of joint torques (generalized forces) and
n is the number of joints, and f is the vector of muscle contraction
forces. Let l j be the vector from the origin to the insertion of muscle
j. Let δ l j = 〈l̇ j, l j/‖l j‖〉 and δ l = [δ l1, · · · ,δ lm]T , where m is the
number of muscles. The principle of virtual work 〈f,δ l〉 = 〈τ,δq〉
yields the relation P(q)T δq = δ l. If we set δq to be the i-th basis
vector ei in the joint space, then the resulting δ l is the same as the
i-th row of P. Thus, we can compute P(q) as follows:

Require: q
1: Update the transformation matrix of each bone
2: for i = 1 to n do
3: Set q̇ = ei
4: Compute generalized velocity of each transformation matrix
5: Compute δ l as defined above
6: Set the i-th row of P to δ l

B CE Contribution to Stiffness

From P(q) = (∂ l/∂q)T and 1
2 δqT KJδq = 1

2 δ lT KMδ l, where
KM = diag(k1, . . . ,km) and ki is the stiffness of muscle i, we
obtain the joint space representation of muscle stiffness KJ =
P(q)KMP(q)T . Since ki is always positive, KJ is a positive definite
matrix, thus increasing the overall stability of the system. Consider
the stiffness of a muscle due to its contractile element kC in our
muscle model. From (2),

kC =
∂ fC
∂ l ∝ kmaxa+

∂a
∂ l Fl .

Here, kmaxa is the intrinsic stiffness of a muscle, which is effective
regardless of the frequency of a perturbation. The reflexive stiffness
due to the reflex control is (∂a/∂ l)Fl ∝ kpFl . Note that, unlike the
intrinsic stiffness, the reflexive stiffness is effective only for slower
perturbations, since there is a time lag for a reflexive response due to
the low speed of neural information delivery. Coactivating muscles
increases intrinsic stiffness; hence it is more effective for suppress-
ing quicker perturbations than reflex control.
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