SIGGRAPH '89 PANEL PROCEEDINGS

Panel Session

Physically-Based Modeling:
Past, Present, and Future

Co-Chairs:

Speakers:

Demetri Terzopoulos, Schlumberger Laboratory for Computer Science
John Platt, Synaptics

Alan Barr, California Institute of Technology

David Zeltzer, MIT Media Lab
Andrew Witkin, Carnegie Mellon University
Jim Blinn, California Institute of Technology

My name is Demetri Terzopoulos and my co-chair, John
Platt, and I would like to welcome you to the panel on Physically-
Based Modeling -- Past, Present and Future. T'll start by
introducing the panelists; the affiliations you see listed on the
screen are somewhat out of date.

I'm Program Leader of modeling and simulation at the
Schlumberger Laboratory for Computer Science in Austin, Texas,
and I was formerly at Schlumberger Palo Alto Research. T'll
speak on the subject of deformable models.

John Platt, formerly of Cal Tech, is now Principal Scientist at
Synaptics in San Jose, California. He will be concentrating on
constraints and control,

Alan Barr is Assistant Professor of computer science at Cal
Tech. Last year he received the computer graphics achievement
award. He'll speak about teleological modeling.

David Zeltzer is Associate Professor of computer graphics at
the MIT Media Laboratory. He will be speaking on interactive
micro worlds.

Andrew Witkin, formerly of Schlumberger Palo Alto
Research, is now Associate Professor of computer science at
Carnegie Mellon University. He will speak about interactive
dynamics.

Last but not least, we have with us James Blinn, who of
course needs no introduction. Formerly of JPL, he is now
Associate Director of the Mathematics Project at Cal Tech, He
says he'll have several random comments to make against
physically-based modeling.

I was also asked by the SIGGRAPH organizers to remind the
audience that audio and video tape recording of this panel is not
permitted.

Many of you are alrcady familiar with physically-based
modeling, so I will attempt only a very simple introduction to this,
in my opinion, very exciting paradigm. Physically-based
techniques facilitate the creation of models capable of
automatically synthesizing complex shapes and realistic motions
that were, until recently, attainable only by skilled animators, if at
all. Physically-based modeling adds new levels of representation
to graphics objects. In addition to geometry -- forces, torques,
velocities, accelerations, kinetic and potential encrgics, heat, and
other physical quantities are used to control the creation and
evolution of models. Simulated physical laws govern model
behavior, and animators can guide their models using physically-
based control systems. Physically-based models are responsive to
one another and to the simulated physical worlds that they inhabit.

We will review some past accomplishments in physically-
based modeling, look at what we are doing at present, and
speculate about what may happen in the near future. The best way

to get a feel for physically-based modeling is through animation,
so we will be showing you lots of animation as we go along.

I would like to talk about deformable models, which are
physically-based models of nonrigid objects. I have worked on
deformable models for graphics applications primarily with Kurt
Fleischer and also with John Platt and Andy Witkin. Deformable
models are based on the continuum mechanics of flexible
materials. Using deformable models, we can model the shapes of
flexible objects like cloth, plasticine, and skin, as well as their
motions through space under the action of forces and subject to
constraints.

Please roll my Betacam tape. Here is an early example of
deformable surfaces which are being dragged by invisible forces
through an invisible viscous fluid. Next we see a carpet falling in
gravity. It collides with two impenetrable geometric obstacles, a
sphere and a cylinder, and must deform around them. The next
clip shows another clastic model. It behaves like a cloth curtain
that is suspended at the upper corners, then released.

Here is a simulated physical world -- a very simple world
consisting of a room with walls and a floor. A spherical obstacle
rests in the middle of the floor. You're seeing the collision of an
elastically deformable solid with the sphere. Of course, we're also
simulating gravity.

We've developed inelastic models, such as the one you see
here which behaves like plasticine, When the model collides with
the sphere, there's a permanent deformation. By changing a
physical parameter, we obtain a fragile deformable model such as
the one here. This deformable solid breaks into pieces when it
hits the obstacle.

Deformable models can be computed efficiently in parallel.
This massively parallel simulation of a solid shattering over a
sphere was computed on a connection machine at Thinking
Machines, with the help of Carl Feynman.

Here is a cloth-like mesh capable of tearing. We're applying
shear forces to tear the mesh. The sound you're hearing has been
generated by an audio synthesizer which was programmed by
Tony Crossley so that it may be driven by the physical simulation
of the deformable model. Whenever a fiber breaks, the
synthesizer makes a pop. Keep watching the cloth; we get pretty
vicious with it.

Deformable models are obviously useful in computer
graphics, but they are also useful for doing inverse graphics; that
is to say, computer vision.

For example, here we see an image of a garden variety
squash. Using a deformable tube model, we can reconstruct a
three dimensional model of the squash from its image, as shown.
Once we have reconstructed the model from the image, we can

PHYSICALLY-BASED MODELING: PAST, PRESENT, AND FUTURE 191

SIGGRAPH '89, Boston, July 31 - August 4, 1989

rotate the model to view it from all sides. You can see, we have
captured a fully three dimensional mode!l from that single,
monocular image. That's a basic goal of computer vision.

Kurt Fleischer, Andy Witkin, Michael Kass, and [used this
deformable model based vision technique to create an animation
called Cooking with Kurt. We wanted to mix live video and
physically-based animation in this production. You see Kurt
entering a kitchen carrying three vegetables, We captured
deformable squash models from a single video frame of the real
squashes sitting on the table -- this particular scene right here.
Now the reconstructed models are being animated using
physically-based techniques. The models behave like very
primitive actors; they have simple control mechanisms in them
that make them hop, maintain their balance, and follow
choreographed paths. The collisions and other interactions that
you see are computed automatically through the physical laws,
and they look quite realistic. It's difficult to do this sort of thing
by hand, even if you're a skilled animator.

This second tape will show you some of the physically-based
modeling we're up to now at the Schlumberger Laboratory for
Computer Science. Keith Waters and [are working on interactive
deformable models. We're now able to compute and render
deformable models in real time on our Silicon Graphics Iris 240
GTX computer. For example, here is a simulation of a nonlinear
membrane constrained at the four corners and released in a
gravitational field. Watch it bounce and wiggle around.

Here you're seeing a physically-based model of tlesh. It's a
three dimensional lattice of masses and springs with muscles
running through it. Again, this is computed and displayed in real
time. You can see the muscles underneath displayed as red lines.
They're fixed in space at one end and attached to certain nodes of
the lattice model at the other end. By contracting the muscles we
can produce deformations in this slab of -- whale blubber, if you
will. We did this simulation as an initial step towards animating
faces using deformable models as models of facial tissue. And of
course, the muscle models make good facial muscles.

The next clip will demonstrate real time, physically-based
facial animation on our SGI computer. Here we see the lattice
structure of the face. Let's not display all of the internal nodes so
that we can see the epidermis of the lattice more clearly. There.
Now we're contracting the zygomatic muscle attached to one edge
of the mouth -- now both zygomatics are contracting to create a
smile. The muscles inside the face model are producing forces
which deform the flesh to create facial expressions.

Now the epidermis polygons are displayed with flat shading.
Next we contract the brow muscles. Here the epidermis is being
shaded smoothly. Finally, we relax the muscles and the face
returns to normal.

An important reason for applying the physically-based
modeling approach to facial animation is realism. For instance,
the facial tissue model automatically produces physically realistic
phenomena such as the laugh lines around the mouth and the
cheek bulges that you see here.

Keith videotaped this animation off of our machine only last
week. Our next step will be to develop control processes to
coordinate the muscles so that the face model can create a wide
range of expressions in response to simple commands. Keith's
prior work on facial animation, published in SIGGRAPH 87,
showed how one can go about doing this using muscle model
processes. Beyond muscle control processes, we're also interested
in incorporating vocoder models -- that is, physically-based
speech coding and generation models, so that this face can talk to
you.

The tape will end soon, so I'll release the podium to Dr. John
Platt, who will talk about constraint methods and control. Thank
you.

John Platt
Synaptics

Hello. I'm John Platt and I'm going to tell you one major
idea that I have found to be very useful in working with
physically-based models. Animation is simulation plus control. I
worked on this idea with Al Barr while I was a graduate student at
Catl Tech.

I claim there are two necessary ingredients to make
interesting animation. One of them is the physical simulation of
elasticity. Demetri talked about this a little bit. You need to have
models that obey the theory of elasticity. In other words, you use
Newton's laws to make the models act naturally. The animation
looks natural, because the theory of elasticity describes the way
flexible models actually behave.

Physical simulation is also nice because it's automatic. If you
have a simulator that simulates an elastic object, it can have
hundreds of variables. Trying to do key framing would be very
difficult: you would have to specify hundreds of splines in order
to make the animation,

In addition to the physical simulation, elastic models need to
be controlled. Models should follow basic rules which create
good animation. For example, you usually don't want models to
fly through each other -- unless you want that particular effect in
your animation. Objects should bounce off each other. They
should be able to be incompressible or moldable.

More generally, you want to guide models. You don't want
just a pure simulation. You want to be able to specify some
amount of control and then let the rest be automated. So you can
specify a few degrees of freedom and leave the other few hundred
to the computer. So [claim this means you want to have both
simulation plus control to make animation.

Let me show you some examples of animation made using
constrained flexible models that will illustrate this principle.

What you're first going to see is an elastic trampoline with a
sphere above it. With constraints, I specify that this sphere should
not penetrate the trampoline. And you see, it doesn't. It bounces;
it stays above the trampoline.

In the next example, [use constraints to try to assemble
complex objects out of simple objects, and I also use constraints to
position the objects where I wanted. Here, I specify a few
constraints and the system automatically positions the models to
create a double trampoline.

You don't have to confine yourself to surfaces. Very
interesting animations result when you simulate elastic solids. So
here I'm going to make a jello cube. Now, I pick up the jello cube
with constraints. Gravity is applied to the jello cube so that it
falls. The grey table is made by constraints: I'm constraining the
jello cube to stay above the table.

Finally, you can make reasonably complex animations
involving hundreds of variables. This is an example of such an
animation using both flexible models and constraints.

This animation was made with the help of a lot of my friends
from Cal Tech while I was there, and in fact, we did it up at Apple
on their Cray. So I'd like to thank all those people.

In conclusion, I want to reiterate: if you want to make very
complex and interesting animation, then I think you need both
simulation and control. The simulation can be any sort of physics.
It doesn't have to be elasticity; it could be fluid mechanics or
neutrino physics or whatever. But you need both simulation and
control to create animation that does what you want.

192 PHYSICALLY-BASED MODELING: PAST, PRESENT, AND FUTURE

SIGGRAPH '89 PANEL PROCEEDINGS

['m going to pass the speakership on to Protessor Al Barr
from Cal Tech.
Alan Barr
California Institute of Technology

We're talking here about physically-based modeling and an
obvious question is: Well, gee, physics has been around for a few
hundred years -- don't people in computer graphics know
freshman physics? Why did it take so long for these people to use
physics in their work?

The answer is that physics by itself does what it wants to do -
- It doesn't want to do what you want to do.

In terms of the scientific foundations of computer graphics,
the world view of what I'm talking about is that modeling is
making mathematical abstractions of objects, and that rendering is
making pictures. My prediction is that there is going to be a large
and increasing role in science for the modeling that we're doing in
computer graphics. After all, in science what you're trying to do
is to make a predictive model that agrees with experiment. Since
so much of what is done in science is modeling, the techniques
that we're demonstrating today will make it possible to do
scientific modeling much more easily than it can be done at
present.

For example, let's say I wanted an elastic model that is
isotropic -- the same in all directions. It has constraints in that it
does not pass through this object and it does not pass through that
object, and interacts with rigid and flexible bodies. Now that's a
very compact description of the model. How long would it take
us to actually program that up? It takes us quite some time. So,
with advanced modeling tools in which those properties that I've
just described are primitives, we'll be able to do a lot more
modeling in a shorter period of time, and the whole world will be
a better place.

Basically, in the modeling process you abstract away the
features you wish to model and you represent them. Then you
implement those features. Tuse the abstraction that a telcological
object takes goals and an incomplete specification of an object,
and produces a complete geometric description.

— BARR - SLIDE | —

— BARR - SLIDE 2 —

— BARR - SLIDE 3 —

For instance, here I have a chain and I should be able to ask
the bottom link of the chain to hook to the trapdoor lid. It would
be very nice if it would just do it.

Teleological methods, such as constraint methods, deal with
the forces and with the constraints simultaneously. Basically, the
abstraction of the objects consists of both the goals of behavior
and the physics. In one framework, you have geometric constraint
properties, mechanical properties, the control of your objects, and
the parameters that describe the sizes of your objects.

PHYSICALLY-BASED MODELING: PAST, PRESENT, AND FUTURE 193

SIGGRAPH '89, Boston, July 31 - Augusi 4, 1989

The simplest level of abstraction of an object is an image.
The next level of abstraction is that an object is a shape.

'---ﬂumu\m

M A G CORPORATION

— BARR - SLIDE 4 —

— BARR - SLIDE 7 —

- BARR - SLIDE 5 —

— BARR - SLIDE 8 —

— BARR - SLIDE 6 —

194 PHYSICALLY-BASED MODELING: PAST, PRESENT, AND FUTURE

SIGGRAPH '89 PANEL PROCEEDINGS

— BARR - SLIDE 9 — — BARR - SLIDE 12 —

So here are objects that are described strictly geometrically:
no physics. This is a picture by Dave Kirk and Jim Arvo and they
claim that since the Greeks knew about polyhedra, that a new
platonic solid has been found. It's the middle object in the back.

— BARR - SLIDE 10 —

— BARR - SLIDE 13 —

— BARR - SLIDE 11 —

PHYSICALLY-BASED MODELING: PAST, PRESENT, AND FUTURE 195

SIGGRAPH '89, Boston, July 31 - August 4, 1989

The next level of abstraction is physics. An object is its
physical behavior, but you can see that physics alone doesn't
necessarily have constraints.

— BARR - SLIDE 14 —

— BARR - SLIDE 17 —

— BARR - SLIDE 15 —

— BARR - SLIDE 18 —

— BARR - SLIDE 16 —

196 PHYSICALLY-BASED MODELING: PAST, PRESENT, AND FUTURE

- SIGGRAPH '89 PANEL PROCEEDINGS

— BARR - SLIDE 19 — ARR - SLIDE 22 —

— BARR - SLIDE 20 — — BARR - SLIDE 23 —

— BARR - SLIDE 21 — — BARR - SLIDE 24 —

The next level of abstraction is to add constraints. If [have
constraints, [can connect my objects together and have them do

PHYSICALLY-BASED MODELING: PAST, PRESENT, AND FUTURE

SIGGRAPH '89, Boston, July 31 - August 4, 1989

what I want -- or at least do what [say I want. In the slides, we're
just saying to the balls, hook this way, hook that way, connect,
and be tangent.

— BARR - SLIDE 27 —

— BARR - SLIDE 25 —

— BARR - SLIDE 28 —

— BARR - SLIDE 26 —

— BARR - SLIDE 29 —

198 PHYSICALLY-BASED MODELING: PAST, PRESENT, AND FUTURE

SIGGRAPH '89 PANEL PROCEEDINGS

— BARR - SLIDE 30 — — BARR - SLIDE 32 —

Here we're saying these balls should collide but the
constraints should be met. You don't want to program in the
physics by hand for doing that; you want it to happen in some
automatic way.

— BARR - SLIDE 33 —

— BARR - SLIDE 31 —

— BARR - SLIDE 34 —

PHYSICALLY-BASED MODELING: PAST, PRESENT, AND FUTURE 199

SIGGRAPH 89, Boston, July 31 - Agggst 4, 1989

— BARR - SLIDE 35 —

Just like what you want here is the ball not to pass through
the membrane.

When you don't use a teleological method, you use an
indirect method. So that means that you have to fiddle with your
parameters until the result is the accident that you get what you
want,

— BARR - SLIDE 36 —

B

— BARR - SLIDE 37 —

For instance, let's say that I indirectly want the doughnut to
be on the table and I'm going to directly specify the doughnut's
position. Ican say, " Put the doughnut at a particular location,”
and the computer will do it, but it might penetrate the tabie,
[deally, what you want is to put the doughnut on the table and that
means let it fall in the gravitational field and it will dissipate its
energy. Using this technique, you can fill up a bowl with fruit and
whatnot.

There are a number of mathematical methods for doing
teleological modeling: inverse dynamics, constrained
optimizations, and simulated annealing. It's important to put them
all together,

— BARR - SLIDE 38 —

A new pipeline will be developed in graphics hardware. This
pipeline will consist of four parts. The users will interact with the
constraints, which describe what the users want. The next level is
the physically-based level. You go from goals to physics, using
constraints. The next level is shape. You go from forces to shape
via simulation, The last level is an image. You go from shape to
shading using rendering. This is a new graphics pipeline. And the
bottom two layers are where we are now. In fact, originally,
graphics just had the absolute bottom layer: An object is an image.
Now they have: An object is an image and shape.

200 PHYSICALLY-BASED MODELING: PAST, PRESENT, AND FUTURE

SIGGRAPH '89 PANEL PROCEEDINGS

It took us a little while to realize how to really usc the
physics layer. Iremember talking to Lance Williams a few years
ago. We were making an Omnimax film and T told Lance that the
right way to do everything in animation is to use physics. And
Lance said, ~"I don't know, Al. Tdon't think so." I certainly was
convinced that there was no other way.

That Omnimax movie is being presented tonight at the
Science Museum, and the interesting thing about it is that I was
simulating the swimming motions of creatures and I thought that I
had done my job by doing the physics of the swimming. T did it
correctly. I'had the camera swooping through this flock of
swimming things and by the time the camera got to where it was
going to be, they had all swam away. Well, that doesn't seem
right. So, I aimed them at the trajectory of the camera. The
camera swooped through them and they swam behind the camera,
So after fiddling with this for a while, [realized yes, Lance is
right. There's something more than physics. There is the
specification of what you want.

That's what telcological modeling is. 1t lets you control the
physics and get what you want in a mathematically guaranteed
way. Whatever you don't say that you want, you're not guaranteed
to get. There might be a happy accident in which the physics
might accidentally give you what you want, but it won't be
guaranteed, unless you use a mathematically guaranteed method.

We're going to show a little bit of animation here. What
we're first going to see is an attempt at connecting objects together
using rubber band forces. The yellow arrow is a force and it drags
the rod over to the nail, but the rod doesn't really get there. Now
we're going to add a second rod and connect it to the first rod.
Whoops, the first rod pulled off the nail! So you can see that
making something out of rubber band forces looks like it's made
out of real rubber bands when you turn on gravity. If you want to
guaraniee that the objects will be held together, you need a
smarter force than this sort of rubber band force that is small when
you're close to fulfilling a constraint and large when you're far
from fulfilling the constraint.

So herc's basically the inverse dynamics approach: the
teleological approach. We say: Hook this point on the rod to that
point in the middle. The green lines displayed are the velocities of
the points, Notice that a radial force connects the rod to the nail.

Of course, when you remove the constraint force the rod will
fly off into space. When you add a second rod and ask it to hook
to the first, they now stay hooked together, unlike the previous
case. There's no friction unless you ask for friction. When you
suddenly ask for gravity then the object will fall and stay hooked
together. The forces adapt to whatever they need to be in order to
hold the objects together.

You can assemble objects. Here's a tower that's putting itself
together. We're just saying hook this object to that object. Hook
this strut to that strut, hook that strut to that rod.

In this next example we're going (o see two towers, and we're
going to connect the set of chain links between them, We ask the
constraints to hook up the chain links, nose to tail. So the physics
and the shape and the pixels on the screen are all byproducts. We
didn't calculate those by hand. They're all byproducts of the
teleological commands, which is just hook the links together, nose
to tail, and hook the end points to the tips of the towers,

Here you sce a more lively, more snakey chain. Although
the commands to create these animations are easy to use, it took a
great deal of work for our group to create the substrate. Ronen
Barzel of our group and John Platt and many other people in our
group worked very hard to make the underlying substrate. So
even though it took three lines of code to specify this whole
movie, there are thousands of lines of code at the substrate level.

In principle you can use these methods to control real
physical objects. You can have spacecraft that can dock
automatically, as is illustrated here,

But this is just the beginning. I think that we're seeing the
very beginning of making complex systems of objects that do
what we want, We've just scratched the surface. When we have
hardware that can do this in real time and when we can render it
and see it in real time, we will take all of these capabilities for
granted and wonder how could anyone every have lived back in
the old primitive days when you couldn't even have an object
bounce on the screen right in front or you or drop a piece of jello
on the table.

So I'm going to end my talk here with the wiggling jello,
Thanks very much. Our next speaker is Professor David Zelizer
of the MIT Media Lab.

David Zeltzer
MIT Media Laboratory

Good morning. I think physically-based modeling is a
crucial element of putting together convincing micro worlds. Can
I have the first slide, please?

What I'm going to talk about is in some sense a continuation
of the notion of abstractions for physically-based modeling and
micro worlds that Al Barr was just talking about.

We're working on something we're calling an integrated
graphical simulation platform. That is to say, a workstation that
knows a lot about the physical world, that provides a medium for
users in a variety of applications to experiment and explore a
variety of computational models. We're interested more in
allowing people to observe the behaviors of autonomous agents
and objects rather than convincing them in some sort of synthetic
reality. Here are a couple of applications. Fred Brooks has been
doing some wonderful work in his lab at UNC involving virtual
experiments in molecular docking. We're also interested in
providing people with a medium for learning and exploring -- for
looking at computational models and peeling back the levels of
detail as they gain confidence in their understanding at each level
of representation,

It's important to us to allow people the means not only to
control computational models, but also to define them and
represent them and modify them. If a scientist is studying a
compuiational model of some process -- motor control, for
example -- we'd like to allow him to program that model and
insert it into the micro world to control some agent and observe its
cffect. So, we're interested in exploring the kinds of windows
people can have on these computational models.

PHYSICALLY-BASED MODELING: PAST, PRESENT, AND FUTURE 201

SIGGRAPH "89, Boston, July 31 - August 4, 1989

— ZELTZER - SLIDE | — — ZELTZER - SLIDE 2 —

Here is a block diagram of the system that I'll tell you a bit I believe there are a couple of ways of thinking about the
about in a few minutes. There are a number of modules, These problems of controlling and representing objects. I think there are
three here are rather standard device dependent and device in this perspective a couple of orthogonal axes. This axis
independent models for graphics. They provide the substrate of represents means of interacting and controlling objects from direct
the system. Then we've provided protocols for talking about manipulation, on this end, to algorithmic specification, on this
constraints and for plugging in a variety of application modules. end. The other axis represents the representational abstractions. [

Some of the 1/O devices that we've been able to work with think Al Barr's abstractions are another orthogonal axis which
are of course the VPL Data Glove and the Spatial Systems represents levels of representational detail. There are many
SpaceBall. Recently our system's been ported to Scott Fisher's lab dimensions in which we could abstract these objects, depending
at NASA AMES and we've been able to plug the head mounted on the particular application or reason for which we're working
display into it. This fall, we're looking forward to starting to with these objects.

program the force feedback joystick. This is a three degree of
freedom joystick with a range of motion about like this. We're
doing this work in collaboration with the mechanical engineering
department at MIT.

I've been thinking about abstraction mechanisms for these
micro worlds. This is not a new idea, as you've seen. Al Barr's
been thinking about it too. It's also quite common in Artificial
Intelligence as a means for understanding how to represent and
control devices for a variety of purposes -- among them,
diagnostic reasoning. If there's a system that you're controlling
and it breaks, you'd like the system to be able to help you figure
out what's wrong with it.

In particular, I've been interested in abstractions for
representing and controlling objects. There are four kinds of
abstraction mechanisms that you see there. Perhaps the most
important one is the functional abstraction which provides you a
way of decomposing large, unconstrained and largely
uncontrollable systems with very many degrees of freedom, into a
number of constrained controllable subsystems with a few degrees
of freedom. So we can constrain a system for a particular
behavior such as walking or reaching, and then we can allow
agents to achieve various kinds of motor goals by composing
these functional subsystems -- either in parallel or in sequence.

— ZELTZER - SLIDE 3 —

So, in particular, we can think about the different interaction
modes combined with the abstraction levels, to give us a set of
useful windows for interacting with our computational models.
For example, we can use direct manipulation to control structures
directly, and this gives us a way of describing to the system how
objects are put together and their kinematic and dynamic
attributes. At the same time we can write programs that operate

202 PHYSICALLY-BASED MODELING: PAST, PRESENT, AND FUTURE

SIGGRAPH '89 PANEL PROCEEDINGS

directly on structures, as you've seen, and this I think gives us
something like “teleological modeling.”

On the other hand, as we compose more useful functional
behavior repertoires, we can interact with more complicated
agents using the same interaction paradigm. So, if we use direct
manipulation techniques to interact with agents, we have
something called task level interaction where we can point to an
agent and say: “T want you to go over there,” and leave it for the
agent to figure out how to do that.

Or, if we use programming to interact directly with agents,
rather than conventional programs, we can interact with them in
terms of natural language or constrained natural language scrips.

I don't have a lot of time; perhaps in the question period we
can talk more about those kinds of abstractions.

*HE COMPUTER GRAFPHICE & ANTHA

Dawid Deitser

— ZELTZER - SLIDE 4 —

These are the people in the group who are largely responsible
for a lot of the work that you're going to see, and this is a word
from our sponsors. I'd like to show you a couple of short clips
right now.

The first piece you're going to see is some dynamic modeling
of, again, human facial tissue. Steve Pieper, one of my grad
students, is doing this, and we're working in collaboration with Dr.
Joe Rosen at Stanford University and Scott Fisher at NASA
AMES as part of an effort to put together a surgical simulator. So,
you're seeing three layers that represent human facial tissue.
There are muscles, as in Keith Waters' and Demetri's model of
skin. Here you can see the muscles contract to make the skin
bulge in various directions. We can also simulate various surgical
procedures.

Let me fast forward. This looks better in fast forward
anyway. Here's a procedure called a Z-plasty, which is a plastic
surgery procedure for changing the dimensions of the surface area
of a piece of tissue. That work was done using the same system
['m about to show you now. This has sound, so I'll shut up and let
the tape run for a few minutes to give you an idea of the kinds of
things we've been doing.

— VIDEO TAPE TRANSCRIPTION —
narrator: David Sturman

Here at the Computer Graphics Group at the
MIT Media Lab, we're doing research in simulated

environments. We're using forward simulation
techniques in which we set up the environment and
then let things go and see what happens. We've
developed a testbed for this kind of animation and
simulation. Generically, we call it an Integrated
Graphics Simulation Platform. For local historical
reasons, we have named this particular
implementation Bolio.

Bolio is written entirely in C. It runs on Hewlett-
Packard 9000 series workstations. In this
demonstration, we're using a series 9000 835
workstation with Turbo SRX graphics hardware.
Bolio consists of a core set of routines that handle
device input, graphical output, and maintain the
environmental data base. These routines can be
accessed and shared by independent simulation
modules. The modules communicate with each
other and the objects in the environment through a
network of constraints. Using this constraint
network, simulation modules modify object attributes,
such as size, position, orientation, velocity, and color,
and these changes in attributes trigger other
simulation modutes which, in turn, modify other
objects. The emergent behavior of the network
generates the simulated environment.

Here we've set up 4 objects connected by spring
constraints to simulate a South American bola.
When | grab an object, it triggers a spring consiraint
which moves the other objects. That movement
triggers spring constraints which move the objects
again, and so it goes.

Along with the usual keyboard, mouse, tablet,
we have two input devices that allow direct
manipulation of the environment. The VPL Data
Glove has optical fibers along the fingers to sense
finger bend angles, and a Polhemus tracker that
uses a magnetic field source and sensor to yield the
relative orientation and position of the glove with
respect to the source. A Spatial Systems SpaceBall
senses forces and torques applied to it and gives us
six degrees of freedom.

— END OF VIDEO TAPE TRANSCRIPTION —

I think you've seen enough to get a good idea of the work
we're doing. Let me now turn the podium over to Professor Andy
Witkin from Carnegie Mellon University.

Andrew Witkin
Carnegie Mellon University

Like Dave Zeltzer, I'm interested in doing real time
interactive physical simulation, but I have a somewhat different
angle on it. Rather than the traditional role of simulation as
quantitative prediction -- what will happen if I pick this up and
throw it; where will it go -- I'm interested in using real time
physics as a2 modeling medium, analogous to what you do with
modeling clay when you sculpt a shape out of it. The physical
properties of the clay are a convenient way to get the shape you
want. They're not part of the thing you're modeling. So I guess
I'll start immediately with the tape -- if we can roll the tape -- and
talk over it.

PHYSICALLY-BASED MODELING: PAST, PRESENT, AND FUTURE 203

SIGGRAPH '89, Boston, July 31 - August 4, 1989

The basic idea is to be able to start with a purely geometric
object -- we'll start with curves in the plane which have no
physical properties. There's no sense in which a circle has
physical behavior -~ it's undefined. However, we want to give it
physical behavior in an automatic, consistent way which we can
derive just from the geometric equation that you need to draw the
thing. What that lets us do is turn a purely geometric object into
something we can manipulate in a direct physical way. So this
circle has degrees of freedom for position and radius and we can
pull on it and get any size circle we want and place it wherever we
wish. Here, we get any ellipse we want. Rather than worrying
about the parameters, we can just frob the thing directly, This is
my personal favorite -- a spiral.

So we are able to obtain this physical behavior automatically
from the geometric equation that defines the curve. A basic way
we do that is by giving it a physical interpretation that says there's
uniform damping and negligible mass along the length of the
curve.

Now there's a kind of constraint that you can put on these
objects that's trivial. It involves freezing one or more of the
parameters. So here we freeze the radius of this circle. Now it's a
rigid circle. And we can make a sort of inverse punching bag by
attaching a spring. Now when we unfreeze the radius, we get very
different behavior. These are all real time things, by the way.

To impose constraints on objects, we use a classical method
of Lagrange multipliers. Here, we're illustrating that for a particle
constrained to travel on a circle. The yellow arrow is the force we
apply and the green arrow is a constraint force. You can see how
the net force vanishes when we're trying to pull the circle directly
off the circle. The resultant force -- the blue one -- is simply
being projected on to the tangent to the circle. So what we're
doing is calculating the force we need to add in to counterbalance
the component that's trying to pull us off the circle. It's that
simple. That extends to much more complicated systems and it
involves solving a system of linear equations to do that projection.

Now, there's a little bit more to it, because if that's all you did
you would drift off because of accumulating numerical error. So,
we add feedback. Here the particle has drifted off the circle and
the feedback pulls it back. So feedback gives you something
that's very stable and robust and fast.

Using that constraint method coupled with the dynamics of
the object, you can start to build little things. Here is the same old
circle we saw before. Now, rather than attaching it by a string, we
nail it in place. So there is an ether nail there, and you sec the
circle can go anywhere you want it to as long as that particular
point stays exactly where it is. Now we can attach things together

to obtain something that has some constrained degrees of freedom.

You don't have to worry explicitly about what those degrees of
freedom are. You just pull on it and it goes to where you want it
to go. This is a nice way to build and manipulate things.

You can start to do more complicated things using the same
mathematical machinery and make contraptions. Here is a circle
again. We're doing the same things we did before, but we are
doing it from scratch. So now we have attached things together.
Now we can start to reshape things and add some more objects
and make linkages and watch them go. This all running in real
time on a Silicon Graphics Personal Iris, by the way.

So you can draw things with this, design things with it, do
constructive geometric proofs and such. So there it goes. It
behaves the way it is supposed to. As you can seg, it is all
damped behavior because we have assumed that these objects
don't weigh much and that the drag forces dominate. So you can
add more and more stuff. Here we get to use one of the spirals. It
has all sorts of nasty parameters that you don't even want to think

about. It would be very unpleasant to iry to control an object like
that directly by turning the control knobs.

These methods are a way of just worrying about how the
object looks and where you want things to be, rather than trying to
figure out what you have to do to the random scaling parameters
to join angles and things like that to make things go where you
want them to. So now we have built this thing and it moves
around. It does whatever you tell it to, subject to the constraints.

One of the things you can do with this method is control for
key frame animation. It is a very different thing than doing
animation using physics to determine the motion. This is using
physics to determine where things are going to by pulling them
there and hooking them there,

You can do some more abstract things with interactive
dynamics. One of those is to do optimization. If you have some
function you want to minimize, then you can turn that into a force
that is minus the gradient of the function you want to minimize.
That gives you something that always pulls towards the nearest
local minimum.

Here we have made a little scattergram and we are
minimizing a locally weighted distance from the modet to each
dot. So each dot is exerting an attractive force. You can pull the
model off and then when you let go, it gets sucked in. Here you
can sce that. It is a strictly interactive thing because what the user
is doing is picking the model up and putting it near the desired
solution and then you let go and it rolls into the energy wells.
Here is the same thing with an ellipse that is going to
automatically fit itself to that sort of “O” there when you turn on
the force. So this is the optimal ellipse fit. Since it is hard to
optimize non-linear functions globally, if things fall into the
wrong local minimum, you just pick up the model and help it out
by putting it near the minimum you are looking for.

You see, these things are stable attractors, if you let go, the
model snaps back as long as it is not to far away. One of the
applications of that idea is to interactively fit models accurately to
the shape and motion of things in real live images. Here is a nice
image. We have a little line that is being attracted to edges. It is
the same idea except that it is attracted to points of high contrast
in the image. You can see that if you let go of the line and if it is
reasonably close to start with, the line will get sucked into the
edge and stay there. [f you perturb it a little bit, it will come back.
You can track motion that way.

This illustrates snakes, an earlier work that Michael Kass,
Demetri Terzopoulos, and I did at Schlumberger Palo Alto
Research. Snakes are springy pieces of wire. They are a type of
deformable model. Here, we are attracting them to edges, and
since they have lots of degrees of freedom they can conform
pretty much to any shape. Here you see snakes conforming to the
shape of an edge. So you can blast the snake off the edge, and it
will come back. It is basically the same behavior that you saw
before.

Next we will see motion tracking. If you have some video,
you can fit snake models interactively on the first frame, and then
as you advance from frame to frame, all the energy well attractors
move around and drag the snakes with them. Here is a movie of a
person speaking, then we will see two snakes superimposed on the
moving lips and tracking them. So you see that the snakes really

" lock onto the lips and follow them very well. This was the only

thing that is not real time on this tape. We did this on a Symbolics
lisp machine and, though it didn't take too long, it couldn't quite
keep up. So there are all sorts of interesting things you can do
with snake models.

Now all of this extends to 3-D and we have an initial system
that Michael Gleischer, my student at CMU, has implemented.

204 PHYSICALLY-BASED MODELING: PAST, PRESENT, AND FUTURE

SIGGRAPH ’89 PANEL PROCEEDINGS

My 3-D input device, by the way, is a mouse, which works very
well. Here we have particles and we can connect them by
distance constraints. These constraints aren't springs; they are
hard constraints that are being enforced by solving a linear
system. So here is a little jointed thing, that is now rigid. Itis a
little triangle and you can pull on it. This is again real time. So
here we have made a tetrahiedron and again it is rigid. Next, here
is a little contraption. Those blue things are 3-D ether nails, or
anchors in space. So we have attached things to them and now we
have this odd little linkage that has it's degrees of freedom and we
can pull it around.

Various people participated in this work, and here are their
names. Now a word from our sponsor. Thank you. Our final
speaker will be Dr. Jim Blinn.

James Blinn
California Institute of Technology

Well I think physically-based modeling is a terrible idea. Is
that ok? They put me on this panel to cause trouble, I guess. ITam
not sure why they picked me to do that, but the idea is that we are
supposed to have some lively discussion and dissention here. So,
I am going to tell you the bad parts of physically-based modeling.
Before we do that, let me show my gratuitous video tape.

Before [saw the light and realized how evil physically-based
modeling is, I used to do it myself. These are some random
scenes out of the Mechanical Universe. Modeling physical
phenomena, especially simple ones, is fairly straightforward with
the computer. A lot of the things you have seen today have been
physically-based modeling of more complex phenomena.

One of the objections I have to the printed description of this
panel is with the statement that physically-based modeling has
been done only in the last five years. Well no, actually physically-
based modeling has been done from the beginning of computer
graphics. One of the first computer animations [saw was called
The Tumbling Box Movie. It was a simulation of a box tumbling
while it is in orbit around the earth. So physically-based modeling
has been done more often than non-physically-based modeling,
even in the early 60s.

Many things can create problems, as you can sce in this
simulation of an ideal gas exerting pressure on a piston. If you
simulate some phenomena exactly, they just don't do what you
expect. For example, we had problems with this piston in that it
started oscillating up and down; because, if you only use a few
atoms, you wind up with statistical irregularities interacting with
the natural mode of vibration of the piston, given the spring
constant of the air and the mass of the piston. And so, we just
prevented the animation from going on long enough for that kind
of oscillation to start building up and being obvious.

A better simulation of how atoms work is this somewhat
different force field between individual atoms. Once you sort of
see how that works with any two atoms, you can do it with a
larger number. Here is our version of atomic jello. A single
frame of this animation looks really boring, so it is kind of
pointless to publish an article in a magazine about it.

Basically, with physically-based modeling, for the most part,
you give the simulation some initial conditions and stand back and
let it fly and see what happens. The big trick is controlling it to do
what you want. Therc are a lot of demonstrations in the
mechanical universe project of this sort of thing, for example,
where we wanted to show the effect of 10 to the 23rd atoms using
only 100. We had to be very careful about setting up the initial
conditions so that the atoms evolved in the way that we wanted
them to.

Well anyway, what sort of business does this lead to? It sort
of turns animators into video game pilots. Generally, animators
arc used to dealing with the positions of objects. They specify the
position of various key frames either by drawing explicitly or
something. Physically-based modeling means that they are going
to be specifying the accelerations of objects. And they have
somehow to figure out what accelerations to use in order to get the
position they want after the acceleration has been integrated twice.

An analogy may be made between painting and photography.
Painting is the old technology of doing things manually. You
have to have a lot of skill to be an artist and represent something
realistically. With photography, you just aim this little box at the
thing and click and a realistic picture comes out right away. You
can make a similar analogy between what you call animation, or
key frame animation, and simulation. Key frame animation is
how it used to be done. It took a lot of skill and the animators had
to know physics as well as painters had to know light and
reflection and so forth, and the animators had to know physics in
order to simulate it manually. Once you use computer simulation,
all that is taken care of automatically for you. You no longer have
to have experts to do this; now amateurs can do it too. Physically-
based modeling means that now everybody can get into the act.

So there is a progression of what goes on in modeling.

We've seen the progression from key frame animation, specifying
positions, to physically-based modeling, which is specifying
accelerations and forces and what not. The next level beyond that,
as we are getting into the future, is what you would basically call
psychology. You kind of give your characters motivation and tell
them that they like this thing and they don't like that thing. A
commnon phrase is “Gee we can land men on the moon but we
can't learn to live together in peace and harmony.” Well there is a
reason for this. Landing men on the moon is really easy. That is
just physics, we know how the moon operates and it is just a
matter of some acceleration vectors and so forth. Living together
in peace and harmony is not easy at all. We don't understand
psychology well enough to be able to predict how people are
going to act, and even if it is desirable, to control how they act.
So as a next stage after physically-based modeling, you might
consider what could be called emotionally based modeling. This
is something that, for example, classical animators, like those at
the Disney Studio, were real good at. They were able to put
emotions into their characters.

But, if you have a computer doing this in some automatic
way, it removes the animator one step further from exerting total
control over the environment; animators now become like movie
directors. They are dealing with something that has personality.
You have to exhort your character and get your character excited
about the part. You have to convince your characters to do it your
way instead their own way. The characters might have temper
tantrums and go off into their dressing rooms and blow lines and
make mistakes and so forth.

So where do we go beyond that? Beyond that we get into
meta physically-based modeling. You put your hands on the
television screen and you channel the spirits of all of the past great
animators and rub your crystals over the screen. When that sort of
thing happens, then maybe we will all be out of business. I don't
know... Thank you.

Moderator
Demetri Terzopoulos
Schiumberger Laboratory for Computer Science

I'll take this opportunity to point out that we could not
possibly show all of the exciting work that's going on in
physically-based modeling at this panel. I regret that the panel

PHYSICALLY-BASED MODELING: PAST, PRESENT, AND FUTURE 205

SIGGRAPH '89, Boston, July 31 - August 4, 1989

could not have included several other talented researchers who
have made important contributions to physically-based modeling.
Having said that, I would like to open the floor microphones for
audience participation. We welcome your questions, comments,
flames, whatever you like. Please state your names and
affiliations before asking your questions.

Q. My name is Arthur Who and I am with Mosaic Software.
We make lotus compatible spreadsheets. On the metaphysical
thing, there is a medium called Radio which Iimagine uses the
metaphysical type metaphor.

TERZOPOULOS: Is your comment directed to anyone in
particular?

WHO: Well, I guess Jim Blinn talked about just imagining things
and that is sort of what Radio uses.

TERZOPOULOS: Do you care to respond to that Jim?

BLINN: Sounds good to me!

TERZOPQULOS: Is there another question out there? I'm
having difficulty seeing.

Q. My name is John Dunic. I am with IBM. [am directing this
to either Alan Barr or Andrew Witkin. Most of the things you
were showing looked like they are real time. In fact, Andy
indicated that they were. But, there were small numbers of
elements in your system. How many elements can you simulate
before performance degrades such that you can't have real time?
BARR: In my case, it was already degraded so that it was not real
time. It tock about fifteen seconds a frame on a Symbolics
machine, sent over the net to a Hewlett-Packard workstation and
rendered frame by frame. What is interesting though is that part
of the research that we have been doing over the past year or so is
on this scaling problem. How do you simulate the universe in
such a way that you get reasonable accuracy, yet you are not
simulating the behavior of every molecule. Let's say that you
want to simulate a field of grass for instance. Would you want to
do elastic bodies on each blade of grass? No, you need a different
abstraction to do that. My expectation is that we are going to need
different kinds of physics that are just as accurate as current
physics but can automatically go between the different kinds of
representations.

WITKIN: For my stuff there is a more concrete answer: the
things that I was doing were dominated by solving the linear
system for constraints. [was using an iterative method which is
essentially n-squared complexity in practice, where n is the
number of elements. However, if every element in the world is
connected to every other other element in the world the method
turns into n-cubed, For ordinary things it is more like n-squared.
But you'd like to continue adding new objects and connecting
them to a few existing things. How fast is your computer?
Eventually, even n-squared will be too slow, but N-squared is not
really very scary. It is something you can fix by having faster
compulers and also with some linear systems you can probably
use LU decomposition methods that are order-n, so that it would
all be linear time.

DUNIC: Could you imagine connecting this up to a CAD system,
for instance, and expect it to work?

WITKIN: Sure, absolutely! To do large scale things, we'll need
to wait a little while. At least, I will need to wait a little while for
faster machines than I currently have. The things that I am now
doing in real time took a few seconds a frame for me a couple
years ago with the machines [had then. So you know, things
improve. It is real time technology.

TERZOPOULOS: Perhaps I can add something: With regards
to CAD/CAM, deformable models appear promising as a type of
computational modeling clay. We will soon be able to simulate 3-
D modeling clay in real time on our graphics supercompuiter class

machines. In the past, the speed limitations of our machines
restricted our interactive simulation to 2-D where it was only
mildly interesting. Who's next?

Q. Iam Dave Breem from RPI. 1 was wondering how
physically-based modeling, as you describe it, is different from
what the physicist and mathematicians and the mechanical
engineers have been doing for the past 100 years, besides the fact
that you are just making pictures from your models?

BLINN: The difference is that we are doing it now instead of
them.

BARR: That's actually not completely correct, they are still doing
it. In addition, it turns out, let us consider the physics of a
particular body. How should we represent the body? For
physicists it would be quite satisfactory to say, in principle, that
we have elastic van der Waals forces between the different
molecules. We have the covalent bonds between the molecules.
You can do it all at the molecular level. Or, you can be a
mechanical engineer and you could talk about the fluctuation and
bending strengths and what not. See, a scientist typically cares
about their discipline only and not the modeling techniques that
another discipline might use.

And so there is in the future something that I will call generic
scientific modeling in which you are quite happy to model the
molecular behavior. Or if you need to you will model this other
behavior. The difference is that were interested in the generic
modeling. In terms of all of these constraints, the physicists
typically are happy with the description --- let us call it the U=0
equation -- the unworldliness = zero equation. It is not necessarily
a description that can be easily implemented.

This example that [gave requesting a sort of flexible body
with non- interpenetration constraints, it takes the physicist a good
long time to write down the equations of motion of that. If I were
to change the abstraction it would take them a long time to react to
that. I have been talking with Ronen Barzel -- we have been
thinking about this. How come it is so easy to state a little piece
of the model, yet it is so hard to do the actual simulations, to
actually write the code. When you think about it, as Ronen and |
decided, two hundred years ago, three hundred years ago, even
taking a square root was difficult. So that the physics that has
been done over the past three hundred years is physics as designed
for use without computers. So the physics that we are designing is
one that is good to use with computers. [would say that that is the
difference in the physics. There is actually a different physics
behind it -- a different collection of equations. So although, the
actual Newtonian appearance of it is of course the same because it
has to be if you are going to be presenting the real thing, the
underlying equations are completely different, at least some of
them.

WITKIN: There are important differences in what we are using
this stuff for. I agree with Al that to be able to add in some new
kind of object into your simulation and connect it to other objects
without having to go back and rewrite all your code is, maybe,
good system design, but it is a comparatively new development.
Also, there are things we want to do. Making movies for movies
sake, for example, is not something that a physicist or mechanical
engineer is going to do. The stuff [was talking about using
physical methods to develop modeling media or, as Dave Zeltzer
was talking aboult, to develop interactive micro worlds where you
can play ping-pong or something. These are just different things
and very often it is the same physics underneath and ultimately at
least similar in the numerical methods. But what you use it for
colors a lot of what you do and a lot of the technical problems that
you have to solve to make things really work.

206 PHYSICALLY-BASED MODELING: PAST, PRESENT, AND FUTURE

SIGGRAPH *82 PANEL PROCEEDINGS

ZELTZER: 1 think another important difference is our emphasis
on interaction in real time. As our computing tools are getting
powerful enough to let physicists and mathematicians deal with
the formerly intractable models, it's turning out that the ability of a
scientist to apply his specialized knowledge about where the
solution might lie is critical in finding solutions. Fred Brooks has
a wonderful example in which he shows that using an interactive
force display as well as visual cues allows scientists to find
solutions in molecular docking problems interactively, while a
SUN-4 for example cranked overnight was not even close to the
solution. So, interaction is something that we are bringing into the
problem as well.

BARR: My prediction is that there is going to be a great body of
knowledge that is going to go from people on this panel and other
researchers in graphics back into the physics community. I think
there is a lot of good information that we will be giving them.
That is my predication,

PLATT: Also, just in terms of the math, it hasn't actually been
hundreds of years. Again, because of the emphasis on the
computer, some of the constraint math has been around in
mechanical engineering only from 1972 or so, and we have been
developing it further.

BARR: Let us just consider something called solving
simultaneous equations. You would think solving simultaneous
equations is easy. Buf, when you actually try to do it on a
computer it turns out that your systems become unstable. Your
solutions get sent out to infinity. So, you need to use a completely
different kind of solver that was only invented a few years ago,
called singular value decomposition. When you don't use it, what
happens is that all of your answers get turned into mush. There is
a great deal of difference. You learn a lot more when you “really
do it,” rather just saying “U=0 "-- I wrote the equation -
something like that ought to work.

TERZOPOULOS: Go ahead, Sir.

Q. TIam Salim Abi-Ezzi from RP]. 1 direct my question to the
whole panel; who ever cares can answer me. In the past we were
successful in expressing the problem of displaying shape very
concisely, and we came up with what we call the graphics pipeline
-- Transformation, clipping, rendering. Having worked on these
problems in physically-based modeling, do you think that we will
be able to express the physics and constraints that are needed in a
concise and generic fashion, so as be able to have hardware
accelerators, for example?

BARR: You should read the PhD thesis of Devendra Kalra,
hopefully coming out in the next year. Our expectation is that
there will be a significant amount of progress on the problem you
are addressing.

ABI-EZZI: The answer is yes?

BARR: Well, in one year, it is not {inished yet. Devendra will
also be talking later on this; I guess on I'riday. So, if you wanted
to, you might be able to speak with him personally after the talk.
TERZOPOULOQOS: Perhaps Andy would cxplain how he goes
from analytic expressions, as a concise way of expressing the
physics and constraints, to executable code automatically.
WITKIN: Yes, sure, that is concise for the things that I am
doing. There is the geometric part of objects that we know and
love -- exactly the stuff you need to draw objects. So, it itisa
curve, the geometric part might be the parametric equation for the
curve. The same thing for a surface. Using symbolic math, you
can add a physical interpretation which says how objects are going
to move. It is sort of a template that you fill out mathematically
which will let you take some symbolic derivatives, make some
symbolic simplifications, and then turn it into C code that goes to
the compiler. These templates involve mathematically extremely

concise descriptions that can be converted automatically into stuff
that you can execute.

Also, as far as accelerating the things we do, a lot of the low-
level operations that go on are main stream. When you are
solving linear systems there are a lot of dot products, matrix
multiplies -- exactly the things that people who are programming
supercomputers are usually worrying about, so in some cases there
may be ncat ways to set things up and make them go fast. They
may be quite generic and not special to what we are doing.
TERZOPOULOS: Ok, go ahead please.

Q. My name is Terry Boult. Iam from Columbia University.
My question is directed at the entire panel, but particularly to
those who are interested in trying to actually mode] the physics,
especially for animation of the body, like in the facial animation
that Demetri showed. Is your goal to actually have animators start
specifying force profiles for all the muscles that control a person's
facce or a person's arm? If not, why are you going through
physical modeling as a means of giving someone just another type
of clay to work with. Why not start simplifying long before you
have to start solving finite element equations or partial differential
equations?

TERZOPOULOS: Well, our goal in facial and body animation
is to develop process models that control individual muscles. The
animator will interact with the model at the high level of
abstraction. e will give a high level command, let's say, “smile,
broadly.” The muscle process will coordinate individual muscle
contractions to initiate the cxpression, the physical layer will
propagate forces through facial tissue, the tissue deformation will
modify geometry, the geometry will be rendered, and the animator
will see a happy face.

Why are we going through physical modeling? In large part
because you antomatically get more realism that way, and often
it's critical. Keith Waters developed a face model two or three
years ago which was a purely geometric surface warped by
muscles under kinematic control. [t is fast and looks fairly good,
and for certain applications it may be sufficient. For example, if
you are trying do band limited teleconferencing, so at onc end you
take pictures, a movic, of the face of a speaker, you analyze the
pictures in real time to extract a few parameters for a face model,
you transmit the parameters over a low bandwidth channel, and
then, using the extracted paramelers, you reconstruct and animate
the face at each receiver so that others may “sce” the speaker, it
may be sufficient to do that using a purely geometric face model.
However, if you are making a feature involving animated
characters, such as Marilyn Monroe and Humphrey Bogart in the
Universite de Montreal production Rendezvous a Montreal, and
you want a close up of faces, gecometric face models suffer from
too many artifacts. People can be very critical of human faces. [
think that to make a really good human face you have to model
some of the anatomy and some of the underlying physics.
WITKIN: Ihave a one word answer to that question. It is:
control. If you look at what really happens when people and
animals move around, do tasks, and so on, you will sec an
interaction between their own physical selves and the physical
environment, and what happens in their brains to control this
interaction. Of course, if you were going to make a physical
model of someone walking or talking or anything like that, to try
and do that at the level of actually specifying the forces that the
muscles are applying would be a disaster. It would be hopeless.
The point is that you can solve for the forces that need to be
applicd to accomplish a task. That is an interaction between the
job that is being done and the mechanical situation in which it is
being done.

PHYSICALLY-BASED MODELING: PAST, PRESENT, AND FUTURE 207

SIGGRAPH '89, Boston, July 31 - August 4, 1989

Can [show the video tape? I just happen to have one to
illustrate what [mean. It was a take off on Luxo Junior, that
maybe some of you have seen. We define a jumping critter and
give it muscles that it can control. We tell it to go from here to
there. Then we indicate the optimal way to do that, how it can use
its mechanical resources, its muscles, to do the job. From this
specification, you get really nice structured motion that has both
physical realism and goal-orientedness, by specifying something
that in the end winds up looking a lot like key-framing. You are
saying, be here now and be here then.

ZELTZER: Let me give another answer while Andy is setting up
the video tape. That is, that animation in the conventional sense is
only one thing you might want to do with these systems. In the
piece I showed of the facial tissue simulation, the purpose is to
provide surgeons a means for planning surgical techniques. So, of
course, faithful physical modeling is critical, otherwise the
application is entirely worthless. It is not just the case that these
techniques are only devoted to generating animations that tell
stories.

BARR: I think that what Jim Blinn was saying is actually quite
exciting. This emotionally based modeling is really quite real.
There is a brain biologist, John Allman, at Cal Tech who is quite
interested in how emotions can control the movements of the
faces. Certainly, if you want to express some sort of emotion with
your medium, it would be hopeless to specify it with forces.
ZELTZER: In fact, physiologists have developed a system called
the facial action control system in which they have categorized the
muscles of the face. It is pretty well known which muscles are
involved in creating which expressions.

BARR: They can even tell which is a real smile and which is not
ZELTZER: That's right. So this is a tool providing economical
control of facial expressions.

TERZOPOULOS: Andy has a video tape to show.

WITKIN: Ok, let's take a video break! This is work that Mike
Kass and I did at Schlumberger Palo Alto Research. If you look at
the way Luxo Junior jumped, this is a obvious take off on that.
There is a lot of structure in there. All we are saying here is that
Luxo should start at the beginning and stop at the end. We have a
full mechanical model of Luxo, and we say: do it with minimal
muscle power. Then we have an iterative solution that goes from
a stupid initial version of the motion that does not look real, to
something that does look real. We are showing the solution
process with a sequence of strobed images. So we are going from
the initial version to the final solution.

Here we are going to play the solution back, and we get a
jump. Look at all the stuff that goes on in there. There is squash
and stretch, and all of that, which comes out as part of the physical
solution. We give it basically two key frames to do all that. There
it is in slow motion. Then since it is a physical thing, you can
change the motion in sensible, intelligible ways by changing the
physical situation a little bit. We changed the mass of the base
and it is all exaggerated. And look at that in slow motion. You
can take that as far as you want to. Here's a hurdle jump with one
more constraint that says clear the hurdle. In the slow motion,
notice how Luxo gets the extra height -- by scrunching, rather than
by jumping higher, which is the sensible and energy efficient way
to do it. Mike Kass programmed a ski jump.

So this was pretty hard to do; the mathematics is a little bit
rough. We're solving a variational optimization. But eventually I
think we'll be able to package this into something that, when we're
done, starts to look kind of like a key frame system again -- even
though what goes on inside is a lot of mathematics.
TERZOPOULOS: We have time for one or two more questions.

Q. Thave a question for Jim Blinn. I'm Ronen Barzel! from Cal
Tech, and you sort of said physically-based modeling is a crummy
idea. I figured I'd pick up that gauntlet. You made a really nice
analogy between painting and photography. I really do like the
analogy; [think it's really valid. But would you extend the
analogy and say that cameras are a really crummy idea?

BLINN: When they're aimed at me they are, yes! There is an
effect of this that you see, in that before cameras were invented,
painters primarily painted realistic scenes and they were hired to
paint portraits of people and so forth. When cameras came about,
cameras took over that process. Instead of having a painter, you
had a photographer. And so it was no longer commercially viable
for painters to do realistic paintings, and it was no longer
necessary. It sort of freed the painters to go off and paint weird
abstract things and they no longer had to focus on reality --
“photographic reality.” They were able to start exploring things,
because anybody with some training can copy reality, while
somebody with maybe more imagination was needed to do
something interesting abstractly. So maybe the fact that
physically-based modeling comes along and takes over some of
the mechanical operations that animators have been doing
manually might free the animators to do more interesting abstract
things.

TERZOPOULOS: One more quick question, please.

Q. John Williams, MIT. I think physically-based modeling
seems like a really great area, but I feel there's a kind of
conspiracy of silence about the actual physics and modeling, the
mechanics. As you're probably well aware, there've been
techniques around from the early '70s, like the finite element
method, the boundary integral method, finite differences. Idon't
really see anything different being proposed now -- if the aim is to
do physical simulation. If you want to really predict how the
physics is going to move through time. It seems to me that the
real benefit here is on throwing away the physics and saying we're
willing to do inaccurate physics. We're willing to make some
approximations which the mechanical engineers and civil
engineers wouldn't make. And it seems to me, then, we can get
this interactive behavior, which in fact makes the models really
useful. Perhaps the panel can comment on this silence about finite
elements.

BARR: I gave a physically-based tutorial last year that included
John Abell who spoke about finite elements. Finite elements are
integrally involved in what we're doing. It's one of the
mathematical methods that we have at our disposal, even for
solving certain integral equations for synthesizing the swimming
motions of objects. T would say it's not fair to characterize the
bulk of what we're doing as “inaccurate modeling” -- that would
not allow us to make predictions. We're building on that previous
work. So, if there's a conspiracy of silence, it's because we're
making reference to this work in our publications and perhaps
people are not picking up on it. But singular value decomposition
is a technique, Gear's method for stiff equations. These are some
of the tools that we're using.

WILLIAMS: Butif you look at all the examples that are given,
they're all very deformable-type models and there's a good reason
for that, because if you have very stiff materials, they're much
more difficult to analyze. 1do it myself. I mean, I like floppy
models because I can get the answer out in no time at all.
Whereas a piece of metal, it's tough, and the animation in this
year's Computer Graphics Theater of the falling teapot which
breaks (Tipsy Turvy). That's very deformable and there's a good
reason. If you try to do it with a very stiff, brittle material, it will
take you hours on a Cray.

208 PHYSICALLY-BASED MODELING: PAST, PRESENT, AND FUTURE

o) SIGGRAPH '89 PANEL PROCEEDINGS

BARR: Therc's a talk this year at SIGGRAPH called Modal
Analysis by Sandy Pentland.

Q. I'm the co-author on that.

BARR: Now that's good stuff.

TERZOPOULOS: I'm afraid our time is up, so I'm forced to
terminate the discussion. My apologics to those of you who didn't
get a chance to ask your questions. I would like to thank the
panelists and to thank you for coming to the panel..

PHYSICALLY-BASED MODELING: PAST, PRESENT, AND FUTURE 209

