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Deformable Models: Classic,
Topology-Adaptive and Generalized
Formulations

Demetri Terzopoulos

ABSTRACT

“Deformable models” refers to a class of physics-based modeling methods with an
extensive track record in computer vision, medical imaging, computer graphics, geo-
metric design, and related areas. Unlike the Eulerian (fluid) formulations associated
with level set methods, deformable models are characterized by Lagrangian (solid)
formulations, three variants of which are reviewed herein.

1 Introduction

This chapter reviews Deformable Models, a powerful class of physics-based mod-
eling techniques widely employed in image synthesis (computer graphics), image
analysis (computer vision), shape design (computer-aided geometric design) and
related fields. It may at first seem odd to find a chapter on deformable models,
whose governing equations are based on Lagrangian continuum mechanics for-
mulations, in a volume dedicated to the Eulerian formulations associated with
level set methods. Upon reflection, however, it becomes self-evident that the two
approaches are complementary in precisely the same sense that Lagrangian solid
models complement Eulerian fluid models in continuum mechanics. The substan-
tial literature on deformable models and level set methods is a testament to the
fact that both approaches are useful in imaging, vision, and graphics.

By numerically simulating their governing equations of motion, typically ex-
pressed as PDES in a continuous setting or ODEs in a discrete setting, deformable
models mimic various generic behaviors of natural nonrigid materials in response
to applied forces, such as continuity, smoothness, elasticity, plasticity, etc. For the
purposes of computer graphics, realistic images and animations of elastic, inelas-
tic, and thermoelastic objects may be synthesized when the applied forces stem
from animation controllers and from model interactions within simulated physi-
cal environments [17] (see, e.g., Fig. 1). In the related domain of computer-aided
geometric design, deformable models have inspired a new approach known as
“physics-based geometric design”. Here, the parameters of standard geometric
primitives become generalized coordinates in Lagrangian formulations that gov-
ern their automatic evolution in response to simulated (sculpting) forces, subject
to geometric constraints [21].

Among model-based techniques for image analysis, deformable models offer a
potent approach that combines geometry, physics, and approximation theory. In
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FIGURE 1. Early computer graphics images of physics-based deformable surface model
simulations depicting objects with cloth-like behaviors [20, 17]. (a) Flag in wind. (b) Rug
falling over geometric obstacles. (c) Draped robe and constraints.

applications to computer vision, deformable models may be used to infer image
disparity fields, image flow fields, and to infer the shapes and motions of objects
from still or video images [23, 16]. In this context, deformable models are sub-
jected to external forces that impose constraints derived from image data. The
forces actively shape and move models to achieve maximal consistency with im-
aged objects of interest and to maintain consistency over time. There has been
a tremendous surge of interest in deformable models in the context of medical
image analysis [8]. Here, deformable models have proven useful in segmenting,
matching, and tracking anatomic structures by exploiting (bottom-up) constraints
derived from the image data in conjunction with (top-down) a priori knowledge
about the location, size, and shape of these structures. With regard to the latter,
deformable models support intuitive interaction mechanisms that enable medical
scientists and practitioners to bring their expertise to bear on the model-based
image interpretation task.

This remainder of this chapter comprises three main sections. Section 2 covers
the mathematical foundations of “classic” deformable models, including energy-
minimizing and dynamic snakes [4], their discretization, numerical simulation
and probabilistic interpretation. The parametric geometry of snakes allows con-
trolled, piecewise continuity and both closed and open curves (note that current
level set methods have difficulty representing open curves). The section also cov-
ers higher dimensional generalizations of snakes, such as deformable surfaces. In
image segmentation, the introduction of level set methods was motivated by the
success of deformable models and the need for a related technique that makes
no prior assumption about the topology of the underlying structure of interest. As
other chapters in this volume make evident, Eulerian models of fluids, particularly
those implemented via level set methods, seem more appropriate in the face of
unknown topology. In Section 3, however, | review topology-adaptive deformable
models, which provide the topological flexibility of level set methods without sac-
rificing the explicit geometric substrate upon which the classic deformable model
formulations are based. In Section 4, | review deformable models constructed on
more sophisticated geometric substrates, including dynamic non-uniform ratio-
nal B-splines for physics-based geometric design and deformable superquadrics
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for computer vision and computer graphics animation. Thus far, such general-
ized deformable models, in which arbitrary geometric parameters play the role
of Lagrangian generalized coordinates, seem to fall outside the scope of level set
methods. Finally, Section 5 concludes the chapter.*

2 Classic Deformable Models

This section reviews the mathematics of classic deformable models. First, I con-
sider planar active contour models, also known as “snakes”, including energy-
minimizing snakes and dynamic snakes. Next, | discuss the discretization and nu-
merical simulation of snakes, as well as their probabilistic interpretation. Finally,
I review higher-dimensional generalizations of snakes, in particular, deformable
surfaces.

2.1 Energy-Minimizing Snakes

Snakes are planar deformable contours that are useful in a variety of image analy-
sis tasks [4]. They are often used to approximate the locations and shapes of object
boundaries in images, based on the assumption that boundaries are piecewise con-
tinuous or smooth (Fig. 2(a)). In its basic form, the mathematical formulation of
snakes draws from the theory of optimal approximation involving functionals.

Geometrically, a snake is an explicit, parametric contour embedded in the im-
age plane (z,y) € R2. The contour is represented as v (s) = (z(s),y(s)) ", where
x and y are the coordinate functions and s € [0, 1] is the parametric domain (the
symbol T denotes transposition). The shape of the contour subject to an image
I(x,y) is dictated by the functional

EV) =8(v) + P(v), (1.1)

which represents the energy of the contour. The final shape of the contour corre-
sponds to the minimum of this energy.
The first term in (1.1),

+ UJQ(S)

2
ds, (1.2)

2

9s*

1

s =3 [ w2

ds

is the internal deformation energy. It characterizes the deformation of a stretchy,
flexible contour. Two physical parameter functions, the non-negative functions

1This chapter makes no pretense to being a literature survey. In fact, I shall continue herein to
cite only my own published work on deformable models. The interested reader may refer to the more
recent of these sources for a broader perspective on the extensive deformable models literature, as well
as to this volume’s other chapters and integrated bibliography for the associated literature on level set
methods.
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FIGURE 2. Medical image analysis with snakes. (a) Snake (white) segmenting a cell
in an EM photomicrograph [2]. The snake is attracted to the dark cell membrane. (b)
Snake deforming towards high gradients in a processed cardiac image, influenced by “pin”
constraints and an interactive “spring” with which the user pulls the contour towards an
edge [6].

wi (s) and wo(s), dictate the simulated physical characteristics of the contour at
any point s on the snake: w (s) controls the “tension” of the contour while w4 (s)
controls its “rigidity”. For example, increasing the magnitude of w (s) tends to
eliminate extraneous loops and ripples by reducing the length of the snake. In-
creasing wo(s) makes the snake smoother and less flexible. Setting the value of
one or both of these functions to zero at a point s permits discontinuities in the
contour at s.
The second term in (1.1) couples the snake to the image. Traditionally,

Pv) :/0 P(v(s))ds, (1.3)

where P(z,y) denotes a scalar potential function defined on the image plane.
To apply snakes to images, external potentials are designed whose local minima
coincide with intensity extrema, edges, and other image features of interest. For
example, the contour will be attracted to intensity edges in an image I(x,y) by
choosing a potential P(x,y) = —¢|V[G, * I(z,y)]|, where ¢ controls the mag-
nitude of the potential, V is the gradient operator, and G , = I denotes the image
convolved with a (Gaussian) smoothing filter whose characteristic width o con-
trols the spatial extent of the local minima of P.

In accordance with the calculus of variations, the contour v(s) which mini-
mizes the energy £(v) must satisfy the Euler-Lagrange equation

0 ov 0? d%v
—a <w1£> + @ <UJ2@> + VP(V(S,t)) =0. (14)

This vector-valued partial differential equation (PDE) expresses the balance of
internal and external forces when the contour rests at equilibrium. The first two
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terms represent the internal stretching and bending forces, respectively, while the
third term represents the external forces that couple the snake to the image data.
The usual approach to solving (1.4) is through the application of numerical algo-
rithms (see Sec. 2.3).

2.2 Dynamic Snakes

While it is natural to view energy minimization as a static problem, a potent ap-
proach to computing the local minima of a functional such as (1.1) is to construct
a dynamical system that is governed by the functional and allow the system to
evolve to equilibrium. The system may be constructed by applying the principles
of Lagrangian mechanics. This leads to dynamic deformable models that unify
the description of shape and motion, making it possible to quantify not just static
shape, but also shape evolution through time. Dynamic models are valuable for,
e.g., time-varying medical image analysis, since most anatomical structures are
deformable and continually undergo nonrigid motion in vivo. Moreover, dynamic
models exhibit intuitively meaningful physical behaviors, making their evolution
amenable to interactive guidance from a user (Fig. 2(b)).

A simple example is a dynamic snake which can be represented by introducing
a time-varying contour v(s,t) = (x(s,t),y(s,t)) " along with a mass density
u(s) and a damping density (s). The Lagrange equations of motion for a snake
with the internal energy given by (1.2) and external energy given by (1.3) is

0%v ov 0 ov 0? 0%v
,LLW + ’YE - % (’Uﬂg) + @ <w2@> - —VP(V(S,t)). (15)

The first two terms on the left hand side of this partial differential equation rep-
resent inertial and damping forces. As in (1.4), the remaining terms represent
the internal stretching and bending forces, while the right hand side represents
the external forces. Equilibrium is achieved when the internal and external forces
balance and the contour comes to rest (i.e., dv /0t = 9%v/ot> = 0), which yields
the equilibrium condition (1.4).

2.3 Discretization and Numerical Simulation

In order to compute numerically a minimum energy solution, it is necessary to
discretize the energy £(v). The usual approach is to represent the continuous
geometric model v in terms of linear combinations of local-support or global-
support basis functions. Finite elements, finite differences, and geometric splines
are local representation methods, whereas Fourier bases are global representation
methods. The continuous model v(s) is represented in discrete form by a vector
u of shape parameters associated with the basis functions. The discrete form of
energies such as £(v) for the snake may be written as

E(u) = %uTKu + P(u) (1.6)
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where K is called the stiffness matrix, and P(u) is the discrete version of the
external potential. The minimum energy solution results from setting the gradient
of (1.6) to 0, which is equivalent to solving the set of algebraic equations

Ku=-VP=f (1.7)

where f is the generalized external force vector.

Finite elements and finite differences generate local discretizations of the con-
tinuous snake model, hence the stiffness matrix will have a sparse and banded
structure. To illustrate the discretization process, suppose we apply the finite dif-
ference method to discretize the energy (1.2) on a set of nodes u; = v(ih) for
i=0,...,N—1where h = 1/(N —1) and suppose we use the finite differences
vs & (w41 —u;)/hand vgs &~ (u;41 —2u;+u;_y1)/h%. For cyclic boundary con-
ditions (i.e., a closed contour), we obtain the following symmetric pentadiagonal
matrix (unspecified entries are 0):

ag bo o cN—2 bn_1
bo a1 by Cc1 CN-—-1
Co b1 a2 b2 C2
cl ba as bs c3

K= , (1.8)

cN—5 bv_s an—_3 byn_3 cCN_3

CN—2 cN—4 by_3 an_2 bn_2

| bvo1 en-t en—3 bv_o an_1 |
where

a; = (wi_q +wi)/h? + (wy_y + 4w, + w2i+1)/h‘47 (1.9)
bi = —wii/h* —2(wa; + waiyy) /R, (1.10)
G = w2i+1/h47 (111)

assuming that wy; = w; (ih) and we; = wo(¢h) are sampled at the same nodes.
All indices in these expressions are interpreted modulo N.

The discretized version of the Lagrangian dynamics equation (1.5) may be writ-
ten as a set of second order ordinary differential equations (ODEs) for u(t):

Mii + Dua + Ku = f, (1.12)

where M is the mass matrix and D is a damping matrix. In a finite difference
discretization, the mass and damping matrices are diagonal matrices.

To simulate the snake dynamics, the system of ordinary differential equations
(1.12) in the shape parameters u must be integrated forward through time. The
finite element literature offers several suitable explicit and implicit direct inte-
gration methods, including the central difference, Houbolt, Newmark, or Wilson
methods [1]. We can illustrate the basic idea with a semi-implicit Euler method
that takes time steps At. We replace the time derivatives of u with the backward
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finite differences Ui ~ (U2 — 2u® 4+ ut=2D)/(At)?, and 0 ~ (utHAD —
ut=21) /2At, where the superscripts denote the quantity evaluated at the time
given in parentheses. This yields the update formula

Ayt = p®) (1.13)

where A = M/(At)? + D/2At + K is a pentadiagonal matrix and b(®) =
(2M/(At)?)uD — (M/(At)? —D/2At)u* 1 + £®), The pentadiagonal system
can be solved efficiently (O(N) complexity) by factorizing A into lower and
upper triangular matrices, then solving the two resulting sparse triangular systems.
We compute the unique normalized factorization A = LY'U where L is a lower
triangular matrix, Y is a diagonal matrix, and U = LT is an upper triangular
matrix [1]. The solution u(*+2%) to (1.13) is obtained by first solving Ls = b(®)
by forward substitution, then Uu = Y ~!s by backward substitution. For the
linear snakes described above, only a single factorization is necessary, since A
is constant. Note that the factorization and forward/backward substitutions are
inherently sequential, recursive operations.

Researchers have investigated alternative approaches to numerically simulating
snake models, including dynamic programming and greedy algorithms (see [8] for
a survey in the context of medical image analysis).

2.4 Probabilistic Interpretation

An alternative view of deformable models emerges from casting the model fit-
ting process in a probabilistic framework. This permits the incorporation of prior
model and sensor model characteristics in terms of probability distributions. The
probabilistic framework also provides a measure of the uncertainty of the esti-
mated shape parameters after the model is fitted to the image data.

Let u represent the deformable model shape parameters with a prior proba-
bility p(u) on the parameters. Let p(I|u) be the imaging (sensor) model—the
probability of producing an image I given a model u. Bayes’ theorem

p(ull) = % (1.14)

expresses the posterior probability p(u|I) of a model given the image, in terms of
the imaging model and the prior probabilities of model and image.

It is easy to convert the internal energy measure (1.2) of the deformable model
into a prior distribution over expected shapes, with lower energy shapes being the
more likely. This is achieved using a Boltzmann (or Gibbs) distribution of the
form .

p(w) = - exp(=S(w)), (L15)
where S(u) is the discretized version of S(v) in (1.2) and Z is a normalizing
constant (called the partition function). This prior model is then combined with a
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simple sensor model based on linear measurements with Gaussian noise

plIw) = - exp(~P(u), (1.16)
I

where P(u) is a discrete version of the potential P (v) in (1.3), which is a function

of the image I(x, y).

Models may be fitted by finding u which locally maximize p(u|I) in (1.14).
This is known as the maximum a posteriori solution. With the above construc-
tion, it yields the same result as minimizing (1.1), the energy configuration of the
deformable model given the image.

The probabilistic framework can be extended by assuming a time-varying prior
model, or system model, in conjunction with the sensor model, resulting in a
Kalman filter. The system model describes the expected evolution of the shape
parameters u over time. If the equations of motion of the physical snakes model
(1.12) are employed as the system model, the result is a sequential estimation
algorithm known as “Kalman snakes” [22], which is useful for tracking objects in
video.

2.5 Higher-Dimensional Generalizations

Snakes are a special case within the general framework of continuous (multidi-
mensional) deformable models in a Lagrangian dynamics setting that is based on
deformation energies in the form of (controlled-continuity) generalized splines [15].

In a p-dimensional domain x = (z1,...,zp) € RP, the natural generalization
of the smoothness functional (1.2) defined on a ¢-dimensional vector of coordi-
nate functions v(x) = [v1(x), ..., v4(x)] is

0"Mv(x)

- | dx. (1.17)
Oxy' ... 0zy

1 i m!
Sn(v)zifw > 2 jl!...jp!wj(x)

m=1 |j|=m

Here, j = (j1,...,jp) is a multi-index with |j| = j1 + ... + j,. Note that this
functional offers higher-order smoothness by generalizing (1.2) beyond second-
order derivatives, to derivatives of order n. Analogous to equation (1.4), assuming
that the control functions w(x) are differentiable to order p, the Euler-Lagrange
equation is:

> (~1)"Apv(x) + VP(v(x)) =0, (1.18)
m=1
where
m! om om
AT = , - , — | wj(x) ———— (1.19)
|];m b gpl gzl dxr ( i )axil ...83;{.”)

is a spatially weighted mth-order iterated Laplacian operator.



1. Deformable Models 11

Deformable Surfaces:

In the special case n = 2, ¢ = 3, and p = 2, where we define x = (z1,22) =
(z,y) for notational convenience and restrict the 2-dimensional domain to the unit
square, (1.17) can be written as

2 2

1t 0 0
S(V):ﬁ// w10 8_;, + wo1 8_;/, +
0o
2.2 2. |2 2. (2
v 0*v 0*v
w20 @ + 2wy 970 + wo2 8—y2 dxdy, (120)

where the subscripts on v denote its partial derivatives with respect to x and
y. This functional, the natural, two-dimensional generalization of the snake en-
ergy (1.2), pertains to the problem of deformable surfaces. The physical param-
eter functions w10 (z,y) and wo; (z,y) control the tension of the surface, while
wao (z,y), wi1(x,y), and wes (x, y) control its “rigidity”.

This thin plate under tension functional has seen considerable application, no-
tably to visible-surface reconstruction in computer vision [16].

2.6 Connections to Curve Evolution

There is a well-known relationship between classic deformable models and level
set methods. The typical curve evolution equations that are computed as level sets
correspond to a reduced version of the equations of motion (1.5) that characterize
amassless snake 1(s) = 0 with no rigidity w2 (s) = 0. This special case results in
snakes that, like conventional level set curves, minimize arc length in the metric
induced by the image.

The analogous special case in 3D is surfaces that minimize surface area in the
metric induced by a volume image. This is equivalent to a massless deformable
surface governed by the functional S,, in (1.20) with wayq(2,y) = wyy (z,y) =
woz(z,y) = 0; i.e., the membrane functional.

3 Topology-Adaptive Deformable Models

As physics-based models of nonrigid solids, deformable models have had an enor-
mous impact in medical image analysis [8]. The complexity of human anatomy,
comprising numerous nonrigid organs with intricate substructures at multiple scales
of resolution, means that deformable models must generally be able to deal with
non-simple and even non-constant topologies; for example, in serial reconstruc-
tion the topology of a segmented cross-section can vary dramatically as the image
data are sliced in different ways. Unfortunately, without additional machinery,
classic, Lagrangian deformable models cannot alter their prescribed topology.
Level set image segmentation methods were motivated by the need for a re-
lated technique that makes no prior assumption about the topology of the under-
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lying object of interest. To this end, level-set methods formulate boundary curve
or surface estimation as an Eulerian problem defined over the entire image do-
main. The dimensionality of the Eulerian problem typically is one greater than
the dimensionality of the associated Lagrangian problem for deformable models.
The primary feature of this approach is that the higher-dimensional hypersurface
remains a simple function, even as the level set changes topology (or ceases to be
simply connected). Hence, topological changes are handled naturally.

Topology-adaptive deformable models are an alternative approach to non-fixed
topology [10, 9]. They circumvent the increased dimensionality of the level set
methods while retaining the strengths of standard parametric deformable mod-
els, including the explicit geometric representation, the natural user interaction
mechanisms, and the constraint mechanisms implemented through energy or force
functions. Topology-adaptive deformable models can segment and reconstruct
some of the most complex biological structures from 2D and 3D images. In this
section, | will first review topology-adaptive snakes, or T-shakes, followed by
topology-adaptive deformable surfaces, or T-surfaces.

3.1 Topology-Adaptive Snakes

T-snakes are hybrid models that combine Lagrangian, parametric snakes with as-
pects of the Eulerian, level set approach. They employ an Affine Cell Image De-
composition (ACID) of the image domain. The ACID extends the abilities of con-
ventional snakes, enabling topological flexibility, among other features [10]. In
particular, the ACID framework enables a novel snake reparameterization mech-
anism, which enables snakes to “flow” into geometrically complex objects, con-
forming to the object boundaries (Fig. 3(a)). One or more T-snakes can be dy-
namically created or destroyed and can seamlessly split or merge as necessary in
order to adapt to object topology (Fig. 3(b)—(e)). See references [7] for numerous
additional examples of T-snakes applied to images.

As a T-snake deforms under the influence of external and internal forces, it
is systematically reparameterized with a new set of nodes and elements. This
is done by efficiently computing the intersection points of the model with the
superposed affine cell grid; for example, the Coxeter-Freudenthal decomposition
(Fig. 4(a)). At the end of each deformation step, the nodes have moved relative to
the grid cell edges (Fig. 4(b)—(d)). In phase | of the reparameterization algorithm,
the intersection points between the T-snake elements and the grid cell edges are
computed. These intersection points will become the nodes of the new T-snake.
In phase I, grid cell vertices that have moved from the exterior to the interior
of the T-snake are marked as “on”; in this manner, the interior of a T-snake is
continuously tracked.

A closed T-snake defines a region. When a T-snake bounded region collides
with itself or with another T-snake region, or splits into two or more subregions,
(or shrinks and disappears,) a topological transformation must take place. Topol-
ogy changes are performed automatically via the ACID (Fig. 3(b)—(e)). The bound-
ary can always be determined unambiguously by keeping track of the inside grid
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(b) (©

FIGURE 3. Segmentation with T-snakes. (a) T-snakes segmenting blood vessels in a reti-
nal angiogram. Geometric flexibility allows the T-snakes to grow into the complex vessel
shapes. (b—e) T-snake segmenting gray-matter/white-matter interface and ventricles in an
MR brain image slice. The initially circular T-snake (b) changes its topology to a highly
deformed annular region (e).

@ (b) © (d)

FIGURE 4. (a) Simplicial approximation (dashed-line) of an object contour (solid-line) us-
ing a Freudenthal triangulation. The model nodes (intersection points) are marked and the
boundary triangles are shaded. (b-d) Illustration of the T-snake reparameterization process.
(b) Shaded regions show examples of grid vertices that are turned on by the expanding con-
tour, (c) new inside grid vertices (white) added to current inside vertices (dark), (d) new
contour after one deformation step showing new grid intersections, inside grid vertices,
and boundary grid cells (gray shaded).
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vertices (and hence the boundary grid cells) and re-establishing the correspon-
dence of the T-snake boundary with the grid after every deformation step. New
elements are constructed based on the “signs” (i.e. inside or outside) of the grid
vertices in each boundary cell and from the intersection points computed in phase
I, such that the inside and outside grid vertices in these cells are separated by a
single line.

Compared to conventional snakes, the T-snake is relatively insensitive to its
initial placement within regions of interest in the image. It flows into complex
shapes, modifying its topology as necessary in order to fit the relevant image
data. The ACID provides a principled, computational geometry framework for
topological transformations, but disabling the ACID reduces the T-snakes model
to a conventional parametric snake model. Consequently, T-snakes also incorpo-
rate shape constraints in the form of energy functionals and applied forces. An
important advantage of the latter is user control, which caters to medical image
analysis, where it is often essential for an expert user to be able to control and
refine the segmentation process in an interactive manner.

3.2 Topology-Adaptive Deformable Surfaces

The main components of the three-dimensional T-surfaces formulation (see [9]
for the details) are analogous to those for the two-dimensional T-snakes. The first
component is a discrete form of the conventional parametric deformable surfaces
[6]. The second component is the extension of the ACID framework to three di-
mensions using simplicial (tetrahedral) cells or nonsimplicial (e.g. hexahedral)
cells.? The third component of T-surfaces is a reparameterization process anal-
ogous to the one for T-snakes. To determine if a T-surface triangular element
intersects a grid cell edge, a standard ray-triangle intersection algorithm is used
and local neighborhood searches are employed to speed up the process. The user
can interact with a T-surface by applying 3D interaction forces, by applying 2D
interaction forces to cross-sections of the surface that are overlaid on image slices
thorough the 3D dataset.

Fig. 5 demonstrates the topological adaptability of a T-surface when applied to
a120 x 128 x 52 CT volume image of a human vertebra phantom. This example
uses a 32 x 30 x 13 cell grid (where each cubical cell is divided into 6 tetrahedra).

4 Generalized Deformable Models

Next, I will review the systematic Lagrangian formulation of physics-based de-
formable models that are built upon the standard geometric substrates of computer

ZMost nonsimplicial methods employ a rectangular tessellation of space. The formulation of T-
surfaces using a non-simplicial grid is essentially identical to its simplicial counterpart except for the
addition of the disambiguation scheme.



1. Deformable Models 15

(@) (b) (©

FIGURE 5. T-surface segmenting vertebra phantom from CT volume image [9].

graphics and geometric modeling. These explicit geometric substrates are by no
means trivial; certainly more complicated than those encountered in the previous
two sections. Nonetheless they yield generalized varieties of deformable models
possessing geometric degrees of freedom and novel physical behaviors that are
beneficial in certain applications to computer-aided geometric design, computer
graphics animation, and computer vision.

The first part of this section reviews Dynamic Non-Uniform Rational B-Splines
(D-NURBS). The second part reviews Deformable Superquadrics. There exist
other interesting generalized deformable model formulations that I will not re-
view because of lack of space, among them “united snakes”—a hybrid between
snakes and “livewire” segmentation tools based on dynamic programming [5]—
and dynamic free-form deformations (FFDs) [3].

4.1 Dynamic NURBS

Deformable models have given impetus to a new, physics-based paradigm for
computer-aided geometric design. The natural behavior of deformable models
suggests a “computational modeling clay” metaphor which is particularly intu-
itive in the sculpting of free-form shapes [17]. An important goal, however, is to
formulate physics-based modeling primitives that generalize the purely geomet-
ric free-form shape primitives employed in conventional shape design systems. To
this end, we have developed a physics-based generalization of industry-standard,
non-uniform rational B-splines (NURBS) and associated constraint methods for
physics-based geometric design and interactive sculpting [21]. The shape parame-
ters of conventional, geometric NURBS play the role of generalized (physical) co-
ordinates in “Dynamic NURBS” (D-NURBS). We introduce time, mass, and de-
formation energy into the standard NURBS formulation and employ Lagrangian
dynamics to arrive at the system of nonlinear ordinary differential equations that
govern the shape and motion of D-NURBS.

D-NURBS Curves:

A kinematic NURBS curve extends the geometric NURBS definition by explic-
itly incorporating time. The kinematic curve is a function of both the parametric
variable » and time ¢:

c(u,t) = >ico Pi(t)wi(t) Bk (u)

iowi(t)Big(u)

(1.21)
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where the B; 1, (u) denote the usual recursively defined piecewise basis functions,
pi(t) are the n + 1 control points, and w; (¢) are associated non-negative weights.
Assuming basis functions of degree k£ — 1, the curve has n + k + 1 knots ¢; in
non-decreasing sequence: to < t1 < ... < tpik.

To simplify notation, we define the vector of generalized coordinates q ; () and
weights w; (t) as

at)=[pd wo - P, wn] .

We then express the spline curve (1.21) as c(u, q).
The velocity of the kinematic spline is

¢(u,q) = Jq, (1.22)

where the overstruck dot denotes a time derivative and J(u, q) is the Jacobian
matrix. Because c is a 3-component vector-valued function and q is a 4(n + 1)
dimensional vector, J is the 3 x 4(n + 1) matrix

Dee 0

Opi,z
J=1| ... 0 aiciy 0 e . (1.23)
i oc. ¢
0 0 Opi,=
where
8Cm acy acz wiBLk

Opiz  OPiy OPi: iy w; By
dc Y i—o(Pi —Pj)w;BiBjk
dw; (X =0 wiBjik)?
The subscripts z, y, and z denote the components of a 3-vector.
The equations of motion of our D-NURBS are derived from Lagrangian dy-

namics. Applying the Lagrangian formulation to D-NURBS curves, we obtain
the second-order nonlinear equations of motion

M+ D+ Kq=*f, +g, (1.24)

where M(q) is the mass matrix, D(q) is the damping matrix, and K(q) is the
stiffness matrix. The N x N mass and damping matrices are given by

M(q) :/uJTJdu; D(q) :/yJTJdu, (1.25)

where u(u, v) is the prescribed mass density function over the parametric domain
of the surface and y(u, v) is the prescribed damping density function. To define an
elastic potential energy for the D-NURBS curve, we use the snake energy (1.2).
This yields the N x N stiffness matrix

K(q) = / w ()T Ty + wo (u)I ], Ty du, (1.26)



1. Deformable Models 17

@ (b) © (d)

FIGURE 6. Interactive Sculpting of D-NURBS Swung Surfaces. Open and closed sur-
faces shown were sculpted interactively from prototype shapes noted in parentheses (a)
Egg shape (sphere). (b) Deformed toroid (torus). (c) Hat (open surface). (d) Wine glass
(cylinder) (from [13]).

where the subscripts on J denote parametric partial derivatives. As in snakes, the
elasticity functions w; (u) and ws(u) control tension and rigidity, respectively.
The generalized force f,(q) = [ J " f(u,t) du, where f(u,t) is the applied force
distribution. Because of the geometric nonlinearity, generalized inertial forces
g,(q) are also associated with the models (for the details, see [21]).

D-NURBS Surfaces:

Beyond D-NURBS curves, we have formulated three varieties of D-NURBS sur-
faces: tensor-product D-NURBS surfaces [21], swung D-NURBS surfaces [13],
and triangular D-NURBS surfaces [14]. Examples of topologically different shapes
interactively sculpted using D-NURBS swung surfaces are shown in Fig. 6.

For example, in analogy to the kinematic curve of (1.21), a tensor-product D-
NURBS surface

St 2o Pij (t)wi; (8) Bik (w) By (v)
ito 2 j—o Wiy (£)Bik (u) Bja(v)

generalizes the standard, geometric NURBS surface. The (m + 1)(n + 1) con-
trol points p; ;(t) and weights w; ;(t), which are functions of time, comprise the
tensor-product D-NURBS surface generalized coordinates. We concatenate these
N = 4(m + 1)(n + 1) coordinates into the vector p(¢). Analogous to (1.22),
we have $(u,v,p) = Jp, where J(u,v, p) is the 3 x N Jacobian matrix of the
D-NURBS surface with respect to p. Note that J isnow a 3 x 4(m + 1)(n + 1)
matrix. Refer to [21] for the mathematical details and examples.

(1.27)

s(u,v,t) =

4.2 Deformable Superquadrics

We will next review a systematic Lagrangian approach for creating dynamic solid
models capable of realistic physical behaviors, starting from the common, glob-
ally parameterized solid primitives, such as spheres, cylinders, cones, or super-
quadrics. Such primitives can deform kinematically in simple ways; for example,
a geometric cylinder deforms as its radius or length is changed. To gain additional
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FIGURE 7. Interaction with deformable superquadrics.

modeling power we allow the solid primitives to undergo parameterized global de-
formations (bends, tapers, twists, shears, etc.). To further enhance the geometric
flexibility, we permit local free-form deformations. All of the geometric parame-
ters are once again collected into a vector of generalized coordinates, along with
the six degrees of freedom of rigid-body motion. As usual, Lagrange equations of
motion govern the dynamics of these parameterized deformable models, dictating
the evolution of the generalized coordinates in response to applied forces, so as
to exhibit correct mechanical behavior subject to prescribed mass distributions,
elasticities, and energy dissipation rates. Such models are useful in physics-based
computer animation.

For example, Fig. 7 shows several deformable superquadrics. A superellipsoid
is deforming in response to the traction from a linear spring attached to its surface
and pulled interactively. In general, the models are abstract viscoelastic solids. It
is possible, for instance, to mold a supersphere into any of the deformable su-
perquadrics shown in the figure by applying appropriate forces.

Geometric Formulation:

A superquadric is a solid model whose intrinsic (material) coordinates are u =
(u,v,w). Referring to Fig. 8, x(u,t) = (z,(u,t),z2(u,t),z3(u,t)) " gives the
positions of points on the model relative to the fixed reference frame ®. We can
write

x =c+ Rp, (1.28)

where p(u, t) denotes the positions of points relative to the noninertial, model-
centered frame ¢ whose instantaneous position is c(¢) and orientation relative to
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® is given by the rotation matrix R(t). We further express
p=s+d, (1.29)

the sum of a reference shape s(u, t) and a displacement function d(u, t). We de-
fine the reference shape as

s = T(e(u; a1, as,...); by, ba,...). (1.30)

Here, a geometric primitive e, defined parametrically in u and parameterized by
the variables a;, is subjected to the global deformation T which depends on the
parameters b;. Although generally nonlinear, e and T are assumed to be differ-
entiable (so that we may compute the Jacobian of s) and T may be a composite
sequence of primitive deformation functions. We define the vector of global de-
formation parameters

qs:(al,a2,...,b1,b2,...)T. (131)

Next, we express the displacement as a linear combination of basis functions
b;(u). The basis functions can be local or global; however, finite element shape
functions are the natural choice for representing local deformations

d = Squ. (1.32)
Here S is a shape matrix whose entries are the shape functions and
a=0(..,d ,..)7" (1.33)

is the vector of local deformation parameters. Typically, finite elements have
nodes at their vertices, and the parameter q; denotes a displacement vector as-
sociated with node 7 of the model.

In[19, 11] we provide the formulas for a superquadric ellipsoid e with tapering,
bending, shearing, and twisting deformations.

Kinematics and Dynamics:

To convert the geometric representation into a physical model that responds dy-
namically to forces, we first consider the kinematics implied by the geometry and
then introduce mass, damping, and elasticity into the model to derive its mechan-
ics.

The velocity of points on the model is given by,

%X =¢+ Rp+ Rp = ¢+ BO + Rs + RSqu, (1.34)

where @ = (....,6;,...)" is a vector of rotational coordinates and the matrix
B =[...0(Rp)/0;...]. Now, § = [0s/0qs]qs = Jqs, where J is the Jacobian
of the reference shape with respect to the global deformation parameter vector.
We can therefore write the model kinematics compactly as

x =c+ R(s+d) =h(q), (1.35)
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FIGURE 8. Geometric structure.

x = B RJI RS]q = Lq, (1.36)
where
q= (ch:qHT,qu,da)Tv (137)
(with q. = c and q9 = 0) serves as the vector of generalized coordinates for the
dynamic model.

To specify the dynamics, we introduce a mass distribution x(u) over the model
and assume that the material is subject to frictional damping. We also assume
that the material may deform elastically or viscoelastically [18]. Applying the La-
grangian mechanics approach, we obtain second-order equations of motion which
take the form

MG+ Dq+ Kq=gq +£5. (1.38)

The mass matrix ML = [ uL "L du. The stiffness matrix K may be obtained from
a deformation strain energy (q " Kq)/2. The Raleigh damping matrix D = oM+
BK. The generalized inertial forces gq = — fuLTLq du include generalized
centrifugal, Coriolis, and transverse forces due to the dynamic coupling between
qo, 95, and qq. Finally, £, = [ LT f du are generalized external forces associated
with the components of q, where f(u, t) is the force distribution applied to the
model. See [19, 11] for explicit formulas for the above matrices and vectors.

Multibody Constraints:

Deformable superquadric models raise interesting challenges related to the appli-
cation of constraints in order to construct composite models and control anima-
tion. We describe a method for computing generalized constraint forces between
our models which is based on Baumgarte’s constraint stabilization technique. Our
algorithm may be used to assemble complex objects satisfying constraints from
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initially mispositioned and misshaped parts, and it enables us to construct and
animate articulated objects composed of rigid or nonrigid components. We have
applied these multibody models to computer animation [11] and computer vision
[12].

We can extend (1.38) to account for the motions of composite models with
interconnected deformable parts by forming a composite generalized coordinate
vector q, as well as force vectors g4 and f4 for an n-part model by concatenating
the q;, gq;, and f, associated with each parti = 1,. .., n. Similarly, the compos-
ite matrices M, D, and K for the n-part model are block diagonal matrices with
submatrices M;, D;, and K;, respectively, for each part 7. The method solves the
composite equations of motion Mq +Dq+ Kq = gq+f5 — Cg)\. The general-
ized constraint forces f,, = —Cg)\ acting on the parts stem from the holonomic
constraint equations

C(q,t) = 0; (1.39)
ie, C =[C{,C,,...,C/]T expresses k constraints among the n parts of the
model. The term Cg is the transpose of the constraint Jacobian matrix and A =
(AI, e )JL)T is a vector of Lagrange multipliers that must be determined.

To obtain an equal number of equations and unknowns, we differentiate (1.39)
twice with respect to time, yielding o = Cqq = —Cy; — (Cqq)qq — 2Cq,q.
The augmented equations of motion are

T . _ . _
M Cq q | _ Dq Kq + gg +fy . (1.40)
Cq O A o —2aC - p°C

Fast constraint stabilization means choosing 5 = « to obtain the critically damped
solution C(q, 0)e~2t which, for given «, has the quickest asymptotic decay to-
wards constraint satisfaction C = 0.

5 Conclusion

Deformable models are a rich family of physics-based modeling primitives that
have seen extensive use in computer vision and graphics. They have also been
applied heavily in the associated areas of medical image analysis and geometric
design. In this chapter, | have reviewed

1. the formulation of classic deformable models, including snakes and higher-
dimensional models;

2. topology-adaptive deformable models that offer the topological flexibility
associated with level set methods, but retain the parametric, Lagrangian
formulation;

3. formulations of generalized Lagrangian deformable models that are built on
nontrivial geometric foundations, such as non-uniform rational B-splines
and superquadrics.
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Lagrangian models of solids complement Eulerian models of fluids in continuum
mechanics. Deformable models and level set methods are complementary tech-
niques in precisely the same sense. Together, these methods have given impetus
to a voluminous and rapidly growing literature. They continue to have a promising
future in multiple application areas.

Acknowledgments: | thank Nikos Paragios and Stan Osher for encouraging me to
prepare this chapter. | am grateful to many colleagues who have collaborated with
me in the development of deformable model theory and applications; their names
appear in the citations: Carlbom, Faloutsos, Fleischer, Kass, Liang, Mclnerney,
Metaxas, Qin, Szeliski, Witkin. In view of the material presented in this chap-
ter, I would like especially to acknowledge the key contributions of three former
PhD students: Tim Mclnerney, whose dissertation developed topology-adaptive
deformable models, Dimitri Metaxas, whose dissertation developed deformable
superquadrics, and Hong Qin, whose dissertation developed D-NURBS.



1. Deformable Models 23

6 REFERENCES

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

K.-J. Bathe and E.L. Wilson. Numerical Methods in Finite Element Analy-
sis. Prentice—Hall, Englewood Cliffs, NJ, 1976.

I. Carlbom, D. Terzopoulos, and K. Harris. Computer-assisted registration,
segmentation, and 3D reconstruction from images of neuronal tissue sec-
tions. IEEE Transactions on Medical Imaging, 13(2):351-362, 1994.

P. Faloutsos, M. van de Panne, and D. Terzopoulos. Dynamic free-form
deformations for animation synthesis. IEEE Transactions on Visualization
and Computer Graphics, 3(3):201-214, September 1997.

M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models.
International Journal of Computer Vision, 1(4):321-331, 1988.

J. Liang, T. Mclnerney, and D. Terzopoulos. Medical image analysis with
topologically adaptive snakes. In Proc. Seventh International Conf. on Com-
puter Vision (ICCV’99), pages 933-940, Kerkyra, Greece, September 1999.

T. Mclnerney and D. Terzopoulos. A dynamic finite element surface model
for segmentation and tracking in multidimensional medical images with ap-
plication to cardiac 4D image analysis. Computerized Medical Imaging and
Graphics, 19(1):69-83, January 1995.

T. Mclnerney and D. Terzopoulos. Topologically adaptable snakes. In Proc.
Fifth International Conf. on Computer Vision (ICCV’95), pages 840-845,
Cambridge, MA, June 1995.

T. Mclnerney and D. Terzopoulos. Deformable models in medical image
analysis: A survey. Medical Image Analysis, 1(2):91-108, 1996.

T. Mclnerney and D. Terzopoulos. Topology adaptive deformable surfaces
for medical image volume segmentation. IEEE Transactions on Medical
Imaging, 18(10):840-850, October 1999.

T. Mclnerney and D. Terzopoulos. T-snakes: Topology adaptive snakes.
Medical Image Analysis, 4(2):73-91, June 2000.

D. Metaxas and D. Terzopoulos. Dynamic deformation of solid primitives
with constraints. Computer Graphics (Proc. SIGGRAPH’92), 26(2):309-
312,1992.

D. Metaxas and D. Terzopoulos. Shape and nonrigid motion estimation
through physics-based synthesis. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 15(6):580-591, 1993.

H. Qin and D. Terzopoulos. Dynamic NURBS swung surfaces for physics-
based shape design. Computer-Aided Design, 27(2):111-127, 1995.



24 D. Terzopoulos

[14] H. Qin and D. Terzopoulos. Triangular NURBS and their dynamic general-
izations. Computer-Aided Geometric Design, 14:325-347, 1997.

[15] D. Terzopoulos. On matching deformable models to images. Technical
Report 60, Schlumberger Palo Alto Research, 1986. Reprinted in Topical
Meeting on Machine Vision, Technical Digest Series, Vol. 12 (Optical Soci-
ety of America, Washington, DC) 1987, 160-167.

[16] D. Terzopoulos. The computation of visible-surface representations.
IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-
10(4):417-438, 1988.

[17] D. Terzopoulos and K. Fleischer. Deformable models. The Visual Com-
puter, 4(6):306-331, 1988.

[18] D. Terzopoulos and K. Fleischer. Modeling inelastic deformation: Vis-
coelasticity, plasticity, fracture. Computer Graphics (Proc. SIGGRAPH’88),
22(4):269-278, 1988.

[19] D. Terzopoulos and D. Metaxas. Dynamic 3D models with local and global
deformations: Deformable superquadrics. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 13(7):703-714, 1991.

[20] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer. Elastically deformable
models. Computer Graphics (Proc. SIGGRAPH’87), 21(4):205-214, 1987.

[21] D. Terzopoulos and H. Qin. Dynamic NURBS with geometric constraints
for interactive sculpting. ACM Transactions on Graphics, 13(2):103-136,
1994,

[22] D. Terzopoulos and R. Szeliski. Tracking with Kalman snakes. In Active
Vision, pages 3-20. MIT Press, Cambridge, MA, 1992.

[23] D. Terzopoulos, A. Witkin, and M. Kass. Constraints on deformable mod-
els: Recovering 3D shape and nonrigid motion. Artificial Intelligence,
36(1):91-123, 1988.



