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Topology Adaptive Deformable Surfaces for
Medical Image Volume Segmentation

Tim McInerney,* Member, IEEE, and Demetri Terzopoulos,Member, IEEE

Abstract—Deformable models, which include deformable con-
tours (the popular snakes) and deformable surfaces, are a power-
ful model-based medical image analysis technique. We develop a
new class of deformable models by formulating deformable sur-
faces in terms of an affine cell image decomposition (ACID). Our
approach significantly extends standard deformable surfaces,
while retaining their interactivity and other desirable properties.
In particular, the ACID induces an efficient reparameterization
mechanism that enables parametric deformable surfaces to evolve
into complex geometries, even modifying their topology as nec-
essary. We demonstrate that our new ACID-based deformable
surfaces, dubbed T-surfaces, can effectively segment complex
anatomic structures from medical volume images.

Index Terms—Deformable models, deformable surfaces, seg-
mentation.

I. INTRODUCTION

T HE imperfections typical of medical images, such as
partial volume averaging, intensity inhomogeneities, lim-

ited resolution, and imaging noise, often cause the apparent
boundaries of anatomic structures to be indistinct and dis-
connected. The challenge of segmentation and reconstruction
is to identify boundary elements belonging to an anatomic
structure of interest and integrate them into a complete and
consistent geometric model of that structure. This important
task is impeded by the complexity and variability of biological
shape and by the sheer size of modern volume images.
Yet segmentation and reconstruction must be performed with
efficiency and reproducibility and, preferably, with minimal
user interaction.

Deformable models [1], which include the popular de-
formable contours, or snakes [2], and deformable surfaces
[1], [3]–[5] are a powerful segmentation technique designed
to meet this challenge (see the recent survey [6], which also
appears in the compilation [7]). Deformable models offer an at-
tractive approach to the medical image segmentation problem
because they combine many desirable features. These include
compact analytic representation of object shape and motion,
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inherent connectivity and smoothness that counteracts noise
and boundary irregularities, and the ability to incorporatea
priori anatomic knowledge. Addressing the fact that few med-
ical images lend themselves to fully automatic analysis with
satisfactory results, deformable models furthermore afford the
often times essential option of interactive control over the
segmentation process. They support interaction mechanisms
via an intuitive physics-based paradigm: users can push, pull,
anchor, reposition, and otherwise manipulate a deformable
model using a mouse or other input devices.

While they have proven very useful in medical image
analysis, standard deformable models can be improved. First,
they were designed to be manually initialized reasonably close
to the boundaries of a target object. It would be helpful
to ameliorate the sometimes tedious initialization process by
addressing the initialization sensitivity problem. Second, the
fixed parameterization of the standard, parametric deformable
models in concert with their internal energy constraints can
limit geometric flexibility. Hence, they can exhibit reluc-
tance to deform into long tube-like shapes and shapes with
significant protrusions or concavities. Third, the topology
of the object of interest must be known in advance, since
parametric deformable models are incapable of topological
transformations without additional machinery.

It has been our goal to develop a unified framework that
overcomes the limitations of standard deformable models,
while retaining their traditional strengths. To this end, we
recently introduced a new class of deformable contour mod-
els called topology adaptive snakes (T-snakes) [8], [9]. T-
snakes exploit an affine cell image decomposition (ACID),
a theoretically sound framework that significantly extends the
abilities of standard parametric snakes. In particular, the ACID
induces an efficient reparameterization mechanism that enables
deformable contours to flow or grow into complex geometries,
even modifying their topology as necessary. We can initialize
a T-snake as a small seed contour anywhere within a target
object. The T-snake can dynamically adapt its topology to that
of the target object, flow around objects embedded within the
target object, and/or automatically merge with other models
interactively introduced by the user. Thus, immersing discrete
parametric snakes in an ACID enables them to segment
and reconstruct even the most complex-shaped biological
structures, with a high degree of automation, efficiency, and
reproducibility in many medical image analysis scenarios.
Finally, an important feature of the ACID framework is
that it does not interfere with the physics-based formulation
of standard snakes, preserving the intuitive user interaction
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(b) (c) (d) (e)

Fig. 1. Segmentation with T-snakes. (a) T-snakes segmenting blood vessels in a retinal angiogram. Geometric flexibility allows the T-snakes to grow
into the complex vessel shapes. (b)–(e) T-snake segmenting gray-matter/white-matter interface and ventricles in an MR brain image slice. The initially
circular T-snake (b) changes its topology to a highly deformed annular region (e).

mechanism and the ability to incorporate constraints through
energy or force functions.

While deformable contours, in general, and T-snakes, in
particular, have proved to be a successful boundary integration
and feature extraction technique, their two-dimensional (2-D)
formulation limits their ability to process three-dimensional
(3-D) image data. Although slice-to-slice contour propagation
[10], [11] can improve efficiency and increase automation,
there are many segmentation scenarios where this technique
is not effective. Three dimensional deformable surfaces or
balloons, on the other hand, are potentially faster, make more
effective use of the 3-D data, and, in many situations, require
less user input and guidance. Several variants have been
developed [12]–[17].

In this paper, we present a natural extension of our ACID
framework that is suitable for deformable surfaces. In par-

ticular, we develop topology adaptive deformable surfaces,
dubbed T-surfaces [18], for use on volume images. After
a brief review of the planar T-snakes formulation in the
next section, we develop its 3D extension in Section III. In
Section IV, we present segmentation experiments using T-
surfaces, demonstrating their potential for efficient, accurate,
and reproducible extraction and analysis of anatomic structures
from medical image volumes. Section V discusses T-surfaces
in comparison to competing techniques. Section VI concludes
the paper.

II. REVIEW OF T-SNAKES

Discrete versions of conventional parametric snakes [2], T-
snakes are immersed in an ACID which supports efficient
reparameterization. As shown in Fig. 1, they exhibit significant
geometric and topological flexibility.
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As a T-snake deforms under the influence of external and
internal forces, it is periodically reparameterized with a new set
of nodes and elements. This is done by efficiently computing
the intersection points of the model with the superposed affine
cell grid. During the reparameterization, the interior of a T-
snake is also tracked by turning on any grid cell vertices that
passed from the exterior to the interior of the model during its
motion. Reparameterizing a T-snake at prespecified intervals
as it flows yields an elegant automatic model subdivision tech-
nique and the grid provides a framework for robust topological
transformations. Thus, the T-snake is relatively invariant to
its initial placement. It flows into complex shapes, changing
its topology whenever necessary, all in a stable manner.
Conversion to a conventional parametric snakes model is
simply a matter of disabling the grid at any time. By providing
a boundary representation that also keeps track of the interior
region of an object, T-snakes combine the space partitioning
and topological flexibility of an implicit model with an explicit
parametric boundary model.

There are three components to the T-snakes formulation as
follows (see [9] for the details).

The first component is a discrete form of the conventional
snakes model described in [2]. That is, a T-snake behaves like
a standard parametric snake between reparameterizations and
it is free to deform in any direction. The T-snake nodes act
as a dynamic interconnected particle system. Associated with
each node is a time varying position along with internal tensile
forces and flexural forces to maintain model smoothness,
inflationary forces to drive the T-snake toward the target
object boundary, and external forces to stop the T-snake at the
object boundary. T-snake evolution is governed by a simplified
version of the Lagrange equations of motion in discrete form.

The second component of T-snakes is the ACID. There
are two main types of affine cell decomposition methods:
nonsimplicial and simplicial. In a simplicial decomposition,
space is partitioned into cells defined by open simplices,
where an simplex is the simplest geometrical object of
dimension : a triangle in 2-D and a tetrahedron in 3-D.
For example, the Coxeter–Freudenthal triangulation (Fig. 2) is
constructed by dividing space using a uniform cubic grid and
the triangulation is obtained by subdividing each cube into
simplices. Simplicial cell decompositions provide a framework
for creating robust consistent local polygonal (affine) approxi-
mations of the boundary contours of anatomic structures. The
vertices of each simplex can be classified as either inside
an anatomic structure or outside the structure. Simplicial
cells containing both inside and outside vertices are termed
boundary cells. In these cells the inside vertices can always be
separated from the outside vertices by a single line or plane.
Thus, an unambiguous polygonalization of the simplex always
exists and a consistent polygonalization of the entire boundary
contour will result.

The third component of T-snakes is the reparameterization
process. A T-snake alternates between deformation steps and
reparameterization steps. At the beginning of a deformation
step, the T-snake nodes are defined in terms of the edges
of the grid boundary cells. At the end of the deformation
step, the nodes have moved, relative to the grid cell edges

Fig. 2. Simplicial approximation (dashed line) of an object contour (solid
line), using a Freudenthal triangulation. The model nodes (intersection points)
are marked and the boundary triangles are shaded.

(a) (b)

(c)

Fig. 3. Illustration of the T-snake reparameterization process. (a) Shaded
regions show examples of grid vertices that are turned on by the expanding
contour. (b) New inside grid vertices (white) added to current inside vertices
(dark). (c) New contour after one deformation step showing new grid
intersections, inside grid vertices, and boundary grid cells (gray shaded).

(Fig. 3). To reestablish the correspondence between the T-
snake and the grid, a new simplicial approximation of the
deformed T-snake is computed, using a robust two-phase
reparameterization algorithm. In phase I of the algorithm, the
intersection points between the T-snake elements and the grid
cell edges are computed. These intersection points will become
the nodes of the new T-snake. In phase II, grid cell vertices
that have moved from the exterior to the interior of the T-snake
are marked as on. In this manner, the interior of a T-snake is
continuously tracked.

When a T-snake collides with itself or with another T-
snake, or splits into two or more parts (or shrinks and
disappears), a topological transformation must take place.
T-snake topology changes are automatically performed via
the ACID [Fig. 1(b)–(e)]. By keeping track of the inside grid
vertices (and hence the boundary grid cells) and reestablishing
the correspondence of the T-snake with the grid after every
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deformation step, the boundary or isocontour of the new
T-snake(s) can always be unambiguously determined. New
elements are constructed based on the signs (i.e., inside or
outside) of the grid vertices in each boundary cell and from
the intersection points computed in phase I, such that the inside
and outside grid vertices in these cells are separated by a single
line.

III. FORMULATION OF T-SURFACES

The main components of the 3-D T-surface formulation are
analogous to those for the 2-D T-snakes. We describe each
component in detail in the following sections.

A. Model Description

The first component of T-surfaces, like T-snakes, is a dis-
crete form of the conventional parametric deformable surfaces
[19], [5]. A T-surface is a closed elastic triangular mesh,
consisting of a set of nodes and triangular elements. We
associate with each nodea time varying position

along with internal tensile forces and
flexural forces inflationary forces and external
forces [20]. The behavior of a T-surface is governed by
a simplified version of the Lagrange equations of motion [20]
in discrete form

(1)

where is the velocity of node and is a damping
coefficient that controls the rate of dissipation of the kinetic
energy of the nodes.

A general nonlinear strain energy for a parametric de-
formable surface is a function of the differential area and
curvature at each point [21]. A more practical version of
this deformation energy is the linear combination of the
well-known membrane and thin-plate functionals [22]. This
linearized functional approximates the more general nonlinear
strain energy functional for small deformations near the actual
minimum (where higher order terms tend to zero), but is well
behaved for large deformations and its quadratic form leads to
computational benefits. The respective variational derivatives
of the membrane and thin-plate functionals correspond to
the Laplacian and squared Laplacian
(biharmonic)
(where represent the surface parameterization) and give
rise to the internal tensile and flexural forces, respectively. We
approximate the Laplacian at each node using the umbrella
operator resulting in the internal tensile force

(2)

where are the neighbors of the node and
is the number of these neighbors (the valence). The

parameter is used to control the strength of this force
(i.e., the resistance of the model to stretching deformations).
Currently, we approximate the Laplacian by taking only the
local mesh topology at a node into account. A more accurate
approximation would adjust the neighbor node weighting to

reflect the local geometry of the model node as well [23].
To compute the internal flexural force at a model node, we
approximate the squared Laplacian by convolving the umbrella
operator over the node and its neighbors. The parameteris
then used to control the resistance of the model to bending
deformations.

On the right-hand side of (1), and are external forces.
Since the model has no inertia, it comes to rest (i.e.,
as soon as the applied forces balance the internal forces. An
inflation force is used to push the T-surface toward intensity
edges in the image , until it is opposed by the image
forces. The inflation force is

(3)

where is the unit normal vector to the model at nodeand
is the amplitude of this force. The binary function

if
otherwise

(4)

links the inflation force to the image data , where is an
image intensity threshold. The functionmakes the T-surface
contract when and is used to prevent the model from
leaking into the background. Oscillation of the model can be
prevented by progressively lowering the magnitudeof the
force toward zero once a change of direction is detected or if a
model element remains within the same grid cell for a specified
number of iterations. Region-based image intensity statistics
can be incorporated into the inflation force by extending the
function as follows [25], [26]:

if
otherwise

(5)

where is the mean image intensity of the target object,
the standard deviation of the object intensity, andis a

user defined constant. The values ofand are typically
known a priori or computed from the image. The inflation
force essentially creates an active region growing model that
provides insensitivity to noise within the region through the
connectivity and internal smoothness constraints of the model.
Smooth subvoxel-accurate object boundaries are produced and
a T-surface will pass over small spurious regions, preventing
the creation of small holes in the region.

To stop the model at significant edges, we include the
external force

(6)

where the weight controls the strength of the force and the
potential is defined by

(7)

denotes a Gaussian smoothing filter of standard de-
viation and scales the potential. The weights and
are usually chosen to be of the same order, withslightly
larger than so that a significant edge will stop the inflation,
but with large enough so that the model will pass through
weak or spurious edges. The image edge force can also be
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averaged over a local neighborhood centered atto improve
robustness against noise.

Another effective external force is an inflation force that
makes use of a Chamfer distance map [27] or a gradient
vector field that approximates the distance and direction to
the nearest edge [28]. In this scenario, the inflation force is
weighted by the distance to the edge and is directed along
a model node normal. Once equilibrium has been achieved,
the inflation force is turned off and the image edge force is
activated. This force phasing approach is an effective means of
preventing the model from leaking into neighboring structures
when there are significant gaps in the target object edges.
Alternative functions that can be used as inflation force
weights are based on local variance as well as intensity [29],
texture [30], or other statistical measures of the target object
intensity.

To calculate a continuous image function for either
(5) or (6) we compute the intensity at an arbitrary point

by trilinear interpolation. We also integrate (1) forward
through time, using an explicit first-order Euler method. This
method approximates the temporal derivatives with forward
finite differences. It updates the positions of the model nodes
from time to time according to the formula

(8)

The explicit Euler method is simple, but it becomes unstable
unless small time steps are used. For T-surfaces, however, a
very reasonable range of time step sizes can be found that pro-
duce stable behavior, resulting in fast accurate segmentations.

B. 3-D ACID

The second component of T-surfaces is the extension of
the ACID framework to three dimensions, using simplicial
(tetrahedral) cells or nonsimplicial (e.g., hexahedral) cells.
Most nonsimplicial methods employ a rectangular tessella-
tion of space. The marching cubes algorithm [31] is an
example of this type. These methods are easy to implement,
but they cannot be used to represent the boundaries of an
implicitly defined object unambiguously without the use of a
disambiguation scheme [32]. For example, Fig. 4 shows two
possible boundary representations within a rectangular cell of
an implicitly defined object. A disambiguation scheme consists
of a table lookup to identify ambiguous cases followed by
an adherence to a disambiguation strategy such as preferred
polarity: always separate the positive vertices (and join the
negatives) or vice versa. We have implemented T-surfaces,
using both nonsimplicial and simplicial decomposition meth-
ods. We will describe the simplicial grid approach in this
paper. The formulation of T-surfaces using a nonsimplicial
grid is essentially identical, except for the addition of the
disambiguation scheme.

In a 3-D simplicial decomposition, space is partitioned into
tetrahedral cells using the Coxeter–Freudenthal triangulation.
We construct the grid by dividing the image volume using
a uniform cubic grid and subdividing each cube into six
tetrahedra [Fig. 5(a)]. As in the 2-D case, 3-D simplicial
decompositions provide an unambiguous framework for the

(a) (b)

Fig. 4. (a) and (b) Example of ambiguous faces of a cube (black circle:
positive cell vertex, open circle: negative cell vertex). Given the diagonal
arrangement of vertex polarities, it is unclear which edge/surface intersection
should be used.

(a) (b) (c)

Fig. 5. (a) Cube divided into six tetrahedra:�0 = (p0; p1; p3; p7);
�1 = (p0; p1; p5; p7); �2 = (p0; p2; p3; p7); �3 = (p0; p2; p6; p7);
�4 = (p0; p4; p5; p7); �5 = (p0; p4; p6; p7): (b) Intersection of object
boundary with grid cells.

creation of robust consistent local polygonal approximations of
the surface of anatomic structures. The polygonal approxima-
tion is constructed from the intersection of the object surface
with the edges of each boundary cell (i.e., tetrahedra containing
vertices both inside the structure and outside). The intersection
points result in one triangle or one quadrilateral (which can
be subdivided into two triangles) approximating the object
surface inside each boundary cell [Fig. 5(b), (c)], where each
triangle or quadrilateral intersects a tetrahedral cell on three or
four distinct edges, respectively. The triangle (or quadrilateral)
separates the positive vertices of the tetrahedral cell from the
negative vertices. The set of all these triangles constitutes the
polygonal approximation of the object surface. As in the case
of T-snakes, we can obtain an approximation to any desired
degree of accuracy by decreasing the size of the grid cells.

C. T-Surface Reparameterization

The third component of T-surfaces is a reparameterization
process analogous to the T-snakes case. The time derivatives
in (1) are approximated by finite differences. A T-surface is
then reparameterized every time steps of the numerical
time integration (referred to as a deformation step), where

is user controllable and typically set between five and
ten. The entire T-surface is set to either expand or shrink
during one deformation step. This policy means that although
a T-surface triangle element is free to move forward and
backward during a deformation step, similar to a standard
parametric deformable model, at the end of the deformation
step the element cannot have moved such that a grid vertex
previously inside the T-surface is now outside. The reason
for this policy is explained later in this section (see Phase
II). This deformation restriction also applies to the level-set
evolution techniques. However, an ACID-based model can
alternate between expansion and shrinkage deformation steps,
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effectively mimicking the complete freedom of movement over
all deformation steps of a parametric deformable model. In 3-
D, this allows the user to interact with a T-surface by, for
example, applying forces to a T-surface via cross sections of
the surface that are overlaid on 2-D image slices.

We have explored several T-surface reparameterization al-
gorithms. One such algorithm is detailed in [20] and this
algorithm is used for all experiments described in Section IV.
However, we are in the process of extending the newer and
more efficient two-phase algorithm, briefly outlined for T-
snakes, to 3-D. The 3-D version is exactly analogous to
the 2-D case, except that we are computing intersections
between triangle elements and grid cell edges inrather than
edge elements and grid cell edges in .The new algorithm
yielded a 15-fold increase in efficiency for T-snakes (most
segmentation experiments involving T-snakes now require
under a second to complete) and we expect considerable
improvement for T-surfaces. For this reason, we will describe
the new algorithm below.

1) Phase I: In phase I of the algorithm, we determine if
a T-surface triangular element intersects a grid cell edge.
Standard robust ray-triangle intersection algorithms are used
and local neighborhood searches can be employed to speed up
the process. If an intersection point is found for a particular
grid cell edge, it is stored in a data structure associated with
this edge. This intersection point may become a node of the
updated T-surface [see Fig. 3(a) and (c) for a 2-D illustra-
tion]. The intersection point may be unused and therefore is
discarded if, after the second phase of the reparameterization
process, both grid vertices of the grid cell edge are on. This
means that both grid vertices must be inside the T-surface and
the edge joining them is therefore not a boundary edge.

Several intersection points may be found for a particular grid
cell edge. This situation occurs when, during a deformation
step, a T-surface intersects itself or when multiple T-surfaces
intersect. In these cases, we take the lower numbered vertex
of the grid edge (each vertex in the grid is assigned a
number) and determine on which side (i.e, half space) of the
plane, formed by the T-surface triangle element, this vertex
lies. Consequently, every intersection point is given a sign
associating it with the lower numbered vertex, either inside
or outside (using the outward pointing element normal as the
reference direction). Every intersection point is then compared
against the existing intersection point (if any) of a grid cell
edge. If the intersection points are of opposite signs, they
cancel each other out. If they are of the same sign, the new
intersection point replaces the existing point. If no intersection
point currently exists for the grid edge, the new intersection
point is stored in the grid edge data structure.

Finally, if the grid vertex on the inside half-space of the
triangle element is off (which indicates that is it is now in
the interior of the T-surface), we also store it on a queue
for processing in Phase II. Phase I of the reparameterization
process is simple, efficient, and inherently parallel: each T-
surface element can be processed independently.

2) Phase II: During a deformation step, as the T-surface
expands some grid vertices that were outside of the closed T-
surface will now be contained inside [see Fig. 3(a) for a 2-D

illustration]. We then update the state of these grid vertices
from off to on. In this manner, we are able to determine
and track the interior region of the model. Note that the
inflation force pushes a T-surface in a direction normal to
the surface at each model node. This form of evolution can
result in singularities and self intersections (although this is
ameliorated by the smoothing effect of the internal forces).
In these situations, it is not clear how to evolve the T-
surface. We solve this problem by mimicking the physically
correct behavior for a propagating flame front. This behavior
is selected by adhering to a so-called entropy condition [33]:
once a grid vertex is turned on, it remains on.

As mentioned in Phase I, we compute the grid cell edge
intersection points for each T-surface element and enqueue
grid cell vertices to be labeled on or inside for processing
in Phase II. In Phase II, we dequeue these vertices and
check their corresponding grid cell edge data structure. If an
intersection point is stored in the data structure (indicating
that the T-surface has moved such that the grid vertex is now
inside) and the grid vertex is off, we turn it on. For all grid
vertices that were turned on, we use them as seed vertices in
a standard region fill algorithm to turn on any neighboring
vertices that are in the interior of the T-surface and are still
off. A neighboring vertex is turned on if the path of grid
edges connecting it to a seed vertex contains no intersection
points (i.e, indicating that it is inside the T-surface). Phase II
of the reparameterization process is simple, highly efficient,
and inherently parallel. Typically, only a small number of grid
vertices will be enqueued in Phase I for processing in phase II.

D. T-Surface Equilbrium

In contrast to the level-set evolution techniques which
accede control to a higher dimensional implicit function,
we retain an explicit parametric model formulation. An ex-
plicit model formulation allows us to track and control the
evolution of the T-surface. Consequently, reparameterizations
can be performed very efficiently and constraints can be
easily imposed on the model. Furthermore, a T-surface is
considered to have reached its equilibrium state when all of
its triangle elements have been inactive for a specified number
of deformation steps. Element activity or movement is easily
measured via the grid, using a flame propagation analogy.
Elements are assigned a temperature, based on the number
of deformation steps the element (and the grid cell in which it
is defined) has remained valid (i.e., has remained a boundary
cell). An element is considered inactive when its temperature
falls below a preset freezing point. Frozen elements can be
removed from the computation. This adjustable mechanism
allows the system to maintain a manageable computational
burden for many segmentation scenarios. Once a T-surface has
reached equilibrium the grid can be disabled, if desired, and
the T-surface run as a standard (discrete) deformable model.

IV. V OLUME IMAGE SEGMENTATION WITH T-SURFACES

We have implemented a prototype system using T-surfaces.
We have used the system to segment and reconstruct a wide
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(a) (b) (c) (d) (e) (f)

Fig. 6. T-surface segmenting vertebra phantom from CT image volume. The dark shaded regions are frozen and have been removed from the computation.

(a) (b) (c) (d) (e) (f)

Fig. 7. T-surface segmenting canine LV and aorta from CT image volume.

range of anatomic structures with complex shapes and topolo-
gies to demonstrate its potential.

We initialize a T-surface, using an implicitly defined su-
perquadric function which can be quickly scaled, bent, and
tapered, if desired, and placed inside the object of interest (or
scaled such that it contains the object). The superquadric is
then converted into a T-surface and the model will then expand
(or shrink if it surrounds the object) and adapt to the object
boundaries. Multiple T-surface seeds can also be dynamically
created and placed throughout the object. They will then adapt
and automatically merge to form one model of the object.

All T-surface parameters are currently set manually by
experimentation. This process is performed once for a spe-
cific image modality or for a specific anatomic structure and
requires only a few minutes of experimentation. The time step

and deformation step parameters are set to achieve
maximum T-surface efficiency. For many segmentation sce-
narios we have found that setting to 0.001 and is to
10 works well. The resolution of the grid is usually set to as
coarse as possible so that the target object can be accurately
reconstructed as efficiently as possible. Objects with narrow
protrusions or fine surface structures often require a voxel-
resolution mesh. The force parameter settings are usually
similar for a given image modality, although the shape of the
object often dictates the ratio of external forces to internal
forces: a higher ratio is sometimes needed to force the T-
surface into narrow protrusions. The internal tensile force
strength is typically set to approximately 0.5–0.75 of the infla-
tion force strength. In the following experiments, the internal
flexural force was not utilized. In general, however, this force,
which is computed over a larger T-surface neighborhood than
the tensile force, produces smoother reconstructions and acts to
prevent the T-surface from leaking into neighboring structures
and is therefore useful when segmenting noisy image volumes.

A. Geometric Flexibility and Topological Adaptability

In the first example, we apply a T-surface to a 120
128 52 CT image volume of a human vertebra phantom
to demonstrate the topological adaptability of the T-surface
(Fig. 6). We use a 32 30 13 cell grid (where each cubical

cell is divided into six tetrahedra) with model parameters:
and time step

In the second example we segment and reconstruct the left-
ventricular (LV) chamber and aorta from a CT image volume
of a canine heart. The image volume dimensions are 128

128 118 and a 20 20 20 resolution grid was
used (model parameters:

We manually seed the LV with a small T-
surface and the segmentation then proceeds automatically
(Fig. 7). The inflation force is weighted with LV region
image intensity statistics to reinforce the image edge forces.
The final result, after disabling the grid and converting to a
classical deformable surface, is shown at the top of Fig. 8.
While there are a few image slices that may require manual
editing, most of the model fits very accurately and the entire
process takes under 4 min on an SGI Indigo 2 workstation
using the older reparameterization algorithm described in [20].
We expect significantly better performance using the new
reparameterization algorithm. Segmentation with T-surfaces is
highly reproducible. As long as the T-surface is seeded within
the bright region of the LV, it produces highly similar results
(measured using visual inspection only).

In the third example, we have used a T-surface to segment
and reconstruct the vascular system of the brain from an
MRA image volume. The data consist of a stack of 100
slices each with 512 pixels, 2 bytes per pixel (voxel size
0.429 687 5 mm 0.429 687 5 mm 0.7 mm). The image
volume was interpolated to produce cubical voxels, resulting
in 162 slices. A T-surface is seeded at the root of the
vessel tree and then flows into the vessels, automatically
extracting the vascular system (Fig. 9). A voxel-resolution
grid was used with model parameters:

The segmentation takes about
1 h on an SGI Indigo 2 workstation, primarily due to disk
thrashing induced by the massive image data set relative
to the memory in the workstation. We expect considerable
performance improvement on a workstation with sufficient
memory and our new reparameterization algorithm. When
combined with image statistics-weighted inflation forces, a T-
surface behaves as an active region growing model that is able
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(a) (b) (c) (d)

Fig. 8. Final fitted T-surface and four cross sections of the model overlaid on edge-detected image slices.

Fig. 9. T-surface segmentation of cerebral vasculature from MRA image
volume.

to integrate edge information and filter out noise through the
model smoothness constraints.

Although MR angiography produces high contrast images,
the arteries exhibit a large variation in gray-scale values.
This large intensity variation makes it difficult to segment
the images with simple thresholding techniques. A possible
solution to this problem is the use of an adaptive threshold.
An adaptive threshold can be computed for the active portions
of the T-surface in each branch of the arteries, based on
a local statistical analysis. This solution is possible using
T-surfaces since we maintain an explicit model formulation.

One drawback of T-surfaces for segmenting narrow branching
structures, such as arteries, is that the grid resolution is dictated
by the smallest artery. In order to flow into tiny branches,
a voxel-resolution or even subvoxel-resolution grid must be
used. A model that is able to locally adapt its resolution to
match the size of the arterial branch may be better suited for
images containing a large range of artery diameters.

In the final two examples we use a T-surface with an image
statistics-weighted inflation force to segment the major brain
ventricles and the cerebral cortex from a preprocessed MR
image volume (the skull and brain stem have been manually
removed from the image) (Figs. 10 and 11). The 256256

85 (0.9375 mm 0.9375 mm 1.5 mm) MR image volume
was interpolated to produce cubical voxels resulting in 136
slices rather than 85. A 128 128 68 resolution grid was
used for the ventricles (model parameters

and ). Since the T-surface
provides a boundary and interior representation, the volume
occupied by the model can be be quickly and accurately
calculated. Brain ventricle volumes are useful indicators of
many brain pathologies. Fig. (c)–(g) shows several cross
sections of the fitted model. Note that the T-surface had
difficulty penetrating into the narrow inferior horn of the
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(a) (b)

(c) (d) (e) (f) (g)

Fig. 10. T-surface segmentation of ventricles from MR image volume of the brain.

(a) (b)

(c)

Fig. 11. T-surface segmentation of the cerebral cortex from MR image
volume. (a) Front view. (b) Top view. (c) Cross section of T-surface overlaid
on image slice.

lateral ventricles. A more accurate result may be obtained
with a finer resolution grid, but the voxels in this region
(and other regions) of the lateral ventricles in the image
volume are often indistinct due to partial volume averaging.
Consequently, manual intervention is required to generate
an accurate segmentation in some regions. T-surfaces fully
support user interaction through their intuitive physics-based
paradigm.

A 64 64 34 resolution grid was used for the cor-
tex (model parameters:

). The T-surface was initialized to surround the
cortex and then shrinks and conforms to the CSF/gray-matter
interface. A topology preservation constraint was applied to
the T-surface to ensure that the T-surface maintains a spherical
topology. This global topology constraint is implemented using
a series of topology preserving T-surface deformations [20].
The automatically subdividing T-surface is able to penetrate,
with good success, into the narrow and deep cavities of
the highly convoluted cortex [Fig. 11(c)]. A more accurate
result could be obtained with a finer resolution grid, at the
expense of increased computation time and a larger number
of model triangles. We can also use the grid to easily and ef-
ficiently implement a coupled surfaces propagation technique,
as described in [34], to make more effective use ofa priori
anatomical knowledge and segment the CSF/gray-matter and
gray/white-matter interface, simultaneously.

V. DISCUSSION

In this section, we compare T-surfaces with alternative
techniques.

A common method for segmenting image volumes is the use
of thresholding to generate an isosurface of the target object.
Although simple and fast, thresholding is highly noise sensi-
tive, is not guaranteed to produce closed surfaces, and provides
no local control. It must be used in concert with morphological
and other filtering operations to perform corrections, resulting
in tedious user interaction and user-dependent segmentations.

Region growing is another common technique and, like
thresholding, is also difficult to control. Furthermore, it does
not make use of image edge information, has no inherent noise
suppresion capabilities, can leak through gaps in boundaries,
and, again, provides limited ability to locally control the
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segmentation. By contrast, T-surfaces integrate both edge and
region information, provide smoothing (noise suppression),
can fill in gaps in boundaries, can guarantee topology, and,
perhaps most importantly, can be locally controlled through
intuitive interaction mechanisms.

Several researchers have attempted to overcome the lim-
itations of parametric deformable surface models by adding
greater functionality, or by using discrete deformable meshes
with automatic model refinement and topology adaptation
mechanisms [12], [14], [17], [35], [36]. Like T-surfaces, these
models can support user interaction through energy/force-
based constraints. Unlike T-surfaces, which are automatically
reparameterized (or retriangulated) via the ACID framework,
the retriangulation process of these models is typically based
on triangle or particle subdivision rules. This type of mech-
anism can create initial position sensitivity and therefore
adversely affect segmentation reproducibility. T-surface pa-
rameterization is intrinsic. That is, the ACID grid triangulates
the fitted T-surface in terms of the intrinsic local geometry
of the target object, providing much lower sensitivity to
initial conditions. However, a possible advantage the dis-
crete deformable mesh models have over T-surfaces is their
potential for simple local retriangulation. Currently, a T-
surface is globally reparameterized (although a form of local
reparameterization is possible by activating locally defined
regions of the grid and deactivating the remainder).

To introduce geometric and topological flexibility, several
researchers have developed implicit deformable curves and
surfaces by adopting Osher and Sethian’s [33] level-set evolu-
tion technique to the image segmentation problem [37], [38],
[15], [39], [16], [40], [41]. These models are formulated as
fronts, evolving 2-D contours or 3-D surfaces which define
the level set of some higher dimensional hypersurface over
the image domain.1 The main feature of this approach is
that topological changes are handled naturally since the level
set need not be simply connected. The higher dimensional
hypersurface remains a simple function even as the level-set
changes topology. The reparameterization process is inherent
in the level-set formulation, while reparameterization in T-
surfaces is an explicit process. While the level-set technique
is an attractive mathematical framework, implicit formulations
are much less convenient than explicit surface formulations
when it comes to incorporating additional control mechanisms,
such as internal deformation energies, external force functions
tailored to the specific image features of a target object, and
external interactive guidance by expert users. Furthermore,
in the implicit formulation it is difficult to impose arbitrary

1There is a mathematical relationship between the implicit models and
simple types of parametric deformable models. The energy minimization of a
deformable model involves variational principles which can be equivalently
formulated as solutions to partial differential equations (Euler–Lagrange
equations). Caselles [39] pointed out that setting the rigidity term to zero
in the energy functional of a snake model establishes an equivalence between
this parametric model and a geometric curve evolution, since they both
minimize the length of the contour in the metric induced by the image. In
three dimensions, minimization of the area functional for a surface (which is
often approximated in parametric deformable model formulations using the
well-known membrane functional) is equivalent to mean curvature surface
evolution.

geometric or topological constraints on the level set indirectly,
through its higher dimensional representation.

A T-surface is a hybrid model that combines aspects of both
explicit (parametric) deformable surface models and implicit
surface models. The ACID framework introduces aspects
of the latter, primarily topological flexibility. The primary
advantage of retaining an explicit model formulation, however,
is user control. In medical image analysis it is essential for
a user to be able to interactively control the segmentation
process. Automatic methods can fail for many reasons: local
visual evidence of object boundaries may be too low or even
absent, or it may be overrun by a neighboring object. In these
cases, recognition of the object boundary must be performed
by an expert and simple intuitive guidance or correction of the
segmentation is required. By retaining the explicit, Lagrangian
formulation, T-surfaces can be dynamically manipulated using
virtual forces such as interactive springs, anchored springs,
and volcanos [2]. In addition, an explicit model formulation
supports the use of more sophisticated control mechanisms.
For example, in 3-D an initial T-surface can be constructed
from the convex hull of a set of user defined points. These
points can be used as anchors and represent known object
boundary points. External forces can then be progressively
applied to a T-surface, starting from the anchor points and
spreading over the entire T-surface [42]. Another possibility
is the local control over the evolution of the T-surface by
pulling regions of the T-surface, using an implicitly defined
shape primitive such as a cylinder or ellipse. A final example
is to temporarily disable or limit the flow in a user specified
direction, but enable it in orthogonal directions. This type of
control may be useful, for example, when segmenting curved,
elongated structures.

VI. CONCLUSION

Deformable surface models offer a flexible and powerful
approach to medical image analysis. Nevertheless, standard
parametric deformable surface models suffer from several
limitations that prevent their application to the full range of
medical image analysis problems and inhibit their potential
degree of automation. We have proposed T-surfaces as a
solution to many of these limitations. This new class of
deformable models, which work in concert with an ACID,
can be used to segment, reconstruct, and analyze complex
anatomic structures from medical image volumes in an effi-
cient, reproducible, and highly automated manner. At the same
time, our T-surface models retain the advantages of standard
parametric deformable models, such as user interaction and the
incorporation of constraints through energy or force functions.
The ACID framework complements and extends the standard
models and users can dynamically disable it in situations where
more direct control and interaction is required.

Opportunities for future research include improving model
performance through the use of the new reparameterization
algorithm, improving interactive control over the flow of a
T-surface through the use of mouse-controlled spring forces,
user defined point constraints and implicitly defined shape
primitives, as well as an interactive T-surface editing ca-
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pability. Finally, since ACID-based deformable models are
naturally multiresolution models (i.e., simply by changing
the grid resolution), this feature can be used with multiscale
image preprocessing techniques [2], [1] to further improve the
efficiency and robustness of the segmentation.
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