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We address the challenging problem of controlling a complex biomechanical
model of the human body to synthesize realistic swimming animation. Our
human model includes all of the relevant articular bones and muscles, includ-
ing 103 bones (163 articular degrees of freedom) plus a total of 823 muscle
actuators embedded in a finite element model of the musculotendinous soft
tissues of the body that produces realistic deformations. To coordinate the
numerous muscle actuators in order to produce natural swimming move-
ments, we develop a biomimetically motivated motor control system based
on Central Pattern Generators (CPGs), which learns to produce activation
signals that drive the numerous muscle actuators.
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1. INTRODUCTION

The simulation of human motion is of interest in computer graph-
ics, robotics, biomechanics, control theory, and other disciplines.
Among the many approaches proposed to synthesize human move-
ment, efforts that involve modeling the detailed anatomical structure
and biomechanical characteristics of the human body, in conjunc-
tion with the design of motion controllers ideally capable of adapt-
ing to the body’s environment, have progressed steadily. Despite
the progress, it remains a grand challenge to achieve anatomically
detailed simulation of human motion with impeccable realism.

To synthesize realistic, anatomically detailed human animations
in a physics-based manner, we must inevitably construct a compre-
hensive human model with synthetic hard (bone) and soft (flesh)
tissues properly coupled and simulated, and we must also design
sophisticated motor controllers in order for such a biomechanical
model to produce natural, lifelike human motions in its environment.
In the work reported herein, we are especially interested in aquatic
environments for several reasons: On the one hand, the dynamically
rich physical interaction of the human body with water provides a
fertile proving ground that confronts a biomechanical human sim-
ulation/control system with interesting and difficult motor control
problems. On the other hand, the aquatic environment is somewhat
forgiving in that it has a stabilizing effect, which leads to nonethe-
less interesting control scenarios that serve as good starting points
for designing more sophisticated human motor controllers suitable
for terrestrial environments. There are many elegant human mo-
tions possible in the aquatic environment that deserve study from
the perspective of simulation and control, such as swimming for lo-
comotion, artistic synchronized swimming, water polo, diving, etc.

1.1 Multiphysics Simulation Framework

We introduce a multiphysics simulation framework for realistic
swimming within which we develop a detailed biomechanical
model of the human body and a biomimetically motivated con-
troller for synthesizing various swimming motions (Figure 1). From
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Fig. 1. A biomechanically simulated/controlled human swimmer. (a) Closeup view of the biomechanical model rendered with transparent skin to reveal the
muscle geometries. (b) Biomechanical model immersed in simulated water. The autonomously controlled biomechanical model simulates swimming in crawl
(c) and butterfly (d) strokes.

the biomechanics perspective, our human model includes all of the
relevant articular bones and muscles, including 103 rigid bones
plus a total of 823 muscle actuators, modeled as Hill-type, uniaxial
contractile Musculotendinous Actuators (MAs). We employ multi-
rigid-body dynamics to simulate the articulated musculoskeletal
motions. To simulate the dynamic deformation of flesh and muscles,
we employ a lattice-based discretization of quasi-incompressible
elasticity augmented with active contractile muscle terms. To simu-
late the physics of the water environment in which the biomechani-
cally simulated body floats, we employ an Eulerian (Navier-Stokes)
fluid simulation on a MAC grid and use a particle-level-set method
to track the surface of the water. Thus, our multiphysics simulator
encompases rigid-body, deformable, and fluid regimes.

We deal with the coupling between bone and flesh as well as that
between flesh and water in an interleaved manner, which has sev-
eral advantages over tight two-way couplings, as tightly coupling
the articulated rigid bodies and deformable solid and surround-
ing fluid would be challenging and costly. Interleaved coupling

makes our simulation framework much more flexible and al-
lows for the reuse and improvement of the individual simulation
components.

1.2 Controlling the Biomechanical Human Model

A primary focus of this article is the challenging problem of control-
ling the biomechancial human model. In particular, we develop a
locomotion controller that produces realistic swimming; that is, we
present a successful approach to controlling the numerous muscle
actuators in order to synthesize naturally repetitive body motions
that enable our human model to produce self-propelled movement
in the simulated fluid environment.

We develop a biomimetic motor control system based on Central
Pattern Generators (CPGs), which produces activation signals that
drive the many Hill-type MAs. CPGs are biological neural networks
capable of producing rhythmic outputs even in isolation from motor
and sensory feedback. They offer important advantages, such as
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Fig. 2. Overview of our biomimetic human swimming simulation and control framework.

producing stable rhythmic motor patterns that are easily modulated,
which are very desirable in biomechanical control.

To control the virtual swimmer’s body, we design CPG networks
that produce muscle activation signals to induce muscle contraction
forces. These enable the human model to swim in various ways.
Each CPG unit associated with a muscle actuator is modeled as
a nonlinear dynamical oscillator with good stability and conver-
gence properties. The easy modulation property implies that only a
few parameters (such as amplitude, frequency, and phase) need be
adjusted in order to achieve different swimming tasks.

1.3 Overview

Figure 2 illustrates the overall biomimetic structure of our human
swimming simulation and control framework. Our autonomous vir-
tual human comprises the biomechanical body model with its skele-
tal, active muscular, and passive soft-tissue components, and a brain
model with a perception center that encompasses proprioception as
well as the sensing of visual targets in the environment. The motor
center of the brain has a low-level CPG locomotion controller (em-
ulating biological CPG networks in the spinal cord) and one that
produces higher-level motor signals such as swimming style, speed,
turn direction/sharpness, etc., taking the perceptual information into
account. Given these motor signals as inputs, the CPG networks au-
tomatically synthesize the desired muscle length signals online,
from which a proportional/derivative (PD) control mechanism pro-
duces the associated muscle activation levels. The activation lavels
innervate the muscles whose contractions actuate the biomechan-
ical body. Our multiphysics simulation framework simulates the
biomechanical human model along with the aquatic environment in
which it is situated, as well as their physical interaction.

The remainder of this article is organized as follows: Section 2 re-
views relevant research in the graphics, robotics, and biomechanics
literature. Section 3 presents our multiphysics simulation frame-
work and, along with Appendix A, details all the simulation com-
ponents and the dynamic couplings among them. Section 4 develops
our CPG-based locomotion controller that works within our simu-
lation framework to produce natural swimming motions. Section 5
reports our experiment results. Within our simulation framework,
our complex yet appropriately controlled human model demon-
strates coordinated swimming tasks. Section 6 discusses the limita-
tions of our work and, along with Appendix B, compares alternative
approaches for the key components of our simulation and control
framework. Section 7 presents conclusions and proposes avenues
for future work.

2. RELATED WORK

Our work builds upon relevant technical advances in computer
graphics, robotics, and biomechanics to model the biomechanical
characteristics of the human body and to emulate its motor control
mechanisms, as well as to simulate the continuum mechanics of the
relevant solids and fluids.

2.1 Biomechanical Human Modeling

In graphics, researchers have traditionally used joint torques to drive
articulated skeletal animation [Hodgins et al. 1995; Faloutsos et al.
2001], in contrast to facial animation where muscle actuators have
been used for over two decades to synthesize expressions [Lee et al.
1995]. As a means of improving realism, skeletal-muscle-driven
motion generation is receiving growing attention and researchers
have been developing increasingly sophisticated biomechanical
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Fig. 3. Rendering of the musculoskeletal model.

models of individual body parts actuated by muscles, such as the
arm [Albrecht et al. 2003; Tsang et al. 2005; Sueda et al. 2008],
leg [Komura et al. 2000; Dong et al. 2002; Wang et al. 2012], neck
[Lee and Terzopoulos 2006], trunk [Zordan et al. 2006], and of the
entire body [Nakamura et al. 2005]. The closest precedent to the
biomechanical human model that we have developed for the work
reported herein is the upper-body musculoskeletal model reported
in Lee et al. [2009], which employed a one-way coupling between
flesh and bones. Our new model is a full-body comprehensive
human model with two-way flesh-bone coupling.

2.2 Underwater Motion Simulation

Early work on simulating the underwater movements of aquatic
creatures adopted rather simple solid and fluid models [Tu and
Terzopoulos 1994; Yang et al. 2004]. As the simulation techniques
for solids and fluids advance, researchers have used increasingly
sophisticated fluid models and solid-fluid coupling techniques. In
their work on the interaction of multiphase flow (specifically water
including air bubbles) with animated bodies, Mihalef et al. [2008]
produced a 7-second animation clip that demonstrates a human fig-
ure making swimming-like body movement while floating in simu-
lated water. Kwatra et al. [2010] and Tan et al. [2011] used a simpli-
fied articulated body representation and two-way coupling between
the body and a fluid simulation to model creatures locomoting in
fluids. Lentine et al. [2011] employed articulated skeletons with a
deformable skin layer and two-way coupling to a fluid simulator
to model figures moving in fluids. We too employ an articulated
(human) skeleton, but also include nonrigid simulated flesh, and
use two-way coupling between the deformable skin and water to
synthesize natural human aquatic motion.

2.3 Underwater Motion Control

Motion control in underwater creatures was pioneered by Tu and
Terzopoulos [1994]. Grzeszczuk and Terzopoulos [1995] achieved
optimal parameters for underwater gait behavior in rather sim-
ple creatures through spatial-temporal optimization methods. Tan
et al. [2011] proposed a covariance-matrix-adaptation-based op-
timization to create realistic swimming behavior for a given ar-
ticulated creature body. However, achieving sophisticated human
swimming styles through spatial-temporal optimization is a huge
challenge, as one must define a tailored objective function for
each style. Other methods have therefore been developed to cre-
ate gait motions for more complex systems such as humans. Yang
et al. [2004] developed a layered strategy for human swimming
control in which each control layer is procedurally modeled and
empirically tuned to create physics-based swimming motion in real
time. Kwatra et al. [2010] developed a swimming controller that
computes the necessary joint torques to follow captured human
motions that mimic swimming.

We develop a CPG-based locomotion controller that, after learn-
ing a few parameters, automatically generates muscle contraction
signals that enable the human model to perform swimming mo-
tions. Our controller is able to achieve more complex tasks, such
as changing speed, turning, style transition, etc. CPGs are neu-
ral circuits found in both invertebrate and vertebrate animals that
can produce rhythmic patterns of neural activity without receiving
rhythmic inputs. Research in biology and robotics has shown that
animal locomotion is in large part based on CPGs [MacKay-Lyons
2002; Ijspeert 2008]. CPG models have already been successfully
applied to robotic control. Ijspeert et al. [2007] built an amphibi-
ous salamander robot controlled by CPG models, and Righetti
and Ijspeert [2006] developed a programmable CPG for the on-
line generation of periodic signals to control bipedal locomotion
in a simulated robot. Taga [1995] constructed a human locomo-
tion controller based on CPGs and Hase et al. [2003] optimized
this controller for 3D musculoskeletal models without activation
dynamics. The aforementioned efforts employ CPGs to generate
desired joint angle signals, whereas we use CPGs to generate the
desired muscle contractions. In our case, muscle contraction con-
trol has several advantages over joint angle control, among them
easy computation of the activation levels needed to drive the con-
tractile muscle actuators using a simple feedback scheme, which
makes it very suitable for controlling our biomechanical human
model.

3. SIMULATION AND COUPLING

Our multiphysics simulation framework for realistic human swim-
ming comprises three mutually coupled specialized component
simulators—an articulated multibody simulator for the skeleton, a
(Lagrangian) deformable solid simulator for the flesh and muscles,
and a (Eulerian) fluid simulator for the water. In this section, we
will detail how we employ these simulators in an interleaved man-
ner to animate swimming and related underwater motions using a
biomechanical human model.

3.1 Overview

For our purposes in this article, we have developed a comprehensive
biomechanical human model (Figures 3, 4, and 5) with 103 rigid
bones (comprising 163 articular degrees of freedom), including the
vertebrae and ribs, that is actuated by 823 muscles modeled as piece-
wise uniaxial, Hill-type musculotendinous actuators. The skeleton
is simulated as an articulated, multibody dynamical system. The
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Fig. 4. The 823 Hill-type musculotendinous actuators (MAs).

Fig. 5. Muscle geometries; superficial muscles on the left side of the body are not shown so as to reveal the deeper muscles beneath them.

deformable 3D muscle and passive flesh simulation is accom-
plished by a lattice-based discretization of quasi-incompressible
elastic material augmented with active muscle terms. The inertial
properties of the skeleton are approximated from the dense
volumetric physical parameters of the soft-tissue elements, that is,
each bone’s inertial tensor is augmented by the inertial parameters

of its associated soft tissues. The natural dynamics of the simulated
human are induced by muscle forces generated by the contractile
actuators. The surrounding water in which the biomechanical
human model floats is simulated according to the Navier-Stokes
equations using an Eulerian fluid solver. Our simulation framework
implements the natural dynamic couplings between the flesh and
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skeleton, as well as between the deformable skin surface of the
virtual human and the surrounding water, in an interleaved manner.

3.2 Simulation Components

The Navier-Stokes equations for the water are simulated using an
Eulerian method on a MAC grid and the water surface is tracked
using the particle-level-set method, in accordance with Enright et al.
[2002] and Foster and Fedkiw [2001].

The force generating characteristic of the MA is governed by
a linearized Hill-type muscle model. Assuming the length of the
tendon is constant, we model a muscle force as the sum of forces
from a contractile element (CE) and a parallel element (PE). The PE
force accounts for the passive elasticity of a muscle while the CE
represents the active muscle force that is controlled by the motor
neurons. Additional details can be found in Lee et al. [2009].

The low-level control inputs of our biomechanical human model
comprise the activation levels of each muscle (Section 4 describes
how these muscle activation levels are determined). The activated
muscles generate forces that drive the skeletal simulation. Given the
contractile muscle forces plus the external forces from the flesh sim-
ulation, we simulate the skeleton using the Articulated Body Method
[Featherstone 1987] to compute the forward dynamics in conjunc-
tion with a backward Euler time-integration scheme as in Lee et al.
[2009]. For the purpose of simulating the dynamic deformation of
the flesh and muscles, we employ a lattice-based discretization of
quasi-incompressible elasticity [Patterson et al. 2012] augmented
with active muscle terms. This approach avoids the need for multiple
meshes conforming to individual muscles and its regular structure
offers significant opportunities for performance optimizations. Ap-
pendix A provides additional implementation details.

3.3 Coupling Framework

We demonstrate our overall multiphysics coupling framework in
Figure 6. In Figure 6(a), circled numbers tag the simulated compo-
nents and interfaces that are involved in our couplings: ① denotes the
bones, ② denotes the flesh-bone interface, ③ denotes the muscles,
④ denotes the passive flesh, ⑤ denotes the skin-fluid interface, and
⑥ denotes the fluid. The following five steps, which are illustrated
in Figures 6(b)–(f), are repeated in every coupling cycle.

(1) The fluid forces are computed on the immersed skin surface
(Figure 6(b)).

(2) Given the fluid forces and the attachment spring forces from the
bones, the flesh simulation is advanced to equilibrium, which
also transfers the external forces acting on the skin surface to
the bones (Figure 6(c)), where the flesh-bone and skin-fluid
gaps are exaggerated for clarity and the white region inside the
flesh is hollow).

(3) Given the muscle forces and attachment spring forces from
the flesh, the skeleton simulation is then advanced to the next
timestep (Figure 6(d)), where the dashed lines indicate the bone
positions from the previous timestep (Figure 6(c) to illustrate
the movement of the bones).

(4) In the new bone configuration, the flesh simulation is again
advanced to equilibrium, subject to the fluid forces and new
attachment spring forces from the bones (Figure 6(e)).

(5) Finally, given the new skin surface, the fluid simulation is ad-
vanced to the next timestep (Figure 6(f)).

The next two sections further detail the flesh-bone coupling and the
skin-fluid coupling.

3.4 Flesh-Bone Coupling

The deformable flesh tissue is coupled to the rigid articulated skele-
ton via a network of spring constraints, as has been previously
demonstrated in Lee et al. [2009] and McAdams et al. [2011]. From
the viewpoint of the volumetric flesh simulation, such spring attach-
ments serve as soft constraints. They also serve in computing the
aggregate force and torque that the deformable flesh exerts on each
bone. In our framework, we further leverage this network of soft
constraints to transfer to the bones the external forces applied to the
skin surface, in a fashion that respects the deformable flesh which
intervenes between the bones and the points of application of the
external forces. After computing the distribution of external forces
on the skin, originating from any sources including fluid forces
or collisions, we solve for the quasistatic equilibrium shape of the
deformable flesh. Once the steady state configuration has been com-
puted, the tension of the attachment springs is used to calculate how
the skin-applied forces have been distributed to the bone-flesh inter-
face. From balance of force properties, we have strong guarantees
that the aggregate force is applied by the attachment springs to the
bones (at equilibrium), independent of the material parameters of
the soft tissue or the stiffness of the attachment springs. Of course,
different material parameters may have an effect on how broadly
a surface force gets spread out from the point of application. This
quasistatic process makes the force transfer from the flesh to the
bones occur instantaneously, which eliminates a potential lag while
ensuring that external forces acting on the skin will realistically
influence the articulated dynamics of the skeleton.

3.5 Skin-Fluid Coupling

The traditional method for coupling fluids and solids is for the solid
to prescribe velocity boundary conditions on the fluid and for the
fluid to provide force boundary conditions on the solid [Benson
1992]. Accordingly, we also use the velocity of the human body
model skin surface to enforce the Neumann boundary condition
along the surface by making the normal component of the fluid
velocity equal to that of the skin’s velocity. To calculate the force
of the fluid on the body, we would ideally integrate over the skin
surface the pressure computed by the fluid solver. For incompress-
ible flow, however, the pressure (that serves as a penalty term in the
Navier-Stokes computation) is both stiff and noisy, hence more or
less unreliable, as discussed in Fedkiw [2002].1 As a consequence,
instead of demanding a higher degree of accuracy in the pressure
computation from our underlying fluid simulation engine, we opt
for a computation of fluid-to-solid forces based on fluid velocities,
which are generally more accurate and temporally coherent. We use
the relative velocity of the human skin with respect to the fluid to
compute the hydrodynamic force and we construct a new level-set
representation of the water to compute the buoyancy force. These
forces due to the water acting on the body are computed at each
triangle of the skin surface and applied to the skin as external forces.

To compute the hydrodynamic force on each triangle of the skin
surface, we employ a simplified hydrodynamic force model similar
to those found in Tu and Terzopoulos [1994], Yang et al. [2004],
and Lentine et al. [2011]:

f = min [0, −ρA (n · v)] (n · v) n, (1)

1While the velocity field is a primary state variable and limited in its temporal
variation due to momentum conservation, the pressure field is a byproduct
of the projection of velocities into a divergence-free field, and may exhibit
notably higher temporal variance than the fluid velocities.
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Fig. 6. Overview of our multiphysics coupling framework.

where ρ is the density of the water, A is the area of the triangle, n is
its normal, and v is its velocity relative to the water. To enforce the
boundary conditions in the fluid solver, we must make the normal
component of the fluid velocity equal to that of the solid’s velocity,
so we cannot use the fluid velocity on the boundary cell to compute
the relative velocity (as its normal component will be approximately
zero). Instead, we accumulate velocities of the fluid in neighboring
cells around the boundary cell in which the skin triangle lies and em-
ploy the mean local fluid velocity to compute the relative velocity v.

The total buoyancy force acting on the floating body equals the
weight of water displaced by the body. For underwater motion with
the body wholly immersed, the buoyancy approximately cancels
out the gravity force, since the average density of the human body
approximately equals the density of water. However, this is not the
case for swimming where the human body is often only partially im-
mersed. It is therefore important to compute buoyancy correctly in
order to simulate realistic dynamic trunk motions, especially for
the butterfly swimming style. We can represent the buoyancy as
B = −ρgV , where g is the gravitational acceleration and V is
the volume of water displaced by the body. We may rewrite this
as

B = ρg
∫

S

h(n · ĵ)dA, (2)

where S is the immersed surface of the body model, n is the normal
of the area element, ĵ is the upward unit vector, and h denotes the dis-
tance from the water surface to the area element. Thus, the force on
each triangle is ρhAnyg, where ny is the y component of the normal.

The main problem is how to compute h. A simple way is using
h = y0 − yA, assuming that the water surface is at a constant height
y0, where yA is the y coordinate of the triangle center. Unfortu-
nately, this will cause problems in the simulation, since the error
can become very large when there are significant waves on the sur-
face of the water. Even worse, the error will propagate back and
forth in the interleaved two-way coupling, causing an oscillation in
the motion of the floating body model. We tackle this problem by
constructing a Water PseudoSurface (WPS) at each timestep, from
which we derive h. The portion of the human body that is below this
WPS is treated as the submerged part. Constructing the WPS is a
minimal surface problem: We set Dirichlet boundary conditions on
the human skin surface, assigning a negative Dirichlet value for skin
regions that are immersed, and a positive one for areas of skin that
are not in contact with water. We perform a harmonic interpolation
between these values to reconstruct a zero isocontour of the level-
set function that will extend the water inside the swimmer’s body.
Once this WPS has been reconstructed, we approximate the immer-
sion depth by projecting the closest-surface-point vector (−φ∇φ,
derived from the reconstructed level set) along the vertical direction.
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Another benefit of the WPS is that we can use it for the purposes
of rendering. Generally, the fluid and solid surfaces are not tightly
coupled because of the limit in the fluid simulation resolution, so
there is a noticeable gap between the water and the human body.
However, since the WPS eliminates the part that is submerged, we
can exploit it for rendering. The rendering results shown in Figure 1
are obtained using the WPS.

4. CPG LOCOMOTION CONTROL

The control of biomechanically simulated human swimming is a
challenging problem. Swimming motions have several distinctive
styles, such as butterfly and crawl, each requiring the coordinated
rhythmic movement of multiple body parts.

CPGs are biological neural networks capable of generating co-
ordinated patterns of rhythmic activity. Applied to biomechanical
locomotion control problems, CPG models offer important advan-
tages. Each individual MA in our biomechanical model has its own
activation input. A CPG controls the temporally varying length of
each MA and a PD feedback loop synthesizes the associated mus-
cle activation signal. The CPG produces the desired rhythmic motor
control signal, which remains stable and smoothly varying, even for
abrupt changes in the control parameters. The CPG’s inherent sta-
bility readily restores the biomechanical system’s normal rhythmic
action even after perturbative transients. Furthermore, CPG mod-
els typically involve only a few parameters that modulate their
rhythmic outputs. Hence, a properly implemented CPG-based ap-
proach reduces the dimensionality of the motor control problem
such that higher-level locomotion controllers need to produce only
task-oriented control signals rather than an unwieldy set of low-level
MA activation signals.

Our high-level swimming controller, which functions by modu-
lating the CPG oscillators, can be simplified by grouping muscles.
As illustrated in Figure 7, we divide the muscles into 10 groups—
left trunk, right trunk, medial trunk, left neck, right neck, medial
neck, left arm, right arm, left leg, right leg. All the muscles in each
group share the same frequency and initial phase. We determined
empirically that these 10 muscle groups afford adequate control
over the limbs, trunk, and head to produce the swimming strokes
demonstrated in Section 5, and turns can be induced by simply de-
creasing the activation amplitudes on one side of the body relative
to their counterparts on the other. Using a larger number of muscle
groups would afford finer control over body movement, albeit with
increased high-level controller complexity.

Our control architecture (whose details are presented in the fol-
lowing sections) results in an easy-to-use biomechanical swimming
controller with nontrivial functionality, such as changing speed,
turning, and transitioning between swimming styles.

4.1 Generating the Desired Muscle Lengths

We use Virtual-Swim [2007] as a reference for CPG learning. For
each swimming style, we manually select around 20 joint angle key
poses. As CPG learning needs to use both the first and second-order
derivatives of the signals (see Gams et al. [2009]), we want the
muscle length data to be doubly differentiable. We first use cubic
B-splines to least-squares fit the joint angle training data. From
the desired kinematic skeleton motion, we determine the desired
muscle length over time between the two attachment points of each
muscle. We then fit B-splines to the desired muscle lengths, from
whose coefficients we can easily compute the first- and second-order
derivatives.

Fig. 7. Muscle grouping for CPG control. Each muscle group is shown in
a different color. The medial muscle groups of the trunk and neck are less
visible as they include deeper muscles.

4.2 CPG Learning

Following Gams et al. [2009], we use a group of nonlinear differ-
ential equations to model each CPG unit. The following dynamical
system specifies the attractor landscape of a 1-DOF signal trajectory
y oscillating around an attractor g:

ż = �

(
αz (βz (g − y) − z) + �N

i=1�iwir

�N
i=1�i

)
(3)

ẏ = �z, (4)

where the �i = exp (h (cos (	 − ci) − 1)) are N Gaussian-like
periodic kernel functions whose width is determined by h (in all
our simulations, we set N = 25 and h = 2.5N , and ci are equally
spaced between 0 and 2π in N steps). Here, y is the generated
signal, whose phase is 	, and z is an intermediate variable that
describes the first-order derivative of y. The fundamental (lowest
nonzero) frequency of the input signals is �. Since swimming is
a periodic motion, we can specify � as 2π/T , where T is the
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period of a swimming cycle. The positive constants αz and βz are
set to αz = 8 and βz = 2 for all our simulations. The amplitude
control parameter is r , which we set to r = 1. The preceding
model encapsulates several desirable properties in a single set of
differential equations, such as the reproduction of the trajectories,
easy modulation, and robustness against perturbations.

We use Incremental Locally Weighted Regression (ILWR)
[Schaal and Atkeson 1997] to learn the weights wi in (3) as in Gams
et al. [2009]. The CPG control model allows easy modulation of
the signals. Changing the parameter g modulates the baseline of
the rhythmic movement. This smoothly shifts the oscillation with-
out modifying the signal shape. Modifying � and r changes the
frequency and the amplitude of the oscillations, respectively. Since
the dynamical system is of second order, even an abrupt change in
the parameters yields smooth variations in y. Although the length
trajectories of different muscles may share the same frequency, the
amplitudes and baseline may vary significantly. To enhance learn-
ability, we normalize and center each muscle length trajectory to
bracket the signal between −0.5 and 0.5. For convenience, we also
scale the period of the input signals to 1 sec, and then use r , g,
and � to modulate the learned signals. In the learning process, we
simply set r = 1, g = 0, and � = 2π .

After learning the parameters, the desired muscle lengths can be
generated by numerically integrating (3) and (4) using the fourth-
order Runge-Kutta method. 	 is updated as 	 = 	 + � dt, where
dt is the timestep.

Additional details about our CPG learning method are provided
in Si [2013].

4.3 Muscle Control

After CPG synthesis of the desired muscle lengths, we use a first-
order damping approach to compute the activation level

a = Ke(l − ld ) + Kd (l̇ − l̇d ) (5)

for each muscle, where l is the current muscle length, ld is the desired
muscle length, and Ke and Kd are elastic and damping coefficients,
respectively. In our experiments, we simply set Ke = 5/l0 and
Kd = 0.005/l0, where l0 is the rest length of the muscle. The desired
muscle length l̇d is synthesized as y according to (4). As muscle
activation levels range between 0 and 1, we clamp the computed
activation a between 0 and 1. These generated activation levels drive
the Hill-type MAs that exert forces on the skeleton and also serve
as inputs to the deformable flesh simulation.

4.4 High-Level Motion Control

Our CPG-based motion controller is easy to use. After having
learned several types of locomotion modes, it can easily perform
them in any desired frequency, switch among modes, or achieve
some desired pose. It can also control motions for different muscle
groups separately; for instance, one arm can maintain some desired
pose while the remaining body parts carry out a locomotion pattern.

The frequency of the movement is controlled by �, its phase by
	, and its amplitude by r . A static pose can be achieved by setting
r = 0. Not updating 	 maintains the current pose. To transition
from one motion to another, we simply switch the parameters (wi ,
r , and g) of the CPG units. We can do this abruptly since, per (3) and
(4), this will merely cause abrupt changes in the second derivative
of the desired muscle length signal ż. Because � directly influences
ẏ, so long as � is continuous, the desired muscle length signals will
be C1-smooth. This nice property yields natural motion transitions
(which can be seen in the accompanying video). See Section 5.2 for
more about motion modulation.

5. EXPERIMENTS AND RESULTS

In this section, we present experimental results produced using our
simulation and control framework for various swimming styles as
well as changing orientation in the water environment. We refer the
reader to the animations in our accompanying video.

On a 2.8GHz Intel i7 CPU with 4GB of RAM, the running
times of our swimming simulator range from 3 to 10 minutes per
frame with a 192 fps frame rate, depending on how many steps the
adaptive timestepping fluid and deformable solid simulators execute
per frame. The overhead for stepping the controller is negligible
compared to the cost of the physics simulation.

For all the experiments presented, we set the water density
to 1000 kg/m3 and the Young’s modulus of the human flesh to
5 × 105 N/m2 based on the results reported in Agache et al. [1980].
The average density of our human model is 980 kg/m3.

5.1 Swimming Styles

We trained our CPG control system on two different swimming
styles—butterfly and crawl—which Figures 8 and 9 illustrate. The
accompanying demo video shows the simulation results for these
two swimming styles and compares them with video footage of a
real human swimmer.

5.2 Swimming Motion Modulation

In addition to generating coordinated swimming motion, our CPG
controller can also achieve more complex tasks by modulating a few
high-level parameters. Swimming speed can be modulated by scal-
ing the fundamental frequency � of each muscle group by the same
amount. In order to generate a natural transition, we can change the
frequency gradually to the desired frequency. In the accompanying
video, we show the simulation result of increasing the speed of the
butterfly stroke by doubling the fundamental frequency.

Swimming style transitions are accomplished by switching the
parameters (wi , r , and g) of the CPG units from one motion to
a different motion. The accompanying video shows a simulation
result in which the swimmer transitions from butterfly to crawl
strokes.

To produce a left turn, the g of left neck and left trunk muscles
are decreased, the g of the right neck and right trunk muscles are
increased, and the r for all the neck and trunk muscles is decreased.
Right turns are produced by doing the opposite. To execute sharp
turns, we can also keep one arm straight by switching the CPG
parameters of that arm muscle group to a static pose (r = 0).
Figure 10 shows an animation sequence of the virtual swimmer
making a 90-degree right turn.2

5.3 Anatomically Detailed Simulation

As a result of our comprehensive biomechanical human model-
ing, we can also demonstrate the detailed, anatomically accurate
animation of the swimmer’s body. In Figures 1(a)–(b) and in the
accompanying video, we reveal the deformation of the swimmer’s
muscles by rendering the skin translucently. Figures 11 shows two
closeup frames from the butterfly swimming simulation shown in
the video to demonstrate the bulging of the thigh muscles as they
contract to rotate the bones meeting at the knee.

2This is similar to the turn demonstrated by the (real) swimmer just after
1:22 in the YouTube video at the following url: https://www.youtube.
com/watch?v=YLT7YEwUCwI.
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Fig. 8. Butterfly swimming sequence.

Fig. 9. Crawl swimming sequence.

Fig. 10. Making a 90-degree right turn.

6. DISCUSSION

Our interleaved approach to coupling fluid, flesh, and skeletal com-
ponents provides us flexibility and versatility in constructing a sim-
ulation and control framework from different algorithmic building
blocks and simulation algorithms. However, this interleaved cou-
pling reflects a conscious compromise in traits such as stability,
accuracy, and performance potential. A fully coupled system with
deformable, fluid, and rigid components would, in theory, enable
implicit integration techniques that would achieve stable simulation
while tolerating larger timesteps. In contrast, we take the most time
step-restrictive of the phases involved (generally the fluid) and use
it to dictate the timestep for the interleaved simulation cycle. As
control techniques mature and the value of easy testing of modular
simulation components becomes less pronounced, a closer look at
a tightly coupled multiphysics/control system would certainly be
appropriate.

In our biomechanical body model, forces due to the Musculo-
tendinous Actuators (MAs) plus the volumetric flesh simulation
affect the mechanical response of the skeleton. As the body pose
causes stretching or compression of the flesh, reactive flesh forces
act on the bones, which serves a similar purpose as the passive
components of the MAs. Additionally, since our flesh simulation
incorporates a contractile component controlled by the MAs, it will
also transmit active flesh forces to the bones. Ideally, our volumetric

simulation would capture the entirety of forces due to flesh elas-
ticity and muscle contraction; however, producing accurate muscle
forces exclusively from the flesh simulation would require a high
degree of modeling accuracy, including detailed geometric and ma-
terial descriptions for tendons and connective tissues. Fortunately,
this is unnecessary for synthesizing natural looking flesh deforma-
tions, where deep muscle force accuracy is not a crucial factor.
Conversely, while the MAs cannot model volumetric flesh defor-
mation, they produce biomechanically faithful and stable muscle
forces and torques. Our synergistic approach includes both MA
and volumetric force simulations, enabling each to compensate for
the limitations in the other. In particular, the MAs contribute their
actuation forces to anatomically accurate bone attachment points,
which compensates for the actively contractile flesh forces that are
spread broadly over the bones in the absence of tendon models in the
volumetric flesh simulation. On the other hand, the transfer to the
bones of external forces acting on the skin relies on the volumetric
flesh simulation. Overall, our combined simulation system serves
as a hybrid approximation whose parameters are adapted to produce
a realistic biomechanical simulation of the musculotendinous soft
tissues and skeletal substructure of the human body.

Appendix B provides a comparative discussion, based on ad-
ditional experiments reported therein, of more conventional al-
ternatives to the main simulation and control components of our
framework.
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Fig. 11. Contraction and bulging of the thigh muscles (from the butterfly
swimming simulation).

7. CONCLUSION AND FUTURE WORK

The main contributions of our reported research are as follows.

—We have introduced a multiphysics simulation and control frame-
work, interleaving an articulated multibody simulator, a La-
grangian deformable solid simulator, and an Eulerian fluid sim-
ulator, within whose scope is the realistic animation of a sophis-
ticated autonomous human model that is capable of controlled
swimming.

—We have developed a comprehensive biomechanical model of the
human body, which includes 103 rigid bones (comprising 163
articular degrees of freedom) simulated as an articulated, multi-
body dynamical system that is driven by 823 contractile muscles,
modeled using piecewise uniaxial Hill-type musculotendinous
units, plus a muscle and passive flesh simulation via an efficient
volumetric finite element model of quasi-incompressible elas-
tic material augmented with active (contractile) muscle terms, as
well as the appropriate two-way coupling between the articulated
skeleton and deformable flesh.

—With regard to the control of the biomechanical human model
such that it produces complex coordinated locomotion, we de-
veloped a Central Pattern Generator (CPG)-based controller that
generates muscle activation signals to induce appropriately co-
ordinated muscle contractions, governed by a perceptive, higher-
level, task-oriented motion controller.

Contemplating how people learn to swim, we are inspired to fur-
ther investigate this topic in our future work. Humans learn to swim
by first learning the movement of the limbs, perhaps by mimick-
ing swimming demonstrations. This corresponds to the supervised
learning process of our CPG system. After attaining command of the
kinematic pattern of a swimming style, one can improve one’s swim-
ming skill through practice. This can be treated as an optimization
process. Similarly, we can try to optimize the learned parameters of
our CPG system in order to improve our biomechanical swimmer’s
efficiency. Generally speaking, CPG models offer a good substrate
for automated learning and optimization algorithms. Studying how
the swimmer responds to perturbations will be another interesting
research direction. In particular, we can potentially simulate how a
human should perform swimming in a torrential flow.

In the aquatic environment we do not deal with balance, and
losing balance does not cause serious problems for underwater mo-
tion control in a calm water environment, since buoyancy approx-
imately cancels gravity and humans can efficiently control their
limbs to generate proper drag forces, thus making their motions
controllable. Under large perturbations, however, we are forced to
confront balance in order to produce controllable motion. Balance
is also a very troublesome issue when controlling terrestrial motion.
It will not suffice to simply apply our CPG controller to walking

and running motions as we would need to develop a more sophis-
ticated feedback scheme to handle the balance problem. This is
another interesting avenue for future work. Real-world motion may
be a superimposition of locomotion and voluntary movements (e.g.,
waving hands while walking). Combining our CPG controller with
other controllers such as the neuromuscular controller developed in
Lee and Terzopoulos [2006] may be a viable approach to dealing
with a broader variety of motor tasks.

Energy efficiency, which is an important principle for human
motion, is not considered in our swimming controller. Since global
spatio-temporal optimization would be very computationally ex-
pensive for our complex simulation, it is challenging to apply the
energy efficiency principle directly. A possible solution and avenue
for future work would be to compute an energy-efficient controller
for a simplified system and then refine it for use in our simulation
framework.

APPENDIXES

A. DEFORMABLE FLESH MODEL

The elastic flesh and musculature serves as an intermediary between
the fluid environment and the articulated skeleton. The shape and
deformation of the flesh volume is determined by the dynamics of
the articulated skeleton and the hydrodynamic forces acting on the
flesh surface. Naturally, the exact tissue behavior is also dependent
on the geometric layout and material properties of the heterogeneous
array of tissue components that constitute the flesh. Some of these
material traits are encoded as static distributions of scalar (e.g.,
elastic moduli) or vector (e.g., muscle fiber orientations) quantities;
other material properties, such as the muscle activations, are time-
varying signals that are provided as input to the flesh simulation
along with the skeletal dynamics.

We capture the physical behavior of the human swimmer’s soft
tissue and musculature via numerical simulation of a discrete volu-
metric model. In designing this discrete representation, we commit
to certain simplifying assuptions and modeling approximations to
strike a reasonable balance between computational complexity, ge-
ometric resolution, biomechanical accuracy, and robustness of the
simulation. First, we do not seperately model the skin as a distinct
simulation component; for the purposes of fluid-flesh interaction,
the contact surface is simply the boundary of the flesh volume and
not a separate 2D skin layer. The entirety of the space between the
skin and bones is modeled as an elastic continuum; no air-filled
cavities or fluid volumes are explicitly simulated as such, although
we are free to modulate the elastic properties (e.g., stiffness or com-
pressibility) of such areas to reflect their macroscopic behavior. In
addition, the entire flesh volume is assumed to deform as a con-
nected continuum; that is, we do not allow slip or separation in the
interior of the flesh volume. Note that connective tissue typically
limits the extent of such motions, but there are parts of anatomy
where true sliding or separation is possible in the real human body.

A.1 Lattice Representation

We use a lattice-based representation (in essence, a lattice deformer)
to capture the shape of the deforming flesh volume. This discrete
model is simply created by superimposing a cubic lattice (we use
a lattice size of 10mm) on a 3D model of the human body, and we
discard all cells that do not intersect the flesh volume (i.e., cells
that are outside the body, or wholly within solid bones). Of course,
the lattice representation thus created does not accurately capture
the geometry of the flesh volume, but provides only a “cubed”
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approximation. Despite this, we construct the discrete governing
equations so as to compensate for this geometric discrepancy. We
discretize the elasticity equations following the methodology of Pat-
terson et al. [2012], which captures the fact that lattice elements on
the boundary of the flesh volume are only fractionally covered by
elastic material. The jagged boundary of the lattice-derived simu-
lation volume also differs from the actual skin surface where fluid
forces are to be applied; we compensate for this by embedding
a high-resolution skin surface mesh within the cubic lattice and
distributing the forces acting on the skin surface into the volumet-
ric lattice by scaling with the appropriate embedding weights, as
discussed in Zhu et al. [2010]. Finally, since the contact surface be-
tween the flesh and bones is not resolved in the lattice-derived mesh,
we use stiff zero rest-length springs to elastically attach points sam-
pled on bone surfaces to embedded locations in the flesh simulation
lattice, as detailed by Lee et al. [2009] and McAdams et al. [2011].

We shall further discuss these modeling traits after presenting the
material model for the elastic flesh volume.

A.2 Flesh Constitutive Model

Due to the lattice-based nature of our discretization, the exact shape
of the active muscles is not fully captured in our elastic flesh de-
former. Although it is possible to replicate the approach of Patterson
et al. [2012] and adapt a quadrature scheme to capture the local-
ized presence of an active muscle within a lattice cell, we found it
adequate to average the effect of the muscle with respect to each
lattice cell that it intersects, an approach similar to what Lee et al.
[2009] employed in their tetrahedral discretization. Specifically, for
a given cell of our lattice deformer, we compute the fractional cov-
erage dm ∈ (0, 1] by the volume of muscle m that it contains. In
other words, a cell that is fully inside the volume of muscle m would
have dm = 1, while a muscle that covers only 25% of the cell in
question would yield dm = 0.25. We refer to these volume fractions
as muscle densities, which are used to modulate the mechanical
effect that a given muscle has within each cell. We similarly define
the muscle fiber orientations fm on a per-cell basis to be the aver-
aged orientation of the muscle fiber field within the lattice element
fraction covered by muscle m. In practice, we compute both dm and
fm by Monte-Carlo integration, and the cost of this preprocessing
step is sustained only at the time of model creation.

We model the material response of the elastic flesh as a back-
ground isotropic substrate augmented by an additional response
due to the presence of muscles. Thus, our constitutive model is
defined as a weighted average of the constitutive models for pas-
sive flesh (�p) and contractile muscles (�m), using the previously
computed muscle densities dm, as

�(F) = �p(F) +
∑

m

dm�m(F) + �v(F), (6)

which also includes a volume conservation term �v that forces the
flesh volume to remain nearly incompressible.

The passive flesh is modeled as an isotropic, quasi-
incompressible Mooney-Rivlin material [Bonet and Wood 1997],
leading to the following formula for its strain energy density �p in
(6):

�p = μ10(tr Ĉ − 3) + 1

2
μ01

[
tr2Ĉ − Ĉ : Ĉ − 6

]
, (7)

where Ĉ = F̂T F̂ is the deviatoric Cauchy strain tensor, F̂ = J −1/3F
is the deviatoric component of the deformation gradient, and J =

det F is the local volume change ratio.3 We use the values μ01 =
0.06 MPa and μ10 = 0.02 MPa for the moduli of elasticity.

Each muscle that intersects a given lattice cell supplements
the cell’s strain energy density in (6) by the scaled contribution
dm�m(F). The term �m(F) is in fact only dependent on the along-
fiber elongation or contraction, computed as

λm = ‖F̂fm‖. (8)

Following the formulation in Blemker and Delp [2005], we define
�m(λm) indirectly via its derivative

∂�m(λm)

λm

= σmax

λopt
ftot(λm), (9)

where σmax = 0.3 MPa is the peak isometric stress of skeletal
muscle, λopt = 1.4 is the optimal fiber contraction ratio for force
generation, and ftot is the normalized force-length function for the
passive and active components. We define ftot in accordance with
a standard Hill-type muscle model [Zajac 1988].

Both active (muscles) and passive (tendon, collagen, fat) compo-
nents of flesh are primarily composed of water and, consequently,
tissue deformation is largely incompressible. This is of particular
importance in our model for reproducing muscle bulging behav-
iors.4 Specifically, the volume conservation term in (6) is

�v(F) = κ

2
(J − 1)2, (10)

with the bulk modulus κ set to 100 MPa in our model. As discussed
by Patterson et al. [2012], this stiff energy term, which exceeds
the stiffness of the nonvolumetric elastic tissue response by more
than two orders of magnitude, could severely hinder an efficient
numerical solution by slowing down the convergence of iterative
equilibrium solvers. We follow the mixed formulation proposed in
their work, rewriting the constitutive model (6) as

�̂(F, p) = �0(F) + αp(J − 1) − α2p2

2κ
, (11)

where �0(F) = �p(F) + ∑
m dm�m(F) is the deviatoric compo-

nent of the strain energy excluding response due to volume change.
This new strain energy introduces an auxiliary “pressure” variable
p that in the limit of true incompressibility (κ → ∞) becomes a
Lagrange multiplier for the volume preservation constraint J = 1.
The strain energy (11) has the remarkable property that a saddle
point of �̂ can occur at a configuration (x∗, p∗) iff x∗ is a critical
point (typically, a stable minimum) of the strain energy (6). How-
ever, (11) can remain extremely well conditioned, even for highly
incompressible materials, by tuning the free parameter α (whose
user-specified value does not affect the location of its saddle point
or the respective critical point of (6)). We found that a value of
α ≈ √

κ(μ01 + μ10)/h leads to convergence behavior comparable
to compressible materials, even when κ is set to the high value of

3The operators “det”, “tr”, and “:” denote the determinant, trace (tr A =∑
i Aii ), and double contraction (A : B = ∑

i,j Aij Bij ), respectively.
4Volume preservation in real human tissue is a rather “global” effect, since
the displacement of blood volume and intercellular water is very much pos-
sible due to both pathological factors (e.g., swelling, circulatory anomalies)
as well as mechanical means (external pressure, body posture, etc.). In our
approach we do not aim to resolve such complex, often viscoelastic ef-
fects, and settle for a hyperelastic quasi-incompressible material response,
where local volume preservation is enforced by means of a penalty term that
discourages volume change.
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100 MPa. Of course, we must employ an iterative method capable
of solving indefinite systems (we use MINRES in our implemen-
tation), since the strain energy (11) is nonconvex by design (i.e., it
has an indefinite Hessian). We refer the reader to Patterson et al.
[2012] for the discretization and numerical solution details.

A.3 Skeletal Attachment Constraints

Similar to the approach of Lee et al. [2009], we employ elastic,
zero rest-length springs to anchor the deformable flesh to attach-
ment locations that are uniformly sampled on the surface of every
bone; in this way, the regular lattice need not strictly conform to
the exact surface shape of the skeletal bones. The soft nature of
these constraints also provides a degree of tolerance against mod-
eling or articulation inaccuracies that might lead to (limited) bone
intersection during motion, or extreme nonphysical compression
of flesh around joints in tight contact. Additionally, the attachment
springs provide the mechanism by which external forces acting on
the skin surface propagate to the underlying skeletal bones. Tech-
nically, each discrete attachment location contributes a term � (i) to
the (deviatoric) strain energy �0 in (11), defined as

� (i) = β (i)

2
‖W(i)x − t (i)‖2

2, (12)

where β (i) is the stiffness of the spring constraint (set proportional
to the contact area attributed to this attachment point), W(i) is a
weighted embedding (typically a trilinear interpolation map from
the lattice degrees of freedom) of a flesh anchor inside the deforming
lattice, and t (i) is the respective kinematic target on the bone surface.

B. COMPARING ALTERNATIVE APPROACHES

Guided by biological and physical first principles, our framework
has embraced:

(1) CPG-based locomotion control, since the CPG is a biologically
principled low-level motor control mechanism;

(2) muscle-based actuation, as contractile muscles are the biologi-
cally principled skeletal actuation mechanism;

(3) volumetric soft-tissue simulation as the biologically principled
fleshing approach; and

(4) detailed physical simulation of the environment, particularly
Navier-Stokes simulation of water, and its interaction with the
swimmer’s body.

In this appendix, we report on experiments aimed at assessing
the importance of these simulation/control components of our
framework relative to more conventional approaches in computer
animation.

B.1 CPG Control vs. Splines

Spline-based animation methods have traditionally been more fa-
miliar to graphics practitioners than CPG-based animation control.
In fact, as discussed in Section 4.1, we initially use cubic B-splines
to approximate the CPG training data. As a simple alternative to
the CPG dynamical model, our continuous spline approximations
may be repeated in time to produce periodic muscle signals to drive
our virtual swimmer. The accompanying video includes a com-
parison of our CPG-controlled swimming against spline-controlled
swimming. Although the results look qualitatively similar for any
particular swimming stroke in steady state, the spline technique is
noticeably choppier than the CPG technique due to discontinuities
in the derivatives of the periodic spline functions across cycles,

whereas the muscle control signals generated by our CPGs are al-
ways C1-smooth. Moreover, to switch from one swimming stroke
to another, the spline-based controller would have to transition care-
fully between numerous periodic spline functions, one per muscle.
By contrast, our CPG muscle controllers can effect smooth tran-
sitions and control swimming speed by simply switching and/or
modifying the values of a few parameters.

B.2 Muscle Actuation vs. Joint Torques

In human animation, joint-torque actuation methods have tradi-
tionally been more familiar to graphics practitioners than muscle-
based actuation. Since skeletal muscle forces, through (bone) mo-
ment arms, eventually produce torques at rotational joints in the
skeleton (but see Lee and Terzopoulos [2008]), we can in principle
achieve similar animation results through equivalent joint-torque-
driven simulation. The accompanying video includes a comparison
of our muscle-actuated simulation against both inverse-dynamic
(ID) and PD joint-torque-actuated simulation. In the case of swim-
ming, we obtained plausible results using joint-torque actuation,
but it was necessary to set high gains for the PD joint-torque con-
trollers accompanied with an order-of-magnitude smaller numer-
ical timestep compared to the muscle-based approach. Moreover,
a further advantage of the latter is that modifying the parameters
of contractile muscles situated in anatomically accurate positions
is the natural way to create nuanced biological motion patterns, in-
cluding pathological ones [Wang et al. 2012], as well as of naturally
effecting realistic flesh deformations [Lee et al. 2009].

B.3 Flesh Simulation vs. Procedural Skinning

For fleshing human bodies, procedural skinning techniques have
traditionally been more familiar to graphics practitioners than vol-
umetric soft-tissue simulation. The accompanying video includes a
comparison of our deformable flesh simulation against a state-of-
the-art dual-quaternion skinning method [Kavan et al. 2008] with
bounded biharmonic weights [Jacobson et al. 2011]. The volumetric
flesh simulation and procedural skinning result in similar swimming
performances. From some but not all viewpoints, the skin deforma-
tion appears plausible as the body articulates, but cannot adequately
synthesize anatomically detailed deformations, such as the muscle
bulging effects demonstrated in Figure 11.

B.4 Fluid Simulation vs. Velocity Fields

Procedural velocity field techniques have traditionally been easier
for graphics practitioners to use than detailed physics-based fluid
simulation (e.g., Tu and Terzopoulos [1994]). The accompanying
video includes a comparison of our Navier-Stokes water simula-
tion approach against the use of a static, zero-velocity water field,
employing the same flesh-water force coupling method for both.
With the same amount of muscle effort, the virtual swimmer swims
significantly faster in the simulated fluid environment compared to
the zero-velocity field. Moreover, fluid simulation provides realis-
tic wave, splash, and other effects that are entirely absent with the
latter.

B.5 A Comparison of Swimming Performances

Figure 12 presents a quantitative comparison of the performance of
our virtual swimmer in the experimental scenarios described in the
previous sections of this appendix, by plotting the distance traveled
by the swimmer’s pelvis over time. The table in Figure 13 indicates
the associated average swimming speeds. In the figure and table,
CPG muscle control refers to our experimental setting developed in
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Fig. 12. Swimming performance in the experimental scenarios.

Fig. 13. The virtual swimmer’s average speed in the experimental
scenarios.

the main text of this article, that is, using CPG locomotion control
to synthesize muscle-length signals for the muscle-driven biome-
chanical body simulation with simulated flesh situated in simulated
water. Under this same simulation scenario, spline muscle con-
trol refers to the use of B-splines to synthesize the muscle-length
signals (Section B.1), ID joint control refers to inverse-dynamics
controlled joint-torque-driven simulation (Section B.2), and PD
joint control refers to PD-controlled joint-torque driven simulation
(Section B.2). Simple skinning refers to using the dual-quaternion
skinning approach (Section B.3). Simple fluid model refers to using
a zero-velocity field (Section B.4).

The figure and table reveal that the virtual swimmer swims most
efficiently in our original experimental scenario. The swimmer can
achieve similar swimming performances in the other experimental
settings, except when the simulated fluid model is replaced by a
zero-velocity field, which results in significantly lower efficiency.
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