next up previous contents
Up: Dynamic NURBS with Geometric Previous: D. Explicit Time Integration

References

1
J. Baumgarte. Stabilization of constraints and integrals of motion in dynamical systems. Comp. Meth. in Appl. Mech. and Eng., 1:1-16, 1972.

2
M.I.G. Bloor and M.J. Wilson. Representing PDE surfaces in terms of B-splines. Computer-Aided Design, 22(6):324-331, 1990.

3
M.I.G. Bloor and M.J. Wilson. Using partial differential equations to generate free-form surfaces. Computer-Aided Design, 22(4):202-212, 1990.

4
W. Bohm, G. Farin, and J. Kahmann. A survey of curve and surface methods in CAGD. Computer Aided Geometric Design, 1(1):1-60, 1984.

5
G. Celniker and D. Gossard. Deformable curve and surface finite-element for free-form shape design. Computer Graphics, 25(4):257-266, 1991.

6
G. Celniker and W. Welch. Linear constraints for deformable B-spline surfaces. In Proceedings, Symposium on Interactive 3D Graphics, pages 165-170, 1992.

7
J.E. Chadwick, D.R. Haumann, and R.E. Parent. Layered construction for animated deformable characters. Computer Graphics, 23(3):243-252, 1989.

8
S.E. Chen and R. Parent. Shape averaging and its applications to industrial design. IEEE Computer Graphics and Applications, 9(1):47-54, 1989.

9
C. de Boor. On calculating with B-Splines. Journal of Approximation Theory, 6(1):50-62, 1972.

10
G. Farin. Trends in curve and surface design. Computer-Aided Design, 21(5):293-296, 1989.

11
G. Farin. Curves and Surfaces for Computer aided Geometric Design: A Practical Guide. Academic Press, second edition, 1990.

12
G. Farin. From conics to NURBS: A tutorial and survey. IEEE Computer Graphics and Applications, 12(5):78-86, Sept. 1992.

13
D.R. Forsey and R.H. Bartels. Hierarchical B-spline refinement. Computer Graphics, 22(4):205-212, 1988.

14
B.R. Gossick. Hamilton's Principle and Physical Systems. Academic Press, New York and London, 1967.

15
H. Kardestuncer. Finite Element Handbook. McGraw-Hill, New York, 1987.

16
A. Kaul and J. Rossignac. Solid interpolating deformations: Construction and animation of PIPs. In F.H. Post and W. Barth, editors, Proc. Eurographics '91, pages 493-505, Amsterdam, 1991. North Holland.

17
D. Metaxas and D. Terzopoulos. Dynamic deformation of solid primitives with constraints. Computer Graphics, 26(2):309-312, 1992.

18
M. Minoux. Mathematical Programming. Wiley, New York, 1986.

19
H.P. Moreton and C.H. Sequin. Functional optimization for fair surface design. Computer Graphics, 26(2):167-176, 1992.

20
A. Pentland and J. Williams. Good vibrations: Modal dynamics for graphics and animation. Computer Graphics, 23(3):215-222, 1989.

21
L. Piegl. Modifying the shape of rational B-splines. part 1:curves. Computer-Aided Design, 21(8):509-518, 1989.

22
L. Piegl. Modifying the shape of rational B-splines. part 2:surfaces. Computer-Aided Design, 21(9):538-546, 1989.

23
L. Piegl. On NURBS: A survey. IEEE Computer Graphics and Applications, 11(1):55-71, Jan. 1991.

24
L. Piegl and W. Tiller. Curve and surface constructions using rational B-splines. Computer-Aided Design, 19(9):485-498, 1987.

25
J. Platt. A generalization of dynamic constraints. CVGIP: Graphical Models and Image Processing, 54(6):516-525, 1992.

26
J. Platt and A. Barr. Constraints methods for flexible models. Computer Graphics, 22(4):279-288, 1988.

27
W. Press, B. Flanney, S. Teukolsky, and W. Verttering. Nemerical Recipes: The Art of Scientific Computing. Cambridge University Press, Cambridge, 1986.

28
L.L. Schumaker. Fitting surfaces to scattered data. In G.G. Lorentz, C.K. Chui, and L.L. Schumaker, editors, Approximation Theory II, pages 203-267. Academic Press, New York, 1976.

29
T.W. Sederberg, P. Gao, G. Wang, and H. Mu. 2-D shape blending: An intrinsic solution to the vertex path problem. In Computer Graphics Proceedings, Annual Conference Series, Proc. ACM Siggraph'93 (Anaheim, CA, Aug., 1993), pages 15-18, 1993.

30
T.W. Sederberg and S.R. Parry. Free-form deformation of solid geometric primitives. Computer Graphics, 20(4):151-160, 1986.

31
Y. Shinagawa and T.L. Kunii. The differential model: A model for animating transformation of objects using differential information. In T.L. Kunii, editor, Modeling in Computer Graphics, pages 6-15. Springer-Verlag, Tokyo, 1991.

32
G. Strang. Introduction to Applied Mathematics. Wellesley-Cambridge Press, MA, 1986.

33
R. Szeliski and D. Terzopoulos. From splines to fractals. Computer Graphics, 23(3):51-60, 1989.

34
R. Szeliski and D. Tonnesen. Surface modeling with oriented particle systems. Computer Graphics, 26(2):185-194, 1992.

35
D. Terzopoulos. Regularization of inverse visual problems involving discontinuities. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(4):413-424, 1986.

36
D. Terzopoulos and K. Fleischer. Deformable models. The Visual Computer, 4(6):306-331, 1988.

37
D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer. Elastically deformable models. Computer Graphics, 21(4):205-214, 1987.

38
J.A. Thingvold and E. Cohen. Physical modeling with B-spline surfaces for interactive design and animation. Computer Graphics, 24(2):129-137, 1990. Proceedings, 1990 Symposium on Interactive 3D Graphics.

39
W. Tiller. Rational B-splines for curve and surface representation. IEEE Computer Graphics and Applications, 3(6):61-69, Sept. 1983.

40
K.J. Versprille. Computer-Aided Design Applications of the Rational B-Spline Approximation form. PhD thesis, Syracuse University, 1975.

41
G. Wahba. Spline Models for Observational Data. SIAM, Philadelphia, PA, 1990.

42
W. Welch and A. Witkin. Variational surface modeling. Computer Graphics, 26(2):157-166, 1992.

43
O.C. Zienkiewicz. The Finite Element Method. McGraw-Hill, London, third edition, 1977.



Demetri Terzopoulos | Source Reference