Up: Dynamic NURBS with Geometric
Previous: D. Explicit Time Integration
References
- 1
-
J. Baumgarte.
Stabilization of constraints and integrals of motion in dynamical
systems.
Comp. Meth. in Appl. Mech. and Eng., 1:1-16, 1972.
- 2
-
M.I.G. Bloor and M.J. Wilson.
Representing PDE surfaces in terms of B-splines.
Computer-Aided Design, 22(6):324-331, 1990.
- 3
-
M.I.G. Bloor and M.J. Wilson.
Using partial differential equations to generate free-form surfaces.
Computer-Aided Design, 22(4):202-212, 1990.
- 4
-
W. Bohm, G. Farin, and J. Kahmann.
A survey of curve and surface methods in CAGD.
Computer Aided Geometric Design, 1(1):1-60, 1984.
- 5
-
G. Celniker and D. Gossard.
Deformable curve and surface finite-element for free-form shape
design.
Computer Graphics, 25(4):257-266, 1991.
- 6
-
G. Celniker and W. Welch.
Linear constraints for deformable B-spline surfaces.
In Proceedings, Symposium on Interactive 3D Graphics, pages
165-170, 1992.
- 7
-
J.E. Chadwick, D.R. Haumann, and R.E. Parent.
Layered construction for animated deformable characters.
Computer Graphics, 23(3):243-252, 1989.
- 8
-
S.E. Chen and R. Parent.
Shape averaging and its applications to industrial design.
IEEE Computer Graphics and Applications, 9(1):47-54, 1989.
- 9
-
C. de Boor.
On calculating with B-Splines.
Journal of Approximation Theory, 6(1):50-62, 1972.
- 10
-
G. Farin.
Trends in curve and surface design.
Computer-Aided Design, 21(5):293-296, 1989.
- 11
-
G. Farin.
Curves and Surfaces for Computer aided Geometric Design: A
Practical Guide.
Academic Press, second edition, 1990.
- 12
-
G. Farin.
From conics to NURBS: A tutorial and survey.
IEEE Computer Graphics and Applications, 12(5):78-86, Sept.
1992.
- 13
-
D.R. Forsey and R.H. Bartels.
Hierarchical B-spline refinement.
Computer Graphics, 22(4):205-212, 1988.
- 14
-
B.R. Gossick.
Hamilton's Principle and Physical Systems.
Academic Press, New York and London, 1967.
- 15
-
H. Kardestuncer.
Finite Element Handbook.
McGraw-Hill, New York, 1987.
- 16
-
A. Kaul and J. Rossignac.
Solid interpolating deformations: Construction and animation of
PIPs.
In F.H. Post and W. Barth, editors, Proc. Eurographics '91,
pages 493-505, Amsterdam, 1991. North Holland.
- 17
-
D. Metaxas and D. Terzopoulos.
Dynamic deformation of solid primitives with constraints.
Computer Graphics, 26(2):309-312, 1992.
- 18
-
M. Minoux.
Mathematical Programming.
Wiley, New York, 1986.
- 19
-
H.P. Moreton and C.H. Sequin.
Functional optimization for fair surface design.
Computer Graphics, 26(2):167-176, 1992.
- 20
-
A. Pentland and J. Williams.
Good vibrations: Modal dynamics for graphics and animation.
Computer Graphics, 23(3):215-222, 1989.
- 21
-
L. Piegl.
Modifying the shape of rational B-splines. part 1:curves.
Computer-Aided Design, 21(8):509-518, 1989.
- 22
-
L. Piegl.
Modifying the shape of rational B-splines. part 2:surfaces.
Computer-Aided Design, 21(9):538-546, 1989.
- 23
-
L. Piegl.
On NURBS: A survey.
IEEE Computer Graphics and Applications, 11(1):55-71, Jan.
1991.
- 24
-
L. Piegl and W. Tiller.
Curve and surface constructions using rational B-splines.
Computer-Aided Design, 19(9):485-498, 1987.
- 25
-
J. Platt.
A generalization of dynamic constraints.
CVGIP: Graphical Models and Image Processing, 54(6):516-525,
1992.
- 26
-
J. Platt and A. Barr.
Constraints methods for flexible models.
Computer Graphics, 22(4):279-288, 1988.
- 27
-
W. Press, B. Flanney, S. Teukolsky, and W. Verttering.
Nemerical Recipes: The Art of Scientific Computing.
Cambridge University Press, Cambridge, 1986.
- 28
-
L.L. Schumaker.
Fitting surfaces to scattered data.
In G.G. Lorentz, C.K. Chui, and L.L. Schumaker, editors,
Approximation Theory II, pages 203-267. Academic Press, New York, 1976.
- 29
-
T.W. Sederberg, P. Gao, G. Wang, and H. Mu.
2-D shape blending: An intrinsic solution to the vertex path
problem.
In Computer Graphics Proceedings, Annual Conference Series,
Proc. ACM Siggraph'93 (Anaheim, CA, Aug., 1993), pages 15-18, 1993.
- 30
-
T.W. Sederberg and S.R. Parry.
Free-form deformation of solid geometric primitives.
Computer Graphics, 20(4):151-160, 1986.
- 31
-
Y. Shinagawa and T.L. Kunii.
The differential model: A model for animating transformation of
objects using differential information.
In T.L. Kunii, editor, Modeling in Computer Graphics, pages
6-15. Springer-Verlag, Tokyo, 1991.
- 32
-
G. Strang.
Introduction to Applied Mathematics.
Wellesley-Cambridge Press, MA, 1986.
- 33
-
R. Szeliski and D. Terzopoulos.
From splines to fractals.
Computer Graphics, 23(3):51-60, 1989.
- 34
-
R. Szeliski and D. Tonnesen.
Surface modeling with oriented particle systems.
Computer Graphics, 26(2):185-194, 1992.
- 35
-
D. Terzopoulos.
Regularization of inverse visual problems involving discontinuities.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
8(4):413-424, 1986.
- 36
-
D. Terzopoulos and K. Fleischer.
Deformable models.
The Visual Computer, 4(6):306-331, 1988.
- 37
-
D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer.
Elastically deformable models.
Computer Graphics, 21(4):205-214, 1987.
- 38
-
J.A. Thingvold and E. Cohen.
Physical modeling with B-spline surfaces for interactive design and
animation.
Computer Graphics, 24(2):129-137, 1990.
Proceedings, 1990 Symposium on Interactive 3D Graphics.
- 39
-
W. Tiller.
Rational B-splines for curve and surface representation.
IEEE Computer Graphics and Applications, 3(6):61-69, Sept.
1983.
- 40
-
K.J. Versprille.
Computer-Aided Design Applications of the Rational B-Spline
Approximation form.
PhD thesis, Syracuse University, 1975.
- 41
-
G. Wahba.
Spline Models for Observational Data.
SIAM, Philadelphia, PA, 1990.
- 42
-
W. Welch and A. Witkin.
Variational surface modeling.
Computer Graphics, 26(2):157-166, 1992.
- 43
-
O.C. Zienkiewicz.
The Finite Element Method.
McGraw-Hill, London, third edition, 1977.
Demetri Terzopoulos | Source Reference