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Abstract

This article devel ops a dynamic generalization of the nonuniformrational B-spline (NURBS) model. NURBS
have become a de factostandard in commercial modeling systems because of their power to represent free-form
shapes as well as common analytic shapes. To date, however, they have been viewed as purely geometric prim-
itives that require the user to manually adjust multiple control points and associated weights in order to design
shapes. Dynamic NURBS, or D-NURBS, are physics-based models that incorporate mass distributions, inter-
nal deformation energies, and other physical quantities into the popular NURBS geometric substrate. Using
D-NURBS, amodeler can interactively sculpt curves and surfaces and design complex shapes to required specifi-
cations not only in thetraditional indirect fashion, by adjusting control points and weights, but also through direct
physical manipulation, by applying simulated forces and local and global shape constraints. D-NURBS move
and deform in a physically intuitive manner in response to the user’s direct manipulations. Their dynamic be-
havior results from the numerical integration of a set of nonlinear differential equations that automatically evolve
the control points and weights in response to the applied forces and constraints. To derive these equations, we
employ Lagrangian mechanics and a finite-element-like discretization. Our approach supports the trimming of
D-NURBS surfaces using D-NURBS curves. We demonstrate D-NURBS models and constraintsin applications
including the rounding of solids, optimal surface fitting to unstructured data, surface design from cross sections,
and free-form deformation. We also introduce a new technique for 2D shape metamorphosis using constrained
D-NURBS surfaces.

CR Categories and Subject Descriptors. 1.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling — Curve, Surface, solid, and object representations; Physically based modeling; splines; 1.3.6 [Com-
puter Graphics]: Methodology and Techniques— Interaction techniques.

General Terms: Algorithms, Design, Theory

Additional Keywords and Phrases. CAGD, NURBS, Deformable Models, Dynamics, Constraints, Finite Ele-
ments, Trimming, Solid Rounding, Optimal Curve and Surface Fitting, Cross-Sectional Shape Design, Free-Form
Deformation, Shape Metamorphosis.
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1 Introduction

In 1975 Versprille [40] proposed the Non-Uniform Rational B-Splines or NURBS. This shape representation for
geometric design generalized Riesenfeld’'s B-splines. NURBS quickly gained popularity and were incorporated
into several commercial modeling systems [23]. The NURBS representation has severa attractive properties. It
offers a unified mathematical formulation for representing not only free-form curves and surfaces, but also standard
analytic shapes such as conics, quadrics, and surfaces of revolution. By adjusting the positions of control points and
manipulating associated weights, one can design alarge variety of shapes using NURBS[10, 12, 24, 21, 22, 23, 39].

Because NURBS are a purely geometric representation, however, their extraordinary flexibility has some draw-
backs:

e Thedesigner isfaced with the tedium of indirect shape manipulation through a bewildering variety of geomet-
ric parameters; i.e., by repositioning control points, adjusting weights, and modifying knot vectors. Despite
the recent prevalence of sophisticated 3D interaction devices, the indirect geometric design process remains
clumsy and time consuming in general.

e Shape design to required specifications by manual adjustment of available geometric degrees of freedom is
often elusive, because relevant design tolerances are typically shape-oriented and not control point/weight
oriented. The geometric “redundancy” of NURBS tends to make geometric shape refinement ad hocand
ambiguous; for instance, to adjust a shape should the designer move a control point, or change a weight, or
move two control points, etc.?

e Typical design requirements may be stated in both quantitative and qualitative terms, such as “a fair and
pleasing surface which approximates scattered data and interpolates a cross-section curve.” Such requirements
impose both local and global constraints on shape. The incremental manipulation of local shape parameters
to satisfy complex local and global shape constraints is at best cumbersome and often unproductive.

Physics-based modeling provides a means to overcome these drawbacks. Free-form deformable models, which
wereintroduced to computer graphicsin[37] and further developed in [36, 26, 33, 20, 34, 17] are particularly relevant
in the context of modeling with NURBS. Important advantages accrue from the deformable model approach [36]:

e The behavior of the deformable model is governed by physical laws. Through a computational physics simu-
lation, the model responds dynamically to applied simulated forces in a natural and predictable way. Shapes
can be sculpted interactively using avariety of force-based “tools.”

e The equilibrium state of the dynamic model is characterized by a minimum of the potential energy of the
model subject to imposed constraints [35]. It is possible to formulate potentia energy functionals that satisfy
local and global design criteria, such as curve or surface (piecewise) smoothness, and to impose geometric
constraints relevant to shape design.

e The physical model may be built upon a standard geometric foundation, such as free-form parametric curve
and surface representations. This means that while shape design may proceed interactively or automatically
at the physical level, existing geometric toolkits are concurrently applicable at the geometric level.

In this article, we propose DynamicNURBS, or D-NURBS. D-NURBS are physics-based models that incor-
porate mass distributions, internal deformation energies, and other physical quantities into the NURBS geometric
substrate. Time is fundamental to the dynamic formulation. The models are governed by dynamic differential
equations which, when integrated numerically through time, continuously evolve the control points and weightsin
response to applied forces. The D-NURBS formulation supports interactive direct manipulation of NURBS curves
and surfaces, which results in physically meaningful hence intuitively predictable motion and shape variation.

Using D-NURBS, a modeler can interactively sculpt complex shapes not merely by kinematic adjustment of
control points and weights, but, dynamically as well—by applying forces. Additional control over dynamic sculpting
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stems from the modification of physical parameters such asmass, damping, and elastic properties. Elastic functionals
allow theimposition of qualitative “fairness’ criteriathrough quantitative means. Linear or nonlinear constraints may
be imposed either as hard constraints that must not to be violated, or as soft constraints to be satisfied approximately.
The latter may be interpreted intuitively as simple forces. Optimal shape design results when D-NURBS are allowed
to achieve static equilibrium subject to shape constraints. All of these capabilities are subsumed under an elegant
formulation grounded in physics.

Section 2 discusses the similarities and distinctive features of D-NURBS relative to prior models. Section 3
briefly reviews NURBS geometry and its properties. In Section 4, weformulate D-NURBS and derive their equations
of motion. Section 5 discusses the application of forces and constraints for physics-based design. We discuss the
numerical simulation of D-NURBSin Section 6. Section 7 describes our prototype D-NURBS modeling system and
presents applications and results. Section 8 concludes the article.

2 Background

Dynamic NURBS are motivated by prior research aimed at applying the deformable modeling approach to shape
design. Terzopoulos and Fleischer [36] demonstrated simple interactive sculpting using viscoelastic and plastic
models. Celniker and Gossard [5] developed an interesting prototype system for interactive free-form design based
on the finite-element optimization of energy functionals proposed in [36]. Bloor and Wilson [3] developed related
models using similar energies and numerical optimization, and in [2] they proposed the use of B-splines for this
purpose. Subsequently, Celniker and Welch [6] investigated deformable B-splines with linear constraints. Welch
and Witkin [42] extended the approach to trimmed hierarchical B-splines (see also [13]). Thingvold and Cohen [38]
proposed a deformable B-spline whose control points are mass points connected by elastic springs and hinges.

In [2, 6, 42] deformable B-spline curves and surfaces are designed by imposing shape criteria via the mini-
mization of energy functionals subject to hard or soft geometric constraints. These constraints are imposed through
Lagrange multipliers or penalty methods, respectively. The same technigues are applicable to D-NURBS. Compared
to deformable B-splines, however, D-NURBS are capable of representing a wider variety of free-form shapes, as
well as standard analytic shapes. Previous models solve static equilibrium problems, or in the case of [6] involve
simple linear dynamics with diagonal (arbitrarily lumped) mass and damping matrices (apparently for efficiency).

D-NURBS are a more sophisticated dynamic model. We adopt the approach proposed in [17] for converting
arbitrary geometric models into dynamic models using Lagrangian mechanics and finite element analysis. Our
approach is systematic. We formulate deformable curves and surfaces and reduce them to algorithms in a principled
way, without resorting to any of the ad hocassumptions of prior schemes (c.f. [38]). Because our dynamic models
alow fully continuous mass and damping distributions, we obtain banded mass and damping matrices. These are
known as consistenmatrices in the finite element literature [43].

The D-NURBS contral points and associated weights become generalized coordinates in the Lagrangian equa-
tions of motion. From a physics-based modeling point of view, the existence of weights makesthe NURBS geometry
substantially more challenging than B-spline geometry. Since the NURBS rational basis functions are functionally
dependent on the weights, D-NURBS dynamics are generally nonlinear, and the mass, damping, and stiffness matri-
ces must be recomputed at each simulation time step.! Fortunately, this does not preclude interactive performance
on current graphics workstations, at least for the size of surface models that appear in our demonstrations. We prove
several mathematical results that enable us to simplify the motion equations and apply numerical quadrature to the
underlying NURBS basis functions to compute efficiently the integral expressions for the matrix entries.

3 NURBS Geometry

In this section, we review the formulation of NURBS curves and surfaces. We then describe their analytic and
geometric properties. More detailed material can be found in [4, 24, 21, 22, 23, 39].

!Note, however, that for static weights, the matrices become time invariant and the computational cost is reduced significantly.
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3.1 Curves

A NURBS curve generalizes the B-spline. It is the combination of a set of piecewise rational functions with n + 1
control points p; and associated weights w;:

ieo Piwi By g (u)
Yo wiBig(u)
where u is the parametric variable and B; ;,(u) are B-spline basis functions. Assuming basis functions of degree

k—1,aNURBScurve hasn + k + 1 knots ¢; in nondecreasing sequence: #) < t; < ... < t,4. Thebassfunctions
are defined recursively as

c(u) =

D)

i 1 fort; <u< tit1
Bia(u) = { 0 otherwise ’
with . ,
u—t; itk — U
Bik(u) = ———B;;1(u) + H_iBiJrl,kfl(u)'
Livk—1 — L Livke — iyt

The parametric domainist;, 1 < u < t,+1. Inmany applications, the end knots are repeated with multiplicity & in
order to interpolate theinitial and final control points py and p,.

3.2 Surfaces
A NURBS surface is the generalization of the tensor-product B-spline surface. It is defined over the parametric

variables v and v as e
im0 250 Pi,jwij Bik(u) Bj(v)
Y20 =0 Wiy Bik(w) Bjy(v)

A NURBS surface has (m + 1)(n + 1) control points p; ; and weights w; ;. Assuming basis functions along the
two parametric axes of degree k — 1 and [ — 1, respectively, the number of knotsis (m + k + 1)(n + 1+ 1). The
nondecreasing knot sequenceisty <t} <... < t,4k adong theu-axisand sp < s; < ... < s, dong the v-axis.
The parametric domainist, | < u < tpy1 and s; 1 < v < sp41. If the end knots have multiplicity £ and [ in the
u and v axis respectively, the surface patch will interpolate the four corners of the boundary control points.

(2)

s(u,v) =

3.3 Properties

NURBS generalize the nonrational parametric form. Like nonrational B-splines, the rational basis functions of
NURBS sum to unity, they are infinitely smooth in the interior of aknot span provided the denominator is not zero,
and at aknot they are at least C*~1~" continuous with knot multiplicity =, which enables them to satisfy different
smoothness requirements. They inherit many of the properties of nonrational B-splines, such as the strong convex
hull property, variation diminishing property, local support, and invariance under standard geometric transformations
(see [11] for more details). Moreover, they have some additional properties:

¢ NURBS offer acommon mathematical framework for implicit and parametric polynomial forms. In principle,
they can represent analytic functions such as conics and quadrics precisely, as well as free-form shapes.

e NURBS include weights as extra degrees of freedom which influence local shape. If a particular weight
is zero, then the corresponding rational basis function is also zero and its control point does not effect the
NURBS shape. The spline is attracted toward a control point more if the corresponding weight is increased
and lessif the weight is decreased.

For amore detailed discussion of NURBS properties, see[23, 24, 39, 12, 21, 22].

The most frequently used NURBS design techniques are the specification of a control polygon, or interpolation
or approximation of data points to generate the initial shape. For surfaces or solids, cross-sectional design including
skinning, sweeping, and swinging operations is also popular. The initial shape is then refined into the final desired
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shape through interactive adjustment of control points and weights and possibly the addition or deletion of knots.
The refinement process is ad hocand often tedious. To ameliorate it, we propose dynamic NURBS.

4 Formulation of D-NURBS

This section formulates our physics-based D-NURBS model. The shape parameters of geometric NURBS, which
were described in Section 3, play the role of generalized (physical) coordinates in dynamic NURBS. We introduce
time, mass, and deformation energy into the standard NURBS formulation and employ Lagrangian dynamics to
arrive at the system of nonlinear ordinary differential equations that govern the shape and motion of D-NURBS.

4.1 Curves

For simplicity, consider first a D-NURBS space curve. The D-NURBS curve is defined asin (1), but it isalso a
function of the spatial parameter v and time¢:

T api(®w;(t)B;
C(U,t) _ ZZ—Onp ( )'LU ( ) l,k(u) ) (3)
i=0 Wi (t)Bi,k (u)
The control points p;(¢) and weights w;(t), which are now functions of time, comprise the generalized coordinates
of D-NURBS. To simplify notation, we concatenate the generalized coordinates into the following vectors:

po(t) = | Py Py ]T,
Pw(t) = [ Wo Wn ]Tv
p() =[P wo - pL wa] .

where T denotes transposition. Note that we can express the curve c(u,t) as ¢(u, p) in order to emphasize its
dependence on the vector of generalized coordinates p whose components are functions of time. The velocity of the
kinematic splineis

é(u,p) = Jp, (4)

where an overstruck dot denotes a time derivative and J(u, p) is the Jacobian matrix. Because c is a 3-component
vector-valued function and p isan 4(n+ 1) dimensional vector, J isa3 x 4(n+ 1) matrix which is the concatenation
of the vectors dc/0p; and dc/dw;, i = 0, ..., n. Let usinvestigate the contents of J. Fori =0, ..., n, let B;(u, p)
bea3 x 3 diagona matrix whose diagonal entries are the rational basis functions

30 szz k
N' S b
13 (U’? p) apl Z;‘L:[) ’LU] B] k

and let the 3-vector .
wiu, p) = dc _ Yj-o(pi — pj)w;iBixBijk
NPT Dy (X7 w;Bjx)?

We collect the B; into B and the w; into W as follows

B(u,p)=| Bo -+ By |,

W(%P)Z[Wo Wn}-
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The Jacobian matrix may then be written as

J(u,p) = [ By wo -+ B, wy, ]
Using the foregoing notation, we can express
c= pra
Appendix A shows that
Wp, =0, %)

so that we can express the D-NURBS as the product of the Jacobian matrix and the generalized coordinate vector:

c(u,p) = Jp. (6)

Another interesting relationship isJp = 0, and it will enable usto simplify the discretized version of the D-NURBS
differential equations and arrive at an efficient numerical implementation.

4.2 Surfaces

A D-NURBS surface has asimilar structure to the curve. Proceeding analogously from (2), we define

2imo 2 j—0 Piy(H)wi; (1) Bi gk (u) By (v)
it 2 j—0 Wi (t) Bi g (u) By (v)

Again, the control points and weights comprise the generalized coordinates and are assembled into vectors p, pw,
and p. Two subscripts are now associated with the generalized coordinates, reflecting the surface parameters v and
v. For concreteness, we order the components in these vectors such that the second subscript varies faster than the
first, although this convention does not affect the derived results.

As before, we can write s(u, v, p) instead of s(u,v,t). By analogy to ¢ in (4) and (6), we obtain for the D-
NURBS surface

(")

s(u,v,t) =

S(“a v, p) = Jpa (8)
$(u,v,p) = Jp. 9)

However, the contents of the Jacobian J differ from those in the curve case. To arrive at an explicit expression for J,
let B; j(u,v,p),fori =0,...,m,andj =0,...,n,bea3 x 3 diagona matrix whose entries are

N' (U/ v p) = 85 — wi:jBiak (U)B],l (U)
1,7 » Yy apz,] ZZL:O Z:ib:() wC,dBc,k (U)Bd,l ('U)
and let the 3-vector
wii(u,v,p) = s _ o0 2od=0(Pij — Pe,d)We,aBe k(1) Bay(v) B (u) By (v)
ij\U, U, ow; (X >ti—o We,aBek(w)Bay(v))?

As before, the B; ; and w; ; are assembled into B and W, respectively. Hence,
J(u,v,p) = |: BO,O Woo - Bm,n Wm,n ] .
Notethat Jisnow a3 x 4(m + 1)(n + 1) matrix.

4.3 D-NURBS Equations of Motion

The previous two sections presented D-NURBS curve and surface geometry in a unified way. D-NURBS physics
are based on the work-energy version of Lagrangian dynamics[14]. In an abstract physical system, let p(t) be aset
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of generalized coordinates. These N functions of time are assembled into the vector p. Let f(¢) be the generalized
applied force that acts on p;. We assemble the f; into the vector f,. We also assume that J is the concatenation of N
Vectors j;.

To proceed with the Lagrangian formulation, we will define kinetic energy 7', potential energy U, and Raleigh
dissipation energy £ which are functions of the generalized coordinates and their derivatives. The Lagrangian
equations of motion are then expressed as

dorT or oF o0U
0 o T om o " (19
Variants of this equation have served as the basis for deformable model formulations [36]. Using (10), we can take
an arbitrary geometric model, such as a NURBS, introduce appropriate kinetic, potential, and dissipation energies,
and systematically formulate a physics-based, dynamic generalization of the model [17].

In the sequel, we will discuss only D-NURBS surfaces (we can consider D-NURBS curves as a special case
with asimpler expression in fewer variables). To define energies and derive the D-NURBS equations of motion, let
u(u,v) be the mass density function defined over the parametric domain of the surface. The kinetic energy of the
surfaceis

T = %// ps' s dudo = %pTMp, (12)
where (using (9))
M(p) = / / 373 du do (12)
isan N x N mass matrix. Similarly, let y(u, v) be the damping density function. The dissipation energy is
1 T ..
F:§ /75 sdudvzip Dp, (13)
where
D(p) = / / 373 du do (14)

is the damping matrix.
For the elastic potential energy of D-NURBS, we can adopt the thin-plate under tensioenergy model [35],
which was also used in [5, 42] (other energies are possible, including the nongquadratic, curvature-based energies in

[36, 19]):
r=1/ osTos 0sT0s
2 W80 0w T ¥ 9u ow

9%2sT 9%s 9%sT 0%s 9%sT 9%

ou? Ou? + B2 Oudv Oudv E ov? v

1
+B1.1 > du dv = 5pTKp. (15)

The o j(u,v) and f; ;(u, v) are elasticity functions which control local tension and rigidity, respectively, in the two
parametric coordinate directions? Inview of (8), the N x N stiffness matrix is

K(p) = // (al,lJIJu + QZ,QJIJU + BI,IJJuJuu + 51,2-];%@ + /32,2-]2;—1;-]1111) du dv, (16)

where the subscripts on J denote parametric partial derivatives.
In Appendix B, we show that by applying (10), the D-NURBS equations of motion are given by

Mp +Dp + Kp = f, — Ip, a7)

2In the case of the D-NURBS curve, there are only two terms and two weighting functions in the potential energy form because of the

. - CT C 2CT 2C
single spatial parameter u: U = 3 [ a(u) %— 25 + B(u) &% 25 du.
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where the generalized force vector, obtained through the principle of virtual work [14] done by the applied force
distribution f(u, v, t), is

f,(p) :/ I f(u,v,t) dudv, (18)

and where

I(p) = //,uJT..]dudv.

5 Forcesand Constraints

We have derived the Lagrangian equations of motion for D-NURBS. When working with D-NURBS, a modeler
may impose design requirements in terms of energies, forces, and constraints. For instance, the modeler may apply
time-varying forces to sculpt shapes interactively or to optimally approximate data. Certain aesthetic constraints
such as “fairness’ are expressible in terms of elastic energies that give rise to specific stiffness matrices K. By
building the physics-based D-NURBS generalization upon the standard NURBS geometry, we allow the modeler to
continue to use the whole spectrum of advanced geometric design tools that have become prevalent, among them,
the imposition of geometric constraints that the final shape must satisfy. For example, if the shapes of certain cross-
sectional curves in a NURBS surface must be circular arcs, the control points associated with these curves must
be constrained geometrically to admit only circular arcs. Other constraints include the specification of positions of
surface points, the specification of surface normals at surface points, and continuity requirements between adjacent
surface patches or curve arcs.

51 Applied Forces

In the D-NURBS design scenario, sculpting tools may be implemented as applied forces. The force f(u,v,t) in
the D-NURBS eguation of motion represents the net effect of all applied forces. Typical force functions are spring
forces, repulsion forces, gravitational forces, inflation forces, etc. [36, 6, 34].

For example, consider connecting a material point (u, vy) of a D-NURBS surface to a point d in space with
an ideal Hookean spring of stiffness k. The net applied spring forceis

f(u,v,t) = // k(do — s(u,v,t))d(u — ug, v — vg) du dv, (29

where isthe ¢ is the unit delta function. Equation (19) implies that f(w, vo, t) = k(doy — s(ug, vo, t)) and vanishes
elsawhere on the surface, but we can generalize it by replacing the § function with a smooth kernel (e.g., a unit
Gaussian) to spread the applied force over a greater portion of the surface. Furthermore, the points (1, v9) and dgy
need not be constant, in general. We can control either or both using a mouse to obtain an interactive spring force.

5.2 Linear Constraints

Linear geometric constraints such as point, curve, and surface normal constraints are often useful [6]. To incorporate
linear geometric constraints into D-NURBS, we reduce the matrices and vectorsin (17) to aminimal unconstrained
set of generalized coordinates. Linear constraints are generally expressible asfollows:

C(p)=Ap+b =0, (20)

where A is a matrix of coefficients. If (20) is an underdetermined linear system, we can eliminate variables to
express the generalized coordinate vector p as

p = Gq + qo, (21)

where q is anew generalized coordinate vector with M < N components ¢;. Here, G isan N x M matrix, which
may be computed through Gaussian elimination or other means, and q, is a constant vector.
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Thelower-dimensional generalized coordinate vector q replaces p in the linearly constrained D-NURBS model.
To derive the equations of motion with constraints, we combine (8) and (9) with (21) asfollows:

s(u,v,q) = J(Gq+qo) = Lq+ Jqp

where
L=JG

isthe new Jacobian matrix of s with respect to q. Note that L consists of M vectorsl; = ds/0q;,forj =1,..., M.
Hence, the energy expressions become
1
T = 5qTGTMGq

1
F = 5qTGTDGq

1
U= §(QTGT + qo)K(Gq + qp).

We aso define the M x M mass, damping, and stiffness matrices of the constrained D-NURBS:

M, = G'MG
D,=G'DG
K, = G'KG.

In Appendix C we prove severa identities that yield the following equations of motion for D-NURBS with linear
constraints:

M,q+D,q+Kyq =1, +g, —1,q, (22)
where the generalized forces are
f, = // L"f(u,v,t)dudv, (23)
and where
8¢ = _GTKQOa
I,=G'IG.

Although (22) looks more complicated than (17), its implementation is surprisingly straightforward in view of
the sparseness of G and the reduced size of q.

5.3 Nonlinear Constraints

It is possible to impose nonlinear geometric (equality) constraints

on D-NURBS through Lagrange multiplier techniques [32]. This approach increases the number of degrees of free-
dom, hence the computational cost, by adding unknowns —also known as L agrange multipliers—which determine
the magnitudes of the constraint forces. The method is applied to the B-spline model in [6, 42]. The augmented
Lagrangian method [18] combines the Lagrange multipliers with the simpler penalty method [26].

One of the best known techniques for applying constraints to dynamic models is the Baumgarte stabilization
method [1] which solves constrained equations of motion through linear feedback control (see adso [17, 25]). We
augment (17) asfollows:

Mp +Dp+ Kp =f, — Ip — C} A, (25)
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where —C[T,)\ are generalized forces stemming from the holonomic constraint equations. The term Cg isthe trans-

pose of the constraint Jacobian matrix and A = (\(,...,\,) ' is avector of Lagrange multipliers that must be
determined. We can obtain the same number of equations as unknowns, by differentiating (24) twice with respect to
time: C(p) = 0. Baumgart's method replaces these additional equations with equations that have similar solutions,
but which are asymptotically stable; e.g., the damped second-order differential equationsC+2aC+b2C = 0, where

a and b are stabilization factors. For agiven value of a, we can choose b = a to obtain the critically damped solution
C(p, 0)e~ which has the quickest asymptotic decay towards constraint satisfaction (24). Taking the second time
derivative of (24) and rearranging termsyields

Cpp = —C — (Cpp)pp — 2Cpp = 0. (26)
We arrive at the following system of equations for the unknown constrained generalized accelerations and Lagrange

multipliers:
-
M C,
C, 0

b

e @7

[ -Dp-Kp-TIp+f,
| 6—2aCyp—b2C

This system can be solved for p and A using standard direct or iterative techniques (or in the least squares sense
when it is overdetermined by conflicting constraints).

5.4 Constraining the Weights

The components of p, may take arbitrary finite values in 3¢, but this is not the case for the weights p,. Negative
components of p,, may cause the denominator to vanish at some evaluation points, causing the matrices to diverge.
Although not forbidden, negative weights are not useful. We include constraints in our D-NURBS which enforce
positivity of weight values. Such a constraint is easily implemented by establishing a positive lower bound on the
weight values and enforcing it in the numerical solution using a projection method.

Another potential difficulty isthat smaller values of p,, tend to flatten the surface in the vicinity of the control
points, which lowers the deformation energy. Consequently, the p,, will tend to move toward zero. To counteract
this tendency, we can associate with the potential energy the penalty term

c(pw — Py) ' (Pw — PY)

inwhich p? are desired weights and ¢ is scaling factor.

We have implemented both techniques. Experiments indicate that the projection scheme works very well. Con-
sequently, we do not make use of the penalty scheme in our current modeling system. It may be useful, however, if
the modeler wants to constrain the weights to assume values near certain target values ).

6 Numerical Implementation

The evolution of the D-NURBS generalized coordinates is determined by the second-order nonlinear differential
equations (17) or (22), with time-varying mass, damping, and stiffness matrices. We cannot obtain an analytical
solution in general. An efficient numerical implementation of D-NURBS is possible, however, through the use of
techniques from finite-element analysis [15].

Standard finite element codes assemble individual element matrices into the global matrices that appear in the
discrete eguations of motion [43, 15]. Despite the fact that the global matrices are stored using efficient sparse
matrix storage schemes (which maintain only the entries needed for matrix factorization), matrix assembly and
matrix-vector multiplications quickly become too costly, particularly for D-NURBS surfaces with high dimensional
P-

In our implementation, we use an iterative matrix solver that enables us to avoid the costs of assembling the
global M, D, and K matrices associated with the whole D-NURBS curve or surface. Rather, we work with the
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individual D-NURBS element matrices. We construct finite element data structures that contain the information
needed to compute all of the element matrices independently and in parallel.

6.1 Data Structuresfor D-NURBS Finite Elements

We consider a D-NURBS curve arc or surface patch defined by consecutive knots in the parametric domain to be
atype of finite element. We define an element data structure which contains the geometric specification of the D-
NURBS element along with its physical properties. A complete D-NURBS curve or surface isthen implemented asa
datastructure which consists of an ordered array of D-NURBS curve or surface elements with additional information.

The element structure includes pointers to the associated generalized coordinates (control points and weights).
For instance, 9 control points and associated weights are needed to describe a patch of aquadratic D-NURBS surface
(the total number of degrees of freedom is 36). The generalized coordinates associated with the entire D-NURBS
curve or surface are stored in the global vector p. Note that neighboring elements will share some generalized
coordinates. The shared variables will have multiple pointers impinging on them.

We also alocate in each D-NURBS element an elemental mass, damping, and stiffness matrix, and include
in the element data structure the quantities needed to compute these matrices. These quantities include the mass
p(u, v), damping y(u, v), and easticity o; ;(u, v), f; ; (u, v) density functions, which may be represented as analytic
functions or as parametric arrays of sample values.

6.2 Calculation of Element Matrices

We evaluate the integral expressions for the matrices (12), (14), and (16) numerically using Gaussian quadrature
[27]. We shall explain the computation of the element stiffness matrix; the computation of the mass and damping
matrices follow suit. Assuming the element’s parametric domain is [w, u1] X [vg, v1], the expression for entry ;;
of the stiffness matrix of a D-NURBS surface element takes the integral form

kij _/ / fij(u,v) dudv, (28)
where, according to (16),
. _ dj 9i; dj 9i;
fzy(uav) = al,l(uav) ou % + a2 Z(U'av) v %
0257 0%; 0% % 0ji 0%,
1 (,0) G 5+ sl 0) 5 S Baa(u,0) T 5

Here, the j; are the columns of the Jacobian matrix for the D-NURBS surface element.

We apply Gaussian quadrature to compute the above integral approximately. Theintegral is obtained by applying
Gaussian quadrature on the 1-D interval twice. Given integer N, and N}, we can find Gauss weights a4, b, and
abscissas ug, vy, in two directions of the parametric domain such that %; can be approximated by ([27])

Ng Np,

~ DD aghn fij(ug,vn).

g=1h=1

We apply the de Boor algorithm [9] to evaluate f;;(ug, vp).
Generally speaking, for integrands that are polynomial of degree 2N — 1 or less, Gaussian quadrature evaluates
the integral exactly with IV weights and abscissas. For D-NURBS, f;; is not polynomial unless the model is reduced

2.
3The entries of the D-NURBS curve element stiffness matrix are k;; = f:ol fij (w) du, where fi; (u) = a(u )%‘u %+ Bu ) Tk ?9;’

Given integer N,, we can find Gauss quadrature abscissas u, and weights a4 such that k;; can be approximated as follows: k;; =~

Z;V 1 ag fij (ug)
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to a B-spline. In our system, we choose N, and IV, to be integers between 4 and 7. Our experiments reveal that
matrices computed in this way lead to stable, convergent solutions.

6.3 Discrete Dynamics Equations

In order to integrate the D-NURBS ordinary differential equations of motion (17) in an interactive modeling environ-
ment, it isimportant to provide the modeler or designer with visual feedback about the evolving state of the dynamic
model. Rather than using costly time integration methods that take the largest possible time steps, it is more crucial
to provide a smooth animation by maintaining the continuity of the dynamics from one step to the next. Hence, less
costly yet stable time integration methods that take modest time steps are desirable.

The matrices M, D, and K (and M,, D, and K,) are symmetric, sparse, and banded. Several algorithms are
available for the numerical integration of the D-NURBS ordinary differential equations of motion. The suitability
of implicit or explicit integration algorithms is dependent on the bandwidth of the matrices, as determined by the
dimensionality of the parametric space and the order of the NURBS basis functions. The matrices for a D-NURBS
curve have asingle band which has a half-bandwidth of 4%, where k isthe order of the NURBS basis. For D-NURBS
surfaces, the matrices become block banded, with each block containing n bands similar to those of dynamic curves,
where n depends on the order of the NURBS basis in the opposite parametric direction.

We integrate the differential equations (17) through time by discretizing the derivative of p over time-steps At.
The state of the D-NURBS at time ¢ + At is integrated using prior states at time ¢ and ¢ — A¢. Depending on
the choice of physical parameters, (17) may be a stiff system. We use an implicit time integration method in order
to maintain the stability of the integration scheme. The implicit method employs discrete derivatives of p using

backward differences
p(t—i—At) _ 2p(t) + p(t—At)

= (t+AL)
p Atz )
p(tHAD) _ p(t+at) _ p(t=At)
2At

Making use of the fact that Jp = 0, we obtain the time integration formula
(4M + 2AtD + 4At2K) pU+A) = 4A1%E, + 8Mp) — (3M — 2A¢D)pl =2 — / / 1J "sAY du dv, (29)

where the superscripts denote evaluation of the quantities at the indicated times, and where the remaining quantities
are evaluated at time ¢ + At. For example, we can extrapolate the mass matrix using the formula

M(t+At) _ M(t) + AtM(t) — 2M(t) _ M(t*At) (30)

and likewise for the other matrices and vectorsin (29). The simpler, constant extrapolations Mt20) = M®) etc.,
([15] Section 8.6) also work satisfactorily.

In the interest of efficiency, we do not factorize the matrix expression on the left hand side of (29) in order to
solve for p(t+2%) | Instead, we employ the conjugate gradient method to obtain an iterative solution [27, 32]. To
achieve interactive simulation rates, we limit the number of conjugate gradient iterations per time step to 10. We
have observed that 2 iterations typically suffice to converge to aresidual of less than 1073. More than 2 iterations
tend to be necessary when the physical parameters (mass, damping, tension, stiffness, applied forces) are changed
dramatically during interactive sculpting.

Note that when physical parameter values are chosen such that the equations (17) are not stiff, it is much cheaper
to employ an explicit time integration method using forward differences. Appendix D discusses the forward dif-
ference approach. Note that the explicit method requires values for the matrices only at time ¢, hence (30) is not
needed.

For the D-NURBS curve, we simply replace ¢ with s in (29) and everything proceeds as in the case of surfaces.

In the case of D-NURBSwith linear constraints, we discretize the derivatives of q (rather than p). Anaogous to
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(29), the discrete version of (22) is

(4M, + 2AtD, + 4AK ) q1+4Y =
ANEH(£, + g) + 8M,qP) — (3M,, — 2AtD,) gAY — G TMqq + / / pLTs du dv. (32)

Since there are fewer degrees of freedom in q than in p, faster numerical implementation of constrained D-NURBS
is possible, provided the constraint matrix G is sparse. Note that since the conjugate gradient algorithm requires
only gradient vectors, we need not compute M,, D, and K, explicitly. The only extra cost is the computation of
Gq and the multiplication of G with several vectorsin (31).

For nonlinear constraints, at each time step we can apply the conjugate gradient algorithm to solve (27) for the
Lagrange multipliers A and the constrained generalized accelerationsp (given known p and p). We then integrate p
and p from ¢ to ¢ + At to obtain the constrained generalized velocitiesp and coordinates p (e.g., using the simple
Euler method p+21) = p() 4 A¢ p(8); p(t+A0) = p(t) 4 Ag plt+AD),

6.4 Simplifications

The aboveimplementation strategy permits real-time simulation of the general D-NURBS model on midrange graph-
ics workstations. Lengthy curves can be smulated at interactive rates, as can quadratic and cubic surfaces on the
order of 10 x 10 control points. It is possible to make simplifications that further reduce the computational expense
of (29) and (31), making it practical to work with larger D-NURBS surfaces.

Firgt, it is seldom necessary to simulate the fully general D-NURBS model throughout an entire sculpting ses-
sion. Once we freeze the values of the weights p,,, al of the matricesin (17) and (22) are constant and their entries
need no longer be recomputed at each time step. With this restricted rational generalization of the B-splines, inter-
active rates are readily obtained for much larger surfaces with up to an order of magnitude more degrees of freedom.
Note that D-NURBS reduce to dynamic B-splines if all components of the frozen vector p,, are, in addition, equal
to 1.

Second, afull implementation of (17) is appropriate if the models must respond with realistic dynamics. How-
ever, in certain CAGD and surface-fitting applications where the modeler is interested only in the final equilibrium
configuration of the model, it makes sense to simplify (17) by setting the mass density function y(u, v) to zero, so
that the inertial terms vanish. This economizes on storage and makes the algorithm more efficient. With zero mass
density, (17) reduces to

Dp+Kp =1, (32

while (22) reduces to
D,q+K,q=1,+h, (33)

Discretizing the derivatives of p and q in (32) and (33) with backward differences, we obtain theintegration formulas
(D + AtK) pl*+29 = Atf, + Dp® (34)

and
(D, + AtK,) q“F2Y = A#(f, + hy) + Dyq® (35)

respectively.
7 Modeing Environment and Applications
This section describes our D-NURBS modeling environment and presents several applications of D-NURBS re-

lating to trimming, solid rounding, optimal curve and surface fitting, cross-sectional design of shapes, free-form
deformation, and shape metamorphosis.
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7.1 Interactive Modeling Environment

We have developed a prototype modeling environment based on the D-NURBS model. The system is written in
C and it currently runs under Iris Explorer on Silicon Graphics workstations. Our parallelized iterative numerical
algorithm takes advantage of a 4D/340VGX multiprocessor. To date, our D-NURBS modules implement 3D curve
and surface objects with basis function ordersof 2, 3, or 4 (i.e., from linear to cubic D-NURBS) with linear geometric
constraints. They may be combined with existing Explorer modules for data input and object rendering.

Using our system, designers can sculpt shapes in conventional geometric ways, such as by sketching control
polygons, repositioning control points, and adjusting associated weights. They can also satisfy design requirements
by adjusting the D-NURBS internal physical parameters, various applied-force terms, and constraints. Physical
parameters such as the mass, damping, and stiffness densities, and force gain factors are interactively adjustable
through Explorer control panels?

Our D-NURBS system also implements, as special cases, rational B-splines (fixed weights values) and ordinary
B-splines (unit weights), hence it encompasses three related free-form modeling schemes into one unified physics-
based implementation. The following sections describe several applications.

7.2 Trimming Curvesand Surfaces

The physical basis of the D-NURBSmodel and our numerical quadrature approach to computing the mass, damping,
and stiffness matrices (Section 6.2) suggests a straightforward technique for trimming D-NURBS curves and sur-
faces. Surfaces may be trimmed with arbitrary curves defined in the parametric domain, including D-NURBS curves.
The trimming of D-NURBS is directly analogous to the trimming of excess material from real-world deformable
wires and sheets.

Consider a D-NURBS patch that is intersected by a trimming curve. The values of material properties—mass,
damping, elasticity densities—over the portion of the patch that extends outside the trimming curve should not affect
the dynamics of the trimmed model and are set to zero. The Gauss quadrature proceeds normally, but abscissas that
sample zero physical parameters make no contribution to the summation. Of course, a patch may be disregarded if
it falls completely outside the trimming boundary. Note that the integrands are discontinuous at the boundary due
to the sudden transition of the the physical parameter values. While this does not destroy the correctness of Gauss
guadrature, we can expect reduced accuracy since the integrand is not smooth. There is no easy way around this
potential problem for arbitrary boundary curves, other than to use Monte Carlo integration and pay the penalty of
slow asymptotic convergence [27]. Fortunately, in practice, the D-NURBS model appears tolerant of the reduced
integration accuracy in boundary € ements.

Fig. 1 illustrates the trimming of D-NURBS surfaces using D-NURBS trimming curves in the parametric do-
main. Fig. 1(a) showsthe creation of atriangular surface with threelinear curves each with 4 control points. Fig. 1(b)
shows a trimmed annular surface defined by two circular trimming curves each with 25 contral points. Snapshots
are shown of the trimmed surfaces undergoing dynamic deformations in response to applied forces.

7.3 Solid Rounding

The rounding of solids is a common operation for the design of mechanical parts. A goal of this operation is to
construct afillet surface that smooths by interpolating between two or more surfaces. In geometric modeling, thisis
usualy done by enforcing parametric or geometric continuity requirements on the fillet.

D-NURBS provide anatural solution to the solid rounding problem. In contrast to the geometric approach, the D-
NURBS can produce a smooth fillet with the proper continuity requirements by minimizing itsinternal deformation
energy. Additional position and normal constraints may beimposed across the boundary of the surface. The dynamic
simulation automatically produces the desired final shape.

“At present, our software assumes uniform mass, damping, and elasticity densities over the parametric domain, except across trimming
boundaries (see Section 7.2). This s straightforwardly generalizable to accommodate the nonuniform density functions in our formulation,
although our user interface would have to be extended to afford the user full control in specifying these functions.



Published in ACM Transactions on Graphic43(2), April, 1994, 103-136.

(b1) (b2)

Figure 1. Trimming D-NURBS surfaces: (a) triangular D-NURBS surface; (b) annular D-NURBS surface. (al)
Patch outlines and control points (white) with linear trimming curves. (a2) Interactive dynamic deformation of
trimmed triangular surface. (b1) Patch outlines and control points with concentric trimming curves. (b2) Interactive

dynamic deformation of annular surface.
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Fig. 2 demonstrates edge rounding using D-NURBS surfaces. In Fig. 2(al), we round an edge at the intersection
of two planar faces. The faces are formed using quadratic D-NURBS patches with 8 x 5 control points. Multiple
control points are used to produce the sharp corner. We free the control points near the corner and fix the remaining
control points at the far boundaries to impose position and surface normal constraints. After initiating the physical
simulation, the D-NURBS rounds the corner asit achieves the minimal energy equilibrium state shown in Fig. 2(a2).

Fig. 2(bl) illustrates the rounding of a trihedral corner of a cube. The corner is represented using a quadratic
D-NURBS surface with 6 x 5 control points. The corner is rounded with position and normal constraints along the
far boundaries of the faces (Fig. 2(b2)).

The above rounding technique is easily extensible to any number of surfaces meeting at arbitrary angles. To
round a complete solid, we can apply the technique to all of its edges, corners, etc.

7.4 Optimal Surface Fitting

D-NURBS are applicable to the optimal fitting of regular or scattered data [28]. The most general and often most
useful case occurs with scattered data, when there are fewer or more data points than unknowns—i.e., when the
solution is underdetermined or overdetermined by the data. In this case, D-NURBS can yield “optimal” solutions by
minimizing the thin-plate under tension deformation energy [35, 33]. The surfaces are optimal in the sense that they
provide the smoothest curve or surface (as measured by the deformation energy) which interpolates or approximates
the data.

The data point interpolation problem amounts to alinear constraint problem when the weights p,, are fixed, and
it is amenable to the constraint techniques presented in Section 5.2. The optimal approximation problem can be
approached in physical terms, by coupling the D-NURBS to the data through Hookean spring forces (19). We inter-
pret do in (19) as the data point (generally in %) and (ug, vo) as the D-NURBS parametric coordinates associated
with the data point (which may be the nearest material point to the data point). The spring constant ¢ determines the
closeness of fit to the data point?

We present three examples of surface fitting using D-NURBS coupled to data points through spring forces.
Fig. 3(a) shows 19 data points sampled from a hemisphere and their interpol ation with aquadratic D-NURBS surface
with 49 control points. Fig. 3(b) shows 19 data points and the reconstruction of the implied convex/concave surface
by a quadratic D-NURBS with 49 control points. The spring forces associated with the data points are applied to
the nearest points on the surface. In Fig. 3(c) we reconstruct awave shape from 25 sample points using springs with
fixed attachments to a quadratic D-NURBS surface with 25 control points.

7.5 Cross-Sectional Design

Cross-sectiona design is a common approach to shaping surfaces and solids using cross-sectional curves. Our
modeling system provides the modeler with D-NURBS generator curves along with the most useful surface gener-
ator operators—sweeping and swinging [23]—for generating common surfaces such as extruded surfaces, natural
guadrics, general quadrics, ruled surfaces, and surfaces of revolution. In our current implementation, the modeler can
indirectly sculpt the composite surfaces by direct dynamic manipulation of the D-NURBS generator curves subject
to constraints. Geometric constraints such as positions and normals may be associated with D-NURBS curves.

We present three examples in the cross-sectional design of surfaces. First, Fig. 4 shows a generalized cylinder
with 30 control points created by sweeping a green closed curve with 6 control points along the red curve with 5
control points (Fig. 4(a)). The generalized cylinder is interactively sculpted into various shapes by applying spring
forces on the green and red cubic D-NURBS curves (Fig. 4(b-d)). Second, Fig. 5 shows a torus with 49 control
points generated by swinging the green curve over the red curve (Fig. 5(a)). Both generators are closed cubic
D-NURBS curves with 7 control points. In Fig. 5(b-d), the torus is deformed interactively by applying a spring
force. Third, Fig. 6 shows a 35 control point “wine glass’ shape obtained by sweeping the green generator curve

®Cross-validation [41] provides aprincipled approach to choosing the relevant physical parameters—typically theratio of dataforce spring
constants to surface stiffnesses—for given data sets. For the special case of zero-mean Gaussian data errors, optimal approximation in the
least squares residual sense results when ¢ is proportiona to the inverse variance of data errors [35].
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(b1) " (b2)

Figure 2: Solid rounding: (a) rounding an edge between polyhedral faces; (b) rounding atrihedral vertex. (al) Initia
configuration of control points and patches. (a2) Rounded D-NURBS surface in static equilibrium. (bl) Initial
configuration of control points and patches. (b2) Rounded D-NURBS surface. In both examples, the control points
along edges have multiplicity 2.
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(c1) (c2)

Figure 3: Optima surface fitting: D-NURBS surfaces fit to sampled data from (a) a hemisphere, (b) a con-
vex/concave surface, (¢) asinusoidal surface. (a—cl) D-NURBS patch outline with control points (white) and data
points (red) shown. (a—2) D-NURBS surface at equilibrium fitted to scattered data points. Red line segments in
(c2) represent springs with fixed attachment points on surface.
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on the red generator curve in Fig. 6(a). The red closed D-NURBS curve has 7 control points and the green open
D-NURBS curve has 5 control points. The glass is interactively sculpted into different swept shapes using spring
forces (Fig. 6(b-d)).

7.6 Shape Metamorphosis

Metamorphosis is the blending of one shape into another. Work on 3D shape blending includes [8, 16]. The blending
of 2D shapes has widespread application in illustration, animation, etc., and simple (e.g., linear) interpolation tech-
niques usually produce unsatisfactory results [29]. Shinagawa and Kunii [31] propose an method which interpolates
differential properties of the 2D shape using the elastic surfaces of [37, 36]. Motivated by their approach, we propose
a new technique which exploits the properties of D-NURBS surfaces. D-NURBS provide minimal-energy blends
which are more general than linear interpolants and which may be controlled through various additional constraints
specific to the NURBS geometry. For example, since NURBS can represent conics, we can exploit their ability to
generate helical surfaces in order to represent rotational components of shape metamorphoses.

Our technigque interpolates a D-NURBS generalized cylinder between two or more planar shapes with known
correspondence. The interpolant is a constrained skinned surface between the two end curves. We interpret the
parametric coordinate along the length of the surface, say u, as the (temporal) shape blending parameter. The «
coordinates of the control points are fixed, while the v coordinates are subject to the D-NURBS deformation energy
and additional constraints. We obtain intermediate shapes by evaluating cylinder cross sections at arbitrary values
of u.

Some examples will help to explain our technique in more detail. Fig. 7 shows minimal-energy D-NURBS
surfaces with 3 x 6 control points (3 control points along u) interpolating between two closed elliptical curves.
Fig. 7(b) shows alinear generalized cylinder obtained with high surface tension in the » direction: « ; = 1000 and
azo = (3, = 0. Note that the morphing ellipse shrinks as it rotates, a typical artifact of linear interpolation [29].
The rotational component can be preserved, however, by imposing a geometric constraint on the D-NURBS which
creates a helical surface in the  direction of the cylinder, as shown in Fig. 7(c). Here the only nonzero deformation
energy parameter is the rigidity 3, ; = 1000. Note that the interpolating surface now bulges outside the convex
hull between the two ellipses. As a consegquence the interpolated ellipses rotate instead of shrinking (Fig. 7(d)). In
general, we can obtain a family of blending surfaces between these two extremes by using intermediate values of
tension o1 and rigidity 3, parameters. Fig. 8 illustrates the morphing between two planar polygonal shapes. The
D-NURBS nterpolant isa3 x 7 surface. The parts of this figure are similar to those of the previous one.

7.7 Free-Form Deformation

Bezier introduced the idea of globally deforming a shape through a#* — R™ mapping implemented as a free-form
(tensor product) spline. The shape is embedded in the spline and deformed by manipulating the spline's control
points. Sederberg and Parry [30] popularized this concept of free-form deformation (FFD) in the graphics literature.

We can arrive at a physics-based version of the FFD in which the object to be deformed is embedded in the
D-NURBS “material” and deforms aong with the deforming D-NURBS. The physics-based deformation is similar
in motivation to the one devised in [7], but it offers fully continuous dynamics by virtue of the continuous nature of
D-NURBS. In particular, we can apply forces at arbitrary points in the D-NURBS space to control the deformation
directly (rather than through indirect manipulation via control points).

8 Conclusion

We have developed dynamic NURBS, a physics-based generalization of the well-known geometric NURBS curves
and surfaces. D-NURBS were derived systematically through the application of Lagrangian mechanics and imple-
mented using concepts from finite element analysis and efficient numerical methods. We generalized our D-NURBS
formulation to incorporate geometric constraints. The formulation extends naturally to solids, albeit at proportion-
ately greater computational cost.
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(©) (d)

Figure 4: Interactive deformation of generalized cylinder. (a) Patch outline of generalized cylinder created from two
D-NURBS generating curves (control points shown) using sweep operation. (b—d) Interactive dynamic deformation
of either generating curve causes globa deformation of generalized cylinder.
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Figure 5: Interactive deformation of torus. (a) Two D-NURBS generating curves with control points shown and
patch outline of torus generated by swing operation. (b—d) Interactive dynamic deformation of either generating
curve causes global deformation of torus.
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(d)

Figure 6: Creation and deformation of “wine glass” (a) Two D-NURBS generating curves with control points
and patch outlines of glass formed by swing operation. (b—d) Deformation of glass caused by interactive dynamic
deformation of D-NURBS generators.
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© @

Figure 7. Metamorphosis between two planar elliptical curves using D-NURBS interpolating surface. (a) Control
points and patch outline of cylindrical surface terminated by the two planar curves. (b) Linear interpolating sur-
face. (c) Constrained nonlinear interpolating surface combines rigid rotation with nonrigid deformation. (d) An
intermediate morphed curve obtained as cross section of surfacein (c).
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T © )

Figure 8: Metamorphosis between two planar polygonal curves using D-NURBS interpolating surface. (a) Con-
trol points and patch outlines of cylindrical surface terminated by the two planar curves. (b) Linear interpolating
surface. (c) Constrained nonlinear interpolating surface combines rigid rotation with nonrigid deformation. (d) An
intermediate morphed curve obtained as cross section of surfacein (c).
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We described a prototype interactive modeling system based on D-NURBS and demonstrated the flexibility
of our models in a variety of applications. When working with D-NURBS, a designer need not manipulate the
individual degrees of freedom of an object. Instead, the designer can work with sculpting tools that are implemented
in terms of forces and geometric constraints. Sculpting forces may be applied interactively to move the object or
refine its shape. The interactive response of the D-NURBS may be modified by varying its mass and damping
distributions. Global design requirements may aso be achieved by varying physical parameters such as elastic
energies.

Because NURBS have been assimilated into such industry standards such as IGES, PHIGS+, and OpenGL,
our dynamic NURBS model promises to forge stronger links between established CAGD methodologies and new
techniques in physics-based modeling.

Acknowledgements

Funding for this research was provided in part by the Natural Sciences and Engineering Research Council of Canada
and the Information Technology Research Center of Ontario.



Published in ACM Transactions on Graphic43(2), April, 1994, 103-136. 26

A Position Equation

Clearly,
Jp =Bp, + Wpy

and
c(p,u) = Bpy.
To prove (6), we must show that (5) holds true. By definition,

_ Ximo(Xj=o(Pi — pj)w; Big(w) Bjg(w)wi 3o 2j=o(pj — Pi)wiw; Biy(u) Bk (u)
(X0 w;Bjk(u))? (X0 wiBjk(u))?

Exchanging the summation order and indexes, we have

im0 =0 (Pi — Pj)wiw; By (1) Bj g (u)

Wpy

pr = - = _pra
(T ow;jBjk(u))?
which proves (5), hence (6).
Moreover, taking the time derivative of (6) yields
¢(u,p) =Jp + Jp.
Given (4), it follows that Jp = 0.
B Simplification of Motion Equations
Applying (10), the D-NURBS motion equations are
. X T - T
Mp+Dp+Kp=£f,+ | 3p'9p | —Mp—[--- spT9Ep -] . (36)

The two vectors involving M on the right side of (36) may be be combined into a single vector:

* . . . T .
Mp—[--- 3P SIp ] = Ip. (37)

Using the product rule of differentiation, we haveM = I +I". For (37) to hold, we must have

. . . T
ITp:[... %pT%II\J/in ] ‘ (38)
It is obvious from (11) that the two sides of (38) are integrals of the two vectors, respectively. The two vectorsin
(38) are equal when, fori =1,..., N,
1.70(J73),
9P op;
We now prove (39). The right side is represented as R. Based on the product rule of differentiation and the
property of the Jacobian matrix, we obtain the simpler expression

i Ip = (39)

1.+037 1 0J
R=-p —IJp+-p JT—p.
2 api p+2p apip

Furthermore, according to the property of the Jacobian matrix and the observation that we can interchange the order
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of the cross derivatives

Combining the above two expressions we obtain

R=ilap+ o (iTap)

2 2
Since R isascaar, (39) is proved.
Next, we derive another mathematical identity:
-
[ %pTgIIfip ] =0. (40)

The left side of (40) istheintegral of the summation of the five terms of (16). Each of these five vectors is the zero
vector. To seethis, notethat fori =1,..., N, we have

g o3 op_ 0
Op;  Op; Op;  Op; '

According to the definition of the Jacobian matrix, the left hand sideisj, i = 1,..., N. Thus, we have

oJ
=0.
Op; P

The order of the second cross derivative with respect to the variables i and v isirrelevant, so we further have

o0 (0370
T - =0. 41
P op; < ou 8u> p=0 (41)

Now, (41) is the ith component of the first vector on the |eft side of (40). Similarly, the other four vectorsinside the
integral operator on the left hand side of (40) are zero.

C Simplification of Motion Equationswith Linear Constraints

Applying (10), the D-NURBS motion equations with linear constraints are
: - Lo lpToMe 1T pTek T L IVE
MG+ Dga+Kea— [ 50 G | +[ - sp'op | =f,- GT(Mp+Kaq). (42
To simplify (42) we first show that it reduces to the following
0q;

. . . T )
G'™Mp-| - bGP ] =GTIp. (43)

Asin Appendix B, M = I + I"T. Hence, (43) is also expressed as

. . T OM .- T
Similar to (38), the two sides of (44) are integrals of two vectors, respectively. Hence, (44) holds if corresponding
components of the two vectorsare equal; i.e, forj =1,..., M,

. 1.7:0J3"T).

1/Jp=-p' :

jIp =3P g, P (45)
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We now prove (45). Denoting the right side as R, we further expand it using the product rule of differentiation

1.70J7 1 0J
R=-p —Jp+-p' J =p.
2 aq]’ P + 2p aqj' p
Furthermore, according to the property of the Jacobian matrix and the irrelevance of the order of differentiation, we
have

oJ . 0 < L
8—q]p:8—q][ gpi ---]p:lj.

Combining the above two equations, we have
| R L
R=1]3p+ 7 (1] Ip)

Since R isascaar, (45) follows.
The proof of

[ %pTg_;jp ...}TZO (46)

parallels that in Appendix B, with g; replacing p; and 1; replacing j;.

D Explicit TimelIntegration

We discretize the motion equations using the following finite differencesin p (q in the case of geometric constraints):

Ly _ P —2p®) 4 p(i=a0
p AtZ Y

o0 _ P =l
At
We obtain the discrete form of (17) as
Mp(+at) — AL (£, — Kp®) + 2Mp® — AtDp™®
+ADpAY / / 3T Gy, . 47)
In this and the following explicit time integration schemes, all the matrices are evaluated at time ¢ (instead of time

t + At asin theimplicit schemes).
For D-NURBS surfaces with linear geometric constraints, (22) is discretized as

qu(t+At) = AtQ(fq + 8 — qu(t)) + 2qu(t) - Athq(t) +
AtD,q* 20 4+ GTMq( ™2 - / / UL TS5 gy, o, (48)

For the D-NURBS curve, we substitute ¢ with s in (47) and (48).
The discretized forms of the simplified first order equations of motion (32) and (33) are

Dp(*+29 = At(f, — Kp¥)) + Dp® (49)

and
D,q "2 = Al(f, + hy — K,q")) + Dyq?). (50)
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