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D-NURBS: A Physics-Based Framework
for Geometric Design
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Abstract—This paper presents dynamic NURBS, or D-NURBS, a physics-based generalization of Non-Uniform Rational B-Splines.
NURBS have become a de facto standard in commercial modeling systems because of their power to represent both free-form shapes
and common analytic shapes. Traditionally, however, NURBS have been viewed as purely geometric primitives, which require the
designer to interactively adjust many degrees of freedom (DOFs)—control points and associated weights—to achieve desired shapes.
The conventional shape modification process can often be clumsy and laborious. D-NURBS are physics-based models that incorporate
mass distributions, internal deformation energies, forces, and other physical quantities into the NURBS geometric substrate. Their
dynamic behavior, resulting from the numerical integration of a set of nonlinear differential equations, produces physically meaningful,
hence intuitive shape variation. Consequently, a modeler can interactively sculpt complex shapes to required specifications not only in
the traditional indirect fashion, by adjusting control points and setting weights, but also through direct physical manipulation, by applying
simulated forces and local and global shape constraints. We use Lagrangian mechanics to formulate the equations of motion for D-
NURBS curves, tensor-product D-NURBS surfaces, swung D-NURBS surfaces, and triangular D-NURBS surfaces. We apply finite
element analysis to reduce these equations to efficient numerical algorithms computable at interactive rates on common graphics
workstations. We implement a prototype modeling environment based on D-NURBS and demonstrate that D-NURBS can be effective
tools in a wide range of CAGD applications such as shape blending, scattered data fitting, and interactive sculpting.

Index Terms—NURBS, geometric modeling, computer-aided design, computer graphics physics-based models, finite elements, dynamics.
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1 INTRODUCTION

EOMETRIC modeling is crucial to a variety of fields including

computer-aided geometric design (CAGD), computer
graphics, and scientific visualization. Numerous geometric rep-
resentations have been developed for a large variety of geometric
modeling applications. Among them, nonuniform rational B-
splines, or NURBS, [37] have become an industry-standard rep-
resentation [25]. NURBS are prevalent in commercial modeling
systems primarily because they provide a unified mathematical
representation for free-form curves and surfaces and for standard
analytic shapes such as conics, quadrics, and surfaces of revolu-
tion.1 There are several different types of NURBS representa-
tions, including NURBS curves, tensor-product NURBS surfaces,
swung NURBS surfaces, and triangular NURBS surfaces. Experi-
enced practitioners can design a large variety of NURBS objects
by adjusting the positions of control points, setting the values of
associated weights, and modifying the distribution of knots [9],
[23], [24], [25], [36]. Despite modern interaction techniques, how-

ever, this conventional geometric design process with NURBS

can oftentimes be clumsy and laborious.

1. More specifically, NURBS generalize the nonrational parametric form.
They inherit many of the properties of nonrational B-splines, such as the
strong convex hull property, variation diminishing property, local support,
and invariance under standard geometric transformations. Moreover, they
have some additional properties. NURBS can be used to satisfy different
smoothness requirements. They include weights as extra degrees of free-
dom that influence local shape. Most importantly, NURBS offer a common
mathematical framework for implicit and parametric polynomial forms. In
principle, they can represent analytic functions such as conics and quadrics
precisely, as well as free-form shapes.
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We propose a physics-based framework for geometric
design with NURBS that addresses these problems through
a new class of models known as Dynamic NURBS, or D-
NURBS. D-NURBS are physics-based models that incorpo-
rate mass distributions, internal deformation energies, and
other physical quantities into the NURBS geometric for-
mulation. The models are governed by dynamic differential
equations that, when integrated numerically through time,
continuously evolve the control points and weights in re-
sponse to applied forces. We formulate D-NURBS curves,
tensor-product D-NURBS surfaces, swung D-NURBS sur-
faces, and triangular D-NURBS surfaces.

Within our physical dynamics framework, standard geo-
metric NURBS objects inherit some of the universally familiar
behaviors of physical, real-world objects. Thus, physics-based
design augments (rather than supersedes) standard geometry
and geometric design, offering attractive new advantages. In
particular, the elastic energy functionals associated with D-
NURBS allow the imposition of global qualitative “fairness”
criteria through quantitative means. Linear or nonlinear
shape constraints may be imposed either as hard constraints
that must not be violated, or as soft constraints to be satisfied
approximately. Constraints may be interpreted intuitively as
forces and optimal shape design results when D-NURBS are
allowed to achieve static equilibrium subject to these forces.
More importantly, the D-NURBS formulation supports inter-
active direct manipulation of NURBS objects, which results in
physically meaningful, hence intuitively predictable, defor-
mation and shape variation. Using D-NURBS, a modeler can
interactively sculpt complex shapes not merely by kinematic
adjustment of control points and weights, but dynamically as
well—by applying simulated forces. Additional control over
dynamic sculpting stems from the modification of physical
parameters such as mass, damping, and elastic properties.
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2 THE PHysIcS-BASED APPROACH

Although NURBS have offered designers extraordinary
flexibility, traditional design methodology does not exploit
the full potential of the underlying geometric formulation.
Conventional geometric design with NURBS models can be
problematic for the following reasons [35]:

¢ In traditional free-form geometric design, the user is of-
ten faced with the tedium of indirect shape manipula-
tion through a bewildering variety of geometric pa-
rameters; i.e., by repositioning control points, adjusting
weights, and modifying knot vectors. Despite the re-
cent prevalence of sophisticated 3D interaction devices,
indirect geometric design of univariate and tensor
product splines can be clumsy and laborious when de-
signing complex, real-world objects. It is especially se-
vere for triangular NURBS due to the irregularity of
control points and knot vectors. For symmetric surfaces
or solids, the labor may be lessened to some degree
through the judicious application of cross-sectional de-
sign using NURBS swinging operations [25].

® Shape design to required specifications by manual
adjustment of available geometric degrees of freedom
is often elusive, because relevant design tolerances are
typically shape-oriented and not control point/weight
oriented. Moreover, a particular shape can often be
represented nonuniquely, with different values of
knots, control points, and weights. This “geometric
redundancy” of NURBS tends to make shape refine-
ment ad hoc and ambiguous; it often requires design-
ers to make nonintuitive decisions—for instance, to
adjust a shape, should the designer move a control
point, change a weight, move two control points, or
adjust several weights?

¢ The design requirements of engineers and stylists can
be different. Whereas engineers focus on technical
and functional issues, stylists emphasize aesthetically-
driven conceptual design. Thus, typical design re-
quirements may be posed in both quantitative and
qualitative terms. Therefore, it can be very frustrating
to design via the indirect approach, say, a “fair” sur-
face that approximates unorganized 3D data.

To ameliorate the design process for geometric NURBS,
we develop a physics-based generalization of the model us-
ing Lagrangian mechanics and finite element techniques. Our
D-NURBS model unifies the elegant geometric features of
NURBS with the many demonstrated conveniences of inter-
action within a physical dyniamics framework. The following
are major advantages of physics-based shape design [35]:

¢ The behavior of D-NURBS is governed by physical
laws. Through a computational physics simulation,
the model responds dynamically to applied simulated

forces in a natural and predictable way. Shapes can be -

sculpted interactively using a variety of force-based
“tools.” Physics-based sculpting is intuitively ap-
pealing for shape design and control. ’

¢ The equilibrium shape of a D-NURBS object is charac-
terized by a minimum of its potential energy, subject
to imposed constraints. It is possible to formulate po-

tential energy functionals that satisfy local and global
design criteria, such as curve or surface (piecewise)
smoothness, and to impose geometric constraints
relevant to shape design.

¢ Since the dynamic model may be built upon the stan-
dard geometric' NURBS foundation, shape design
may proceed interactively or automatically at the
physical level, existing geometric toolkits are concur-
rently applicable at the geometric level (Fig. 1). More
importantly, the two types of toolkits are compatible
with each other. Designers are free to choose either
one or both to achieve design requirements.

PHYSICS
LEVEL
Force-based Toolkits
i
Interpolation/ Cro " GEOMETRY
Approximation Design LEVEL
—
Interactive . Varlational
Modification Optimization

Fig. 1. A two-level physics-based design paradigm.

Physics-based shape design can free designers from
having to make nonintuitive decisions, such as assigning
weights to NURBS. In addition, with physics-based direct
manipulation, non-expert users are able to concentrate on
visual shape variation without necessarily. comprehendirtg
the underlying mathematical formulation. Designers are
allowed to interactively sculpt shapes in a natural and pre-
dictable way using a variety of force-based tools.

Moreover, geometric design, especially conceptual de-
sign, is a time-varying process because designers are often’
interested in not only the final static equilibrium shape but
the intermediate shape variation as well. In contrast to re-
cent variational design approaches [4], [15],"time is funda-
mental to physics-based design. Additional advantages
accrue through the use of real-time dynamics:

s An “instantaneous” optimizer (if such a thing existed) "

can produce some kinematic deformation if it were ap-

~ plied at every interaction step to satisfy constraints. But

- the motion would be artificial and there would be
nothing to prevent sudden, nonsmooth motions
(depending on the structure of the constraints), which

- can be annoying and confusing. By contrast, the dy-
namic formulation is much more general in that it
augments the geometry with time, mass, force, and
constraint. Dynamic models produce smooth, natural
motions that are familiar and easily controlled.

¢ Dynamics facilitates interaction, especially direct ma-
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nipulation and interactive sculpting of complex geo-
metric models for real-time shape variation. The dy-
namic approach subsumes all of the geometric capa-
bilities in an elegant formulation that grounds shape
variation in real-world physics. Despite the fact that
incremental optimization may provide a means of in-
teraction, pure optimization techniques can easily be-
come trapped in the local minima characteristic of
non-linear models and/or constraints. In contrast,
real-time dynamics can overcome the difficulty of in-

cremental optimization through the incorporation of

inertial properties into the model and the interactive
use of force-based tools by the designer.

» Practical design processes span conceptual geometric de-
sign and the fabrication of mechanical parts. Physics-
based modeling techniques and real-time dynamics inte-
grates geometry with physics in a natural and coherent
way. The unified formulation is potentially relevant
throughout the entire design and manufacturing process.

3 BACKGROUND

D-NURBS are motivated by prior research aimed at apply-
ing the deformable modeling approach to shape design.
Terzopoulos and Fleischer demonstrated simple interactive
sculpting using viscoelastic and plastic models [33]. Celni-
ker and Gossard developed an interesting prototype system
[5] for interactive free-form design based on the finite-
element optimization of energy functionals proposed in
[33]. The system combines geometric constraints with
sculpting operations based on forces and loads to yield fair
shapes. However, this approach does not provide interac-
tive mechanisms in dealing with forces and loads. Bloor
and Wilson developed related models using similar ener-
gies and numerical optimization [3], and in [2], they pro-
posed the use of B-splines for this purpose. Subsequently,
Celniker and Welch investigated deformable B-splines with
linear constraints [6]. Welch and Witkin extended the ap-
proach to trimmed hierarchical B-splines (see also [13]) for
interactive modeling of free-form surface with constrained
variational optimization [38].

In prior work [2], [6], [38], deformable B-spline curves
and surfaces are designed by imposing shape criteria via
the minimization of energy functionals subject to hard or
soft geometric constraints. These constraints are imposed
through Lagrange multipliers or penalty methods, respec-
tively. The same techniques are applicable to D-NURBS
[35]. Compared to deformable B-splines, however, D-
NURBS are capable of representing a wider variety of free-
form shapes, as well as standard analytic shapes. Previous
models solve static equilibrium problems, or involve simple
linear dynamics with diagonal (arbitrarily lumped) mass
and damping matrices [6].

D-NURBS are a more sophisticated dynamic model de-
rived through the systematic use of Lagrangian mechanics
and finite element analysis without resorting to any of the
ad hoc assumptions of prior schemes [35]. D-NURBS control
points and associated weights are generalized coordinates
in the Lagrangian equations of motion. From a physics-
based modeling point of view, the existence of weights

makes the NURBS geometry substantially more challenging
than B-spline geometry. Since the NURBS rational basis
functions are functionally dependent on the weights, D-
NURBS dynamics are generally nonlinear, and the mass,
damping, and stiffness matrices must be recomputed at
each simulation time step.” Fortunately, this does not pre-
clude interactive performance on current graphics worksta-
tions, at least for the size of surface models that appear in
our demonstrations. Because our dynamic models allow
“non-discrete” mass and damping distributions, we obtain
banded mass and damping matrices. We apply numerical
quadrature to the underlying NURBS basis functions to
compute efficiently the integral expressions for the matrix
entries.

4 FoRMULATION oF D-NURBS

This section formulates the physics-based D-NURBS model.
The shape parameters of geometric NURBS play the role of
generalized (physical) coordinates in dynamic NURBS. We
introduce time, mass, and deformation energy into the stan-
dard NURBS formulation and employ Lagrangian dynamics
to arrive at the system of nonlinear ordinary differential
equations that govern the shape and motion of D-NURBS. In
particular, we formulate four different varieties: D-NURBS
curves, tensor-product D-NURBS surfaces, swung D-NURBS
surfaces, and triangular D-NURBS surfaces.

4.1 D-NURBS Curves

A D-NURBS curve extends the geometric NURBS curve
definition by explicitly incorporating time. Tt can be defined
as a function of both the parametric variable u and time &

2;0 p;(Hw; (1B, ()
z;o w;(£)B; 1 (u) l

where the B;;(1) are the usual recursively defined piecewise
basis functions [10], p,() are the  + 1 control points, and wyf)
are associated nonnegative weights. Assuming basis func-
tions of degree k — 1, the curve has n + k + 1 knots ¢; in non-
decreasing sequence: {,< t < ... < t,,,. In many applications,
the end knots are repeated with multiplicity & in order to in-
terpolate the initial and final control points p, and p,,.

To simplify notation, we define the vector of generalized
coordinates p(f) and weights w(t) as

o(u,t) = )

T T i
p(t) = [Po Wo P wn] ’
where " denotes transposition. We then express the curve
(1) as c(u, p) in order to emphasize its dependence on p
whose components are functions of time.
The velocity of the D-NURBS curve is

éu,p) =Jp, )
where the overstruck dot denotes a time derivative and J(u, p)
is the Jacobian matrix. Because ¢ is a 3-component vector-

valued function and p is a 4(n + 1) dimensional vector, J is
the 3 x 4(n + 1) matrix

2. Note, however, that for static weights, the matrices become time in-
variant and the computational cost is reduced significantly.
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o, 0 0
api,x .
1 P T R @)
y api,y awi ’
0 0 %,
L L api,z_ |
where
o, de,  de, w;B;
api'x &pi'y api'z Z] 2% ]k

de 27 o (P
o, 2
(Z =0 waj,k)

The subscripts x, ¥, and z denote the components of a 3-vector.

Furthermore, we can express the curve as the product of the
Jacobian matrix and the generalized coordinate vector:

\ c(u,p)=Jp- _ 4)
The proof of (4) can be found elsewhere [35].

4.2 Tensor-Product D-NURBS Surfaces

In analogy to the D-NURBS curve of (1), a tensor-product
D-NURBS surface

"” ’1 ; (Dw; tBi B.
s(u,v,t) = ZZ 02 o PijOw;(1)B; (DB, (0) -

> 02] o Wi (DB (1)B; ,(0)

* generalizes the geometric NURBS surface. The (m + 1)(n + 1)
control points p;;(f) and weights w;(f), which are functions
of time, comprise the D-NURBS generalized coordinates.
Assuming basis functions along the two parametric axes of
degree k — 1 and I ~ 1, respectively, the number of knots is
. (m+ k +-1)(n + I +1). The nondecreasing knot sequence is
ty<h < ... <t along the y-axis and 5,< s, < ... <5, along
the v-axis. The parametric domain is f—; < % <t,,,; and 5, <
v < 5,,5- If the end knots have multiplicity k and [ in the u
and v axis, respectively, the surface patch will interpolate
the control points at the four corners of the boundary.

We concatenate these N = 4(m + 1)(n + 1) coordinates
into the vector: '

P])w] ik jk

T T T
Pij Wi; Pun wm,n] .
Two subscripts are now associated with the generalized
coordinates, reflecting the surface parameters # and v. By
convention, we order the components in these vectors such
that the second subscript varies faster than the first.
Similar to (2) and (4), we have

s, v,p)=Jp, s(u,0,p)=]p, ®)

where J(u, v, p) is the 3 X N Jacobian matrix of the D-NURBS
surface with respect to p. However, the contents of the
Jacobian J differ from those in the curve case. To arrive at
an explicit expression for J, let Bi/]-(u, v, p),fori=0,..,m,
andj=0, ..., 1, be a3 x3 diagonal matrix whose entries are

os w; ; zk(u)B; 1))
319;, 25 0 Z 4=0 e, 4B, k(u)Bd 1(©)

.
p() = [Po,o Wo,0

N;(u,v,p) =

and let the 3-vector

s
Wz'j(u v,p) = ‘9“’1,]' =

2«:—0 Ed o (Pz,] P, d)wc B (B, z(U)Bl k(u)B] 1(0)

(2, 3w k<u>Bdl<v>j

Hence,
W, v,p) = [BQ,O Wo,0 ’ ,Bm,n wm,n]‘

Note that J is now a 3 X 4(m + 1)(n + 1) matrix.

4.3 Swung D-NURBS Surfaces ’
Many objects of interest, especially manufactured objects,
exhibit symmetries. Often it is convenient to. model sym-
metric objects through cross-sectional design by specifying
profile curves [11]. Woodward [39] introduced the swing-
ing operator by extending the spherical cross-product with
a scaling factor, and applied it to generate surfaces with B+
spline profile curves. Piegl [25] carried the swinging idea
over to NURBS curves. He proposed NURBS swung sur-
faces, a special type of NURBS surfaces formed by swinging
one planar NURBS profile curve along a second NURBS
trajectory curve. For example, Fig. 2 illustrates the design of
a cubical NURBS swung surface from two NURBS profile
curves. Some of the profiles (dashed lines) are shown to
illustrate the swinging operation.. ; :

The NURBS swung surface retains a considerable
breadth of geometric coverage. It can represent common
geometric primitives such as spheres, tori, cubes, quadrics,
surfaces of revolution, etc. The NURBS swung surface is
efficient compared to a general NURBS surface, inasmuch
as it can represent a broad class of shapes with essentially
as few degrees of freedom as it takes to specify the two
generator curves. Several geometric shape design systems
include some form of swinging (or sweeping) among their
repertoire of techniques [31]. ;

Geometrically, a swung D-NURBS surface is generated-
from two planar D-NURBS profile curves through the
swinging operation [25] (Fig. 2). Let the two generator
curves ¢;(#, a) and ¢,(v, b) be of the form (1). The swung
surface is then defined as

s(u,v,t) = [a(t)c1 o OlB)eg 0, clrz]T, )

where «is an arbitrary scalar. The second subscrlpt denotes
the component of a 3-vector. ’

Assume that ¢, has basis functions of degree k — 1 and

aft) and weights w/ ().

Similarly, ¢, has basis functions of degree [ — 1 and that it

that it has m + 1 control points

has 7 + 1 control points b,(f) and weights wf (#). Therefore,

T T T
a(t) = [aoz wg,-‘-, a,, w,’;]
and

b(t) = [by,w’,..., bl w’]
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Fig. 2. Construction of a cubical NURBS swung surface: (a) NURBS
profile curve on x-z plane, NURBS trajectory curve on x-y plane. (b)
Cube surface wireframe and a subset of moving profiles.

are the generalized coordinate vectors of the profile curves.
We collect these into the generalized coordinate vector

p=[a a’ bT]T

This vector has dimensionality M =1 + 4(m + 1) + 4(n + 1).
Thus the model has O(n + m) degrees of freedom, compared
to O(nm) for general NURBS surfaces.
The velocity of the swung D-NURBS surface is

$(u,v,p) =Lp, ®
where L(y, v, p) is the Jacobian matrix with respect to the
generalized coordinate vector p. Hence, L comprises the vec-
tors ds/da, ds/da, and ds/db. The expression of the 3 x M
matrix L can be explicitly formulated [28]. Unlike J in (4), L
cannot serve as the basis function matrix of the swung sur-
face because of the fact s(u, v, p) # Lp [28]. Instead, we have

s(u, v, p) = Hp, ©)
where H is the 3 x M basis function matrix whose explicit
expression can also be found in [28].

4.4 Triangular D-NURBS Surfaces

The main drawback of tensor-product NURBS is that the
surface patches are rectangular. Consequently, the designer
is forced to model multisided irregular shapes using degen-
erate patches with deteriorated inter-patch continuity.

Thus, the associated smoothness constraints increase the
complexity of the design task in general. In contrast, trian-
gular B-splines [7] and NURBS can represent complex non-
rectangular shapes over arbitrary triangulated domains
with low degree piecewise polynomials that nonetheless
maintain relatively high-order continuity. They can express
smooth nonrectangular shapes without degeneracy. They can
also model discontinuities by varying the knot distribution.
Let T = {A(i) = [r,s, tli = (i, i,,1,) € Z%} be an arbitrary
triangulation of the planar parametric domain, where i, i,

and 7, denote indices of r, s, and t in the vertex array of the
triangulation, respectively. For each vertex v in the trian-
gulated domain, we associate a knot sequence (also called a
cloud of knots) [v = v,, v, ..., v,] (which are inside the cir-
cles in Fig. 3). Next, we define a convex hull

Vi,ﬂ = {ro,...,rpu,so,...,sﬂ‘,to,...,tﬂz}

where subscript i is a triangle index, and f= (B8, B, B) is a
triplet such that 1 8| = B + B + B = n. The bivariate simplex
spline M(u | V; g) with degree n over V; g can be defined re-
cursively (the details are found elsewhere [7]), where u = (,
v) defines the triangulated parametric domain of the surface.
We then define a bivariate B-spline basis function as

Ny ) = dlsg 55,45 M8 Vig), (10

where d(rﬂo /Sg st ﬂz) is twice the area of A(rﬂu /8, tg ). Like

the ordinary tensor-product D-NURBS, we define triangu-
lar D-NURBS as the combination of a set of piecewise ra-
tional functions by explicitly incorporating time and physi-
cal behavior. The surface is a function of both the paramet-
ric variable u and time £:

zi z|ﬂl=” pi,/} (t)wl/ﬁ (t)Nl,ﬁ (u)
zi Zmzn W; 8 (t)Ni,ﬂ(u) )

We define the vector of generalized coordinates (control
points) p; gand (weights) w; gas
p = [...,p;r’ﬂ, wi,ﬂ""]T'

s(u, t) =

We then express (11) as s(u, p) in order to emphasize its
dependence on p whose components are functions of time.

Fig. 3. Knot vectors associated with each triangle in the domain
triangulation.
Thus, the velocity of the triangular D-NURBS is

s$(u, p) = Jp, 12)
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where the overstruck dot denotes a time derivative and the
Jacobian matrix J(u, p) is the concatenation of the vectors
0s/dp;p and Js/dw;pg. Assuming m triangles in the
parametric domain, S traverses . - 2 possible triplets
whose components sum to 7. Because s is'a 3-vector and p
is an M = 4mk dimensional vector, J is a 3 X M matrix, which
may be written as

R; 0 0
J=]s] 0 R 0 ,wp, (13)
0 0 Ry
where
‘ X ) ; é‘sy ds,
. gla,p)= = = =
g\t P api,ﬁ,x api,ﬁ,y api,ﬁ,z
’ wi,ﬂNi”B(u)
zj Z[a[:n wi'aNi’a (@
and
o  (pg—9)N,(u)

W; p(W,p) = 5——=
K p zj 2|a]=n @j.alNja (9)

The subscripts x, y, and z denote derivatives of the compo-
nents of a 3-vector. Moreover, we can express the surface as
the product of the Jacobjan matrix and the generalized co-
ordinate vector:

s(u, p) = Jp- (14)
The proof of (14) is the same as that for the tensor-product
D-NURBS [35].

4.5 D-NURBS Equations of Motion

The equations of motion of our dynamic NURBS model are
derived from the work-energy version of Lagrangian dy-
namics [14]. Applying the Lagrangian formulation to D-
NURBS curves, tensor-product surfaces, swung surfaces,
and triangulated surfaces, we obtain the second-order non-
linear equations of motion

Mp+Dp+Kp=1£ +g, (15)

where the mass matrix M(p), the damping matrix D(p), and
the stiffness' matrix K(p) can all be formulated explicitly
(refer to [35], [28], [29] for the details). The N x N mass and

damping matrices are :
M(p) = [ [u)dudo; Dp)= [ [yTTdudo (16)

where u(u, v) is the prescribed mass density function over
the parametric domain of the surface and Hu, v) is the pre-
scribed damping density function. To define an elastic po-
tential energy for the surface, we adopt the thin-plate under
tension energy model [32], [5], [38], [16], [35]. This yields the
N x N stiffness matrix
K(p) =
j.J.(al,IIIJu + 052,2_]:]0 + .ﬂl,llluluu + ﬂl,ZJL}Juv + ﬁZ,ZI;Jva) du d’U (17)

where the subscripts on J denote parametric partial deriva-

tives. The ¢;,(u, v) and g, (u, v) are elasticity functions that
control tension and rigidity, respectively, in the two

parametric coordinate directions.” Other energies are appli-
cable, including the nonquadratic, curvature-based energies

[34], [21]. The generalized force £,(p) = | j T €(u, v, £) dudo

is obtained through the principle of virtual work [14] done
by the applied force distribution f(u, v, t). Because of the

geometric nonlinearity, generalized inertial forces g,(p) are
also associated with the models (see [35], [28]). '

5 IMPLEMENTATION OF D-NURBS FINITE ELEMENT

The equations of motion (15) that determine the evolution
of p cannot be solved analytically in general. Instead, we
pursue an efficient numerical implementation using finite-
element fechniques [17].

Standard finite element codes explicitly assemble the
global matrices that appear in the discrete equations of mo-
tion [17]. We use an iterative matrix solver to avoid the cost
of assembling the global M, D, and K. In this way, we work

- with the individual element matrices and construct finite

element data structures that permit the parallel computa-
tion of element matrices. :

5.1 Element Data Structures

We consider a D-NURBS curve arc or surface patch defined
by consecutive knots in the parametric domain to be a type
of finite element. For instance, Fig. 4 illustrates a typical
finite element of a cubic triangular B-spline surface, along
with its local degrees of freedom.’

Elament Degress of Fresdom

Trangutated Domain

Fig. 4. One finite element and its degrees of freedom of a triangular
B-Spline surface. : .

We define an element data structure which contains the
geometric specification of the surface patch (or curve arc)’
element along with its physical properties, as is illustrated
in Fig. 5. A complete D-NURBS curve or surface is then
implemented as a data structure that consists of an ordered
array of D-NURBS elements with additional }ihformation'.
The element structure includes pointers to appropriate

~components of the global vector p (control points and

weights). Note that neighboring elements will share some
generalized coordinates (see Fig. 5). We also allocate in each

3. In the case of the D-NURBS curve, there are only two terms and two
weighting functions in the potential energy form because of the single

spatial parameter u:U = % J- o(u) LN B(w) L 2 gy
2 o a o’

4. The degrees of freedom of this element consist of all control points
whose basis functions are nonzero over the current triangle in the
parametric domain. Because of the irregular knot distribution of triangular
NURBS, we can not display all the degrees of freedom of this element; only
10 indexed control points are shown in Fig. 4.
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element an elemental mass, damping, and stiffness matrix,
and include in the element data structure the quantities
needed to compute these matrices. These quantities include
the mass u(u, v), damping Ku, v), and elasticity ¢;;(u, v),
B,(u, v) density functions, which may be represented as
analytic functions or as parametric arrays of sample values.

5.2 Calculation of Element Matrices

The integral expressions for the mass, damping, and stiff-
ness matrices associated with each element are evaluated
numerically using Gaussian quadrature [27]. We shall ex-
plain the computation of the element mass matrix; the
computation of the damping and stiffness matrices follow
suit. Assuming the parametric domain of the element is €,
the expression for entry m; of the mass matrix takes the
integral form

my = jﬂ p(u, 0)fy (u, v)du do,
where, according to (16),

fiw0) = jjj;-

Element Element o . wnn—gp, Eloment Structurs
Elemont Element Element
Matrices Matrices Matrices
Physical Physieal Physical
Quantities Quantities Quantities

Local Geometric Local Geometric
Data Data

Elomem DOFs |

S/ CLKIN HH

7 TS 7SIV N N\\T

Global Degrees of Freedom (Control Paint and Weight) Array of D-NURBS

L

’ Giobal Geometric information of D-NURBS \

Fig. 5. Element data structure of D-NURBS.

Here, the j; and j; are the columns of the Jacobian matrix for
the D-NURBS surface element. Given integers N,, we can
find Gauss weights a,, and abscissas Uy, Ty in the two
parametric directions of Q such that m; can be approxi-
mated by [27]

N
.
my = z;ag,u(ug,vg fij(ug,z:g).
p=

We apply the de Boor algorithm [8] or the recursive algo-
rithm of multivariate simplex B-splines [19] to evaluate
filtg vp)" In general, Gaussian quadrature evaluates the

5. The entries of the D-NURBS curve element mass matrix are

I _ LT . . .
my = L" ,u(u)f,.,.(u) du, where fij(“) = j;;- Given integer N,, we can find

Gauss quadrature abscissas u, and weights g, such that m; can be ap-

N
proximated as follows: my = zg; ag,u(ug )ﬁ].(ug)A

integral exactly with N weights and abscissas for polyno-
mials of degree 2N — 1 or less. In our system we choose N,
to be integers between 4 and 7. Our experiments indicate
that matrices computed in this way lead to stable, conver-
gent solutions. Note that because of the irregular knot dis-
tribution for the case of triangular D-NURBS, many f;s are
zero over the triangular subdomains of Q. We can further
subdivide the subdomains in order to decrease the numeri-
cal quadrature error [29].

5.3 Discrete Dynamics Equations

To integrate (15) in an interactive modeling environment, it is
important to provide the modeler with visual feedback about
the evolving state of the dynamic model. Rather than using
costly time integration methods that take the largest possible
time steps, it is more crucial to provide a smooth animation
by maintaining the continuity of the dynamics from one step
to the next. Hence, less costly yet stable time integration
methods that take modest time steps are desirable.

The state of the dynamic NURBS at time ¢ + At is integrated
using prior states at time ¢ and ¢ — At. To maintain the stability
of the integration scheme, we use an implicit time integration
method, which employs the time integration formula

(2M + AtD + 24K )p**? =
248%(£, +g,) + 4Mp" ~ @M - AP (18)

where the superscripts denote evaluation of the quantities at the
indicated times. The matrices and forces are evaluated at time .
We employ the conjugate gradient method to obtain an it-
erative solution [27]. To achieve interactive simulation rates,
we limit the number of conjugate gradient iterations per time
step to 10. We have observed that two iterations typically
suffice to converge to a residual of less than 10~ More than
two iterations tend to be necessary when the physical pa-

+ rameters (mass, damping, tension, stiffness, applied forces)

are changed significantly during dynamic simulation. Hence,
our implementation permits the real-time simulation of dy-
namic NURBS surfaces on common graphics workstations.
The equations of motion allow realistic dynamics such as
would be desirable for physics-based computer graphics
animation. It is possible, however, to make simplifications
that further reduce the computational cost of (18) to interac-
tively sculpt larger surfaces. For example, in CAGD appli-
cations such as data fitting where the modeler is interested
only in the final equilibrium configuration of the model, it
makes sense to simplify (15) by setting the mass density
function u(u, v) to zero, so that the inertial terms vanish.’

6 PHysIcs-BASED SHAPE DESIGN

The physics-based shape design approach allows modeling
requirements to be expressed and satisfied through the use of
energies, forces, and constraints. The designer may apply time-
varying forces to sculpt shapes interactively or to optimally
approximate data. Certain aesthetic constraints such as
“fairness” are expressible in terms of elastic energies that give
rise to specific stiffness matrices K. Other constraints include

6. By also setting the damping density function ¥u, v) to zero, designers
reduce a dynamic model to a conventional nonlinear shape optimizer.
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position or normal specification at surface points, and continu-
ity requirements between adjacent surface patches. By building
D-NURBS upon the standard NURBS geometry, we allow the
modeler to continue to use the whole spectrum of advanced
geometric design tools that have become prevalent, among
them, the imposition of geometric constraints that the final
shape must satisfy. Our physics-based shape design approach
« [35], [28], [29] which utilizes energies, forces, and constraints
has proven to be simpler and more intuitive than conventional
geometric design methods (e.g., the manipulation and adjust-
ment of control points and weights). This approach is espe-
cially attractive for triangular NURBS, because of the complex-
ity and irregularity of their control point and knot vectors.

6.1 Applied Forces

In the D-NURBS design scenario, sculpting tools may be
implemented as applied forces. The force f(u, v, ) repre-
sents the net effect of all applied forces. Typical force func-
tions are spring forces, repulsion forces, gravitational
forces, inflation forces, etc. [34].

For example, consider connecting a material point (¢, v)
of 'a D-NURBS surface to a point d, in space with an ideal
Hookean spring of stiffness k. The net applied spring force is

£(u,0,f) = j j k(dy — 5, v, )(u — thy, 0 — v,)dudo, (19)

where the dis the unit delta function. Equation (19) implies
that £(u,, vy, 1) = k(dy— s(t, vy, £)) and vanishes elsewhere on
the surface, but we can generalize it by replacing the & func-
tion with a smooth kernel (e.g., a unit Gaussian) to spread
the applied force over a greater portion of the surface. Fur-
thermore, the points (1, vy) and dy need not be constant, in
general. We can control either or both using a mouse to
obtain an interactive spring force. More advanced force
tools are readily implemented to intuitively manipulate
intrinsic geometric quantities such as normals and curva-
tures anywhere over D-NURBS objects.

6.2 Constraints

In practical applications, design requirements may be posed as a
- set of physical parameters or as geometric constraints. Nonlinear
constraints can be enforced through Lagrange multiplier tech-
niques [20]. This approach increases the number of degrees of
freedom, hence the computational cost, by adding unknowns 4,
known as Lagrange multipliers, which determine the magni-
tudes of the constraint forces. The augmented Lagrangian
method [20] combines the Lagrange multipliers with the simpler
penalty method [26]. The Baumgarte stabilization method [1]
solves constrained equations of motion through linear feedback
control [18], [35]. These techniques are appropriate for D-NURBS
with nonlinear constraints.

Linear geometric constraints such as point, curve, and
surface normal constraints can be easily incorporated into
D-NURB by reducing the matrices and vectors in (15) to a
minimal unconstrained set of generalized coordinates. They
can then be implemented by applying the same numerical
solver on an unconstrained subset of p [35].

D-NURBS have an interesting idiosyncrasy due to the
weights. While the control point components of p may take
arbitrary finite values in R, negative weights may cause the
denominator to varﬂ§h at some evaluation points, causing the

matrices to diverge. Although not forbidden, negative weights
are not useful. We enforce positivity of weights at each simula-
tion time step by simply projecting any weight value that has
drifted below a small positive threshold back to this lower
bound. Alternatively, we can give the designer the option of
constraining the weights near certain desired target values w?

by including in the surface energy the penalty term
CZ (w; - w?) , where ¢ controls the tightness of the constraint.

7 MODELING APPLICATIONS

This section describes our D-NURBS modeling environ-
ment and presents several applications.

7.1 Interactive Modeling Environment

We have developed a prototype modeling environment
based on the curve, tensor-product and swung D-NURBS
model. The system is written in C and it currently runs un-
der Iris Explorer on Silicon Graphics workstations. It may
be combined with existing Explorer modules for data input
and surface visualization. Our parallelized iterative nu-
merical algorithm takes advantage of an SGI Iris
4D/380VGX multiprocessor. To date, our D-NURBS mod-
ules implement 3D curve and surface objects with basis
function orders of 2, 3, or 4 (i.e., from linear to Cublc D-
NURBS) with linear geometric constraints.

We have also developed prototype modeling software
based on dynamic triangular B-splines which is a special
case of triangular D-NURBS by fixing all weights to one (an
advanced system based upon dynamic-triangular NURBS is
under construction). We have adopted the data structure,
file, and rendering formats of existing geometric triangular
B-spline software [12]. To implement the Lagrangian dy-
namics model on top of this software, we have had to im-
plement a new algorithm for simultaneously evaluating
nonzero basis functions and their derivatives up to second
order at arbitrary domain points for. finite element assem-
bly and dynamic simulation. .

Using our system, designers can sculpt surface shapes in
conventional geometric ways, such as by sketching control
polygons of arbitrary profile curves, repositioning control
points, and adjusting associated weights, or according to the
physics-based paradigm through the use of forces.' They can
satisfy design requirements by adjusting the internal physical
parameters such as the mass, damping, and stiffness densities,
along with force gain factors. At present, our software assumes
uniform mass, dampmg, and elasticity densities over the
parametric domain. This is straightforwardly generalizable to
accommodate the nonuniform density functions in our formu-
lation, although our user interface would have to be extended
to afford the user full control in specifying these functions. In
general, the qualitative effects of these parameter adjustments
on D-NURBS can be intuitively comprehended through the
principles of physical dynamics. For example, increasing the
magnitude of & has a tendency to reduce the curve arc-length

- or surface area of D-NURBS, while increasing  tends to make

objects more rigid. The damping density y affects how fast an
object converges to its equilibrium state. However, the quanti-
tative effects of how the parameter setting influences the opti-
mal shape of D-NURBS in geometric design remains an open
problem. It should be explored in future research:
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TABLE 1
PHYSICAL PARAMETERS USED IN THE EXAMPLES

Applications Physical Parameters
H 14 (2% [ :31,1 nl, T 52,2 At k

Curve fitting 0.0 50.0 a=20.0 S=60.0 0.001 1000.0
Hemisphere fitting 0.0 50.0 10.0 10.0 5.0 5.0 5.0 0.02 5000.0
Convex/Concave fitting 0.0 50.0 10.0 10.0 5.0 5.0 5.0 0.03 2000.0
Sinusoidal fitting 0.0 100.0 2.0 20 10.0 10.0 10.0 0.02 3000.0

Edge rounding 0.0 500.0 | 1000.0 0.0 1.0 0.0 0.0 0.04 0.0

Corner rounding 0.0 50.0 1000.0 | 1000.0 10.0 10.0 10.0 0.04 0.0

Bevel rounding 0.0 25.0 100.0 100.0 0.0 0.0 0.0 0.04 0.0
Egg sculpting 1.0 25.0 100.0 100.0 20.0 20.0 20.0 0.002 | 3000.0
Toroid sculpting 1.0 100.0 25.0 25.0 10.0 10.0 10.0 0.003 | 4000.0
Hat sculpting 2.0 100.0 5.0 5.0 1.0 1.0 1.0 0.004 | 5000.0
Glass sculpting 2.0 50.0 15.0 15.0 4.0 4.0 4.0 0.001 2000.0

Parameter k denotes the stiffness of the spring force.

Linear constraints, such as the freezing of control points,
have been associated with physics-based toolkits in our pro-
totype system. Local geometric constraints can be used to
achieve real-time local manipulation for interactive sculpting
of complex objects. In the following sections we demonstrate
applications of D-NURBS to interactive sculpting, solid
rounding, and scattered data fitting. Table 1 specifies the
physical parameters used in the subsequent experiments.

7.2 Optimal Fitting

D-NURBS are applicable to the optimal fitting of regular or
scattered data [30]. The most general and often most useful
case occurs with scattered data, when there are fewer or more
data points than unknowns—i.e.,, when the solution is un-
derdetermined or overdetermined by the data. In this case,
D-NURBS can yield “optimal” solutions by minimizing the
thin-plate under tension deformation energy [32]. The sur-
faces are optimal in the sense that they provide the smoothest
curve or surface (as measured by the deformation energy)
that interpolates or approximates the data [4], [22].

The data point interpolation problem amounts to a linear con-
straint problem when the weights are fixed, and it is amenable to
the constraint techniques presented in Section 6.2. The optimal
approximation problem can be approached in physical terms, by
coupling the D-NURBS to the data through Hookean spring
forces (19). We interpret d, in (19) as the data point (generally in
%% and (u, v,) as the D-NURBS parametric coordinates associ-
ated with the data point (which may be the nearest material
point to the data point). The spring constant ¢ determines the
closeness of fit to the data point.

We first present an experiment of D-NURBS curve fitting
coupled to data points through spring forces. Fig. 6a shows
six sampled data points and an initial closed cubic D-
NURBS curve with 11 control points. Note that the spring
forces initiated by the data points are always applied to the
nearest points on the curve. The spring attachments to the
curve may vary during the fitting process, they are not ex-
plicitly illustrated in Fig. 6. One intermediate view of the
fitting process and the final fitted curve are displayed in
Fig. 6b and Fig. 6¢, respectively.

(b)

(©
Fig. 6. D-NURBS curve fitting: (a) data points and the initial cubic
curve, (b) intermediate scene, (c) the final fitted curve.

Next, we present three examples of surface fitting using
tensor-product D-NURBS [35]. Fig. 7a shows 19 data points
sampled from a hemisphere and their interpolation with a
quadratic D-NURBS surface with 49 control points. Fig. 7b
shows 19 data points and the reconstruction of the implied
convex/concave surface by a quadratic D-NURBS with 49
control points. The spring forces associated with the data
points are applied to the nearest points on the surface. In
Fig. 7c, we reconstruct a wave shape from 25 sample points
using springs with fixed attachments to a quadratic tensor-
product D-NURBS surface with 25 control points.



94 : IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 2, NO. 1, MARCH. 1996

7.3 Rounding

The rounding operation is usually attempted geometrically
by enforcing continuity requirements on the fillet that inter-
" polates between two or more surfaces. By contrast, the D-
NURBS can produce a smooth fillet by minimizing its inter-
nal deformation energy subject to position and normal con-
“straints. The dynamic simulation automatically produces the
desired final shape as it achieves static equilibrium.

Fig. 8a demonstrates the rounding of a sharp edge repre-
sented by a quadratic triangular D-NURBS surface with 36
control points. The sharp edge can be represented exactly
with multiple control points or with multiple knots. By re-
stricting the control polygon to be a-continuous net, we re-
duced the number of control points to 21. The initial wire-
frame surface is shown in Fig. 8al. After initiating the physi-
cal simulation, the sharp edges are rounded as the final shape

@2) ©2)

equilibrates into the minimal energy state shown by the
shaded surface in Fig. 8a2. '

Fig. 8b illustrates the rounding of a trihedral corner of a
cube. The corner is represented using a quadratic triangular
D-NURBS with 78 control points. The initial wireframe is
shown in Fig. 8bl. The rounding operation is applied in the
vicinity of three sharp edges. The sharp edges and corner are
rounded with position and niormal constraints along the far
boundaries of the faces of the shaded surface shown in Fig.
8b2.

Fig. 8c shows a rounding example involving a bevel joint.
The bevel joint is a quadratic triangular D-NURBS with 108
control points. The initial right-angle joint and the final
rounded surface are shown in Fig. 8c1-2. Note that, unlike
Fig. 8al-cl, the wireframes appeared in Fig. 8al-cl do not
illustrate the boundaries of triangular patches.

(c2)

- Fig. 7. Optimal surface fitting: D-NURBS surfaces fit to sampled data from (a) a hemisphere, (b) a convex/concave surface, () a sinusoidal sur-
face. (a—c1) D-NURBS patch outline with conirol points (white) and data points (red) shown. (a—c2) D-NURBS -surface at equilibrium fitted to

scattered data points. Red line segments in (c2) represent springs with fixed attachment points on surface

(at)

(@2)

Fig; 8. Solid rounding with triangular D-NURBS: Rounding of (a) an edge, (b) a trihedral corner, ‘(c) a bevel joint. (a1-c1) Initial wireframe sur-
faces. (a2-c2) Final rounded, shaded surfaces. :

(b1)

(b2)

(c2)
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(@) (b)

(© (d)

Fig. 9. Interactive Sculpting of Swung D-NURBS Surfaces. Open and closed surfaces shown were sculpted interactively from prototype shapes
noted in parentheses (a) Egg shape (sphere). (b) Deformed toroid (torus). (c) Hat (open surface). (d) Wine glass (cylinder).

7.4 Interactive Sculpting

In the physics-based modeling approach, not only can de-
signers manipulate the individual degrees of freedom with
conventional geometric methods, but they can also move the
object or refine its shape with interactive sculpting forces.

The physics-based modeling approach is ideal for interac-
tive sculpting of surfaces. It provides direct manipulation of
the ‘dynamic surface to refine the shape of the surface
through the application of interactive sculpting tools in the
form of forces. Fig. 9a illustrates the results of four interac-
tive sculpting sessions using “texture-mapped” swung D-
NURBS surfaces and simple spring forces. A sphere was
generated using two quadratic curves with 4 and 7 control
points and was sculpted into the ovoid shown in Fig. 9a.
A torus whose two profile curves are quadratic with 7 and
7 control points, respectively, has been deformed into the
shape in Fig. 9b. A hat shape was created from two curves
with 9 and 6 control points and was then deformed by
spring forces into the shape in Fig 9d. Finally, we generated
a wine glass shape using two curves with 7 and 5 control
points and sculpted it into the more pleasing shape shown
in Fig 9c.

8 CONCLUSION

We have presented D-NURBS, a dynamic generalization of
geometric NURBS. D-NURBS were derived systematically
through the application of Lagrangian mechanics and im-
plemented using concepts from finite element analysis and
efficient numerical methods. The mathematical develop-
ment comprised four varieties: D-NURBS curves, tensor-
product D-NURBS surfaces, swung D-NURBS surfaces, and
triangular D-NURBS surfaces.

We also presented a new physics-based design paradigm
based on D-NURBS which generalizes well established
geometric design. This paradigm was the basis of a D-
NURBS interactive modeling environment. The physics-
based framework furnishes designers not only the standard
geometric toolkits but powerful force-based sculpting tools
as well. It provides mechanisms for automatically adjusting
unknown parameters to support user manipulation and
satisfy design requirements.

Since D-NURBS are built on the industry-standard
NURBS geometric substrate, designers working with them
can continue to make use of the existing array of geometric
design toolkits. With the advent of high-performance
graphics systems, however, the physics-based framework is

poised for incorporation into commercial design systems to
interactively model and sculpt complex shapes in real-time.
Thus, D-NURBS can unify the features of the industry-
standard geometry with the many demonstrated conven-
iences of interaction through physical dynamics.

ACKNOWLEDGMENTS »

We would like to thank Professor Hans-Peter Seidel for
kindly making available the software for triangular B-spline
surfaces that he developed with Philip Fong. This research
was made possible by grants from the Natural Sciences and
Engineering Research Council of Canada and the Informa-
tion Technology Research Centre of Ontario.

REFERENCES

[1] J. Baumgarte, “Stabilization of Constraints and Integrals of Motion in
Dynamical Systems,” Comp. Meth. in Appl. Mech. and Eng., vol. 1, pp.
1-16,1972.

[2] MIG. Bloor and M.J. Wilson, “Representing PDE Surfaces in Terms of
B-Splines,” Computer-Aided Design, vol. 22, no. 6, pp. 324-331, 1990.

[3] MIG. Bloor and MJ. Wilson, “Using Partial Differential Equations to
Generate Free-Form Surfaces,” Computer-Aided Design, vol. 22, no. 4,
pp. 202-212, 1990.

[4] B. Brunnett, H. Hagen, and P. Santarelli, “Variational Design of
Curves and Surfaces,” Surveys on Mathematics for Industry, vol. 3, pp.
1-27,1993.

[5] G. Celniker and D. Gossard, “Deformable Curve and Surface Finite
Elements for Free-Form Shape Design,” Computer Graphics, vol. 25, no.
4, pp. 257-266, 1991. (Proc. ACM Siggraph’91).

[6) G. Celniker and W. Welch, “Linear Constraints for Deformable B-
Spline Surfaces,” Proc. Symp. Interactive 3D Graphics, pp- 165-170, 1992.

[7] W. Dahmen, C. Micchelli, and H.-P. Seidel, “Blossoming Begets B-
Spline Bases Built Better by B-Patches,” Mathematics of Computation,
vol. 59, no. 199, pp. 97-115, 1992.

[8] C.de Boor, “On Calculating with B-Splines,” J. Approximation Theory,
vol.: 6, no. 1, pp. 50-62, 1972.

[9]1 G. Farin, “Trends in Curve and Surface Design,” Computer-Aided De-

sign, vol. 21, no. 5, pp. 293296, 1989.

G. Farin, Curves and Surfaces for Computer Aided Geometric Design: A

Practical Guide, second edition. Academic Press, 1990.

[11] 1D. Faux and M.J. Pratt, Computational Geometry for Design and Manu-
facture. Chichester,U.K.: Ellis Horwood, 1979.

[12] P. Fong and H.-P. Seidel, “ An Implementation of Triangular B-Spline

Surfaces Over Arbitrary Triangulations,” Computer Aided Geometric

Design, vol. 34, no. 10, pp. 267-275, 1993.

D.R. Forsey and RH. Bartels, “Hierarchical BSpline Refinement,”

Computer Graphics, vol. 22, no. 4, pp- 205-212, 1988.

B.R. Gossick, Hamilton’s Principle and Physical Systems. New York and

London: Academic Press, 1967.

G. Greiner, “Variational Design and Fairing of Spline Surfaces,” Proc.

EUROGRAPHICS %4, pp. 143154, Blackwell, 1994.

[16] M. Halstead, M. Kass, and T. DeRose, “Efficient, Fair Interpolation
Using Catmull-Clark Surfaces,” Computer Graphics Proc. Ann. Conf. Se-
ties, Proc. ACM Siggraph’93, pp. 35—44, Anaheim, Calif., Aug. 1993.

(10]

[13]
[14]

[15]



96

(17
[18]

[19]

[20]
[21]

[22]

[23]
[24]
[25]
[26}

[27]
[28]

29
[30]

(31]
[32]

[33]
4]

[35]

[36]
[37]
[38]
(39]

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 2, NO. 1,

H. Kardestuncer, Finite Element Handbook. New York: McGra’I——Hﬂl

1987.

D. Metaxas and D. Terzopou]os, “Dynamic Deformation of Solid
Primitives with Constraints,” Computer Graphics, vol. 26, no. 2, pp.

309-312, 1992. (Proc. ACM Siggraph’92).

C.A. Micchelli, “On a Numerically Efficient Method for Computing
with Multivariate B-Splines, Multivariate Approximation Theory, W.

Schempp and K. Zeller, eds., pp. 211-248. Basel: Birkhauser, 1979.

M. Minoux, Mathematical Programming. New York: Wiley, 1986.

H.P. Moreton and CH. Sequin, “Functional Optimization for Fair
Surface Design,” Computer Graphics, vol. 26, no. 2,-pp. 167-176, 1992.
(Proc. ACM Siggraph'92).

R. Pfeifle and H.-P. Seidel, “Fitting Triangular B-Splines to Functional
Scattered Data,” Proc. Graphics Interface’95, pp. 26-33. San Mateo,
Calif.: Morgan Kaufmann, 1995.

L. Piegl, “Modifying the Shape of Rational B-Splines, Part 1: Curves,”
Computer-Aided Design, vol. 21, no. 8, pp. 509-518, 1989.

L. Piegl, “Modifying the Shape of Rational B-Splines, Part 2: Surfaces,”
Computer-Aided Design, vol. 21, no. 9, pp. 538-546, 1989.

L. Piegl, “On NURBS: A Survey,” IEEE Computer Graphics and Applica-
tions, vol. 11, no. 1, pp. 55-71, Jan. 1991.

J. Platt, “A Generalization of Dynamic Constraints,” CYGIP: Graphical
Models and Image Processing, vol. 54, no. 6, pp. 516-525, 1992,

W. Press, B. Flanney, S. Teukolsky, and W. Verttering, Numerical Reci-
pes: The Art of Scientific Computing. Cambridge: Cambridge Univ.
Press, 1986.

H. Qin and D. Terzopoulos, “Dynamic NURBS Swung Surfaces for
Physics-Based Shape Design,” Computer Aided Design, vol. 27, no. 2,
pp- 111-127, 1995.

H. Qin and D. Terzopoulos, “Triangular NURBS and Their Dynamic
Generalizations,” Computer Aided Geometric Design, 1996.

L.L. Schumaker, “Fitting Surfaces to Scattered Data,” Approximation
Theory 1I, G.G. Lorentz, C.K. Chui, and L.L. Schumaker, eds., pp. 203—
267. New York: Academic Press, 1976.

J. Snyder and J. Kajiya, “Generative Modeling: A Symbolic System
for Geometric Modeling,” Computer Graphics, vol. 26, no. 2, pp. 369~
378,1992.

D. Terzopoulos, “Regularization of Inverse Visual Problems Involving
Discontinuities,” IEEE Trans. Pattern Analysis and Machine Intelligence,

vol. 8, no. 4, pp. 413424, Apr. 1986.

D. Terzopoulos and K. Fleischer, “Deformable Models,” The Visual
Computer, vol. 4, no: 6, pp. 306-331, 1988.

D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer, “Elastically Deform-
able Models,” Computer Graphics, vol. 21, no. 4, pp. 205-214, 1987.

D. Terzopoulos and H. Qin, “Dynamic NURBS with Geometric Con-
straints for Interactive Sculpting,” ACM Trans. Graphics, vol. 13, no. 2,
pp- 103-136, 1994.

W. Tiller, “Rational B-Splines for Curve and Surface Representation,” IEEE
Computer Graphics and Applications, vol. 3, no. 6, pp. 61-69, Sept. 1983.

KJ. Versprille, “Computer-Aided Design Applications of the Rationial
B-Spline Approximation Form,” PhD thesis, Syracuse Univ., 1975.

W. Welch and A. Witkin, “Variational Surface Modeling,” Computer
Graphics, vol. 26, no. 2, pp. 157-166, 1992. (Proc. ACM Siggraph’92).

C. Woodward, “Cross-Sectional Design of B-Spline Surfaces,” Com-
puters and Graphics, vol. 11, no. 2, pp. 193-201, 1987.

% Hong Qin (§'92) received the BS and MS degrees
in computer science from Peking University, Beijing,
China, in 1986 and 1989, respectively. He obtained

. versity of Toronto, Toronto, Canada, in 1995.
-Currently, he is assistant professor of computer

University of Florida, Gainesville. His interests
include computer graphics, geometric imodeling,
computer aided design, and scientific visualiza-
" tion. He is a member of AGM, IEEE, and SIAM.

- Demetri Terzopoulos (S78, M'85) received the
BENg degree with distinction in honours electrical
engineering and the MEng degree in electiical engi-

1978, and 1980, respectively, and the PhD degree
n artificial intelligence from the Massachusetts
Institute of Technology, Cambridge, Massachusetts,
n 1984.
Dr. Terzopoulos is a professor. of computer
science and. electrical and computer. engineering
i at the University of Toronto, where he leads the
Visual Modeling Group. He is a fellow of the Ca-
nadian Institute for Advanced Research. From 1985 to 1992, he was
afiiiated with Schiumberger, Inc., serving as program leader at research
labs in Palo Alto, California, and Austin, Texas. During 1984-1985, he

was a research scientist at the MIT Attificial Intelligence Lab, Cambridge, .

Massachusetts. He has been a consultant to Digital, Hughes, NEC, On-
tario Hydro, and Schiumberger.
His publxshed works include more than 150 scientific articles, primarily

in compuier vision and graphics, and also in computer-aided design, -

medical imaging, artificial intelligence, and artificial life, including the
recent edited volumes Real-Time Computer Vision (Cambridge Univer-
sity Press, 1994) and Animation and Simulation (Springer-Verlag, 1995).
His contributions have been recognized with several awards. In 1996, he
was awarded the prestigious Natural Sciences and Engineering Re-
search Council of Canada E.W.R. Steacie Memorial Fellowship. His
other awards include three university Excellence Awards, an award from
the American Association for Artificial Intelligence in 1987 for his work on
deformable models in vision, an award from the IEEE in 1987 for his
work on active contours (“snakes”), and awards from the Canadian

Academy of Multimedia Arts and Sciences in 1994 and from Ars Elec- .

tronica in 1995 for his work on artificial animals: He serves on the edito-
rial boards of the journals Medical Image Analysis, Graphical Models and
Image Processing, and the Joumnal of Visualization and Computer Ani-
mation. He has served on ARPA and NIH advisory committees and is a
member of the New York Academy of Sciences and Sigma Xi.

MARCH 1996

the PhD degree in computer science from the Uni-

- and information sciences and engineering. at the .

. neering from McGill University, Montreal, Canada, in



