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We develop physically-based models of de- 
formable curves, surfaces, and solids for 
use in computer graphics. Our deformable 
models are governed by the mechanical 
laws of continuous bodies whose shapes 
can change over time. These laws, ex- 
pressed in the form of dynamic differential 
equations, unify the description of shape 
and motion. By solving the equations nu- 
merically we are able to create realistic an- 
imations involving the interaction of de- 
formable models with various applied 
forces, ambient media, and impenetrable 
obstacles in a simulated physical world. 
We develop deformable models capable of 
perfectly elastic behavior and more general 
inelastic behavior, including viscoelastic- 
ity, plasticity, and fracture. 
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ethods to formulate and represent the 
shapes of objects are central to com- 
puter graphics modeling. Geometric 
methods have been particularly useful 

for modeling stationary, rigid objects whose shapes 
do not change over time. Unfortunately, purely ge- 
ometric modeling primitives are inert. This paper 
develops a physically-based approach to modeling 
and animation founded on laws governing the dy- 
namics of nonrigid bodies. These physical princi- 
ples, formalized in continuum mechanics as partial 
differential equations, make our deformable models 
active - they respond in a natural manner to ap- 
plied forces, ambient media, constraints, and col- 
lisions with other objects in a simulated physical 
environment. Our approach to modeling is funda- 
mentally dynamic, and it unifies the description 
of shapes and their motions through space. Creat- 
ing realistic animation becomes a matter of simula- 
tion; that is, of numerically solving the underlying 
differential equations of motion. 
The following sections examine the implications of 
our physically-based approach to modeling and 
animation. We elaborate on the features that dis- 
tinguish deformable models from conventional mo- 
deling techniques (Table 1), and describe the broad 
spectrum of behaviors that fall within the scope 
of deformable models. 

Table 1. Features of deformable models 

Deformable models Conventional models 

Physics & geometry Geometry only 
Active Inert 
Dynamic Kinematic 
Animation by simulation Prescribed animation 

1.1 Physically-based modeling 
and animation 

Modeling based on physical principles is establish- 
ing itself as a potent technique in computer graph- 
ics. Physically-based models, while computational- 
ly more complex than many traditional models, 
offer unsurpassed realism in the modeling of natu- 
ral phenomena. The repertoire of physically-based 
models continues to grow (see, e.g., Barr et al. 1987; 
Fournier et al. 1987). For instance, a theme cur- 
rently gaining popularity is the use of Newtonian 
dynamics to model articulated or arbitrarily con- 
strained assemblies of rigid primitives (Armstrong 
and Green 1985; Wilhelms and Barsky 1985; Gir- 
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ard and Maciejewski 1985; Wilhelms 1987; Barzel 
and Barr 1987; Hoffmann and Hopcroft 1987; 
Issacs and Cohen 1987). 
Physically-based modeling offers critical advan- 
tages for computer animation. Conventional ani- 
mation is kinematic; objects are set into motion 
by prescribing the positions of their geometric 
components at each instant in time, usually aided 
by key-frame interpolation techniques. Creating 
natural-looking motions kinematically requires ex- 
pertise (Lassiter 1987). By contrast, in the dynamic 
approach to animation, we apply forces to objects 
while standard numerical procedures generate po- 
sitions through time in accordance with Newton's 
laws. Thus, as computer animators, we may begin 
to think more like choreographers who remain 
rather unconcerned with the kinematic details of 
routines, knowing that physics will dictate the low- 
level motions of dancers. By incorporating basic 
physical principles into our models, we are well 
on the way toward modeling methods that allow 
computer animators to plan motions at the choreo- 
graphic level, concentrating on abstract qualities 
such as timing, rhythm, and style. 
In this paper we are concerned mainly with nonri- 
gid, free-form objects. Conventional free-form de- 
sign is, again, kinematic. For example, the degrees 
of freedom - typically, the control variables - of 
a mosaic of patches are adjusted to shape extended 
surfaces and to position them in space (De Boor 
1978; Bartels et al. 1987). However, attempts at im- 
itating the natural motion of extended, flexible ob- 
jects by specifying hundreds of control variables 
kinematically through time seem hopelessly te- 
dious. For this task especially, the physically-based 
approach is compellingly attractive. 
Conceptually, our approach may be viewed as the 
application of nonrigid dynamics principles from 
continuum mechanics (Hunter 1983) to evolve 
shape and motion variables in response to applied 
forces. Technically, we employ concepts from the 
finite-element method (Zienkiewicz 1977), a com- 
putational technique that prescribes local polyno- 
mial "elements", each with specific "control vari- 
ables" or degree of freedom, as piecewise approxi- 
mations for the discrete solution of continuum me- 
chanics equations. Thus, in principle, we can incor- 
porate the physics of complex nonrigid motions 
into the free-form shape representations which 
have been used traditionally. In practice, however, 
we must pay close attention to computational com- 
plexity when choosing among candidate represen- 

tations simplicity, such as low polynomial order, 
tends to be a virtue. 
A popular flee-form shape representation in com- 
puter graphics is the spline patch. In applying 
splines to modeling the graphics community has 
unfortunately treated them as purely geometric en- 
tities, deemphasizing their physical underpinnings. 
The cubic interpolating spline, for instance, is an 
abstraction of the shape exhibited by a thin elastic 
beam (the elastica used in boat construction) whose 
minimal bending energy configuration may be 
characterized by a fourth-order differential equa- 
tion (Faux and Pratt 1981). We have emphasized 
the physical basis of splines in our computational 
vision work, which applies multivariate generaliza- 
tions of the classical spline equations to create 
models of flexible surfaces sensitive to forces de- 
rived from visual data (Terzopoulos 1983; Terzo- 
poulos et al. 1987b; Kass et al. 1987; Terzopoulos 
1988). Our deformable models offer a physically- 
based alternative to geometric techniques for dis- 
torting shapes in space, such as Barr's (1984) Jaco- 
bian matrix transforms for subjecting solid primi- 
tives to parameterized deformations, or Sederberg 
and Parry's (1986) Bernstein polynomial trans- 
forms for distorting free-form shapes. Somewhat 
less kinematic than the purely geometric methods 
is the scheme proposed by Wyvill et al. (1986) for 
animating soft objects as iso-surfaces in a 3 D scalar 
field enveloping control points. Not surprisingly, 
however, since their control-point dynamics do not 
accurately describe the mechanics of deformable 
materials, animations created using this scheme 
will tend to look contrived unless care is taken 
to generate convincing motions. 
The first physically-based models of flexible objects 
in computer graphics were concerned with static 
shape. Weil (1986) proposed an approach for inter- 
polating surfaces between catenary curves to pro- 
duce draped "cloth" effects. A firmer physical foun- 
dation underlies the static cloth model proposed 
by Feynman (1986). Subsequent efforts produced 
models for animating nonrigid objects in simulated 
physical environments (Terzopoulos et al. 1987a; 
Haumann 1987; Lundin 1987; Weil 1987, unpub- 
lished manuscript; Terzopoulos and Witkin 1988). 
The models of flexible objects proposed by Hau- 
mann and Weil can be viewed as dynamic exten- 
sions to Feynman's discrete approach. In Terzopou- 
los et al. (1987a), however, we employ continuous 
elasticity theory (Landau and Lifshitz 1959) to mod- 
el the shapes and motions of deformable bodies. 
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By including distributed physical properties such 
as mass and damping, we can simulate the dynam- 
ics of deformable objects in response to the forces 
at work. The dynamic behavior inherent to our 
deformable models significantly simplifies the ani- 
mation of complex objects, especially as they inter- 
act with other objects and constraints in a simulat- 
ed physical environment. By basing our models on 
simplifications of elasticity theory, we can approxi- 
mate a wide range of deformable materials, includ- 
ing string, rubber, cloth, paper, and flexible metals. 
This paper develops our approach to modeling de- 
formable curves, surfaces, and solids, including 
elastic deformation as well as inelastic deformation. 

1.2 Elastic and inelastic deformation 

A deformation is termed "elastic" if, upon removal 
of all external forces, the undeformed reference 
shape restores itself completely. The basic assump- 
tion underlying the constitutive laws of classical 
elasticity theory is that the restoring force (stress) 
in a body is a single-valued function of the defor- 
mation (strain) of the body and, moreover, that 
it is independent of the history of the deformation. 
We express the restoring forces intrinsic to our 
elastically deformable models in terms of a defor- 
mation potential energy. An energy characteriza- 
tion is always possible for elastic models. As a gen- 
eralization of the ideal spring, the elastic model 
stores potential energy during deformation, which 
it then releases as it recovers the reference shape. 
The present paper also develops computer graphics 
models which venture into the diverse class of in- 
elastic deformation phenomena intermediate be- 
tween perfectly resilient elastic solids and viscous 
fluids. Unlike solids, fluids store no deformation 
energy and, hence, exhibit no tendency at all for 
deformational recovery. Generally, a deformation 
is known as "inelastic" if it does not obey the rela- 
tively stringent (Hookean) constitutive laws of clas- 
sical elasticity. Inelastic deformations occur in real 
materials for temperatures and forces exceeding 
certain limiting values above which irreversible dis- 
locations at the atomic level can no longer be ne- 
glected. 
Why model inelastic behavior? Aside from an art- 
istic motivation to achieve a rich variety of novel 
graphics effects, we wish to incorporate into our 
deformable models the mechanical behaviors com- 
monly associated with high polymer solids - organ- 

ic compounds containing a large number of recur- 
ring chemical structures - such as modeling clay, 
thermoplastic compound, or silicone putty (Alfrey 
1947). These behaviors are responsible for the uni- 
versal utility of these sorts of modeling compounds 
in molding complex shapes (e.g., in the design of 
automobile bodies). We are interested in assimilat- 
ing some of the natural conveniences of this tradi- 
tional art into the computer-aided design environ- 
ment of the future. We envision users, aided by 
stereoscopic and haptic input-output devices, carv- 
ing "computational plasticine" and applying simu- 
lated forces to it to create free-form shapes interac- 
tively. 
Our physically-based models incorporate three 
canonical genres of inelastic behavior - viscoelasti- 
city, plasticity, and fracture. Viscoelastic material 
behavior blends the characteristics of a viscous 
fluid together with elasticity. Silicone putty (Silly 
Putty 1) exhibits unmistakable viscoelastic behav- 
ior; it flows under sustained force, but bounces like 
a rubber ball when subjected to quickly transient 
forces. Inelastic materials for which permanent de- 
formations result from the mechanism of slip or 
atomic dislocation are known as plastic. Most met- 
als, for instance, behave elastically only when the 
applied forces are small, after which they yield 
plastically, resulting in permanent dimensional 
changes. Our models can also simulate the behav- 
ior of thermoplastics, which may be formed easily 
into desired shapes by pressure at relatively moder- 
ate temperatures, then made elastic or rigid around 
these shapes by cooling. As materials are deformed 
beyond certain limits, they eventually fracture. 
Cracks develop wherever internal force or defor- 
mation distributions become excessive and their 
propagation is affected by local variations in mate- 
rial properties. 
We conclude the introduction with a perspective 
on our work as it relates to the engineering analysis 
of materials and structures. First, here is a caveat: 
We make no particular attempt to model specific 
materials accurately. Usually the general behavior 
of a material will defy accurate mathematical de- 
scription. Hence, engineering models tend to be 
complex and are usually implemented by sophisti- 
cated finite-element codes. These programs are suit- 
able for analyzing the mechanics of structures con- 
structed from specific materials such as steel and 
concrete (Kardestuncer and Norrie 1987). Corn- 

1 Silly Putty is a trademark of Binney & Smith, Inc. 
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puter graphics has become indispensable for visua- 
lizing the large amount of numerical data produced 
during the preprocessing and postprocessing stages 
of finite-element analysis (Christiansen 1974; 
Christiansen and Benzley 1982; Shephard and 
Abel 1987). 
Although we adopt certain numerical techniques 
from finite-element analysis, our computer graph- 
ics modeling work has a distinctly different empha- 
sis. Our goal is to develop physically-based models 
with associated procedures that can be utilized to 
create realistic animations. To this end, our models 
idealize regimes of materials response under specif- 
ic types of environmental conditions. Their param- 
eters describe qualitatively familiar behaviors, such 
as stretchability, flexibility, resiliency, fragility, etc. 
Hence, deformable models are convenient for com- 
puter graphics applications, where a keen concern 
with computational tractability motivates mathe- 
matical abstraction and expediency. 

tion. The primal and hybrid formulations comple- 
ment each other in practice. This enables us to 
obtain numerically well-conditioned discrete mod- 
els covering a wide range of deformable behaviors 
from highly elastic to nearly rigid. We compare 
the two formulations in more detail after develop- 
ing the equations that govern the dynamics of the 
models under the action of applied forces. 
The equations of motion stem from Newtonian me- 
chanics and they balance the externally applied 
forces with the forces internal to the deformable 
model. In both formulations u denotes the intrinsic 
or material coordinates of points in a body domain 
~. For  a solid body u = (ul, u2, us) has three coordi- 
nates. For a surface u=(u l ,  u2) and for a curve 
u=(u~). In the three cases, and without loss of gen- 
erality, O will be the unit cube [0, 1] 3, the unit 
square [0, 1] 2, and the unit interval [0, 1"], respec- 
tively. 

1.3 Overview 

The organization of the remainder of the paper 
is as follows: Section 2 formulates two types of 
elastically deformable models and their associated 
differential equations of motion. Section 3 de- 
scribes external forces applicable to produce defor- 
mation and motion. Section 4 explains the basic 
inelastic phenomena in greater detail and describes 
how we incorporate inelastic behavior into our 
models. Section 5 overviews our numerical imple- 
mentation of deformable models; it relegates to an 
appendix the implementation details for the case 
of elastic surfaces along with a procedure for solv- 
ing the differential equations. Section 6 presents a 
variety of simulation examples using elastically and 
inelastically deformable models. In Sect. 7 we draw 
conclusions from our work. 

2 Elastically deformable models 

An elastically deformable model recovers its refer- 
ence configuration as soon as all applied forces 
causing deformation are removed. We formulate 
two types of elastically deformable models: a pri- 
mal formulation, which explicitly represents the 
configuration of the deformable model in space, 
and a hybrid formulation, which decomposes this 
configuration into a deformation component and 
a reference component capable of rigid-body m o -  

2.1 Pr imal formulat ion 

The primal formulation of deformable models was 
presented originally by Terzopoulos et al. (1987a). 
It describes deformations using the positions 

x(u, t)= [xl (u, t), Xz(U, t), x3(u, t)]' (1) 

of constituent points in a body relative to an iner- 
tial frame of reference 4~ in Euclidean 3-space, 
where the subscripts 1, 2, and 3 denote the X, Y, 
and Z axes, respectively, of the reference frame 
(Fig. 1). We refer to this vector-valued function of 
material coordinates and time as the configuration 
of the body. As the figure shows, we specify the 
body in its undeformed configuration by 

x~ = [x~ (u), x~ (u), x~ '. (2) 

A deformable model is described completely by the 
positions x (u, t), velocities 8 x/8 t, and accelerations 
82x/Ot 2 of its mass elements as functions of the 
material coordinates u and time t. Lagrange's 
equations of motion for x in the inertial frame ~b 
take the form (Goldstein 1980): 

02X 8X 
#~ t2  + ~ - + 6 x 6 = f .  (3) 

During motion, the net external forces f(u, t) bal- 
ance dynamically against (i) the inertial force due 
to the mass density #(u), (ii) the velocity-dependent 
damping force with damping density 7(u) (here a 
scalar, but generally:a matrix), and (iii) the internal 
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Fig. 1. Geometric representation of the primal model 
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Natural shape 

Zero energy 

Smaller deformation 

Lower energy 

Fig. 2. Energy of deformation 

Rigid-body motion 

Zero energy 

Larger deformation 

Higher energy 

elastic force 6,, E which resists deformation. The 
above is a partial differential equation (due to the 
dependence of &x E on x and its partial derivatives 
with respect to u - see below). Given (3) with ap- 
propriate conditions for x on the boundary of 
and the initial configuration x(u, 0) and velocity 
0x/Otltu, o), we are faced with solving an initial- 
boundary-value problem. 
The elastic force, which acts to restore deformed 
bodies to their natural shapes, is expressed as 6,,, 
a variational derivative 2 with respect to x of a non- 
negative deformation potential energy functional 
E(x). It is always possible to characterize elastic 
restoring forces in terms of potential functionals 
which associate an energy with the net instanta- 
neous deformation of the body. 
A suitable energy functional must satisfy two re- 
quirements (Fig. 2). The first requirement is that 
the energy be zero for the model in its natural 
shape and that it grow as the total deformation 
of the model away from its natural shape increases. 
The second requirement is that the energy E(x) be 
invariant to rigid motions of the model in ~b, since 
rigid motions impart no deformation. To define 
deformation energies that meet these conditions for 
curves, surfaces, and solids, we employ concepts 

2 The variational derivative generalizes the concept of the de- 
rivative of a function to the case of functionals; i.e., mappings 
from functions to real numbers. Refer, e.g., to Courant  and 
Hilbert (1953) 
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from differential geometry, which provides funda- 
mental theorems regarding the equivalence of two 
shapes (Do Carmo 1974). 
The shape of a 3-dimensional solid is determined 
by the Euclidean distances between nearby points. 
These distances change as the body deforms. Local 
distances (and angles) in the solid may be measured 
using the metric tensor G, in this case a 3 x 3 matrix 
with entries (Faux and Pratt 1981) 

Dx Ox 
Gq(x(u, t))= Dui" Duj" (4) 

A fundamental theorem of solids states that two 
solids in space will have the same instantaneous 
shape (i.e., differ by a rigid motion only) if their 
metric tensors are identical functions of u 
= (ul, u2, u3) at time t. 
If a body is infinitesimally thin in one or more 
of its dimensions, the distances between nearby 
points no longer suffice to determine shape. Hence, 
lengths between nearby points do not determine 
the shape of a surface, because the surface can be 
bent without perturbing these lengths. The funda- 
mental theorem of surfaces states that two surfaces 
have the same shape if their metric tensors as well 
as their curvature tensors B, both 2 x 2 matrices 
for a surface, are identical functions of u = ( u l ,  uz). 
The components of the curvature tensor are (Faux 
and Pratt 1981) 



r  

Bij (x (u, t)) = n. 0 ui ~ u~' 

where 

(5) 

ax/au~ • Ox/Ou2 
n(u, t ) -  Iax/aul x ax/Ou2l (6) 

gives the unit surface normal over the surface at 
time t. 
For the case of space curves, u = u, and the metric 
and curvature tensors are the well-known scalar 
arc-length s(x(u, t)) and curvature tr t)) func- 
tions. Again, arc-length and curvature do not en- 
tirely determine the shape of a space curve, since 
the curve can twist in space without affecting these 
quantities. Thus, the fundamental theorem of 
curves states that two curves have the same shape 
if their arc-length, curvature, and torsion z(x(u, t)) 
are identical functions of u = u (refer to Faux and 
Pratt (1981) for the definitions of these functions). 
Using the above differential measures of shape, we 
define potential energies that meet the necessary 
requirements for elastic curves, surfaces, and solids. 
A reasonable energy for elastic bodies is a Euclide- 
an (L2) norm of the difference between the funda- 
mental tensors of the deformed body and the fun- 
damental tensors of the body in its natural shape. 
Consistently with (2), we distinguish the fundamen- 
tal forms associated with the natural shapes of de- 
formable bodies with a superscript 0; e.g, 

0 x  ~ ~ x  ~ 
G ~   uj" (7) 

For a deformable curve, we define the energy 

e ( x ) =  
(8) 

where wl(u), wZ(u), and w3(u) are weighting func- 
tions. The analogous energy for a deformable sur- 
face in space is 

Iw2 dUl du2, (9) 1 6 - 6 ~  + l n - B  ~ 2 
Y2 

where the weighted matrix norms I~ and I'll=, 
involve the weighting functions w~j(ul, u2) and 
w2j(ua, Ue) respectively 3. Similarly, an energy for a 

3 By a "--~[L2) wezgmea''-" matrix norm of an n • n matr ix A with 

components a~j, we mean IAI. = ~ w~j a~ 
I 1 J  �9 , "= 

deformable solid is 

I G - G  Iw, dua du2 du3, (10)  e(x) = o 2 

where the weighted matrix norm i" I,,, involves the 
weighting functions w~j(ul, u2, u3). 
The deformation energies (8-10) are invariant with 
respect to rigid motions, and they include the few- 
est partial derivatives necessary to restore the natu- 
ral shapes of non-rigid curves, surfaces, and solids, 
respectively. However, we can include in them 
higher-order derivatives to further constrain the 
smoothness of the deformations (Terzopoulos 
198@ 
The weighting functions in the above energies de- 
termine the properties of the simulated deformable 
material. In the curve energy (8), w ~ (u), w2(u), and 
w 3 (u) determine the resistance to stretching, bend- 
ing, and torsion, respectively, along the curve. In 
the energy for the solid (10), w~j determine the resis- 
tance to stretching along u~, u:, and u3, as well 
as shearing across planes perpendicular to these 
axes. 
To better understand the influence of the weighting 
functions, consider the surface energy (9). Here 
w~j(ul, u2) control surface tensions and shear 
strengths which minimize the deviation of the sur- 
face's actual metric coefficients Gij from its natural 
coefficients G ~ As w~j is increased, the material 
becomes more resistant to length deformation, with 
w~l and w~2 determining this resistance along u~ 
and U 2 ,  a n d  w121 = w 2  1 2  determining the resistance 
to shear deformation. The functions wZ~j(ul, u2) con- 
trol surface rigidities which act to minimize the 
deviation of the surface's actual curvature coeffi- 
cients Bi~ from its natural coefficients B~ As w2i 
is increased, the material becomes more resistant 
to bending deformation, with w~a and w222 deter- 
mining this resistance along Ua and u2, and Waa 
= w2 a determining the resistance to twist deforma- 
tion. 
To simulate a stretchy rubber sheet, for example, 
we make w~j relatively small and set w/2j=0. To 
simulate relatively stretch resistant cloth, we in- 
crease the value of w~j. To simulate paper, we make 
w~j relatively large and we introduce a modest 
value for w2~. Springy metal may be simulated by 
increasing the value of wZj. Since w]j(u) and w~j(u) 
are functions of material coordinates u, we may 
vary the material properties over the surface, and 
we may introduce local singularities such as frac- 
tures and creases (see Sect. 4). 
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2.2 Hybrid formulation 

An alternative formulation (Terzopoulos and Wit- 
kin 1988) leads to "hybr id"  deformable models. 
Hybrid models include explicit deformable and ri- 
gid dynamics operating in concert. To define these 
models, we represent the positions of mass ele- 
ments in the body relative to ~b by 

q (u, t) = r (u, t) + e (u, t), (11) 

the sum of a reference component  r(u, t) = Jr1 (u, t), 
rz(u,t ), r3(u,t)] '  and a deformation component  
e(u, t)-- [et (u, t), e2(u, t), e3(u, t)]'. Here, r and e are 
expressed relative to a reference frame ~b, with the 
subscripts 1, 2, and 3 denoting, respectively, the 
x, y, and z axes of (h (Fig. 3). 
The origin of frame ~b coincides with the deform- 
able body's center of mass 

e( t )= ~ g(u)x(u,  t)du.  (12) 

It is a noninertial frame which is conveyed along 
with the body in accordance with the laws of rigid- 
body dynamics (Goldstein 1980). Define the linear 
and angular velocities of ~ relative to �9 as 

de dO (13) to(t)- dt' 

where dO is a quanti ty whose magnitude equals 
the infinitesimal rotation angle and whose direc- 

T ~ ~ k  Reference 

g 
Fig. 3. Geometric representation of the hybrid model 

tion is along the instantaneous axis of rotation of 
~b relative to ~b. Then, the velocity of mass elements 
of the model relative to ~b, given their velocities 
Be(u, 0/8 t relative to qS, is 

- ~ ( u ,  t )=v  +to x q + ~ .  (14) 

We use Lagrangian mechanics to transform the ki- 
netic energy of the primal model  (3) according to 
the above decomposit ion (Terzopoulos and Witkin 
1988). Assuming small deformations, this yields the 
following three coupled differential equations for 
the unknown functions v, to, and e under the action 
of an applied force f(u, t): 

dv d , 8e 8x m~+-dt 2 #~tdu+ f Y~tdu=f ( 1 5 a )  

(Ito)+  #qxNdu  

+ ~ 7 q x ~ d u = f f ' ;  (15b) 

82e dv 
# # # t o  x (to x q) 

8e dto 8x+6 8=f. (15c) + 2 # t o x ~ - + # d t  x q + ?  8t e 

Here m = ~ # du  is the total mass of the body, and 

the inertia tensor I is a 3 x 3 symmetric matrix with 
entries 

Iij= [. #(6ijq 2 - q i  qi) c/u, (16) 
a 

where q = [ql, q2, q3]' and 6ij is the Kronecker del- 
ta. The applied force f(u, t) contributes to elastic 
deformation, as well as to a net translational force 
fv and a net torque fo, on the center of mass: 

fv(t)= ]" f d u ;  ff'(t) = ~ q x fdu .  (17) 
o E2 

The ordinary differential equations (15a, b) de- 
scribe v and to, the translational and rotational 
mot ion of the body's center of mass. The terms 
on the left hand sides of these equations pertain 
to the total moving mass of the body as if concen- 
trated at e, the total (vibrational) mot ion of the 
mass elements about the reference component  r, 
and the total damping of the moving mass ele- 
ments. 
The partial differential equations (15c) describes 
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the deformation e of the model away from r relative 
to qS. Each of its terms is a dynamic force per mass 
element: (i) the basic inertial force, (ii) the inertial 
force due to linear acceleration of q~, (iii) the centrif- 
ugal force due to the rotation of 4, (iv) the Coriolis 
force due the velocity of the mass elements in qS, 
(v) the transverse force due to the angular accelera- 
tion of q~, (vi) the damping force, and (vii) the elastic 
restoring force due to deformation away from r. 
Once again we represent the restoring force in (15 c) 
as a variational derivative of a elastic potential en- 
ergy functional E. Contrary to the primal formula- 
tion, this energy need not be rigid-motion invar- 
iant, since it characterizes e(u, t) which is merely 
a deformational displacement from the reference 
shape r relative to the moving frame qS. This per- 
mits us to use simple, linear restoring forces stem- 
ming from controlled-continuity spline energies 
(Terzopoulos 1986) of the form 

E(e)= " wjl0 7 el =, (18) 
,.=o lJ =~Jl! ...jar 

where J=(JD ...,J,) is a multi-index with IJl=jl 
+ ... +Jd, and 

~m 
0} n -  ~@... c~u~" (19) 

significant at extreme limits of deformable behav- 
ior. 
The primal formulation handles free motions im- 
plicitly, but at the expense of a non-quadratic ener- 
gy functional E(x) (nonlinear restoring forces). For 
highly nonrigid models such as rubber sheets the 
equation of motion (3) is numerically well condi- 
tioned, hence soluble without much difficulty. 
However, our experiments indicate a deterioration 
of the conditioning of the discrete equations with 
increasing rigidity, evidently due to their exacerbat- 
ed nonlinearity with increasing stiffness. The conse- 
quence is severe difficulty in solving the equations, 
making the primal formulation impractical for stiff 
models. 
The hybrid formulation permits the use of a qua- 
dratic energy functional E(e) (linear restoring 
forces). Although they appear more complicated, 
the equations of motion (15) offer a significant 
practical advantage for fairly rigid models, and 
especially so when complex reference shapes are 
desired. Numerical conditioning improves as the 
model becomes more rigid, tending in the limit to 
well-conditioned, rigid-body dynamics. However, 
attempting extremely flexible models like cloth or 
stretchy rubber sheets with the hybrid formulation 
may result in rather unnatural deformations due 
to the simple connection of the deformation to a 
rigid reference shape through linear forces. 

(d= 1 for curves, d = 2  for surfaces, and d = 3  for 
solids). Thus the energy density under the integral 
is a weighted sum of the magnitude of the deforma- 
tion e and of its partial derivatives with respect 
to material coordinates. Generally, the order p of 
the highest partial derivative included in the sum 
determines the order of smoothness of the deforma- 
tion. 
As in the primal formulation, the weighting func- 
tions wj(u) in (18) control the properties of the de- 
formable model over the material coordinates. In 
the case of surface (d = 2), the function Woo penal- 
izes the total magnitude of the deformation; Wlo 
and Wol penalize the magnitude of its first partial 
derivatives; w20 , Wll , and w02 penalize the magni- 
tude of its second partial derivatives; etc. 

3 Applied forces 

Applying external forces to deformable models 
yields realistic dynamics. This section lists repre- 
sentative examples of external forces. A plethora 
of complicated force functions is conceivable, but 
we include only simple instances of gravitational 
forces, aerodynamic forces, and repulsive forces 
due to collisions with impenetrable objects. The 
net external force f(u, t) in (3) or (15c) is the sum 
of the individual external forces. 
A gravitational force acting on the deformable 
model is given by 

fg (u) = # (u) g, (20) 

2.3 Comparison of the two formulations 

In practice, the primal and hybrid formulations 
offer specific benefits and drawbacks which become 

where #(u) is the mass density and g is the gravita- 
tional field. 
A force that connects a material point Uo of a de- 
formable model to a point Po in space by an ideal 
Hookean spring is 
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fs(u, t )= k(p 0 -X(Uo, t)) b(u-u0) ,  (21) 

where k is the spring constant and 6 is the unit 
delta function. Point Po acts as a soft constraint 
on the model. 
The force on the surface of a deformable model 
due to a viscous fluid is 

fv (u, t) = c (n. (s (x, t) - g x/O t)) n, (22) 

where c is the strength of the fluid force and n (u, t) 
is the unit surface normal. Here, the dot product 
is taken with respect to the velocity of the surface 
relative to some stream function s(p, t), in general, 
a time-varying driving function that represents the 
stream velocity at all points p in space. The force 
of the flow field projected normal to the surface 
is linear in the velocity, and it models a viscous 
medium. It is possible to define more complex 
forces including a variety of aerodynamic effects. 
We can simulate collision dynamics between de- 
formable models and immobile impenetrable ob- 
stacles by creating a potential function 
c exp( - f (x ) / e )  around each obstacle, where f is 
the obstacle's implicit function. The constants c 
and e determine the shape of the potential. We 
choose them such that the resulting repulsive force, 
expressed as the gradient of the potential, grows 
quickly if the model attempts to penetrate the ob- 
stacle. The repulsive force is 

f~(u, t)= --c((Vf(x)/e) exp( - f (x ) / e ) .n )n ,  (23) 

where n,(u, t) is the unit normal vector of the de- 
formable body's surface. 
For most applications, deformable models should 
not self- or inter-penetrate as they deform. To 
avoid such intersections, we can surround the sur- 
faces of nonrigid models with a repulsive collision 
force as well. The repulsive force requires an implic- 
it description of the surface of each model, which 
is only available locally in our models. Each model 
decomposes into many small patches (see Sect. 5) 
and the repulsive force computation can become 
expensive. To enhance efficiency, we may organize 
the patches into hierarchical bounding-volume 
data structures. 
Surrounding objects with force fields is analogous 
to barrier methods in constrained optimization 
(Luenberger 1973). The virtue of the technique is 
its simplicity, but rarely can it exactly enforce the 
geometric constraints associated with obstacles. 
Depending on the speed of collision, among the 
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consequences may be poor approximation to the 
physics. Perhaps more disastrously, high-momen- 
tum collisions will generate colossal forces which 
wreck havoc with the numerical stability of the 
simulation (unless adaptive time stepping is em- 
ployed to mitigate the problem; see Sect. 5). An 
alternative approach to dealing with obstacles is 
to use the analogue of Lagrange multiplier type 
optimization methods for constrained problems. 
To this end, we have used geometric projection 
techniques to ensure that no point on a deformable 
model ever penetrates an obstacle. Depending on 
the representation and geometric complexity of ob- 
stacles, projection techniques can require sophisti- 
cated numerical approximations that significantly 
increase the computational cost of the anima- 
tion. 
The above discussion evades nonlinear contact 
phenomena such as friction. We approximate fric- 
tion incrementally in rather simple albeit effective 
ways. For instance, when the differential movement 
of deformable model patches indicates contact with 
other surfaces, we apply velocity-dependent damp- 
ing (as in the second term in (3)) to the component 
of the velocity O x/Ot lying in the tangent plane 
of the obstacle at the point of contact. At the same 
time, we nullify the velocity component along the 
inward normal to the surface or reflect a fraction 
of it to cause rebound from the collision. In the 
real world, however, friction is a complex noncon- 
servative effect with nontrivial dependence on the 
initial point of contact and on the sequence of nor- 
mal forces. 

4 Modeling inelastic deformation 

This section describes the basic inelastic behaviors 
of materials and how we incorporate them into 
our models. A formal treatment of inelastic defor- 
mation is beyond the scope of this paper. For the 
theory of viscoelasticity, plasticity, and fracture, 
refer to, e.g., Christensen (1982), Mendelson (1968), 
and Sih (1981). 
Basic inelastic behaviors are easily understood in 
terms of assemblies of idealized uniaxial (one-di- 
mensional) mechanical units. The ideal linear elas- 
tic unit is the spring (Fig. 4a). The spring satisfies 
Hooke's law - elongation or contraction e is pro- 
portional to applied tension or compression force: 
ke=f, where k is the spring constant. The elastic 
unit is supplemented by two other uniaxial units, 
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the viscous and plastic units (Fig. 4b, c). By assem- 
bling these units in specific configurations, we can 
simulate simple, uniaxial viscoelasticity and plas- 
ticity. The basic laws governing these units general- 
ize over an extended multidimensional continuum 
within our inelastically deformable models. The 
generalizations also specify how deformations and 
stresses in one direction couple with deformations 
and stresses in other directions. 

4.1 Viscoelasticity 

Viscoelasticity is a generalization of elasticity and 
viscosity. It is characterized by the phenomenon 
of creep which manifests itself as a time dependent 
deformation under constant applied force. In addi- 
tion to instantaneous deformation, creep deforma- 
tions develop which generally increase with the du- 
ration of the force. Whereas an elastic model, by 
definition, is one which has memory only of its 
reference shape, the current deformation of a 
viscoelastic model is a function of the entire history 
of applied force. Conversely, the current restoring 
force is a function of the entire history of deforma- 
tion. 

The ideal linear viscous unit is the dashpot 
(Fig. 4 b). The rate of increase in elongation or con- 
traction e (strain) is proportional to applied force 
f (stress): t / 0 = f  where t/is the viscosity constant. 
The elastic and viscous units are combined to mod- 
el linear viscoelasticity. Figure 5 a illustrates a four- 
unit viscoelastic model, a series assembly of the 
so called Maxwell and Voigt viscoelastic models. 
The stress-strain relationship for this assembly has 
the general form 

a2 Y+a, O+ao e=bzf +blf  +bof, (24) 

with the coefficients depending on the spring and 
viscosity constants. The response of the models to 
an applied force (Fig. 5b) is shown g~phically in 
Fig. 5c. 

4.2 Plasticity 

In plasticity, unique relationships between dis- 
placement and applied force do not exist in general. 

a 

Four-unit viscoelastic model 
r I 
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e ~ Four-unit 

Elasti~. j ~ . ~ / ~ } ~  ~---- Viscous 

C Voigt 
Fig. 5a--e. Uniaxial viscoelastic model, a The four- 
element model is a series connection of a Maxwell 
viscoelastic unit and a Voigt viscoelastic unit. b Force 
applied to the model, e Responses of various 
components (not to relative scale) 
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The ideal plastic unit is the slip unit (Fig. 4c). It 
is capable of arbitrary elongation or contraction 
when the applied force exceeds a yield force. Dur- 
ing plastic yield, the apparent instantaneous elastic 
constants of the material are smaller than those 
in the elastic state. Removal of applied force causes 
the material to unload elastically with its initial 
elastic constants. This behavior may be termed 
"elastoplastic," since it generalizes simple elasticity 
and plasticity. 
Elastoplasticity may be modeled by assembling 
springs with plastic units. Figure 6b illustrates t h e  
response of the simple elastoplastic model in 
Fig. 6a. The model is linearly elastic from O to 
A. After reaching the yield point A, the model ex- 
hibits linear hardening toward B. Upon unloading 
from any point B, the model moves down toward 
C, with force amplitude fB - - f c  = 2fA defining the 
elastic region. Subsequent loads now move the 
model back up towards B. Loading past point B 
causes further plastic deformation along BE. The 
reverse plastic deformation occurs along CD. After 
a closed cycle in force and displacement OABCDO, 
the material returns to its initial state and subse- 
quent behavior is not affected by the cycle. 
It is possible to model viscoplasticity, a generaliza- 
tion of plasticity and viscosity, analogously by as- 
sembling dashpots with plastic units. 

4.3 Fracture 

Solid materials cannot sustain arbitrarily large 
stresses without failure. In the elastoplastic model 
of Fig. 6, fracture is indicated at point E; elonga- 
tion beyond this limit causes the elastoplastic mate- 
rial to fail. Fractures are localized position discon- 
tinuities that arise due to the breaking of atomic 
bonds in materials. Discontinuities usually initiate 
from stress singularities that arise at imperfections 
or corners of cavities ubiquitous in solids. 
Solids exhibit three modes of fracture opening: a 
tensile mode and two shear modes, one planar and 
one normal to a plane. As fractures develop they 
release the potential energy of deformation (strain 
energy) stored by the material. For  fractures to 
propagate, the energy release rate as the fracture 
lengthens must exceed a critical value. For brittle 
materials such as glass, fracture will develop unsta- 
bly if the energy released is equal to the energy 
used to create the free surface associated with the 
fracture. In this case, minor variations in material 
properties in the continuum can greatly influence 
the propagation. In general, fracture propagation 
is not well understood. One of the many research 
topics in fracture mechanics (see the large large 
body of literature; e.g., Sih 1981) is the analysis 
of plasticity effects at fracture tips, a phenomenon 
which cannot be neglected in materials such as 
steel. 

Elastoplastic model 

�9 ! 

B . . . . . ~  E 

0 ~ ~ O  ~ e 

Fig. 6a, b. Uniaxial elastoplastic model a The three- 
unit model, b Response to applied force (see text) 

4.4 Incorporating inelastic behavior 

This section describes how we incorporate inelastic 
behavior using the hybrid formulation, then briefly 
indicates how we obtain such behavior in the pri- 
mal formulation. 
Recall that the hybrid formulation expresses defor- 
mation e(u, t) with respect to a reference compo- 
nent r(u, t). We elicit viscoelastic, plastic, and frac- 
ture behavior from our hybrid model by designing 
internal processes that update r and modify materi- 
al properties according to applied force and instan- 
taneous deformation. 
As a simple case of viscoelasticity, consider the 
Maxwell unit depicted in Fig. 5. We allow e(u, t), 
as governed by (18), to play the role of a multidi- 
mensional elastic spring in the continuum general- 
ization of this unit, while r(u, t) plays the role of 
the dashpot. An internal process which evolves the 
reference component according to the simple rule 
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i(u, t)=(1/t/(u)) e(u, t) simulates the viscous behav- 
ior of the dashpot. 
Thus, the viscoelastic process establishes feedback 
from e into r. During each time interval, a portion 
of the instantaneous elastic displacement is trans- 
ferred into the reference component, which main- 
tains a deformation history. This is analogous to 
the incremental strain theory or flow theory of elas- 
ticity. We can extend this to simulate the four-ele- 
ment viscoelastic model shown in Fig. 5, according 
to a suitable generalization of (24). More complex 
viscoelastic behaviors including nonlinearities are 
readily incorporated by introducing arbitrary func- 
tions into the feedback loop. We have witnessed 
bizarre but nonetheless interesting behavior by 
choosing physically unrealizable parameters, such 
as negative viscosity q. 
We have incorporated into our models a multidi- 
mensional extension of the uniaxial elastoplastic 
element of Fig. 6. Here, the reference component 
r absorbs the extension of the plastic unit as soon 
as the applied force exceeds the yield limit. In the 
multidimensional case, this limit generalizes to a 
"yield condition" expressed as a function which 
may depend on stresses internal to the model (such 
as the Tresca or von Mises yield conditions (Men- 
delson 1968)) or on the internal deformation e. The 
model behaves elastically until the local yield con- 
dition is exceeded. Beyond the yield point the mate- 
rial parameters w~ are reduced locally to simulate 
linear strain hardening. 
The controlled-continuity spline energy (18) allows 
our models to simulate the piece-wise continuous 
deformations characteristic of fractures, creases, 
curvature discontinuities, etc. As was mentioned 
earlier, the distributed parameter functions wj offer 
local continuity control throughout the deformable 
model's material domain ~2. Discontinuities in the 
deformation of order 0_< k < p will occur freely at 
any material point uo such that wj(uo)= 0 for ]Jl > k 
(Terzopoulos 1986). An internal fracture process 
automatically monitors stress and deformation dis- 
tributions over f2. When local stress or deformation 
exceeds prescribed fracture limits, the process nulli- 
fies the wj as necessary to introduce the appropriate 
discontinuities. 
We have experimented with several simple schemes 

f o r  propagating fractures in our models. For in- 
stance, at each time step we can insert a position 
discontinuity (order k = 0) at the material point u .  
(or some small set of points) at which there occurs 
the maximum elastic displacement over f2 exceed- 

ing the limiting elongation. The yield limit may 
vary greatly over position in real materials, 
especially if there happen to be localized weak- 
nesses due to imperfections. We have experimented 
successfully with yield functions that vary stochast- 
ically around some mean yield limit. Interesting 
possibilities abound. 
We can extend our primal formulation of elasti- 
cally deformable models to include inelastic behav- 
ior. Recall that in this formulation the deformation 
energy functionals involve the fundamental tensors 
of curves, surfaces, and solids. According to (10), 
for instance, the elastic energy density for a solid 
model is the squared normed difference between 
the metric tensor G(x) of the deformed body and 
its reference metric tensor counterpart G O associat- 
ed the undeformed body. Our approach to eliciting 
inelastic behavior is analogous to that for the hy- 
brid model. We incorporate a feedback process 
which evolves the reference tensor G ~ (as well as 
any higher-order reference tensors that may be 
present in E(x) for deformable surface or curve 
models) according to the model's instantaneous in- 
ternal stresses or deformations. Furthermore, inter- 
nal processes associated with plasticity and fracture 
dynamically adjust the material property functions 
w],j(u) in the weighted norm I" h,1. 

5 Implementation 

To create animation with deformable models, we 
simulate their differential equations of motion nu- 
merically. After each time step (or every few time 
steps) in the simulation, we render the models' state 
data to create successive frames of an animation 
sequence. This section explains the steps in our 
numerical implementation of deformable mod- 
els. 
The first step is to discretize the partial differential 
equations (3) or (15 c) in material coordinates, p o s -  
sibly after some simplification. This step, known 
as semidiscretization, may be carried out using fi- 
nite-difference or finite-element approximations on 
a discrete mesh of nodes (Lapidus and Pinder 1982; 
Zienkiewicz 1977). The result is a large system of 
simultaneous ordinary differential equations. 
The second step is to integrate the semidiscrete 
system through time, thus simulating the dynamics 
of deformable models. We use a semi-implicit time 
integration procedure which evolves the elastic dis- 
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placements (and rigid-body dynamics in the hybrid 
model) from prescribed initial conditions. In es- 
sence, the evolving deformation yields a recursive 
sequence of (dynamic) equilibrium problems, each 
requiring solution of a sparse, linear system whose 
dimensionality is proportional to the number of 
nodes comprising the discrete model. 
The size of these linear systems can vary widely 
depending on the application. In the simulations 
presented in the next section, which have been se- 
lected to convey the broad scope of deformable 
models, the systems range in size from hundreds 
to tens of thousands of equations. Since deformable 
models involve many state variables (significantly 
more than for typical rigid or articulated body sim- 
ulations) it is crucial to choose applicable numeri- 
cal solution methods judiciously in order to 
achieve efficiency ((Press et al. 1986) is a nice survey 
of standard numerical techniques). 
For up to moderately-sized problems, we have used 
direct methods; especially, a Choleski-type matrix 
factorization procedure with forward-reverse reso- 
lution. We use an efficient, profile storage scheme 
(Zienkiewicz 1977) which exploits the sparsity of 
the linear system. For large problems involving 
surfaces or solids, we must resort to iterative meth- 
ods such as successive over-relaxation (SOR) or 
the conjugate gradient (CG) method. We have also 
made use of an alternating-direction-implicit meth- 
od (ADI) which iterates fast, one-dimensional Cho- 
leski solvers (Press et al. 1986). Multigrid methods 
based on SOR have served well in the largest of 
our simulations (Hackbusch 1985). 
Appendix A gives the mathematical details of our 
implementation for the case of elastic surfaces. 
Curves (solids) represent a straightforward restric- 
tion (extension) of the discrete equations given 
therein. 

6 Simulations 

This section presents a selection of deformable 
model simulations. First we describe two systems 
that allow a user to interact with deformable mod- 
els in real time. We then describe non-interactive 
simulations of elastic and inelastic models. Tables 2 
and 3 facilitate comparison among the details of 
various examples. The color graphics images have 
been rendered using the modeling testbed system 
described by Fleischer and Witkin (1988). 
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6.1 Interactive models 

Figure 7a-c  uses strobe frames to depict "Flat- 
land," a simplified physical world. Flatland models 
are deformable planar curves capable of rigid-body 
dynamics as well as elastic and inelastic dynamics 
combining viscoelasticity, plasticity, and fractures. 
The simulations in Fig. 7 a-c  involve a 50-node dis- 
crete model. We compute the collisions using a 
simple projection method. This method does not 
conserve the area of the model. Flatland simula- 
tions are efficient enough to run at interactive rates 
on Symbolics 3600 series Lisp Machines 4. This en- 
ables us to manipulate the models using a mouse, 
subjecting them to user-controlled forces, gravity, 
collision forces, etc. 
Figure 7d shows another simulation in Flatland 
which features the interactive molding of inelastic 
models by applying forces under interactive con- 
trol. The user starts in Fig. 7d with a circular 
viscoelastic model fixed at its center. The model 
can be thought of as thermoplastic material. The 
user applies a sustained spring force from point 
A. The spring (under position control at one end 
from a mouse) is depicted in the figure as a line 
between two points. The spring force deforms the 
model, stretching it to the left, an effect known 
as "stress relaxation". Next, the spring is released 
from A, then reactivated at B and swept through 
C, D, and E, pulling the model along. The final 
free-form shape is set by "cooling" the thermoplas- 
tic. The model then becomes perfectly elastic and 
it may be bounced (Fig. 7 e). Finally the model is 
made inelastic and bounced again (Fig. 71). We 
have animated diverse inelastic behaviors in Flat- 
land, including buckling and collapse under load, 
swelling after impact (negative viscoelasticity), and 
numerous others. 
It is possible to interact with a 3 D elastic surface 
model on a Sun 3/160 workstation supported by 
a TAAC-1 coprocessor to accelerate the numerical 

Table 2. Interactive model simulation details 

Example Formu- Number of Numerics Computer 
lation Equations 

Figure 7 Hybrid 100 Choleski Lispm 
Figure 8 Primal 300 ADI SUN/TAAC 

4 Symbolics 3600 is a trademark of Symbolics, Inc. 
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@ @ @  Fig. 7a-f .  Interactive simulations in "Fla t land".  
Models are "s t robed"  while undergoing motion 
subject to gravity, aerodynamic drag, and 
collisions against frictionless walls. Velocity 
vector of the center of mass (dot) is indicated, a 
Elastic model, b Viscoelastic model, c Highly 
viscoelastic model, d A viscoelastic circle is 
deformed into a free-form shape, e The shape is 
turned elastic and bounced, f Same shape made 
viscoelastic and bounced 

solution 5. The deformable surface is in a viscous 
ambient medium, and it reacts to an external time- 
varying force (Fig. 8). The numerical computations 
and visualization can be performed at interactive 
rates for a 10 x 10 surface model with shaded ren- 
dering, or with larger models rendered as wire- 
frames. One version of this physically-based "3 D- 
World" features a stereo head-mounted display 
and a Polhemus 3 SPACE 6 device as a six degree- 
of-freedom mouse ("bat") for applying forces to 
the surface. 

6.2 Elastic models 

Figure 9 shows two different static behaviors of an 
elastic surface discretized on a 23 x 23 grid. The 

5 SUN 3/160 and TAAC-1 are trademarks of Sun Microsys- 
tems, Inc. 
6 3 SPACE is a t rademark of McDonnell  Douglas, Inc. 

surface is lifted by a spring attached to the right- 
most corner and constrained at the remaining 
corners. In Fig. 9 a we specified the material prop- 
erty functions so as to simulate a thin plate, whose 
rest state is flat ( B = 0 ,  W l = 0 ,  W 2 > 0 ) .  In Fig. 9b 
we adjusted the material properties to simulate a 
membrane resistant to elongation or contraction 
away from the prescribed metric G O and not resis- 
tant to bending (w 1 >0, w2=0); i.e., a thin cloth- 
like material. 
Figure 10 shows a static simulation of cloth-like 
mesh material draped over a mannequin stand. The 
material is "pinned" at the shoulders and con- 
strained by a "bel t"  around the waist. The realistic 
drapes and folds have not been specified kinemati- 
cally. Rather, they are among the features that 
emerge naturally from the physically-based mod- 
el. 
Figure 11 illustrates what is in essence a physically- 
based method for constructing a convex hull. Fig- 
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Fig. 8. 3 D  surface mode l  s imula t ions  at  interact ive rates. A 
10 x 10 elastic surface is subjected to a po in t  force. The  user  
sees c o n t i n u o u s  m o t i o n  
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ure l l a  shows a model of a rigid jack obstacle. 
In Fig. l l b ,  a membrane shrink-wrap (G=0 ,  w 1 
>0,  w 2=0)  is stretched into a sphere around the 

jack. Figure l 1 c, d are stills from a motion se- 
quence showing the membrane shrinking during 
the physical simulation. Shrinkage ceases when the 
membrane's surface tension-comes into balance 
with the collision force surrounding the jack which 
prevents penetration. 
Figure 12 illustrates a simulation of a flag waving 
in the wind. The flag material is a fixed metric 
membrane (wl>0 ,  w2=0). The wind is constant 
and its effect on the flag is modeled by the aerody- 
namic force in (22). The flag is fixed to a rigid 
flagpole along one of its edges by imposing a fixed- 
position constraint (introduced as a Dirichlet 
boundary condition). 
Figure 13 illustrates a simulation of a carpet falling 



Fig. 9a, b. Lifting elastic surfaces 

Fig. 10. Robe draped on a mannequin 

onto two rigid bodies in a gravitational field. The 
carpet material is a prescribed-metric membrane 
with a small amount of plate rigidity (wl>0 ,  w 2 
> 0). The carpet slides off the bodies due to the 
interaction between gravity and the repulsive col- 
lision forces. 

Fig. 11 a-d. Membrane shrinking around a jack 

Fig. 12a, b. Flag waving in a wind 

The above simulations employed the primal formu- 
lation of deformable models. SOR-type iterative 
methods were used. The following few simulations 
employed the hybrid formulation. 
Figure 14 illustrates a heavy ball resting on a sup- 
porting elastic solid. The internal elastic force inter- 
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Fig. 13a-c. "Persian carpet" falling over immobile 
obstacles 

Fig. 14. Heavy ball on a deformable solid 

Fig. 15a, b. Stills from Cooking with Kurt 
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acts with the collision force to deform the solid. 
The size of discrete model is 7 x 7 x 7. 
Figure 15 shows frames from a physically-based 
animation entitled Cooking with Kurt (Fleischer 
et al. 1987). The animation starts with live video 
footage of Kurt  placing several vegetables on a cut- 
ting board. The vegetables "come to life", bounc- 
ing around the kitchen table, colliding elastically 
with each another and with the table-top. The syn- 
thetic vegetables are deformable surface models. 
Their reference shapes were reconstructed from an 
image of the real vegetables using computer vision 
techniques, most of which are described by Terzo- 
poulos et al. (1987b) and Kass et al. (1987). Our 
vision techniques exploit the "modeling clay" 
properties of deformable models. They provide 
principled ways of transforming raw image data 
into synthetic force fields that sculpt deformable 
models into shapes consistent with the imaged ob- 
jects. After the models have captured the shapes 
of the real objects, we animate them in a physically- 
based, synthesized table-top world. The applied 
forces include driving forces (thrusters), attitude 
control forces (gyros), and interaction forces (col- 
lisions with friction). The models exhibit deforma- 
tions, accelerations, collisions, tumbling, and other 
realistic physical motions. The figure shows an 
elastic collision in progress. 

6.3 Inelastic models 

Figure 16 simulates an interaction with a model 
of a "plasticine" bust. We initialized the reference 
component of the hybrid model formulation with 
3 D range data from a laser scanned sculpture of 
Victor Hugo (data source: Hansen and Henderson 
1986). The figure shows the undeformed model, and 
a simulated robot  hand pinching Hugo's plastic 
cheek with sticky fingers, pulling away, and releas- 
ing to show the residual plastic deformation. Be- 
cause of the relatively large size of the discrete 
model, 180 x 127 we resorted to a multigrid solu- 
tion method similar to the one described by Terzo- 
poulos (1983). 
The remaining examples feature fracture propaga- 
tion in deformable models. 
Figure 17 shows a 30 x 30 surface model sheared 
by opposing forces. In this simulation, we per- 
turbed stochastically the fracture tolerance around 
the material's mean tolerance in order to encourage 

some unpredictability in the propagation of frac- 
tures. 
Figure 18 presents an animation of a 23 x 23 net 
falling over an impenetrable obstacle in a gravita- 
tional field. Here, however, the mesh incorporates 
a fracture limit based on the deformation in the 
material. When a fiber stretches beyond the frac- 
ture limit, the fracture process breaks it by applying 
the discontinuity insertion technique described in 
Sect. 4. The yield limit is uniform over the mesh, 
which causes linear tears, as one might obtain with 
coarse cloth. 
Figure 19 shows still frames from an animation of 
a 20 x 20 cloth-like deformable surface being torn 
gently at first, then violently, by opposing forces. 
In this simulation the material tolerance included 
some randomness. The surface is rendered as 
threads (with several interpolated threads per ele- 
ment). 
Figure 20 illustrates an implementation of inelastic 
deformable models on an 8K-processor CM-2 
Connection Machine 7. Local, parallel, iterative 
techniques such as relaxation are most suitable for 
achieving maximum performance on this massively 
parallel computer. Eight 16 x 16 x 4 inelastic solids 
were dropped simultaneously over identical spheri- 
cal obstacles. The figure shows one of the solids 
fracturing into many fragments as it is strained by 
the "ho t "  obstacle. 
Figure 21 shows a 3 x 3 x 7 inelastic "semi-liquid" 
mass propelled into a room. It collides with a 
spherical obstacle and the back wall before coming 
to rest asunder on the floor. This simulation is a 
serial version of the Connection Machine imple- 
mentation. 

Table 3. Details about selected simulations 

Example Formu- Number of Numerics Computer 
lation Equations 

Figure 9 Primal 1587 Relaxation Lispm 
Figure 10 Primal 1800 Relaxation Lispm 
Figure 14 Hybrid 1029 Choleski Lispm 
Figure 15 Hybrid 507 ADI Lispm 
Figure 16 Hybrid 68580 Multigrid Lispm 
Figure 17 Primal 2700 ADI Lispm 
Figure 18 Primal 1587 ADI Lispm 
Figure 19 Primal 1200 ADI Lispm 
Figure 20 Primal 24576 Relaxation CM-2 
Figure 21 Primal 189 Relaxation Lispm 

7 Connection Machine is a trademark of Thinking Machines, 
Inc. 
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16 17 

Fig. 16. Hugo (back to fi'ont) A "plasticine" bust of Victor Hugo. Grabby hand pinches. Grabby hand pulls. Deformed Hugo 

Fig. 17. April 15, 1988 

The ("blobbies") technique described by Blinn 
(1982) was applied to render the simulation data 
in the previous two examples. We associate an ex- 
ponential potential function with each node, and 
render the iso-potential surface of the resulting 
field. This rendering technique (similar to the one 
applied by Wyvill et al. (1986)) gives the inelastic 
solids a goopy appearance. 

7 Summary and conclusion 

We have proposed deformable models for use in 
computer graphics. Our goal has been to create 
physically-based models for nonrigid curves, sur- 
faces, and solids that inherit the essential behavior 
of real-world deformable materials, while main- 
taining computational tractability for the purposes 
of computer animation. First we formulated elastic 
models as well as hybrid models that combine elas- 
tic deformation with rigid-body dynamics. Then 
we developed techniques for incorporating inelastic 
behavior into our models and applied them to 
create interesting elasticity, viscoelasticity, plastici- 
ty, and fracture effects in simulated physical 
worlds. 
Deformable models are active: they respond to ex- 
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ternal influences and interact with other computer 
graphics objects in a natural way. Their underlying 
differential equations unify the description of shape 
and motion, and the numerical solution of these 
equations yields realistic statics and dynamics. Our 
results highlight the power of this approach - we 
are able to synthesize complex motions arising 
from the interaction of deformable models with di- 
verse forces, ambient media, constraints, and im- 
penetrable obstacles. 
The addition of deformable models to the growing 
arsenal of computer graphics models that incorpor- 
ate basic physical principles takes us to an oppor- 
tune point. From here, high-level computer anima- 
tion systems that can cope with both rigid and 
nonrigid objects seem attainable. In the near future, 
such systems will enable animators to plan physi- 
cally accurate motions very conveniently, not 
through mere kinematic key-framing, but also ac- 
cording to abstract qualities such as timing, 
rhythm, and style. To realize such systems, we must 
develop methods for controlling and coordinating 
the motions of our deformable models in ways that 
appeal to animators. A branch of optimal control 
theory that deals with the control of nonrigid struc- 
tures offers mathematical techniques applicable to 
this problem. This opens up an interesting area 
for future research. 
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Fig. 18a-c. Net tearing over a spherical obstacle 

19f 

Fig. 19a-f. Opposing forces tearing a "woven cloth" 
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20b 
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Fig. 20. Inelastic solid simulation on a massively 
parallel computer 

Fig. 21. Block of goop flung into a room 

Appendix 
Implementation of deformable 
s u rfaces 
This appendix  presents the details of our  imple- 
men ta t ion  of deformable  models  for the case of 
elastic surfaces (i.e., u = (ul, u2) and p = 2). We con- 

326 

sider the primal  formula t ion  and the hybr id  formu-  
lat ion in turn. In each case, we first give the elastic 
forces arising f rom the deformat ion  energy &, we 
discretize the cont inuous  equat ions  of mot ion  in 
material  coordinates  and, finally, we offer proce-  
dures for integrat ing the resulting differential equa- 
tions th rough  time. 



21c 

21d 

A. 1 A simpli f ied elastic force 
for the pr imal  formulation 

We will use a weighted matrix norm in (9) to obtain 
the following simplified deformation energy for a 
surface: 

2 
Z ( w q ( G i j - -  Gij) 

I2 i , j = l  

+ w2j(Bi j  - -  B~ 2) d u  1 d u  2 . (25) 

The first variational derivative 5,, E(x) of (25) can 
be approximated by the vector expression: 

2 G~ 8 X  

82 
(26) 

where the functions ~ij(u, x) and flu(u, x) determine 
the elastic properties of the material. We use 

O~i j (U , X) = W/lj(U) ( a i j  - -  GO) 

and after linearization 

f i i j (u ,  x)=  wiZj (u)(Bq--B~ 

(27) 

(28) 
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Note that for the special case where e la=a2~ = 0  
and where ~xtt, 0~22 , and the ~ i j  a r e  linearized so 
as to be independent of r, we obtain the "thin plate 
surface under tension" (Terzopoulos 1986). The 
thin plate surface under tension further reduces to 
the traditional "spline under tension" in the case 
of curves. 

A. 2 Semidiscretization 

Expression (26) for the elastic force is continuous 
in the material coordinates of the deformable sur- 
face. To simulate the dynamics of the model, we 
can discretize the expression by applying finite-ele- 
ment or finite-difference approximation methods. 
Discretization transforms the partial differential 
equation of motion (3) into a system of ordinary 
differential equations. We will illustrate the discre- 
tization step using standard finite-difference ap- 
proximations. 
We discretize the unit square domain O 
=0<ul, u2_<l of the surface as a regular M x N  
discrete grid O h of nodes. The internode spacings 
are hi = 1/ (M-1)  and h2 = 1/ (N-1)  in the ul and 
u2 coordinate directions respectively. Nodes are 
indexed by integers [m, n] where 0 < m_< M and 
O<_n<N. We discretize an arbitrary continuous 
vector function of u(u, t) by arrays of continuous- 
time vector-valued nodal variables: ut[m,n] 
=u(mhl,  nhz , t  ). For notational convenience we 
will denote the collection of nodal variables 
ut[m, n] by the M N  dimensional grid vector u~. 
For now, we shall suppress the time-dependence 
notation until we consider integration through 
time in the next section. 
The elastic force requires approximations to the 
first and second derivatives of the nodal variables. 
Given a grid function u[m, hi, we define the for- 
ward first difference operators 

D~- u[m, n] =(u[m + 1, n] - u [ m ,  n])/h~ 

D~ u[m,n]=(uEm, n+ l ] -u[m,n] ) /h2  (29) 

and the backward first difference operators 

D[- u[m, n] = (u Ira, n] - u [ m -  1, nT)/hx 
D~- u [m, n] = (u [m, n] - u [-m, n -- 1] )/h 2 . (30) 

Using (29) and (30), we can define the forward and 
backward cross difference operators 

D + u[m, n] =O~-i u[m, n] =D~- O + u[m, n-I, 

Dlzu[m ,n]=D2 ,  u[m,n]=D1 D2 u[m, n], (31) 

and the central second difference operators 

Dxl u[m,n]=D~- D + u 

D22 u I-m, n]  = D i D~ u. (32) 

Now, using the grid functions x [m, n], w]j[m, hi, 
w{j[m, n] to represent their continuous counter- 
parts, we apply the above difference operators to 
discretize the functions (27) and (28) as follows: 

a i j [ m  , n] = w~j[m, n] (D~- x[m, n] 

�9 o + x Ira ,  n ]  - Ira ,  n ] ) ,  

b u [m, n] = w~j [m, n] (n [m, n] 

�9 O!f ~ x[m, n] -B~ n]), (33) 

where the (+ )  superscript indicates that the for- 
ward cross difference operator is used when i+j, 
and, from (6), 

n[m, n] = D+ x[m, n] x D  + x[m, n] (34) 
[D? x[m, n] • O2 ~ x[m, nil 

is the surface normal grid function�9 The elastic 
force (26) can then be approximated by 

2 
[m,n]= ~ -DF(aqD + x[m,n]) 

i , j = l  

n!-)(h..n!+)x[m, hi). (35) ~ t J  k~tJ ~ t J  

We introduce free (natural) boundary conditions 
by nullifying the inner difference operators in (35). 
To introduce fractures in the surface, a free bound- 
ary condition can be inserted by setting to zero 
the value of any difference operator D + or D~ +) 
in (35) involving x[m,n]  on opposite sides of a 
fracture. Such boundary conditions are also estab- 
lished on the free edges of the surface, where these 
operators would attempt to access nodal variables 
e [m, n] outside the discrete domain O h. 
Expressing the grid functions x [m, n] and ~ [m, n] 
as x_ and _~ in our grid vector notation, (35) may 
be written in the vector form 

_~ = K (_x) x_, (36) 

where K(x) is an M N  x M N  matrix known as the 
stiffness matrix. Due to the local support of the 
finite-difference discretization on the [m, n] grid, 
K has the desirable computational properties of 
sparseness and bandedness. 
Next we discretize the mass density #(u j, u2) and 
damping density 7(u~, u2) as grid functions ~ Ira, n] 
and y [m, n]. Let M be the mass matrix, a diagonal 
M N  x N M  matrix with the/ t  [m, n] variables as di- 
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agonal components, and let C be the damping ma- 
trix constructed similarly from 7 [-m, n]. The dis- 
crete counterpart to (3) can be expressed in grid 
vector form using (36) by the simultaneous system 
of second-order ordinary differential equations 

M ~ - +  C d2x- dx- + K(x-) x- = f(x-)' dt  - (37) 

where the next external force on the surface 
f(ul, u2) has been discretized into the grid vector 
_f which represents the grid function f[m, n]. 

A.3 Numerical integration through time 

To simulate the dynamics of an elastic model, we 
integrate the system of ordinary differential equa- 
tions (37) through time using a step-by-step numer- 
ical procedure. 
Evaluating _e at t + A t and f at t, and substituting 
the discrete-time approximations 

d2x 
d t ~ ~'  (X-t + At - -  2 X-t + X-t-- At ) /  A t 2 

d x  
d t ~ (x-t + a' - x-t- at)/Z A t (38) 

into (37), we obtain the semi-implicit integration 
procedure 

At _xt+~t = gt, (39) 

where the M N  x M N  matrix 

At(_xt) = K (_xt) + (~ t2  M + 1 C) (40) 

and the effective force vector 

g t = f t + ( ~ t 2  M +  l ~ c )  

with 

~;_, = (x_,  - -  x t _ a t ) / A  t .  (42) 
Applying the above semi-implicit procedure, we 
can evolve the dynamic solution from given initial 
conditions x_ o and X_'o at t=0 .  During each time 
step, we solve a sparse linear algebraic system (39) 
for the instantaneous configuration x_t+~t using the 
preceding solution _x t and x',. 

A. 4 Implementing the hybrid formulation 

Implementation of the hybrid formulation follows 
the same steps described above. For a surface the 
variational derivative of (18) is 

a [w Oe~ a w ao~(e)=w00e-~]-ul k lOau~]-~u2 (0'0@2) 
82 / ~2e\ 

c~2 @11 c~ae '~ 
+2 ~?u~ ~u2 c~ul c3u2] 

8 2 I 8 2 \ 
+ 0~u22 ~Wo2 ~U~u~), (43) 

where u=(u~, u2) are the surface's material coordi- 
nates. 
Using the finite-difference operators (29 32) the 
discrete form of the above expression is 

,I-m, n] =Woo elm, n] - D ?  (Wlo D• e) [m, n] 

- D 2  (Wo, D~- e) Em, n] 

+Dll(W20 Dll  e) [m, n] 
+ 2D1-2(w11 D+2 e) I-m, n] 

+D22(w02 D22 e) I-m, n]. (44) 

As before, this may be written in the grid vector 
form 

_~=K_e. (45) 

Unlike (36), however, the sparse, banded stiffness 
matrix K is constant. 
Using (45), the equations of motion (15) can be 
expressed in semidiscrete form by the following sys- 
tem of coupled ordinary differential equations: 

dv 
m d [  = gV, (46 a) 

d (I ~) = gO, (46 b) 

d2-e ~ + K e = g ~ ,  M ~ -  + C _ _ (46 c) 

where 
' ~  

- d t  2 # d r -  2 7 , (47a) 
m ~ n  m , n  

( ,e 
g'~=hl h2 ~ q x f -  ~ # q x - -  

m , . - -  - " , "  - dt 

-- ~ Yq dt  ]' (47b) 
m, n 
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du 
ge = [ _ # 2 7 _ # e  x (e x fl) 

de d o  
--2#0~ x ~ [ + # ~ -  x_q. (47c) 

Note that the integrals in (15-17) have been ap- 
proximated by sums over nodal variables. Some 
of the terms in (15c) have been brought to the 
right hand side in order to simplify the final step 
of the solution process. 
To simulate the dynamics of our model, we inte- 
grate the semidiscrete system (46) through time, 
evolving the rigid-body and deformation dynamics 
from given initial conditions Vo, o%, _%, and (de/dt)o 
at t = 0. Each time-step requires the solution of two 
algebraic equations for v and ~o for the motion 
of the body frame ~b, in tandem with a linear alge- 
braic system for the displacement component _e. 
Substituting the discrete time approximation 
(dv/dt),~(vt+~t-vt)/A t into (46a), we obtain the in- 
tegration procedure 

v,+at= v,+ A t gT/m (48) 

for the linear velocity of ~b at the next time instant. 
Similarly, we obtain from (46b) 

oh + At = I~-+~ t (It Oh + A t g~') (49) 

for the angular velocity of ~b for the next time in- 
stant. At each time step, the body is translated 
by d = A t v t ,  and it is rotated by an angle of 0 
=Atlo~tl about the unit vector a=[al, az,a3]' 
=m]leh[ using the transformation matrix 

a l a ~ v e r s 0 + c o s 0  

R = / a2 aa vers 0 + a3 sin 0 
/ 
\ a 3  al vers O-a  2 sin 0 

effective force vector gt is given by the right hand 
side of (41) with g~ from (47c) replacing _f, and _e 
replacing x. 
In the hybrid formulation, matrix A is constant 
(also in the primary formulation for the special case 
of quadratic energies); hence, the direct solution 
method need factorize it only once at t=0 ,  then 
merely resolve the vector gt at succeeding time 
steps, thereby saving substantial computation. 
Further savings are possible by neglecting some 
of the interaction terms on the right hand sides 
of (47); for example, the centrifugal force may be 
neglected unless large angular velocities o~ are ex- 
pected, while the Coriolis force may be neglected 
unless significant d e_/d t is expected. 
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Note added in proof 
Recently we have extended our formulation of deformable mod- 
els to include heat conduction. The extended models feature 
thermoelasticity, melting, and fluid-like behavior in the molten 
state. In addition to their nonrigid dynamics, governed by La- 
grangian equations of motion, the models transfer heat through 
their interiors according to the heat equation for nonhomogen- 
eous, nonisotropic conductive media. We have implemented the 
models in their solid state as hexahedral finite-element assemb- 
lies in which thermoelastic elements interconnect mass particles 
situated in a lattice. As the temperature increases, the stiffness 
of a thermoelastic element decreases and eventually the element 
fractures when its temperature exceeds the melting point. In 
its molten state the deformable model involves a many-body 
simulation in which "fluid" particles that have broken free from 
the lattice interact through long-range attraction forces and 
short-range repulsion forces. We have created physically-based 
computer animations involving a simulated physical world pop- 
ulated by hot constraint surfaces and thermoelastic deformable 
models. Reference: Terzopoulos D., Platt J., Fleischer K. (Nov. 
1988) From goop to glop: Heating and melting deformable 
models. Technical Report, Schlumberger Palo Alto Research, 
Palo Alto, CA. 
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