
An Online Collaborative Ecosystem for
Educational Computer Graphics

Garett D. Ridge
garett@cs.ucla.edu

Computer Science Department
University of California, Los Angeles

Demetri Terzopoulos
dt@cs.ucla.edu

Computer Science Department
University of California, Los Angeles

Figure 1: Some interactive panels from our collaborative online code editor, the “Encyclopedia of Code”.

ABSTRACT
We introduce a coding framework that supplements introductory
computer graphics courses, with the goal of teaching graphics fun-
damentals more effectively and lowering the excessive barrier of
entry to 3D graphics programming. In particular, our framework
provides tiny-graphics.js, a new WebGL-based software library for
implementing projects, including an improved organization sys-
tem for graphics code that has greatly benefited our students. To
mitigate the difficulty of creating 3D graphics-enabled websites
and online games, we furthermore introduce the “Encyclopedia
of Code”—a World Wide Web framework that encourages visitors
to learn 3D computer graphics, build educational graphical demos
and articles, host them online, and organize them by topic. Our
own contributed examples include various interactive tutorials and
educational games. Some of our modules expose students to new
graphics techniques, while others explore new modes of online
learning, collaboration, and computing. In comparison to earlier
online graphics coding platforms and mainstream graphics edu-
cational materials, the resources that we have developed offer a
significantly unique set of features for both inside and outside our
classrooms.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Web3D ’19, July 26–28, 2019, Los Angeles, CA, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6798-1/19/07. . . $15.00
https://doi.org/10.1145/3329714.3338133

CCS CONCEPTS
•Computingmethodologies→Computer graphics; •Applied
computing → Computer-assisted instruction; • Software and its
engineering→ Software libraries and repositories.

KEYWORDS
Computer Graphics education; WebGL; tiny-graphics.js; JavaScript
Library; Encyclopedia of Code.
ACM Reference Format:
Garett D. Ridge and Demetri Terzopoulos. 2019. An Online Collaborative
Ecosystem for Educational Computer Graphics. In Web3D ’19: The 24th
International Conference on 3D Web Technology (Web3D ’19), July 26–28,
2019, Los Angeles, CA, USA. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3329714.3338133

1 INTRODUCTION
Creating computer graphics visualizations while problem solving
is a great way to make topics seem more intuitive. So how does a
student, a programmer, or even a mathematician learn to make use
of computer graphics for the first time? Is there a “right way” to
learn this skill? At universities, teachers in graphics courses are
tasked with finding the answer.

Some students begin graphics courses without a programming
or math background, and yet graphics can be a way for them to
gain such a background. Even those who are outside the university
system can benefit from learning graphics from a programmer’s
or mathematician’s perspective, in order to increase their under-
standing of both, rather than trying to glean this skill from online
graphics tutorials, which may not emphasize such fundamentals.

Unfortunately, due to numerous complex steps, most of today’s
approaches to creating a low-level, math-based graphics program
come with a substantial learning curve. The initial obstacles do not
particularly help the learner acquire the math and programming

https://doi.org/10.1145/3329714.3338133
https://doi.org/10.1145/3329714.3338133
https://doi.org/10.1145/3329714.3338133

Web3D ’19, July 26–28, 2019, Los Angeles, CA, USA Ridge and Terzopoulos

intuition that they ultimately seek, promised by gaining program-
matic control over visualizations.

1.1 Contributions
The overarching contribution of our work is to lower the difficulty
for graphics learners by eliminating steps, and to make the job of
graphics instructors easier as well. We offer source code and 3D
web-based content that can supplement a university or college-level
Computer Graphics course. We also offer a novel internet-based
framework for supporting and expanding that content.

First, we provide “tiny-graphics.js” (on GitHub, at URL https://
github.com/encyclopedia-of-code/tiny-graphics-js), a new WebGL-
based programming library for implementing projects in the class-
room. It is a single-file JavaScript utility. Unlike popular 3D graphics
frameworks like ThreeJS [Dirksen 2013], tiny-graphics.js is purpose-
built for education. It is small enough to accompany an assignment,
and has a strong record of such use with our own assignments. It is
designed to organize the 3D graphics process into object-oriented
modules for the programmer, sparing them from clutter.

Second, we preview a new online coding platform that uses tiny-
graphics.js. The website, called the “Encyclopedia of Code” (URL
http://encyclopediaofcode.glitch.me/), encourages web visitors to
learn graphics. Without installing anything, anyone can use its
online editor to build educational graphical demos and tutorials,
host them online, and organize them by topic. Our goal is to build a
crowd-sourced repository of remixable 3D demos and educational
tutorials. This consists of one unified codebase, so our encyclope-
dia’s examples can collectively serve as a programming engine in
addition to being a source of documentation and tutorials.

Our platform’s mission is to unify and democratize the creation
of visual tutorials. We also deliver to the masses their easiest option
for the creation and prototyping of low-level 3D programs. Together
with our code library and its examples, we introduce new tools and
paradigms for education, especially in topics relevant to Computer
Graphics. Our unique contribution is a system-wide reorganization
of the process of making graphics, thereby making the whole task
friendlier for students, researchers, and programmers.

2 RELATEDWORK
Our tiny-graphics.js software library serves as a direct replacement
of software-based course materials designed by Edward Angel.
Angel created new ways to teach graphics, and was additionally
part of an effort to unify graphics education at ACM SIGGRAPH
2017, calling for submissions of unique and interesting assignments
for graphics courses [Duchowski et al. 2017]. Our work aspires to
similar ends.

The tiny-graphics.js library has accompanied our university’s
Introduction to Computer Graphics course assignments since 2016,
replacing our use of supplemental code from the textbook by Angel
and Shreiner [2014] entitled Interactive Computer Graphics: A Top-
Down Approach with WebGL. As this widely cited book has been
used as the basis for SIGGRAPH’s introductory graphics courses
in recent years [Angel and Haines 2017; Angel and Shreiner 2016],
it sets the standard for graphics education. Compared to Angel’s
library, our tiny-graphics.js library has surpassed its original scope

in many ways, offering improved educational utility, organization,
functionality, and performance.

The most famous of other efforts to pre-organize the process of
3D graphics programming have resulted in large engines such as
ThreeJS for WebGL [Dirksen 2013], or for offline use, large propri-
etary commercial graphics modeling suites like Maya [Govil-Pai
2006]. Angel [2017] points out that such large frameworks are un-
suitable for the engineering classroom, since they purposefully hide
low-level architectural details that engineering students need to
see. Our own tiny-graphics.js is purpose-built for education and
keeps students close to these details. Its current scope is focused
merely on easing students into the organization of the graphics
process, such as managing shaders and geometry. In its current
phase, it should not be compared to industrial tools like ThreeJS
outside this educational niche because of an important difference:
Our source code is small enough for a student to read and under-
stand completely, including all the WebGL calls inside. The same
cannot remotely be said of ThreeJS’s source code. Besides being an
API, our library is meant via its size and readability to suggest an
organizational scheme for all graphics programs, not just ours.

There have been prior attempts to integrate graphics courses
with the internet. Angel [2017] describes using his textbook and the
Coursera platform to host a Massive Open Online Course (MOOC),
which 5,500 students began. Bourdin [2016] evaluated the few Com-
puter Graphics MOOCs in existence by supplying their own stu-
dents. They identified several pitfalls, including a low completion
rate attributed to the demotivating impersonal aspect of online
courses. Their students lost the Socratic eagerness to impress the
(distant) teacher. Our online platform compensates for this by al-
lowing submission of finished demos, sharing, and showing off.

Project Jupyter [Perez and Granger 2015] includes interactive
web editors and tutorials not unlike our educational platform. Jupyter
Notebooks are a means of publishing a computational method that
can be readily read and replicated using a web browser. They embed-
ded panels of code, prose, and results within the HTML document.
Lines of code in their editors appear in an order that suits the
documentation presented around them, an integral characteristic
of Knuth’s Literate Programming [Knuth 1984]. Our system goes
further than Project Jupyter in several ways. The full interactiv-
ity of Notebooks is hidden from casual, untrained web visitors; to
see the Notebooks as more than a static page requires either third
party web tools or the installation of Python packages. Our own
“Active Textbooks” described in Section 4.2 can instantly benefit
all web visitors, not just programmers or power users. Secondly,
Notebooks are hosted by individuals (such as on GitHub). There is
no central repository like ours that easily allows users to generate
and host new Notebooks themselves for purposes of remixing or
rapid experimentation. Lastly, Notebooks are often graphical in
nature, but usually only by plotting 2D charts and graphs. They do
not generally use 3D or involve the graphics pipeline or GPU in
any way, nor do they create 3D HTML canvas contexts (WebGL) as
we do. Notebooks are thus less suitable for teaching 3D graphics
or helping others develop low-level graphics programs, engines, or
games.

Code.org is a nonprofit dedicated to expanding access to Com-
puter Science, and they investigated the effects of their own pro-
gramming instruction website [Kalelioğlu 2015]. Their “Hour of

https://github.com/encyclopedia-of-code/tiny-graphics-js
https://github.com/encyclopedia-of-code/tiny-graphics-js
http://encyclopediaofcode.glitch.me/

An Online Collaborative Ecosystem for Educational Computer Graphics Web3D '19, July 26�28, 2019, Los Angeles, CA, USA

Code� campaign [Wilson 2014] uses Computer Science games in the
classroom to engage tens of millions of the world's K�12 students.
The online games listing for the Hour of Code collects the same
sort of interactive educational programming demos that our Ency-
clopedia of Code seeks to crowd-source, and some of them even use
WebGL. However, the workings of their games is not shown, which
is a lost opportunity to educate. Many of their sponsors' contributed
games overlap in topics of basic programming, quickly bottoming
out in educational value. With our platform's encyclopedia orga-
nization, there are as many opportunities to engage students with
such demos as there are topics in the Computer Science curriculum.
Our platform, unlike theirs, includes free hosting for individual
visitors to use for sharing new educational games or for remixing
programs during experimentation.

The arts-supporting �Processing� project [McCarthy et al. 2015]
includes the p5.js JavaScript library for making interactive graphical
code editors and tutorials, as well as a website containing examples
on diverse topics. Academics have used its embeddable web panels
to create cloud tools, enabling their students to experiment with
graphics and robotics programming [Zubrycki and Granosik 2017].
The p5.js editors have no �save� button nor free re-hosting.

Hartmann et al. [2007] made an academic attempt to democratize
application development via collaborative coding. Like our project,
their �d.mix� tool was an earlier exploration of what happens when
web visitors of any skill level can host pages and remix each oth-
ers' pages into novel creations. Only certain major website APIs
were supported, and unlike our web-based system, d.mix must be
installed to be used.

Selwyn and Gorard [2016] explored modern students' use of
Wikipedia as an academic resource. Although the Wikipedia model
of collaboration has produced comprehensive educational materials,
our platform can o�er additional dimensions of 3D visualization,
interactivity, and automation. Wikipedia articles are purely reading
resources generally without an associated program for the com-
puter to work on while the user reads. On our our platform, the
computer's workload when rendering an article can either draw
a visualization for the current visitor or perform topic-relevant
calculations that are cached server-side to bene�t concurrent or
future visitors.

Similar websites such as BabylonJS's tutorials, WebGL Play-
ground, Glitch, D3JS, and Shadertoy exist, but each merely includes
a speci�c subset of the features our platform o�ers, while other im-
portant features are missing, such as interactivity in documentation,
free hosting and remixing for individuals, transparency, or control
over the entire source code as opposed to a single sub-component
or shader program.

3 MOTIVATION
In terms of preparation and learning, it is costly to build prototypes
using low-level 3D graphics programs today. A common alternative
is to forgo low-level control, and to employ overpowered industrial
tools to wrap basic graphics functionality�the simple mathematics
of projecting 3D triangles onto a 2D plane of pixels.

Graphics beginners are faced with long lists of setup steps, es-
pecially in the case of newer �shader-based� approaches.1 These
approaches are both more complex and harder to learn. The graph-
ics learning curve is extreme. Drawing just a single triangle requires
secondary �shader� programs, multiple types of GPU memory man-
agement, and at least three computer languages (in the case of
WebGL). Mandatory setup steps to initialize the graphics card (GPU)
give it the shader program code and any raw data bu�ers pertinent
to the 3D scene, and obtain pointers to these in GPU memory. Even
after this setup, all the subsequent shape-drawing actions of the
programmer are still cluttered with boilerplate code for loading and
switching between pointers to the GPU. Nothing is drawn without
these steps [Angel and Shreiner 2014]. There is no built-in way to
organize them.

Common graphics card interfaces exposed for doing the above
steps are called DirectX and OpenGL, the latter being more widely
available and more prevalent in education [Angel and Shreiner
2014]. Regardless, graphics methods all follow a similar pattern.
The phrase �OpenGL program� is widely taken to imply C++ due to
the ubiquity of the language in early graphics education, but it need
not be�Python, Java, and JavaScript can make the same OpenGL
calls. 3D Graphics programming in one language feels familiar in
all the others.

JavaScript is currently the only means of running code on browsers
inside of web pages. When JavaScript is used, OpenGL (version ES)
commands can be used which are then called WebGL, but they are
still the same API function calls as would appear in C++.

Angel [2017] described his rationale for eventually moving his
helpful C++ based libraries over to WebGL. He lamented a worsen-
ing learning curve of C++ graphics setup, citing di�culty in setting
up uniform C++ compiling environments for all students, who also
have inconsistent hardware. Angel found that WebGL has compa-
rable performance to C++, plus the advantages of a standardized
environment on all platforms (including phones), an interpreted
code engine that aids development, and advanced coding tools built
right into modern web browsers.

We too have found WebGL to be the current best platform for
graphics instruction and training. Code examples that run inside of
websites are more easily analyzed, packaged with inline tutorials,
compiled to any machine, debugged, hosted, shared, and remixed.
JavaScript's presence of functional programming styles have spe-
ci�c graphics applications, and tend toward smaller total source
code. We make full use of the 2015 �es6� version of JavaScript,
which adds further brevity and power to the language. Perfor-
mance workarounds such as WebAssembly and Emscripten can
run at near native speeds. JavaScript's bene�ts for prototyping and
sharing code on the web are clear.

4 THE TINY-GRAPHICS.JS LIBRARY
The tiny-graphics.js �le factors away the repetitive logic of GPU
communication into reusable objects. It gives a JavaScript program
access to linear algebra routines, useful user-interface controls and

1Graphics tutorials online abound that still use outdated �pre-shader� coding
paradigms, which are alluring due to their simplicity. However, support for their
older commands has been removed from new graphics cards, and never existed in web
browser implementations. Eventually it dawns on newcomers that they must commit
to learning the new way [Davidovi'c 2014].

	Abstract
	1 Introduction
	1.1 Contributions

	2 Related Work
	3 Motivation
	4 The tiny-graphics.js Library
	4.1 Improvements
	4.2 Active Textbooks

	5 The Encyclopedia of Code
	5.1 Innovation
	5.2 Example Pages in the Encyclopedia of Code

	6 User Study and Outcomes
	7 Conclusions and Prospects
	References

