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Rod-rod contact is critical in simulating knots and tangles. To simulate contact, typically

a contact force is applied to enforce the non-penetration condition. This force is often

applied explicitly (forward Euler) such that at every time step of the dynamic simulation,

the equations of motions are solved repeatedly until the right amount of contact force

successfully imposes the condition. There are two drawbacks to this method: (1) the

explicit implementation suffers from numerical convergence issues and (2) solving the

equations of motion iteratively to find the right contact force slows down the simulation.

In this thesis, we propose a simple, efficient, and fully-implicit contact model with good

convergence properties. Compared to previous methods, ours is shown to be capable

of taking large time steps without forfeiting accuracy during knot tying simulations. It

involves a new contact potential, based on a smoothed segment-segment distance function,

that is an analytic function of the four endpoints of the two contacting edges. Since our

contact potential is differentiable, we can readily incorporate its force (negative gradient of

the energy) and Jacobian (negative Hessian of the energy) into the elastic rod simulation.
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CHAPTER 1

Introduction

Following the pioneering computer graphics work on the physics-based modeling and

simulation of deformable curves, surfaces, and solids (Terzopoulos et al., 1987; Terzopoulos

and Fleischer, 1988b,a), discrete differential geometry-based simulations have shown

surprisingly successful performance in simulating slender structures, e.g., rods (Bergou

et al., 2008, 2010; Audoly and Pomeau, 2010; Jawed et al., 2018b), viscous threads (Audoly

et al., 2013; Bergou et al., 2010), ribbons (Shen et al., 2015), and plates/shells (Baraff

and Witkin, 1998; Grinspun et al., 2003; Batty et al., 2012).

The Discrete Elastic Rods (DER) algorithm (Bergou et al., 2010; Jawed et al., 2018b)—

originally developed in the computer graphics community to simulate hair, fur, and other

filamentary structures in movies—has been borrowed by the engineering community to

solve a variety of problems involving the deployment of rods (Jawed et al., 2014; Jawed

and Reis, 2014; Jawed et al., 2015b), propulsion of bacterial flagella (Jawed et al., 2015c;

Jawed and Reis, 2016, 2017), elastic gridshells (Panetta et al., 2019; Baek et al., 2018;

Baek and Reis, 2019), and self assembly of carbon nanotubes (Jawed et al., 2018a).

One of the most interesting and challenging problems related to these tasks is the

simulation of knots, which introduces complex and intricate patterns of self-contact within

an elastic rod. The mechanics of knots (Jawed et al., 2015a; Moulton et al., 2018; Patil

et al., 2020; Audoly et al., 2007; Clauvelin et al., 2009; Durville, 2012; Przybyl and

Pieranski, 2009) tied in elastic rods is an intricate interplay of the internal elastic forces

and external friction. Therefore, when simulating knots, a fast, stable, and physically

accurate contact model is desired.
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1.1 Contributions

In this thesis, we introduce the Implicit Contact Model (IMC), a contact handling method

for DER simulations (Bergou et al., 2008, 2010) in which the contact forces are handled

implicitly. DER discretizes the elastic rod into a number of “nodes”. Two consecutive

nodes are connected by an “edge”. To deal with contact, we define a contact energy, which

will be used to derive the normal contact forces, responsible for enforcing non-penetration,

and Coulombic frictional forces. Instead of formulating this contact energy as a function

of the distance between nodes, we formulate it as a function of the minimum distance

between two edges. This results in more visually and physically realistic results.

Figure 1.1 presents snapshots from our simulations of the knot tying process, where

the two free ends of the “tails” of the knots are pulled . Throughout this thesis, we

consider open overhand knots (Jawed et al., 2015a); such knots can be described by

the unknotting number n, related to the number of turns in the “braid” of the knot.

Figs. 1.1(a–d) show knots with n = 1, . . . , 4. Interestingly, when the knots with n = 3

and n = 4 are sufficiently tight, they undergo snap-through buckling and the “loop” of

the knot suddenly transitions from a near-circular shape to a distorted configuration. Our

simulation can reliably capture this behavior.

1.2 Thesis Overview

The remainder of this thesis is organized as follows: Chapter 2 reviews related work on

contact algorithms. In Chapter 3, we discuss the methodology of the proposed version

of DER with IMC as the contact model. In Chapter 4, we undertake the theoretical

validation of the IMC contact model and compare it to a well-established contact model

in terms of pull force accuracy and run time. Finally, we present concluding remarks and

discuss potential future research directions in Chapter 5.
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(a)

(b)

(c)

(d)

F

F

x

Figure 1.1: The knot tying process using DER and IMC for knots of (a) n = 1, (b) n = 2,
(c) n = 3, and (d) n = 4. The red dots in (a) represent the crossing points of the braid.
The unknotting number n is equal to 1

2
times the number of crossing points minus 1. The

end-to-end distance of a knot is e = L− x, where L is the total length of the rod and x is
the distance between the two ends of the knot. The knot starts off in the configuration
shown in the leftmost column and is gradually pulled tight from both ends leading to the
configuration shown in the rightmost column. The physical parameters are detailed in
Section 3.4.
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CHAPTER 2

Related Work

Contact handling methods can generally be divided into three categories: impulse-based

methods (Choe et al., 2005; Spillmann and Teschner, 2008), constraint-based methods

(Bertails-Descoubes et al., 2011; Daviet et al., 2011; Kaufman et al., 2014), and penalty-

based methods (Durville, 2012; Li et al., 2020; Patil et al., 2020).

DER, which implements a variation of Kirchhoff’s elastic rod model (Kirchhoff, 1859),

has been employed to handle contact during knot tying using a contact method proposed

by Spillmann and Teschner (2008). This model resolves contact by computing the

contact forces that will yield the desired, collision-free state. Although computationally

efficient, due to its explicit nature, unrealistic visual jittering during knot tying occurs for

insufficiently small time steps.

In addition to knot tying, several contact algorithms have been developed for simulating

large assemblies of elastic rods, such as for the realistic simulation of hair. To do so, Choe

et al. (2005) presented a framework that treated hair as a collection of wisps, greatly

decreasing the number of collisions to process, albeit reducing accuracy. Wisp-wisp

collisions are based on impulses while friction is modeled as a viscous damping force.

To capture exact Coulomb friction in fiber assemblies, Bertails-Descoubes et al.

(2011) introduced a constraint-based method that models contact and Coulomb friction

simultaneously as a zero finding problem of a nonsmooth function using the friction

formulation of Alart and Curnier (1991). This problem is solved using a nonsmooth

Newton algorithm along with Goldstein-Price line search.

Expanding upon the work of Bertails-Descoubes et al. (2011), Daviet et al. (2011)

proposed a hybrid approach to contact solving by combining a zero-finding formulation
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of exact Coulomb friction along with an analytical solver of failure cases. This hybrid

approach allows the solver to be scalable to fiber contact subject to tens of thousands of

frictional contacts.

Kaufman et al. (2014) proposed a constraint-based method capable of simulating large

assemblies of elastic rods by adaptively adjusting the degree of nonlinearity. This method

formulates frictional contact using discrete Signorini-Fischera conditions (Kikuchi and

Oden, 1988) and the maximal dissipation principle (Goyal et al., 1991). By adaptively

incorporating sufficient nonlinearity into the collision response, more physically realistic

results are produced compared to impulse methods.

Returning to the problem of knot tying, Durville (2012) introduced a penalty-based

contact model that treated rods as elastic beams using a finite element approach. This

method was successful in simulating rod deformation induced by knot tightening by using

a 3D finite strain beam model.

In more recent work, Li et al. (2020) proposed an implicit time-stepping method that

utilizes smooth barrier functions to simulate contact between deformable objects and

induce deformations. Approximated functions are introduced to smooth the contact energy

and frictional responses between two elements. This method robustly handles a variety of

contact scenarios but remains relatively expensive compared to other penalty methods

due to its use of continuous collision detection within minimization steps, contact-aware

line search, and a customized Newton solver.

Finally, Patil et al. (2020) studied the topological mechanics of knots through a

comparison of physical experiments with simulations in which the contact forces are based

on strain potential and friction is formulated as a damping force.

Although robust, many of these state-of-the-art methods (Kaufman et al., 2014; Li

et al., 2020) are difficult to implement, computationally expensive, and can often be

overkill for simulating knots. This can be attributed to the fact that they are formulated

in a way that robustly handles difficult contact scenarios such as high velocity impacts,

which are usually absent in knot tying.
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To remedy this, we formulate an implicit penalty-based contact algorithm that is

efficient, intuitive, easy to implement, and specially catered to knot tying. We show

that this algorithm is competitive with impulse methods in terms of computational

efficiency while avoiding the inaccuracies of such methods. Furthermore, we do not resort

to simulating friction using the simplified viscous damping formulation used by several

penalty-based methods (Choe et al., 2005; Patil et al., 2020), but instead use Coulombic

friction by limiting the problem space to non-static cases.

Finally, our algorithm does not contain expensive auxiliary components such as line

searches (Bertails-Descoubes et al., 2011; Li et al., 2020) or heavily customized Newton-

based solvers (Bertails-Descoubes et al., 2011; Daviet et al., 2011; Kaufman et al., 2014;

Li et al., 2020). To demonstrate the effectiveness of our algorithm, we compare simulation

results with the impulse-based contact method proposed by Spillmann and Teschner

(2008) as it is the most comparable in implementation complexity and computation cost.
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CHAPTER 3

Methodology

In this chapter, we first briefly discuss the DER model (Jawed et al. (2018b) provides

a more in-depth introduction). Then, we formulate the IMC contact model as well as

its intuitive integration into the existing DER algorithm. Finally, hyperparameters are

explained in terms of their effects on algorithmic performance.

3.1 Discrete Elastic Rods

Under the DER framework, the centerline of a rod is discretized into N nodes, located

at positions xi for 1 ≤ i ≤ N , and N − 1 edges ei = xi+1 − xi, for 1 ≤ i ≤ N − 1.

Each edge has an orthonormal adapted reference frame {di1,di2, ti} and a material frame

{mi
1,m

i
2, t

i}, as shown in Figure 3.1(a). The reference frame is updated through parallel

transport in time (Bergou et al., 2008, 2010) while the material frame can be obtained

from the scalar twist angle θi with respect to the reference frame. Then, for a given rod,

the Cartesian coordinates of each node as well as the twist angle for each edge results

in 4N − 1 total degrees of freedom (DOFs), which can be represented by the vector

q = [xT1 , θ1,x
T
2 , θ2, ...,x

T
N−1, θN−1,x

T
N ]T , where T denotes the transposition operator. In

this representation, the location of node i is contained in entries 4i− 3, 4i− 2, and 4i− 1

of q.

The total elastic energy of an elastic rod is

E =
N−1∑
i=1

Es
i +

N−1∑
i=2

Eb
i +

N−1∑
i=2

Et
i , (3.1)
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Figure 3.1: (a) Schematic diagram of a discrete rod. (b) The two edges (and four nodes)
involved in a contact.

where Es
i is the stretching energy of edge ei, E

b
i is the bending energy at node xi, and

Et
i is the twisting energy at node xi. For a rod with Young’s modulus Y , shear modulus

G, area moment of inertia I, polar moment of inertia J , and cross-sectional area A, the

energies are formulated as

Es
i =

1

2
Y A

(
|xi+1 − xi|
|ēi|

− 1

)2

|ēi|,

Eb
i =

1

2
Y I(|κi − κ̄i|)2 1

Li
,

Et
i =

1

2
GJτ 2

i

1

Li
,

(3.2)

where |ēi| is the length of edge ei in its undeformed state, κi is the curvature vector at
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node xi, κ̄i is the undeformed curvature for the same node, τi is the integrated twist at

node xi, and Li = (|ēi−1|+ |ēi|)/2 is the Voronoi length in the undeformed state. Typically

the rod is uniformly discretized and the length of each edge is the same throughout the rod;

i.e., Li = L. All three energies are functions of the configuration of the rod represented

by q (Jawed et al., 2018b). For each DOF qi in q, the internal elastic forces (for nodal

positions) and elastic moments (for twist angles), which are elements of the internal elastic

force vector Fint, can be written as

F int
i = −∂E

∂qi
. (3.3)

In accordance with Newton’s second law, the system of equations of motion is then

Mq̈ = Fint + Fext, (3.4)

where M is the diagonal mass matrix, acceleration q̈ is the second derivative of the DOFs

with respect to time, and Fext is the external force vector (contact forces, gravity, etc.).

For the purposes of this thesis,

Fext = Fc + Ff + Fv, (3.5)

where Fc is the contact force, Ff is the friction force, and Fv is the viscous force. The

formulation of these three forces will be discussed in the remainder of this chapter.

In DER, the backward Euler method is used to solve the 4N − 1 equations of motion

in order to update the DOF vector q. Discretizing in time, with time step ∆t (i.e.,

ti+1 = ti + ∆t), (3.4) can be approximated by the following system of discrete equations:

M

∆t

[
q(ti+1)− q(ti)

∆t
− v(ti)

]
− Fint(ti+1)− Fext(ti+1) = 0, (3.6)

where q(ti) and v(ti) are the DOFs and their velocities, respectively, at time step ti. The

current DOFs q(ti) and velocities v(ti) are known and the task at hand is to compute

9



the new DOFs q(ti+1) and velocities

v(ti+1) =
q(ti+1)− q(ti)

∆t
. (3.7)

As the (4N − 1)× (4N − 1) Jacobian matrix J, whose elements are

Jij =
mi

∆t2
δij +

∂2E

∂qi∂qj
− ∂F c

i

∂qj
− ∂F f

i

∂qj
− ∂F v

i

∂qj
, (3.8)

can be computed, the Newton-Raphson method is used to solve for q(ti+1) iteratively.

Note that the last three terms on the RHS of (3.8) are square matrices Jc,Jf , and Jv

representing the gradients of the three external forces—contact, friction, and viscous. The

Newton-Raphson iteration is

q(n+1) = q(n) − αJ−1F, (3.9)

where n is the iteration number, F is the sum of forces (LHS of Eq. 3.6), and α is the

Newton damping coefficient (explained further in Section 3.4). Once q(ti+1) is known,

v(ti+1) is computed using (3.7).

Normally, if the gradient of an external force, ∂Fext
i /∂qj, cannot be analytically

evaluated, this term is omitted during Newton iterations and that external force is

considered “explicitly” (forward Euler). This generally requires reducing the time step

size ∆t, resulting in increased computation time. Later, we will show that for IMC, the

contact and friction Jacobians are analytically obtainable. The implicit treatment of

contact and friction is a key contribution of this thesis.

3.2 Implicit Contact Model (IMC) Formulation

Referring to Figure 3.1(b), let us denote xi,xi+1,xj,xj+1 ∈ R3 as the Cartesian nodal

coordinates of edges i and j in a discrete rod configuration. Next, we denote an edge

“combination” as the 12-dimensional vector concatenation xij = [xTi ,x
T
i+1,x

T
j ,x

T
j+1]T and

10



the set of all valid edge combinations as X , where two consecutive edges are always in

contact and these combinations are excluded from X .

Hence, an arbitrary edge combination is denoted simply as x ∈ X and all edge

combinations are assumed to be valid. The contact energy Ec is then expressed as a

differentiable analytic expression involving the four nodes of the two contacting edges;

i.e., Ec(x) : R12 → R. Under this formulation, the proposed contact energy is dependent

only on the nodal coordinates of the discretized rod and not on the twist angles θi of

the edges, because the contact forces are computed based on the minimum distance ∆

between two contacting edges.

Then, in order to calculate ∆, we utilize an efficient and accurate algorithm proposed

by Lumelsky (1985) to compute the minimum distance between two finite line segments in

N dimensions. Originally a piecewise function, the algorithm is then modified to become

a twice differentiable smooth approximation. Using this completed expression, we can

then obtain the negative gradient of the energy −∇Ec(xij) as well as the negative Hessian

−∇2Ec(xij), which are then used to evaluate Fc in (3.5), hence (3.6), and Jc in (3.8). The

gradient of Ec(x) produces contact forces that act in the direction of the contact normal

and whose magnitude varies with ∆, which results in physically realistic forces when

dealing with rod-rod contact. Finally, as this method is essentially a penalty method, a

stiffness parameter kc is used to scale Fc and Jc appropriately.

By producing the contact forces in this way, dynamic friction can be calculated

according to Coulomb’s friction law. Previous methods (Choe et al., 2005; Spillmann and

Teschner, 2008) are unable to simulate Coulomb friction due to the inability to obtain its

Jacobian. As we have access to the normal contact force Jacobian, we can calculate the

Coulombic friction forces and Jacobian. Having access to the Jacobians of the normal and

friction force, our contact model reliably converges even in complex contact states. As the

cost of producing the Jacobian is relatively high and leads to solving a non-banded matrix,

we introduce a hybrid approach that ensures computational speed by only calculating the

Jacobian when necessary.
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To model contact energy, we compute the minimum distance ∆ between two edges

and feed this value into a smooth inverse ReLU function whose origin is based on the

contact distance 2h, where h is the cross-sectional radius of the rod:

Ec =
log(1 + eke(2h−∆))

ke
, (3.10)

with stiffness term ke determining how sharp the curve is. Intuitively, this function

starts to gradually increase the contact energy between two edges as ∆ decreases while

∆ > 2h and then sharply increases as ∆ approaches 2h. Although the gradients in

the region ∆ > 2h are nonzero, the inclusion of these “cushioning” forces greatly aid

convergence and reduce any unwanted oscillatory behavior that can often occur in penalty

methods. The effects of these nonzero gradients are explained in detail in Sections 4.3

and 5.1. Subsequently, the key component of the contact model involves obtaining a

differentiable analytical expression for ∆, which is difficult as computing the minimum

distance between two line segments is a highly nonlinear and noncontinuous process. Next,

we briefly describe Lumelsky’s min-distance algorithm as well as a new modified smooth

approximation that will be used as ∆(x).

3.2.1 Computing the Minimum Distance Between Two Line Segments

Lumelsky’s algorithm produces the minimum distance between two line segments in RN

and contains three noncontinuous components. We can eliminate one of them by simply

making the assumption that no edge can be reduced to a point. In other words, each

edge must have a finite length greater than zero. With this condition eliminated, we now

briefly lay out the simplified min-distance algorithm for an arbitrary edge combination

xij. Note that here, we simply go over the steps of the algorithm. For further intuition

on how exactly the algorithm is computing the min-distance, refer to the original paper

(Lumelsky, 1985).

To start off the min-distance algorithm, first, we add “edge” vectors eij = xi − xj

to the ones already previously formulated: ei and ej. With these vectors, we can then

12



calculate the necessary intermediate values as follows, where i and j subscripts are omitted

for clarity:

D1 = ei · ei

D2 = ej · ej

S1 = ei · eij

S2 = ej · eij

R = ei · ej

λ = D1D2 −R2.

(3.11)

Next, let

F (x) =


0 x < 0;

x 0 ≤ x ≤ 1;

1 x > 1.

(3.12)

This function is the first of two remaining noncontinuous components. Let t, u ∈ [0, 1] be

the ratios that determine at which point along the length of each edge the connecting

min-distance vector lies, as shown in Figure 3.1(b). Then, the fix bound function F (x) is

used to ensure that these values do not go outside the valid range. As two edges become

increasingly parallel, λ approaches 0, the value for which they are perfectly parallel. To

prevent division by zero, a piecewise function is used to describe the assignments of t:

t :=


(S1D2 − S2R)/λ λ 6= 0;

0, λ = 0;

t := F (t);

u := (tR− S2)/D2;

uf := F (u).

(3.13)

The final noncontinuous component is a conditional assignment where if uf 6= u (i.e.,

13



(a) (b)

Figure 3.2: (a) Smooth approximated fixbound function H(x), which models the piecewise
function in (3.12). (b) Boxcar function B(x), which allows for an analytical conditional
reassignment. Both functions are plotted with a stiffness parameter of k = 50.

u < 0 or u > 1), the t value is reassigned as follows:

t := (ufR + S1)/D1;

t := F (t);

u := uf .

(3.14)

Finally, ∆ can be computed as

∆ij = ‖eit− eju− eij‖ . (3.15)

3.2.2 Modifications Through Smooth Approximations

To obtain the gradient and Hessian of the contact energy Ec(∆(x)), ∆(x) must be

differentiable. In the previous section, we introduced an algorithm that can compute ∆.

Now, we modify the min-distance algorithm into a differentiable analytical expression.

As (3.11) is analytical, the only necessary modifications lie in (3.13) and (3.14). Firstly,

the fixbound function F (x) can be modeled with the smooth approximation

H(x) =
log
(
1 + ekx

)
− log

(
1 + ek(x−1)

)
k

, (3.16)
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where k is a hyperparameter that determines how stiff the curves are. A larger k value will

yield in a more accurate approximation but will result in “stiff” first and second derivatives

leading to poorer convergence; thus, this value should be determined empirically. Next is

the conditional reassignment in (3.14). As the reassignment depends only on whether or

not uf 6= u, this is equivalent to the reassignment only occurring when u < 0 or u > 1.

To model this, we can use a boxcar function that consists of two compounded logistic

functions:

B(x) =
1

1 + e−kx
− 1

1 + e−k(x−1)
. (3.17)

Both functions H(x) and B(x) are plotted in Figure 3.2 for a value of k = 50, which is

the value used to produce the simulation results. This k value is a good tradeoff between

accuracy and reliable convergence.

The last noncontinuous component of the algorithm lies in the piecewise function in

(3.13), which is actually left noncontinuous. Although this introduces a piecewise function

into the expression, this does not hurt convergence for the following reasons. First, note

that λ will almost never equal exactly 0 due to floating point arithmetic. Therefore, the

piecewise function is only required to prevent simulation crashes for initial conditions with

perfectly parallel rod configurations. Furthermore, the numeric stability of this algorithm

is maintained as whenever λ approaches zero, the numerator S1D2− S2R also approaches

zero by a similar magnitude, effectively avoiding numeric overflow problems (Lumelsky,

1985).

With these two functions and the above prevention of division by zero, we can then
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replace (3.13) and (3.14) with the following expressions:

t1 =


(S1D2 − S2R)/λ λ 6= 0;

0, λ = 0;

t2 = H(t1);

u1 = (t2R− S2)/D2;

u2 = H(u1);

t3 = (1−B(u1))(u2R + S1)/D1 +B(u1)t2;

∆ij = ‖eit3 − eju2 − eij‖ ;

Ec
ij =

log
(
1 + ekc(2h−∆ij)

)
kc

.

(3.18)

3.2.3 Contact Energy, its Gradient, and its Hessian

As shown previously, the min-distance ∆ is fed into (3.10), which then leads to a

fully differentiable analytical expression Ec(x). It should be noted that an end-to-end

differentiation of Ec(x) ends up with an extremely large and complex equation when

using symbolic differentiation (Meurer et al., 2017). Therefore, to greatly simplify the

expression and improve computational efficiency, the gradient and Hessian for several

of the intermediary algorithmic values are computed and then chain ruled together.

Effectively, we can define Ec(x) by the following equivalent functional:

Ec(x) = f(ei, ej, eij, D1, D2, S1, S2, R, t2). (3.19)
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Since the arguments of f are all functions of x, the chain rule tells us that we can obtain

the gradient of the contact energy as follows:

∇Ec(x) =
∂f

∂ei

∂ei
∂x

+
∂f

∂ej

∂ej
∂x

+
∂f

∂eij

∂eij
∂x

+

∂f

∂D1

∂D1

∂x
+

∂f

∂D2

∂D2

∂x
+
∂f

∂R

∂R

∂x
+

∂f

∂S1

∂S1

∂x
+

∂f

∂S2

∂S2

∂x
+
∂f

∂t

∂t

∂x
.

(3.20)

Here, we see that for any arbitrary edge combination x, the produced force −∇Ec(x) will

be a 12-dimensional vector consisting of four concatenated 3-dimensional contact force

vectors for every node comprising x. These 12 elements contribute to the 12 entries of the

4N − 1 dimensional Fc vector located at the following positions: 4i− 3, 4i− 2, 4i− 1, 4(i+

1)− 3, 4(i+ 1)− 2, 4(i+ 1)− 1, 4j− 3, 4j− 2, 4j− 1, 4(j + 1)− 3, 4(j + 1)− 2, 4(j + 1)− 1.

Once the contact forces are computed for every contacting edge combination during a

time step, the force values are accumulated in Fc and then incorporated into DER.

To obtain the Hessian, we simply take (3.20) and differentiate once again using the

product rule to obtain

∇2Ec(x) =

(
∂2f

∂ei∂x

∂ei
∂x

+
∂f

∂ei

∂2ei
∂2x

)
+

(
∂2f

∂ej∂x

∂ej
∂x

+
∂f

∂ej

∂2ej
∂2x

)
+(

∂2f

∂eij∂x

∂eij
∂x

+
∂f

∂eij

∂2eij
∂2x

)
+

(
∂2f

∂D1∂x

∂D1

∂x
+

∂f

∂D1

∂2D1

∂2x

)
+(

∂2f

∂D2∂x

∂D2

∂x
+

∂f

∂D2

∂2D2

∂2x

)
+

(
∂2f

∂R∂x

∂R

∂x
+
∂f

∂R

∂2R

∂2x

)
+(

∂2f

∂S1∂x

∂S1

∂x
+

∂f

∂S1

∂2S1

∂2x

)
+

(
∂2f

∂S2∂x

∂S2

∂x
+

∂f

∂S2

∂2S2

∂2x

)
+(

∂2f

∂t∂x

∂t

∂x
+
∂f

∂t

∂2t

∂2x

)
.

(3.21)

Once obtained, the Hessian is added to the (4N − 1)× (4N − 1) Jacobian matrix Jc in a

similar manner.
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3.2.4 Friction and its Jacobian

Just as we obtained contact force vectors of size 12, we produce frictional forces in a

similar manner where given an edge combination xij, we compute a friction force vector

Ff
ij ∈ R12 according to Coulomb’s dynamic friction law. For each edge combination, this

12-dimensional vector is accumulated to the appropriate entries of Ff (3.6).

Coulomb’s friction law states as follows:

1. Frictional force is independent of velocity, and

2.
∥∥Ff

∥∥ = µkF
n during sliding,

where µk is the dynamic friction coefficient and F n is the normal force (additional details

appear later in this section).

From the contact model, we are able to derive −∇Ec(x), which yields the normal

contact forces Fc. As mentioned, the gradient of the contact energy will always produce

forces that are along the contact normal. Therefore, we can obtain F n at edge i of

the contact pair xij by simply summing the contact forces on nodes i and i+ 1: F n =

‖Fc
i + Fc

i+1‖. We can also use these contact forces to obtain the contact normal n =

(Fc
i + Fc

i+1)/F
n. The direction of friction is then determined by the tangential relative

velocity vT
rel of edge i with respect to edge j. This can be obtained using the nodal

velocities vi,vi+1,vj, and vj+1 as follows:

vei =
1

2
(vi + vi+1);

vej =
1

2
(vj + vj+1);

vrel = vei − vej ;

vT
rel = vrel − (vrel · n)n;

v̂T
rel = vT

rel/||vT
rel||.

(3.22)

We formulate the friction force on edge i using a modified form of Coulomb’s friction
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equation:

Ff
i = −µkγv̂T

relF
n, (3.23)

where weight γ ∈ [0, 1] eliminates frictional forces between edges with extremely small

relative velocities that can cause unwanted behavior. To maintain differentiability, it is

obtained using a smoothed Heaviside step function with the tangential relative velocity

as input:

γ =
1

1 + e−k(vT
rel−c)

, (3.24)

where k is the stiffness and c determines the limit for the step transition, which must take

into consideration the scaling of the model as explained in Section 3.4. In our experiments,

k = 50 and c = 0.15. We can do the same for edge j to obtain Ff
j . The computed

frictional forces are then equally distributed to each node and concatenated four times to

form the final 12-dimensional friction vector

Ff
ij =

[
1

2
Ff
i

T
,

1

2
Ff
i

T
,

1

2
Ff
j

T
,

1

2
Ff
j

T
]T
. (3.25)

Once these friction force vectors are computed for every contacting edge combination

during a time step, we can then compute the friction force Jacobian matrix Jfij as well.

To greatly simplify the friction Jacobian, we treat friction semi-explicitly by using the

known velocities from the previous time step when computing (3.22), which results in only

F n being dependent on x. Additionally, this semi-explicit formulation allows the friction

direction to remain constant during Newton iterations, which improves convergence

considerably when the hybrid algorithm is used (additional details in Section 3.4.3).

We can now see that the friction Jacobian for an arbitrary edge-edge contact can be

calculated through a relatively simple chain rule procedure using the contact Hessian

∇2Ec(x) from (3.21). Noting that ∇2Ec(x) amounts to computing ∂Fc/∂x, we can

compute the friction Jacobian as

∇Ff
i =

∂Ff
i

∂Fc
i

∂Fc
i

∂x
+

∂Ff
i

∂Fc
i+1

∂Fc
i+1

∂x
. (3.26)
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These are then accumulated to Ff and Jf in exactly the same way as for the contact

energy gradient and Hessian, as described in Section 3.2.3.

3.2.5 Friction Limitations

It should be noted that several simplifications were made for the friction model. Firstly,

the relative velocities were computed using the midpoint of the edges rather than the

contact points. Likewise, the friction forces were evenly distributed rather than being

dependent on the contact points. This was done as it greatly simplifies the friction force

Jacobian, leads to improved convergence, and does not have any noticeable effects so long

as the rod is sufficiently discretized.

In terms of limitations, this method clearly does not enforce static friction and so

should only be used for continuous sliding scenarios such as knot tying. Furthermore,

friction occurring due to the rod twist θ is not modeled. When an edge undergoes enough

twist and is in contact with a receiving edge, friction forces occur slightly off the centerline

of this receiving edge. As our model assumes that all friction occurs precisely on the

centerline and formulates all contact only using x, such friction-twist coupling is neglected.

Lastly, the produced friction forces can possibly overtake the pull forces when the pull

speed is very low leading to unrealistic sliding in the opposite direction. This must be

remedied by pulling at a sufficiently high speed.

3.3 Analysis of Approximation Consequences

With the contact energy gradient and hessian fully defined, we now briefly analyze

the effects of the imposed approximations from (3.18). First, we can see that the

approximations from Figure 3.2 only affect the barycentric coordinates of the pair of

closest points on two segments, t and u, which can be seen in Figure 3.1(b). More

specifically, the approximations smooth the piecewise transition that occurs when either t

or u goes from being a point in between the edge ends to an edge end itself or vice versa.

Given this, the area of contact we are most concerned about is this transition zone.
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(a) (b)

Figure 3.3: Contact potential heat map visualization. The blue rectangles indicate an
edge i and edge i+ 1; they are adjacent edges that are aligned. The dash line indicates
their centerlines and both have radii of 1. A heat map is then plotted of the energy
intensities experienced by an edge j that moves translationally along the x and y-axes.
Here, edge j is fixed in the z-direction at 2h from edges i and i+1 and the energy intensity
is plotted with respect to the midpoint of edge j. The energy boundaries for when edge j
is (a) perpendicular and (b) parallel to edges i and i+ 1 are shown.

To investigate whether any inconsistencies exist, we construct heat maps of the contact

energy intensity experienced by an edge e when moved translationally along the x, y plane

with respect to two other fixed adjacent aligned edges as shown in Figure 3.3. A heat map

for when e is perpendicular and for when e is parallel with respect to the base edges are

both shown. In a perfect system, we expect the energy experienced by edge e to smoothly

taper off to zero once either t or u becomes an edge end and the distance between the

edges increases.

By observing both Figures 3.3(a) and 3.3(b), we can qualitatively see that this is indeed

the case. Note that the turqoise region represents the configurations for when a constant

energy potential is experienced. In other words, it is the region of all configurations where

t or u is an intermediary point along an edge. On the outer edge of this region, we then

see that the turqoise transitions to blue indicating a drop in energy. Per our expectations,

this change occurs a little after either t or u becomes an edge end. From the blue intensity

region, increasing the distance between the edges results in the purple region indicating

a near zero energy. From this examination, we can conclude that the approximation
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Algorithm 1: Implicit Contact Method

Parameters : kc, δ, ω, S
Input: x,v, n // from DER

Output: Fc,Jc,Ff ,Jf , α
1 Function IMC(x, v, n):
2 scale x and v by S
3 if n == 0 then // run only on first iter

4 C,m← collisionDetection(x, δ)
5 kc ← updateConStiffness(kc,m)

6 end
7 if n < ω then // compute only forces

8 Fc ← genContact(C)
9 Ff ← genFriction(C,v,Fc)

10 Jc ← zero square matrix
11 Jf ← zero square matrix

12 end
13 else // compute Jacobian for convergence

14 Fc,Jc ← genContact(C)
15 Ff ,Jf ← genFriction(C,v,Fc,Jc)

16 end
17 scale Fc,Ff ,Jc,Jf by kc
18 α← newtonDamper(n)
19 return Fc,Jc,Ff ,Jf , α

functions do not affect the expected behavior between two contacting edges.

One thing to note is the energy doubling in both plots shown by the yellow region. For

our task of knot tying, this energy doubling is not a noticeable issue as all contact cases

occur along the braided region and are reasonably close to the parallel case. This allows

the energy doubling to spread out more or less evenly. For cases concerning perpendicular

configurations, this can possibly be an issue as an edge may experience an artificial bump

in contact energy magnitude if the contact passes over a vertex of two connected edges.

This can be handled by either filtering out such cases during collision detection or by

assigning a regularization weight to the contact forces themselves.
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Algorithm 2: Discrete Elastic Rods

Input: q(ti),v(ti)
Output: q(ti+1),v(ti+1)
Require : boundary conditions → free

1 Function DER(q(ti),v(ti)):
2 Guess: q(1) ← q(ti)
3 n← 0, ε←∞
4 while ε > tolerance do
5 Fint ← genForces(·)
6 Jint ← genJacobian(·) // ∂2E

∂qi∂qj
in (3.8)

7 Fc,Jc,Ff ,Jf , α← IMC(x(n),v(ti), n) // Alg 1

8 Fder ← left side of (3.6)
9 Jder ← left side of (3.8)

10 Ffree ← Fder(free) // downsize to only include free DOFs

11 Jfree ← Jder(free, free)
12 ∆qfree ← Ffree/Jfree // solve Jfree∆qfree = Ffree

13 q(n+1)(free)← q(n)(free)− α∆qfree

14 ε←
∥∥Ffree

∥∥ // update error

15 n← n+ 1

16 end

17 q(ti+1)← x(n)

18 v(ti+1)← (q(ti+1)− q(ti))/∆t
19 return q(ti+1),v(ti+1)

3.4 Full Algorithm

In addition to the force and Jacobian generation, there are several additional steps to the

IMC algorithm that are explained in this section as well as several hyperparameters that

must be properly tuned for optimal performance and convergence which are listed below.

1. δ, the collision limit,

2. kc, the contact stiffness,

3. ke, the contact energy stiffness, and

4. ω, the number of iterations before the hybrid algorithm computes the Jacobian

First, the nodal coordinates are scaled by a scaling factor S = 1/h so that the adjusted

rod radius equals a unit value of 1. To ensure that the distance at which two edges
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experience a force is very close to the rod surface, the following energy function is used:

Ec =
log
(

1 + eke(2−∆
h )
)

ke
; (3.27)

3.4.1 Choosing the Collision Limit

The collision limit δ is the threshold value used to determine when two edges are “in

contact”. This value is fed into a collision detection algorithm, which returns all edge

combinations falling into this threshold, which is denoted by the set

C =

{
xij ∈ X |

∆ij

h
< 2 + δ

}
. (3.28)

The minimum distance from this set is denoted by m = minx∈C ∆(x), which will be used

later to adjust the contact stiffness kc accordingly.

The collision limit δ must be chosen carefully as a higher δ value results in additional

computation due to more qualifying edge combinations whereas a δ value that is too low

will produce non-smooth gradients that hamper convergence.

A good way to determine a proper δ value is to observe the plotted contact energy

function from (3.27) for a chosen ke value. By observing the contact energy curve, the

point at which the generated gradients are ≈ 0 can be found when the slope of the curve

is nearly flattened out. Choosing a δ value that encompasses this region ensures that the

generated gradients are sufficiently smooth. An example of this process can be found in

Figure 3.4.

3.4.2 Stiffness Parameters

The stiffness of the contact forces is determined by the contact energy stiffness value ke.

As this value becomes higher, the region above the contact surface at which two edges

experience a force decreases. This leads to stiff contact, which is more physically accurate

as realistically the contact energy should be zero whenever ∆ > 2h and shoot to ∞ as
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Figure 3.4: Contact energy curve of (3.27) for ke = 10. Scaling by S = 1/h results in
the curve being centered at a collision length of 2hs = 2.0. As denoted by the solid blue
line, the curve starts to flatten out to zero at ∆/h = 2.5, which indicates that generated
gradients are ≈ 0. Therefore, a collision limit δ = 0.5 would be suitable. Conversely, δ =
0.2 as denoted by the red line would result in the Newton solver potentially failing to
converge due to non-smooth force generation.

soon as ∆ = 2h. On the other hand, a ke value that is too large will result in convergence

issues while a ke value that is too low will have excessive oscillations between the contact

bodies. A value that was found to be a good compromise between physical accuracy and

convergence was ke = 50.

The next hyperparameter that must be specified is the contact stiffness kc. Not to

be confused with the approximation stiffness k in (3.16) and (3.17), the contact stiffness

kc is a scalar value that is used to scale the contact force and Jacobian. This value is

adaptively readjusted every time step to ensure that excessive hovering or penetration is

minimized and so only the initial value must be specified, which can be found empirically.

This initial kc should be reasonably close to the value that would result in m = 2h. In

our experiments, we employed a simple algorithm that decreased or increased kc by a

fraction of a percent depending on whether or not m was < 2h− ε1 or > 2h+ ε2 where
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ε1 and ε2 are limits indicating an acceptable contact range. This algorithm updates kc

only when m is deviating from the region defined by [2h− ε1, 2h+ ε2] and is otherwise

left constant to prevent overshooting.

3.4.3 Hybrid Approach

As mentioned previously, this algorithm applies a hybrid approach in which the Jacobian

of the contact and friction forces are only computed once the number of iterations passes

a limit ω. This is done because often convergence can be quickly obtained even without

the contact Jacobian and with the absence of the contact Jacobian, the overall Jacobian

matrix remains a banded matrix, which can be solved significantly faster. Although the

Jacobian results in a decrease in iteration count, the consequent increase in computational

time outweighs this benefit as IMC is able to reliably converge rapidly without it for a

majority of time steps.

With this in mind, the Jacobian is crucial for completing volatile contact states

with high velocities and impacts that could otherwise end the simulation prematurely.

Therefore, this hybrid approach maximizes computational speed while ensuring that the

simulation can consistently reach the next time step during especially difficult contact

scenarios such as inversion and the initialization phase where the rod rapidly reverts to

its lowest energy state. The limit ω should be chosen empirically so that the Jacobian is

only generated when necessary. In our experiments, we used an ω of 20.

3.4.4 Newton Damper and Algorithm Analysis

Finally, although not a hyperparameter, a damping coefficient α is used to reduce the

step size of the Newton solver as the number of iterations increase for a particular time

step. For this, a simple decaying algorithm is used which reduces α by a factor of 2 every

other iteration.

Overall, aside from the collision detection algorithm (which is only performed on

the first iteration of every time step), the time complexity of IMC with and without
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Jacobian generation is O(n) and O(n2) respectively, where n is the number of collisions

detected. The full contact algorithm as well as its implementation in DER can be seen

in Algorithm 1 and Algorithm 2, respectively. In Algorithm 2, the term “free” are the

indices that correspond to the free degrees of freedom of the elastic rod. The remaining

degrees of freedom are “fixed” and depends on the user defined boundary conditions.
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CHAPTER 4

Results

In this section, we first validate the correctness of our contact model against theory. Then,

to demonstrate the benefits of using IMC, we compare simulation results with the contact

model SPT proposed by Spillmann and Teschner (2008) for knots of unknotting numbers

n ∈ {1, 2, 3, 4}, which are shown in Figure 1.1. For both methods, the contact model

is used to simulate knot tying until a mutual termination state, which is shown in the

rightmost column of the figure. Finally, we compare the computational efficiency and

convergence properties between the two methods. All simulations for IMC used a contact

energy stiffness ke = 50 and a collision limit δ = 0.15, which was obtained using the

method mentioned in Figure 3.4.

4.1 Damping for Stability

Since IMC is inherently a penalty method, the inclusion of damping forces greatly aid the

stability of the contact model. A simple viscous damping force is applied to the elastic

rod by applying on a node a force

Fv = −η
(

q(ti+1)− q(ti)

∆t

)
dL, (4.1)

where η (Pa · s) is a viscosity coefficient and dL is the node’s Voronoi length.

The Jacobian of this damping force is

Jv = −ηdL
∆t

I, (4.2)
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Figure 4.1: Model validation and comparison with theory. (a) In the top half is the
pull force comparison for n = 2 with different pull speeds u and friction µk = 0.10. As
shown, the pull forces are identical in magnitude, indicating that friction is independent
of velocity. In the bottom half is the n = 1 simulation data comparison with Audoly’s
predictive model shown in (4.3). Starting with an open trefoil knot, the knot is tightened
and then loosened with µk = 0.10, which is indicated by (+) and (−) respectively. A
moving average of 200 steps is used for the n=1 pull forces to minimize visually large
variations caused by the lower end of the log scale. (b) Pull force comparison for n = 4
and different µk values. There is a clear monotonically increasing relationship between
the pull forces and µk. Additionally, inversion (indicated by the sudden drop in pull
force) occurs earlier for higher µk values, as expected. A pull speed of 6 mm/s, 9 mm/s,
and 12 mm/s was used for µk = 0.1, 0.2, and 0.3, respectively. This was necessary as
higher friction coefficients induced the limitation mentioned in Section 3.2.5 for higher
pull speeds.

where I is the square identity matrix of size (4N − 1). This damping force was also added

to SPT for fair comparison. For all simulations, a viscosity value of η = 0.01 Pa · s was

used unless otherwise specified.

4.2 Theoretical Validation

Coulomb’s friction law states that friction is independent of velocity. To show that our

model abides by this, we plot the pull forces F in Newtons (N) when tightening a knot

with unknotting number n = 2 with friction coefficient µk = 0.10 for pull speeds u of 3,

6, and 9 mm/s (pulled from both ends). A 1 meter long rod with cross-sectional radius

h = 1.6 mm, density ρ = 1180 kg/m3, and Young’s Modulus E = 1.8e5 Pa is used and
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is discretized into 301 nodes. We plot a regularized pull force Fh2/EI against
√
h/R

where EI = πEh4

4
is the flexural modulus and R is the radius of the knot loop. The radius

R can be computed using the knot circumference from Figure 1.1 as R = e/(2π). As

Figure 4.1(a) shows, the magnitude of the n = 2 pull forces are approximately the same

for all pull speeds. Dynamic friction force in Coulomb’s model is independent of velocity

and therefore this observation supports the physical correctness of the generated friction

forces.

Next, the pull forces for a trefoil knot (n = 1) are compared with the predictive model

of Audoly et al. (2007). This model states the theoretical equivalence

Fh2

EI
=
ε4

2
± µkσε3, (4.3)

where σ is a numerical constant (σ = 0.492 for trefoil knots), and ε =
√
h/R. The ±

term is the frictional component from tightening (+) and loosening (−). Using the same

rod properties as mentioned, a trefoil knot is tightened and then loosened at 3 mm/s

using IMC. Here we reduce η to 0.0005 as loosening can be sensitive to small forces. As

shown in Figure 4.1(a), the recorded pull forces roughly follow the curves of the predictive

model albeit with some displacements when tightening increases sufficiently. This can

be attributed to imperfections in the predictive model as (4.3) is an elegant lightweight

solution that does not perfectly model friction when the knot becomes sufficiently tight;

i.e., when
√
h/R becomes large. Still, aside from the displacement, the pull forces follow

the rate of increase/decrease of the predictive model well, which is a good indicator of

correctness.

Furthermore, in Figure 4.1(a), during the loosening, the trefoil knot is observed to be

locked by friction at a point ε0 =
√
h/R0 ≈ 0.1285. From the right side of (4.3), we can

rearrange the terms to obtain the equivalence

µ =
1

2σ
ε0 = 1.02

√
h/R0. (4.4)
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n=1

n=2

n=3

n=4

Figure 4.2: Simulation results comparison. (a) Pull force comparison for unknotting
numbers 1 through 4 using SPT (Spillmann and Teschner, 2008) and IMC with u =
6 mm/s, ∆t = 0.5 ms, and µk = 0.10. (b) Inversion occurring for n = 4 and the
corresponding drop in pull forces shown by the border box in (a).

Plugging in our ε0 value, we obtain µtheory = 0.1306, which is reasonably close to the

friction coefficient µk = 0.10 used in the simulation.

Finally, we show that the pull forces monotonically increase with µk in Figure 4.1(b).

Here, we consider the n = 4 case. When recording the pull forces for µk of 0.1, 0.2, and 0.3,

we can see that the rate of increase is held constant while the magnitudes monotonically

increase. Furthermore, we can see that as friction increases, the inversion point occurs

sooner, which indicates that the point of inversion is highly dependent on µk.

4.3 Pull Force Accuracy

Simulations of knot pulling were performed for both IMC and SPT using a pull speed

u = 6 mm/s, time step ∆t = 0.5 ms, friction coefficient µk = 0.10, and the same rod

properties from Section 4.2. With these settings, knot tying was simulated for each

method with the experienced pull forces being recorded at each time step. Figure 4.2(a)

plots these pull forces with respect to the end-to-end shortening. Here we see that for

both IMC and SPT, as the end-to-end shortening decreases (knot is pulled tight), the pull

forces increase identically as expected. They also increase in magnitude as the unknotting
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number n goes up and for n = 3 and n = 4, inversion occurs, which is indicated by the

sudden drop in pull force. This is shown visually in Figure 4.2(b) for n = 4.

The largest difference between the methods manifests in the considerable amount

of force jittering by SPT, which occurs due to the too large time step. This leads to

visually unrealistic results where the knot continuously “trembles” while being tied. On

the other hand, IMC produces much smoother pull forces, which directly translate to

visually smooth simulations for the same time step size. One caveat that should be noted

is that SPT ensures exact non-penetration during contact whereas IMC allows small

penetrations and hovering to occur, which is physically unrealistic. Still, through the

adaptive contact stiffness and the inclusion of damping, IMC contains any hovering to

stay within 20 µm above the contact surface while penetrations rarely exceed 5 µm (for

comparison, the cross-sectional radius is h = 1.6 mm). Thus, this minor error is largely

indiscernible both visually and physically.

Overall, the enforcement of non-penetration at every time step limits the maximal

time step that SPT can take without experiencing significant force jittering whereas IMC

produces smooth results in exchange for contact varying within a small region.

4.4 Runtime Comparison

Next, we discuss run-time comparisons as well as convergence characteristics. Here,

we show that in addition to IMC producing smoother results than SPT at sufficiently

large time steps, IMC is also computationally competitive. Both models use the same

DER implementation, which is written in C++. One discrepancy is that while SPT

is directly implemented into DER in C++, IMC is written entirely in Python for ease

of prototyping. To minimize any performance differences arising from using different

languages, we employed a LLVM-based Python JIT compiler (Lam et al., 2015) for certain

computational intensive portions of the code such as the chain rule procedures from (3.20),

(3.21), and (3.26).

The computational time for each iteration for both contact methods is recorded using
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Table 4.1: IMC vs. SPT (Spillmann and Teschner, 2008) run time data, µk = 0.10,
∆t = 0.5ms, pull speed = 6 mm/s. AIPT stands for average iterations per time step. ATPI
stands for average time per iteration. Iters indicates the total number of Newton iterations
that were necessary to complete the simulation. The time is the total computational time
to completion.

Model n AIPT ATPI[ms] Iters Time[s]

IMC

1 2.23 2.24 245824 551
2 2.67 2.20 245830 542
3 3.04 2.18 261707 570
4 3.24 2.12 239987 509

SPT

1 8.25 2.30 907541 2085
2 9.28 2.26 853935 1931
3 10.25 2.26 881907 1990
4 10.94 2.21 810160 1790

the ctime library. This timing was done so that any computational time expended in

IO for recording the data and rendering the rod graphically were excluded. Note that

the timings for IMC include all of the shared memory overhead between the C++ and

Python programs. Therefore, a significant performance increase for IMC can be expected

when it is fully implemented in C++ and compiled without this overhead. Finally, both

methods used identical Newton tolerances for all simulations and all simulations were run

in a single thread on an Intel Core i7-9700K 3.60GHz CPU.

In Table 4.1, the run time, total number of iterations, average iterations per time

step (AIPT), and average time per iteration (ATPI) are reported. For all knots, we can

immediately see that IMC converges in a noticeably smaller number of iterations than

SPT. While the ATPIs of both methods are about equal, the simulations for IMC finish

approximately 4× faster than SPT for all knots. For both methods, the AIPT increases

as the knot complexity n increases, as expected.

We observed that the number of iterations to complete a time step increased for IMC

as the knot loop became extremely small and/or tightly inverted. Dynamically reducing

the time step solves this issue but this was excluded such that all reported results were

for a constant time step. For the same time step size, SPT can more reliably converge

when the knot loop becomes very small, albeit with the large force jittering still present.
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Therefore, it may be worth investigating performance differences between the two methods

when SPT uses a time step size that is small enough to compete with the smoothness of

IMC while IMC starts with a larger time step and dynamically reduces it as convergence

becomes an issue.

Still, even for a constant time step size of 0.5 ms, IMC is seen to be more computation-

ally efficient when pulling the knots close to taut and for the majority of the knot tying

procedure, takes far fewer iterations to converge. This difference should only increase

with IMC being implemented directly into DER in C++.
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CHAPTER 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, we introduced a novel Implicit Contact Method (IMC) for Discrete Elastic

Rod simulations in which the contact forces are handled implicitly using a smooth penalty

force formulation. It was shown to be capable of modeling dynamic friction and accurately

simulating knot tying. We showcased comparisons with previous methods (Spillmann

and Teschner, 2008) and concluded that our method produces visually smoother realistic

results while also producing physically accurate data. Furthermore, our method is stable,

computationally competitive, and requites a minimal number of iterations to converge.

Although our method has shown promising results for knot tying simulations, it is

not without its drawbacks. First, IMC is largely unsuitable for contact scenarios that

frequently involve sudden excessively large velocities and impacts as these will result in

excessive penetration and possible overshoot of the contacting body without appropriate

damping. IMC shines, however, in scenarios with constant sliding contact such as in knot

tying, where contact forces may or may not gradually rise.

Additionally, to be absolutely physically realistic, contact forces should equal zero

when ∆ > 2h, whereas the usage of (3.10) produces a force F c 6= 0 when ∆ > 2h. It has

been shown that employing a smooth approximation such as this can greatly improve

convergence in penalty methods (Durville, 2012), which is one of the goals of this algorithm.

Because the contact forces approach zero as ke becomes sufficiently large while ∆ > 2h,

this is not a significant problem, as was discussed in Section 4.3. Still, the fact that F c is

not exactly zero is worthy of consideration. Lastly, the large number of hyperparameters
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leaves something to be desired as tuning may be necessary when switching between rod

properties, which can be time consuming.

5.2 Future Research Directions

Some possible future research directions involve modifications that further improve the

realism of the contact model. One of these pertains to the stiffness parameter kc. A

simplification that was employed is the usage of a global stiffness parameter. More realistic

contact can be simulated using local stiffness parameters as shown previously by Durville

(2012), but at the expense of more computation. This addition may also fix the problem

where friction forces overtake the pull force of the knot if the pull speed is too low, as

was mentioned in Section 3.2.5.

Another research direction is to extend IMC to non-circular cross-sections. IMC is

currently only capable of handling circular cross-sections because we to compute the

minimum distance between edges using only the centerlines. Extending IMC to non-

circular cross-sections while maintaining differentiability is nontrivial, but that will be

necessary to simulate rods of more complex shapes. Furthermore, handling more complex

knots will require IMC to take into consideration cross-section deformation as IMC

currently assumes that the cross-section shape remains constant.

Finally, another challenging problem that remains is the proper modeling of static

friction. Although dynamic friction is adequately modeled, ultimately, subtle frictional

threshold events such as the transition from sticking to sliding and vice-versa are necessary

to simulate realistic contact outside the realm of constant sliding.
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