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Abstract of the Dissertation

The Modeling and Animation of Myriapoda

by

Jingyi Fang

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2015

Professor Demetri Terzopoulos, Chair

Unlike two, four, six, and eight legged animals, Myriapoda—i.e., centipedes and

millipedes—have been largely overlooked in the computer graphics literature. This

thesis presents an artificial life (A-Life) framework for animating the locomotive

behavior of Myriapoda with compelling physical and biological realism. Our

system produces real-time animation and the creatures are autonomous, requiring

minimal animator intervention. Creatures of various body morphologies can be

animated simultaneously, and they are capable of complex multi-legged locomo-

tion as well as anguilliform swimming.

Taking an Artificial Life approach, we develop a hybrid animation system that

combines kinematic and dynamic simulation to animate a novel biomechanics

model specifically tailored to the unique body structure of myriapoda. In our sim-

ulated myriapoda, the characteristically vivid leg wave patterns of their biological

counterparts result as an emergent behavior of our distributed, decentralized leg

control system for terrestrial locomotion. A compelling anguilliform swimming

pattern emerges as a result of hydrodynamic simulation and the coordinated

actuation of elastically deformable body segments. Locomotive transitions from

land to water and vice versa in the creature’s simulated physical environment are

achieved smoothly by our locomotion controllers. The adoption of robust and

efficient elasticity simulation techniques give rise to natural body deformations
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and support a novel approach to muscle actuation via rest-shape morphing. The

virtual environment can be sensed by the simulated creature’s antennae and the

sensory information guides its adaptive behaviors, including obstacle avoidance

and foraging.
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CHAPTER 1

Introduction

Many movies and games can make use of loathsome creatures such as snakes,

spiders, and centipedes to rouse the viewer.1 Entomophobia therapy can also take

advantage of lifelike animations of such creatures.

Motion capture techniques are difficult to apply to multi-legged arthropods

such as centipedes due to their small size and high frequency motion pattern

(Gibson et al., 2007). It is a daunting task for animators to manually rig a realistic

3D centipede model such that it can locomote over an irregular surface, since at

least two requirements must be met: (i) the physical realism of the deformable

body and the leg contacts and (ii) the natural appearance of the distinctive leg

wave pattern. Advanced simulation techniques are therefore desirable for the

realistic synthesis of the locomotion patterns of such creatures.

In biology, the centipede and millipede are but two of the 13,000 identified

species that form the Myriapoda subphylum of arthropods. Myriapods range from

having over 750 legs to having fewer than ten legs (Minelli, 2011). Fig. 1.1 shows

representative of four myriapod classes: Chilopoda, Diplopoda, Symphyla, and

Pauropoda. The primary characteristic of myriapods is that they have their tens

to hundreds of legs spread over an elongated, segmented body structure, plus a

pair of sensory antennae on the frontmost segments (Ruppert et al., 2003). Most

of the species have a rigid exoskeleton to protect the body, while the internal

1For example, the Indiana Jones, Harry Potter, The Mummy, Metro 2033, and Diablo III
series of motion pictures and games. In the recent Pixar movie Monsters University, the Dean
Hardscrabble character is featured with centipede legs.
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 A  B

 C  D
Figure 1.1: Representative of four myriapod classes. Centipedes make up the
class Chilopoda (A), they are fast, predatory and venomous, and there are
approximately 3,300 species. Millipedes form the class Diplopoda (B), they
are slow-moving and detritivorous, and there are approximately 8,000 species.
Pauropoda (C) are small (0.5-2.0mm), live in soil, and there are about 700 species.
Symphyla (D) are close to centipedes, but transparent, and there are about 200
identified species. Centipedes and millipedes make up nearly 90 percent of the
entrire Myriapoda subphylum. Image Source: Wikipedia.

soft tissues that connect the segments are deformable and allow the body to

flex via muscular contraction and relaxation for turning and twisting. Although

myriapoda are terrestrial, some centipedes, such as Scolopendra subspinipes, are

reported to be capable of swimmming (Minelli, 2011). Video footage can be found

online (badboythuglife, 2009; Bifrost1107, 2009) of giant centipedes swimming on

the surface of water with legs held against the side of their bodies, exibiting eel-

like (anguilliform) swimming patterns. Minelli (2011) suggests that this ability

can explain the creature’s existence on some remote islands.

During its locomotion, the wave pattern of a myriapod’s legs can steadily move

2



the entire body over highly irregular surfaces. If in the legged animal kingdom

we compare four-legged animals to cars, then myriapods are like trains. In the

3D world, legged locomotion is much more adaptive and is thus an evolutionary

outcome for almost all terrestrial animals. Because of their unusual structure and

unique locomotion systems, myriapods are an interesting subject both for robotics

(Hoffman and Wood, 2011) and computer graphics research. Unfortunately, de-

spite the abundant works in bipedal (human) (Van Welbergen et al., 2010; Wang

et al., 2012), as well as the interest in quarupedal animals (dogs) (Coros et al.,

2011; Ijspeert et al., 2007) and hexapodal animals (spiders) (Cruse et al., 1998;

Cenydd and Teahan, 2013), work on animating myriapods is absent from the

graphics literature.

To tackle the task of synthesizing realistic animations of myriapod as well

as to gain a better understanding of how to coordinate hundreds of legs, we

take a bottom-up, Artificial Life (A-Life) approach (Terzopoulos, 1999; Tu and

Terzopoulos, 1994) to synthesizing virtual myriapoda. The A-Life approach starts

the modeling of virtual animals with a biomechanical body situated in a physical

environment, then builds motor controllers to produce locomotion, and equips the

body with perceptual sensors such that higher-level behavioral animation can be

achieved.

In this context, this dissertation introduces an A-Life framework for myr-

iapod animation, which combines state-of-the-art physics-based simulation, an

innovative biomechanical structure, and novel legged locomotion and swimming

controllers. Our implemented system can synthesize physically and biologically

plausible animations that could be adopted for motion picture CGI special effects

and real-time game applications. Moreover, it can help us gain insights into these

fascinating creatures’ terrestrial and aquatic locomotion abilities.

Fig. 1.2 shows an overview of our framework, emphasizing the interplay be-

tween the locomotion control system and the physical simulation. The former

3
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Figure 1.2: Overview of our A-Life animation framework. The physical environ-
ment and controller influence each other through antenna and contact sensors.

is composed of identical, modular, local controllers plus a motor center in the

creature’s head segment that governs higher-level locomotion variables such as

ambulatory speed and turning angle. The decentralized leg control system is easy

to understand and computationally inexpensive, yet robust enough to allow the

simulated creature to walk over irregular surfaces. A pair of mobile antennas

enhance the realism of our animated myriapods, but also function as environmen-

tal sensors that support their adaptive behaviors. A simple Braitenberg-vehicle-

like (Braitenberg, 1986) behavioral mechanism proves to work well for obstacle

avoidance and foraging. By positioning obstacles and food sources, animators

can easily induce our simulated myriapod creatures to follow desired paths over

irregular terrain.

4



Figure 1.3: Forming the letters ‘SCA’ from the bodies of myriapods of different
morphologies simulated within our framework, including (S) a millipede of 58
body segments, (C) a myriapod virtual robot with 12 body segments, and (A)
two giant centipedes (Scolopendra) with 19 segments.
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1.1 Contributions

This is the first dissertation in the field of Computer Graphics to address the mod-

eling and animation of myriapoda. The primary technical contributions include

the myriapod biomechanical model, a real-time hybrid simulation framework, a

decentralized terrestrial locomotion controller for myriapoda, and an optimized

anguilliform swimming controller, as described below:

Myriapod Biomechanical Model:

The novel biomechanical body model developed in this dissertation (Fig. 3.1)

is specifically tailored to myriapod creatures. Insects with different body

sizes, leg sizes, and number of segments can be simulated (Fig. 1.3). The

Model comprises both rigid and deformable segments, mimicking the ex-

oskeleton and internal soft tissues of a myriapod’s biological body. The

hybrid structure ensures ease of control through the rigid components while

emulating the deformable nature of myriapod bodies by applying a fast,

robust elasticity simulation method (Stomakhin et al., 2012). The legs are

connected to rigid segments and, when in contact with the ground, can poise

those segments directly. This allows the use of inverse kinematics to infer

the desired rotational angles of the leg joints given the 3D configuration

of the rigid segment. Via rest-shape morphing during elasticity simulation,

the deformable segments that connect the rigid segments can actuate like

muscles, allowing the creature to flex its body proactively. With adequate

fluid coupling and coordinated muscle actuations, the biomechanical model

can locomote in aquatic environments. A pair of antennae extend from the

head of the creature to collect sensory information about food, obstacles,

and pheromonal signals.

Real-time Hybrid Simulation Framework:

We would like our myriapod animations to exhibit as much physical realism
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as possible and ultimately to run in real time. At the lowest level of our

A-Life framework, the aforementioned biomechanical model is situated in its

virtual environment, and its locomotion and ancillary movements are com-

puted by numerical methods, specifically by a novel real-time hybrid simula-

tion system. Our hybrid, kinematic/dynamic approach in conjunction with

the rigid/deformable body structure enables efficient (forward and inverse)

kinematic control of the relatively light legs of the myriapod, which greatly

eases the design of locomotion controllers, while achieving realistic, physics-

based motion and deformation of their relatively heavier body segments.

Our system incorporates three aspects of physics-based simulations—rigid-

body simulation, elastic deformable-body simulation, and fluid simulation.

For the deformable segments, our elasticity simulation method replaces con-

ventional mass-spring-damper systems, allowing rest-shape morphing such

that muscular contraction and relaxation can be emulated. Also, an easily

implementable two-way coupling method is employed to connect the de-

formable and rigid segments. To achieve aquatic locomotion, we introduce

one-way coupling of the rigid and deformable bodies with a simple fluid

model. Finally, we couple the biomechanical body model to a shallow-water

simulation to synthesize, in real time, wakes along its locomotion path (see

Figs. 5.7 and 5.5).

Decentralized Terrestrial Locomotion Controller:

We develop a biologically plausible decentralized and distributed leg control

system that is suitable for different body morphologies and enables our sim-

ulated creatures to locomote over arbitrary surfaces with an emergent, nat-

urally wave-like ambulatory gait (see Figs. 1.3, 6.2, and 6.1). The terrestrial

locomotion system for myriapods is comprised of homogeneous segmental

controllers that essentially represent a state machine for the rigid segments

and legs. Our decentralized system is biomimetic and produces periodic leg

7



patterns as an emergent phenomenon rather than via pre-programmed global

coordination. The creature’s head takes sensory input from its antennae and

make high-level adjustments in speed and turning direction. We enable our

simulated creature to locomote over arbitrary 3D-mesh surfaces, such as a

rock or skull.

Optimized Anguilliform Swimming Controller:

Four things are done to make our myriapoda swim quickly and efficiently in

water: First, the deformable segments are turned into muscles by morphing

their rest shapes during simulation, similar to the variation of spring rest

length in conventional mass-spring-damper systems. Second, we imple-

mented the physics of rigid and deformable segments in simple water, which

provides propulsion forces to the creature’s body. Third, a simple control

model generates an anguilliform swimming pattern for myriapoda in water.

Finally, we propose that instead of finding just one set of global optimal

parameters for the swimming controller, it makes more sense to find optimal

parameters for each speed. To this end, we perform heuristic search in the

two-dimensional control-parameter space and find optimal parameters for

each speed, optimal in that they are the most energy efficient to maintain

that speed. Our result corresponds well with neurological studies of lamprey

swimming. Like our decentralized leg locomotion controller, our swimming

controller in conjunction with the dynamics simulation gives rise to anguil-

liform swimming as an emergent phenomenon.

1.2 Overview

The remainder of the thesis is organized as follows: Chapter 2 surveys relevant

prior work on autonomous virtual creatures, biomechanical modeling, legged and

swimming locomotion control. Chapter 3 presents our hybrid, kinematic/dynamic

8



model of myriapod bodies. In Chapter 4, we introduce our decentralized legged

locomotion control system for our virtual Myriapoda. Chapter 5 considers the

physics-based animation of anguilliform swimming and the optimization of swim-

ming controller parameters. Chapter 6 showcases our implementation results

and provides additional details regarding environmental interaction. Chapter 7

concludes the dissertation with a discussion and ideas for future work.

Appendix A details the simulation of deformable segments in the biomechanics

model using the finite element method (FEM). Appendix B presents the derivation

of shallow-water equations and the MAC grid method for numerically solving

those equations. Appendix C presents the details of our optimization method.

Appendix D provides the details of the state updates in each simulation frame.

Appendix E presents the details of the methods used to render the images ap-

pearing in the dissertation and the supplementary demonstration videos.
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CHAPTER 2

Related Work

Despite the absence of prior work directly addressing the modeling and animation

of myriapods, in broader sense our efforts are well situated in the computer

graphics and A-Life literature concerning the biomechanical modeling of animals.

In particular, we were inspired by prior works on legged and aquatic locomotion.

Such works often cut across various fields, such as physics-based simulation,

biomechanics, robotics, etc.

2.1 Autonomous Virtual Creatures

Graphics researchers have done interesting and important work on simulating

autonomous creatures in physics-based virtual environments. These creatures can

walk on terrain (Guo et al., 2013; Holmes et al., 2006), swim in water (Tu and

Terzopoulos, 1994; Tan et al., 2011), and fly (Wu and Popović, 2003). Reynolds

(1987) simulated the group locomotion of all three types by applying a distributed

behavioral model. In (Miller, 1988), mass-spring-damper systems are used to

generate animation of snakes and worms. Tu and Terzopoulos (1994) introduced

an artificial life framework for simulating autonomous creatures, including mass-

spring-damper systems for the biomechanical simulation of deformable piscine

bodies capable of producing muscle-based locomotion. Such biomechanical models

are suitable for animals lacking legs. Subsequent work on salamander simulation

(Ijspeert et al., 2007) used rigid-body dynamics to simulate the 4 legs with 8

kinematic degrees of freedom (DOF) and a global artificial neural network to work
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as a central pattern generator (CPG) for controlling them. Beer (1990) built a

2D cockroach equipped with simple sensory feedback and artificial neural net-

works, demonstrating six-legged locomotion and adaptive behaviors in a complex

environment and they also built a hexapod robot (Beer et al., 1992). Automated

learning algorithms have been developed to train optimal locomotion controllers

for simulated creatures. Sims (1994) applied genetic algorithm to naturally select

both morphology and locomotion method of its simulated creatures. Grzeszczuk

and Terzopoulos (1995) presented a bottom-up multilevel strategy for learning

muscle controllers.

2.2 Biomechanical Modeling

Because of their simplicity and computational efficiency, mass-spring-damper sys-

tems were a popular method for biomechanical modeling of virtual creatures (Tu

and Terzopoulos, 1994; Miller, 1988); however, their uniaxial elements do not

model 3D material properties, and the biomechanics of the simulated animal

body depends on how the spring-damper elements are assembled and how their

parameters are tuned, which can be tricky. Alternatively, robust and efficient

simulation of continuum mechanics based deformable objects is now possible

(Stomakhin et al., 2012; McAdams et al., 2011). Shinar et al. (2008) create

realistic creatures by combining rigid and elastic simulation, where the elastic

components are passive and the creature is actuated by internal rigid bones. In

(Coros et al., 2012), deformable objects are animated by changing the rest shape of

the deformable mesh over time. State-of-the-art muscle models (Chen and Zeltzer,

1992; Teran et al., 2003) also employ continuum mechanics based elasticity. Our

work on Myriapoda incorporates elastic and rigid simulation to achieve hybrid,

kinematic/dynamic simulation.

11



2.3 Legged Locomotion Control

Graphics and robotics researchers have devoted considerable effort to legged lo-

comotion (Raibert and Hodgins, 1991; Golubitsky et al., 1998; Wang et al., 2012;

Guo et al., 2014). Holmes et al. (2006) survey the modeling, analysis, and

challenges associated with insect locomotion dynamics. There has been much

robotics research on insect-inspired four, six, and eight legged robots (Kimura

et al., 2007; Raibert, 2008; Saranli et al., 2001), predominantly based on etiologic

and neurophysiologic knowledge about cockroaches and stick insects (Full and

Tu, 1991). Although there exists no prior computer graphics work specifically

on Myriapoda animation, robotics researchers have started building centipede

robots (Odashima et al., 1998; Inagaki et al., 2003, 2011). However, there exists a

substantial body of graphics literature on bipedal (Hodgins et al., 1995; Faloutsos

et al., 2001; Van Welbergen et al., 2010), quadrupedal (Skrba et al., 2008; Coros

et al., 2011), and hexapodal (Cenydd and Teahan, 2013; McKenna and Zeltzer,

1990) figure animation. McKenna and Zeltzer (1990) proposed a forward dy-

namics algorithm for locomotion coordination of a simulated cockroach, capable

of navigating irregular terrain. Attention has been paid to legged locomotion

control from entomological studies by building accurate biomechanics models of leg

muscles (Wang et al., 2012) with the purpose of accurately simulating ambulation

for medical purposes. Specialized neural CPG structures have been the subject of

experiments (Mellen et al., 1995) and simulations (Ijspeert et al., 2007; Ijspeert,

2008). Coupling simplified dynamics such as the Inverted Pendulum Model with

a learnt CPG has been a popular approach for multi-legged locomotion (Coros

et al., 2011; Tsai et al., 2010). The Walknet of Cruse et al. (2000, 1998) successfully

reproduced the behavioral properties of hexapod locomotion via a decentralized

organization of the control system—neither the movement of any single leg nor

gait coordination is centrally preprogrammed, yet adaptivity and flexibility emerge

from each leg controller applying only a few simple, localized rules involving the
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states of neighboring legs. This decentralized controller paradigm also forms the

basis of our system design.

2.4 Aquatic Swimming Animation

Aquatic creature locomotion and human swimming has attracted interest from

researchers in multiple fields. Biologists have done extraordinary research (Bone,

1975; Bergmann and Iollo, 2011) to comprehend the different swimming patterns

and the underlying mechanisms via observation, experimentation, and simula-

tion. Vortex and wake geometry as well as locomotor forces can be analyzed

with the help of digital particle image velocimetry (DPIV) (Drucker and Lauder,

2002). Anguilliform swimming is the primary type of locomotion pattern for many

aquatic species such as eels and snakes. Those creatures have a slender body to

propel themselves in water by generating periodic tail undulations while keeping

the anterior of the body straight. Anguilliform swimming was first studied by

Gray (1933), and has gained a substantial amount of attention both in terms of

the neurological pattern of controllers (Ekeberg, 1993) and the hydrodynamics of

the motion (Kern et al., 2008). Roboticists have built snake-like robots that can

perform both serpentine terrestrial and aquatic locomotion (Nor and Ma, 2014).

Transeth et al. (2009) present a good survey of snake robots.

Graphics researchers, with the purpose of generating realistic animations, have

built both kinematic (Gates, 2002) and dynamic models (Tu and Terzopoulos,

1994) for snakes and fish. Simple mass-spring-damper biomechanical models were

used in various important works on swimming creatures (Bowtell and Williams,

1991; Tu and Terzopoulos, 1994; Ijspeert et al., 2007). Recent developments on

human swimming (Kwatra et al., 2010; Si et al., 2014) and animal swimming (Tan

et al., 2011) have applied advanced simulation techniques to model body-fluid

interaction (Arash et al., 2003; Carlson et al., 2004), with the hope of generating

13



more accurate results. However, gains in simulation precision come with com-

promises in real-time performance. Also, the computation time required to solve

fluid dynamics equations even at moderate resolution curbs the optimization of

controllers through forward simulation.

Given these constraints, we take a different approach that specifically deals

with slender-bodied creatures such as myriapoda. By referring to previous works

on anguilliform swimming (Ekeberg, 1993; Grzeszczuk and Terzopoulos, 1995), we

narrowed our control space to include only two parameters—undulation frequency

and segmental phase shift. By coupling our myriapoda model with simple fluid,

our simulation is fast enough to run experiments that allow the examination of

how the change of the two parameters would affect the simulated model’s stable

speed and energy consumption rate (ECR) during swimming. We also perform an

exhaustive search to find the optimal pair of parameters for a continuous range of

speeds at which the model would naturally swim.
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CHAPTER 3

Biomechanical Model of Myriapoda

Prior work on animating arthropods has been limited to insects with only one

major abdominal segment, such as a stick insect or a spider. The unique, elongated

and deformable body structures of myriapoda require special attention to the

biomechanics. The numerous slim legs of typical myriapoda have much lower

mass than does the remainder of their body, which enables us to take an efficient

hybrid kinematic/dynamic approach to modeling them in order to achieve real-

time animation performance.

3.1 Overview of Body Structure

Fig. 3.1 illustrates the physical body structure that we developed for our artificial

myriapoda. First, we simplified our model by neglecting the mass of the legs, thus

making them kinematic. Initially, we used only deformable segments to model the

body. However, coupling the slim legs to the deformable segments significantly

increased the control challenge, since the leg attachments have a very local effect

on the deformable body. By contrast, connecting a leg to a rigid segment emulates

the natural exoskeleton of millipedes and enables the leg to easily control the

position and orientation of the entire segment.

Thus, in our model, a pair of rigid, kinematic legs actively control each of

the rigid dynamic exoskeletal segments, which are then connected in series using

dynamic elastically deformable segments. When hanging in gravity, the body
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Tail

A pair of antenna

Rigid Segments

Deformable 
Segments

Legs of different States

Figure 3.1: Myriapod body structure, comprising rigid segments (grey) with rigid
legs, deformable segments (yellow), a pair of deformable antennas, and tail. The
color of each leg indicates its current state (see Fig. 4.4).

model will naturally elongate (Fig. 4.4). The motion of the rigid segments is

governed by rigid-body dynamics with collision and friction (Baraff, 1997). The

deformable segments are governed by energetically consistent invertible elasto-

dynamics with a fixed corotational constitutive model (Stomakhin et al., 2012).

Beyond their passive dynamics, the deformable segments can also actuate like

contractile muscles to drive swimming in water.

3.2 Deformable Segments

For our application, which requires real-time elastic simulations with nearly uncon-

ditional stability, we employ the fixed corotated constitutive model ((Stomakhin
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et al., 2012)), which is given by

Ψ = µ
∑
i

(σi − 1)2 +
λ

2
(J − 1)2, (3.1)

where µ and λ are Lamé parameters, J is the determinant of the deformation

gradient F, and σi are the singular values of F. This energy model is a smooth

extension of the corotated model, and is extremely robust to large deformations.

Appendix A presents more details of the deformable segments and their simula-

tion using the finite element method (FEM). The simulation domain is discretized

into tetrahedral elements. The deformation gradient F is derived from the current

instant shape (Fig. 3.2c) of an element in reference to its natural shape in the rest

state (Fig. 3.2b). The fixed corotational energy as a functional of F generates

the hyperelastic force to minimize the shape distortion. If the rest shape remains

unchanged, unbalanced external forces will cause passive dynamics of the object.

Natural animal motions are initiated by the active actuation of internal muscles.

As an integral part of our biomechanics model, muscle actuation for the myriapod

is achived by morphing the rest shape of the deformable segments from its initial

shape (Fig. 3.2a) to the desired configuration. Internal forces will be generated

automatically via simulation to drive the body. However, the actuations from

many muscles need precise coordination to achieve the locomotion goal of entire

body in the simulated physical environment. Such challenging tasks are usually

handled by learning methods (Grzeszczuk and Terzopoulos, 1995).

3.3 Coupled Rigid and Deformable Segments

Several authors have demonstrated two-way coupling between rigid and deformable

objects (Shinar et al., 2008; Sifakis et al., 2007; Baraff and Witkin, 1997). We cou-

ple the rigid and deformable parts of our alternating rigid/deformable myriapod
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(a) Initial shape (b) Rest shape

Ground

Gravity

(c) Instant shape

Figure 3.2: (a) Initial shape of a 2D segment, representing the shape of the segment
in equilibrium when there is no external force and internal actuation. (b) Rest
shape of the segment at a certain instant, morphed from the initial shape. The
shape of the segment in equilibrium in the absence of external forces will be the
same as the rest shape; (c): Instantaneous shape of the segment under gravity,
supporting force from the ground, internal actuation from rest shape in (b) and
inertia.

(a) A linear structure, dropping onto a slippery ground plane

(b) A structure similar to a ceiling light with top fixed

Figure 3.3: The dynamics of coupled rigid and deformable segments.
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body structure using the following interleaved simulation method:

1. Boundary nodes on deformable tetrahedral meshes that make contact with

rigid segments are fixed to those rigid segments.

2. At each simulation time step, the elastic forces from the mesh deformation

computation evaluated at the contact nodes are applied as external forces

to their respective rigid bodies.

3. Finally, the positions of the contact nodes are updated in accordance with

the rigid body dynamics simulation.

Since the deformable and rigid parts time-stepped independently, our inter-

leaved method is not fully coupled as in (Shinar et al., 2008); however, by virtue

of the robust, invertible elasticity method of (Stomakhin et al., 2012), stability

is not an obvious issue. Our approach achieves two-way coupling yet is very

straightforward to implement. Fig. 3.3 demonstrates the simulation of coupled

rigid-deformable objects.

3.4 Kinematic Legs

The legs of the virtual myriapod are simulated as rigid links that rotate around

joints. The leg tip and root positions are inputs and outputs for our locomotion

control system and the leg joint angles are determined by an inverse kinematics

(IK) solver.

Referring to Fig. 3.4, the leg inverse kinematics algorithm takes as input the

position of the leg tip P and leg root O and computes the joint angles θ, α, and

β. Fixing γ for simplicity, the steps to solve for θ, α, and β are as follows:

1. By restricting all the leg segments to lie in a plane, θ can be computed

independently from α and β using the positions of P and O, as Fig. 3.4(2)

19



Figure 3.4: Myriapoda leg structure. The leg rotates around the y axis (θ) and
can articulate in the leg plane around joints O and M (α, β). P is the tip of the
leg.

shows.

2. Angles α and β can be computed by solving for the position of point M

(Fig. 3.4(1)), which is determined by rotating segment OM around point O

and segments PM (with γ fixed) around point P. The two circles will either

not intersect (no solution), intersect at one point (tangent), or intersect at

two points. If a convex solution with β > 0 exists for point M in the leg

plane, then α and β are computed using simple geometric calculations.

Although it falls short of full biomechanical simulation and control, our efficient

method meets the visual realism requirements. Furthermore, given the numerous

legs involved, the animation of myriapoda does not present anywhere near as

severe an “Uncanny Valley” to observers as does human bipedal locomotion.
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Figure 3.5: Antenna modeling and animation.

Hence, rather than trying to improve the realism of individual leg movement by

modeling complex leg biomechanics, and pay the associated computational costs,

we have focused on the development of the locomotion control system described

in Chapter 4, which can realistically synthesize the natural wave motion pattern

of the numerous legs.

3.5 Antennae Modeling and Animation

The antennae of myriapod function as sensors and is essential to its adaptive

behavior. To increase visual authenticity of our animations, we wrote a procedure

to generate their movement. We model the antennae as a chain of N short

links, each of which has two rotational degree-of-freedom (θ, φ) joints relative

to the previous link (Fig. 3.5). We observed from video footage real centipedes

that during locomotion the antennae will articulate randomly for exploration.
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Meanwhile, there is an outward traveling wave from the root of the antenna to

the tip. To synthesize lifelike antenna movements, we devised the following two-

step method: First, to achieve randomness in antenna rotation, we set random

target rotations θT , φT for the root link (i = 0). The root link will rotate

toward this target rotation at a constant speed (ω0) and will generate new target

rotations when the current ones are achieved. The formula is simply [θ0, φ0]t+∆t =

[θ0, φ0]t + ω0∆t. Second, for the links (i = 1, 2, . . . , N − 1), their relative rotation

angles (θi, φi) are sampled from a wave function [θi, φi] = A[θ,φ] sin(ωt−λi)+B[θ,φ],

where Aθ, Aφ, Bθ, and Bφ are constant amplitudes and base values, and ω and λ

determine the wave frequency and wavelength.

3.6 Antennae-Based Sensory Perception

In our real-time simulator, food and obstacles can be placed in the scene to

elicit the emergent behavior of an autonomous virtual myriapod exploring its

environment. In fact, an animator can place food particles and vertical obstacles

on the terrain surfaces to guide the locomotion path of the creature. We have

developed two simple biologically rooted mechanisms to enable the sensing of

food and obstacles by our simulated myriapoda.

The antennae detect obstacles through physical contact, when an antenna-

obstacle collision occurs, the θT , φT , and ω0 will be adjusted to retract the antenna

in the direction of the obstacle’s surface normal. A physical contact signal will be

passed into the brain for locomotion adjustment. Our simple steering mechanism

is similar to that in Braitenberg vehicles (Braitenberg, 1986)—whenever there is

a contact signal from the left antenna, the head will enter avoidance mode and

turn right, and vice versa. In order to avoid the myriapod becoming trapped by

walking perfectly straight into a wall, one antenna has higher priority when both

antennas sense a collision.
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Food is modeled as point sources with intensity gradients that decrease with

squared radial distance. The antenna can sense food intensity in the environment.

Once the stimulus exceeds a certain threshold, it will send an intensity signal to

the brain. The myriapod will turn in the direction of maximal food gradient. Our

simulations shows that this simple foraging method works very well. Furthermore

food sources can be used to plot the path of an artificial myriapod.
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CHAPTER 4

Decentralized Locomotion Controller

In this chapter, we present a decentralized locomotion controller for simulated

myriapoda that synthesizes realistic wave motion global legged locomotion pat-

terns.

4.1 Overview

The Dragon Dance, a tradition that is performed during Spring Festivals in

Chinese culture, requires approximately 9 to 15 dancers to control a long dragon

whose segments are connected by joints. Three key observations can be made

about this dance: First, the person controlling the head of the dragon makes the

locomotion decisions and implements these decisions using his/her own two legs.

Second, each of the remaining performers have one major locomotion goal—to

follow the performer ahead of them. Third, applying the previous two simple

local rules results in a global emergent behavior—the global wave pattern of the

dragon movement.

The leg control model that we have developed for our myriapod creatures

applies the idea of the head segment leading and the subsequent segments fol-

lowing. At any moment, the head segment synthesizes information sensed by the

antennas to make high-level locomotion decisions, such as turning and changing

speed. These decisions are processed by the head segment to determine the desired

future configuration of the head; specifically, the position and orientation of the
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Switcher

Forward 
Kinematics

STANCE

SF1

SF2

SB1

SB2

ADJUST

Inverse 
Kinematics

Balancer

Targeter

Follower

Rigid 
Segment

Each Leg:

Figure 4.1: The local locomotion controller is comprised of a Targeter for the
segment and two Switchers for left and right leg. Targeter is responsible of
balancing the segment as well as following the previous segment; The Switcher’s
duty is to monitor and apply transition of six different leg states (Fig. 4.3) during
locomotion.

rigid head segment in the next time step. The desired configuration is provided

to the leg controller for execution. The subsequent segments have identical local

leg controllers, which comprise two components shown in Fig. 4.1—(i) a Targeter

that determines the desired target configurations of the segment and (ii) left and

right leg Switchers that switch the leg states (Fig. 4.3).

A rigid segment can have two states: supported and unsupported. When

the segment is supported, it is kinematically transported to the desired position

and orientation by the legs. In the unsupported state, its motion is governed

by the rigid-deformable coupling dynamics. The major benefit of this hybrid,

kinematic/dynamic approach is that it circumvents complex leg dynamics to drive

the body dynamics without sacrificing appreciable dynamical realism in the body.

The legs are rotated via forward kinematics in most states and they control the

segment through inverse kinematics during the stance state. The details of the

six leg states and the switching mechanism are discussed in Section 4.3.
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4.2 Targeter

A Targeter in each rigid segment i continually outputs its configuration (position

ci and orientation Ri) to the legs. When the segment is unsupported, it outputs

the updated configuration computed by dynamic simulation, whereas when the

segment is supported, it outputs the desired configuration of the rigid segment

for the segment’s legs to achieve kinematically. As is described later, the left and

right leg can be synchronized in order to maximize the time that a rigid segment is

in the supported state. The Targeter has two objectives (Fig. 4.2)—to follow the

previous segment, which is accomplished by a Follower, and to balance the body,

which is accomplished by a Balancer. The Follower generates a target position

cTi for the current rigid segment by modifying its current position in the direction

of the link vector li = ci+1 − ci such that the length of the link vector remains

constant and it generates a target rotation RT
i of the segment around its y axis

so as to orient the x axis toward the link vector direction. The Balancer balances

the y axis of the rigid segment toward ground surface normal vector n and adjusts

the elevation of the rigid segment by further modifying the target position in the

direction of n. The combined adjustments of the current position and orientation

by the Follower and Balancer result in a new target position and orientation that

are outputted to the leg controllers as goals to achieve during the stance state.

4.3 Leg State Machine

4.3.1 Leg States

Typically, a leg will periodically cycle between 6 different states (Fig. 4.3) under

the control of a Switcher. Referring to Fig. 3.4, a pose is uniquely defined by three

rotational angles: θ, α, and β (γ is fixed). Angle θ is the rotation of the leg plane

around the y axis of the rigid segment, while α and β are the 2 degrees of freedom
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Figure 4.2: The Targeter of a rigid segment, comprising a Follower (left) and
a Balancer (right). The Targeter computes desired configuration of the rigid
segments and ask the legs to achieve it during STANCE state. With the target
position cTi and orientation RT

i of segment i initialized to its current position

and orientation, the update equations for the Follower are cTi
+
= k1(|li| − l0i )li∆t

and RT
i

∗
= R([0,±1, 0], ω∆t), with the ± sign determined by the sign of the

projection of li onto the z axis, and the update equations for the Balancer are
cTi

+
= k2(hi − hTi )n∆t, where hi and hTi are the segment’s current height and

target height, and RT
i

∗
= R([0, 0,±1], ω∆t)R([±1, 0, 0], ω∆t), with the ± signs

determined by the projection of n onto the x-z plane.

of the leg within the leg plane. Each leg state starts in one pose and ends at a

target pose.

Sway Forward 1 (SF1)

Ideally, the leg sways forward up from the posterior extreme pose (PEP)

(θ = θm, α = αS, β = βS) to the middle up pose (MUP) (θ = 0, α = αM ,

β = 0). This state allows the leg to leave the STANCE state and elevate off

the ground.

Sway Forward 2 (SF2)

Ideally, the leg sways forward down from the MUP to the anterior extreme

pose (AEP) (θ = θM , α = αS, β = βS). This state sends the leg to the

STANCE state;
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Figure 4.3: The six leg states and transitions.

Sway Backward 1 (SB1)

Ideally, the leg sways backward down from the AEP to the middle down

pose (MDP) (θ = 0, α = αm, β = 0). This is to help the leg touch the

ground.

Sway Backward 2 (SB2)

Ideally, the leg sways backward up from the MDP to the PEP. This is the

last state of a cycle comprising SF1, SF2, SB1 and SB2.

STANCE

In the stance state, the leg tip is fixed on the ground and the root of the

legs push the segment forward. Ideally, it starts at the PEP and ends at
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the AEP. Inverse kinematics is used to compute the rotational angles (θ,

α, and β) from the tip and root positions, as is detailed in Section 3.4. The

root position of the leg is calculated from the output of the Targeter. The

leg will leave the STANCE state to enter SF1 when the IK solver cannot

resolve the current outputted root position from the Targeter.

ADJUST

This state generates the collective wave pattern in the leg motions. A leg

will enter the ADJUST state immediately after the previous leg enters the

STANCE state. During the ADJUST state, the leg will move to a target

pose (θT , αT , βT ). The differences θT − θM , αT −αS, and βT −βS determine

the desired rotational phase difference between the legs. Changing their

values will change the frequency of the leg wave patterns.

Note that the word “ideally” above indicates that during locomotion the legs

do not always start or end in precise poses, but attempt to reach target start and

end poses; e.g., when the ground is irregular, the SF1 state can end prematurely

and enter the STANCE state, as will be detailed below. Only during the STANCE

state will output from the Targeter be used, whereas in other states, the leg rotates

by forward kinematics toward the target rotations.

4.3.2 Switcher

The following rules are used to update leg states by the Switcher associated with

each leg:

1. A normal loop is from SF1 to SF2 to SB1 to SB2 and back to SF1 (Fig. 4.4(A)),

this normal loop can be interrupted by STANCE and ADJUST states;

2. Whenever the leg tip touches the ground surface, enter the STANCE state;

3. When the IK solver cannot solve for the STANCE state, enter the SF1 state;
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4. Whenever the previous leg enters the STANCE state, enter the ADJUST

state;

5. At the end of the ADJUST state, enter the SF2 state;

For example, when the simulated myriapod is suspended off the ground , the

legs will periodically go from the SF1 to the SB2 states without entering the

STANCE and ADJUST states(Fig. 4.4(A)). If it is dropped to the ground, the legs

will start to enter the STANCE and ADJUST states (Fig. 4.4(B),(C)). When the

creature starts walking, its leg motions quickly converge to a wave pattern in which

each leg undergoes the state cycle SF1→SF2→STANCE with short appearances

of the ADJUST and SB1 states (Fig. 4.4(D)).

In particular, Rule 4 enforces a stable phase difference locally between legs,

finally resulting in a wave-like leg formation during locomotion. The wave-like

locomotion pattern has several merits: First it ensures that at any moment the

body will be supported by a fixed ratio of legs such that stability is guaranteed.

Second it allows each leg to stretch to extreme poses (AEP and PEP) with

maximal energy efficiency, since the work done to raise and lower each leg can

be reduced for a given locomotion distance.

4.3.3 Synchronization of the Left and Right Legs

Synchronizing the leg waves on both sides maximizes the duration that a rigid

segment stays in the efficient IK-driven supported state. The synchronization

of left and right leg rotations is achieved by adding an extra rule to the first

segment’s Switcher—when the left leg enters the SF1 state, the right leg will also

immediately enter SF1.
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Figure 4.4: A centipede dropped to the ground. The right panel shows the states
of each leg during the past second. The color scheme is indicated at the bottom.
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4.4 The Head

The head segment is almost always kinematically updated by its own Targeter,

which will employ the Balancer for balancing, but not have any anterior segments

to follow. The Targeter updates the configuration of the head segment based on

three variables: (i) a moving speed (the head will always move forward along its x

axis), (ii) a turning speed around the y axis, and (iii) a binary turning direction.

There are various brain modes that hold different values of the three variables.

A special Switcher updates those brain modes as well as the variables based on

internal states and signals from the antennae. The brain modes and associated

switching mechanisms are as follows:

Adjustment: The head polls each segment to check if the majority of the

legs are on the ground. If not, it will stay in the Adjustment mode

and the head segment is controlled by the dynamics. This brain mode

enables the animation of a creature dropped onto the ground to adjust its

legs automatically before it starts walking (Fig. 4.4).

Random-Walk: When not in Adjustment mode, the brain automatically

enters random-walk mode. Turning direction and target turning angles are

set randomly and renewed when they are attained.

Avoidance: When the left/right antenna sends an obstacle contact signal, the

brain enters the obstacle Avoidance mode. The turning direction and

speed will be adjusted to avoid the obstacle. After the obstacle is cleared,

the head returns to Random-Walk mode.

Trophotropism: similar to the obstacle Avoidance mode, antenna sensed

signals of food in the environment modify the turning speed and direction

such that the creature orients itself toward the food. After the food is

reached, the head returns to Random-Walk mode.
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Control: The head is externally controlled by locomote and turn commands

issued by a user.

For obvious reasons, the Avoidance mode has a higher priority than the Trophotropism

mode.
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CHAPTER 5

Optimized Anguilliform Swimming

In this chapter, we introduce our approach to synthesizing optimized anguilliform

swimming animations of our segmented biomechanical model as an emergent

property of our physics simulation and a Frequency and Phase Shift (F-PS)

controller.

5.1 Actuation of Deformable Segments

First, we transform the passive deformable segments into active muscles. Within

the deformable segments, which are simulated as elastic bodies using the FEM

method (Appendix A), internal stresses arise from the difference between the

instantaneous shape and the rest shape (Fig. 3.2). In the absence of external

forces, the stresses will restore the deformable segment towards its rest shape.

Our deformable segments actuate themselves by morphing their rest shapes. At

each time step, the rest shapes of the segments are updated, then the simulation

generates the internal muscular force. For our purpose of generating horizontal

swimming locomotion on the surface of water, we constrained the morphing of the

rest shape to x-z plane (Fig. 5.1). Specifically, we use two parameters to control

the morphing, lleft and lright. We store the initial shape as a 3D mesh of size

lx × ly × lz centered around the origin. For each node of the mesh, its position

(x0, y0, z0) in the initial shape will be updated to generate the morphed rest shape,

34



A B C

Figure 5.1: The rest shape of deformable segments morphed along the x axis,
controlled by lleft and lright. (A), (C) 3D and top-down views of two rigid segments
(gray) connected by a deformable muscle segment (yellow), actuated to curve to
the right. (B) Top-down view of a deformable segment’s initial shape morphed to
a new rest shape, which drives the flexing of the 3-segment body in (A) and (C).

as follows:

zratio = 0.5 +
z0

lz

x(t) =
x0

lx
× (lleft(t)× zratio + lright(t)× (1− zratio))

y(t) = y0; z(t) = z0;

(5.1)

Fig. 5.2 and Fig. 5.3 demonstrates the results of muscle actuation. Especially,

Fig. 5.3 shows the body of our myriapod model, for which we ignore the drag

effects in water of the (tucked) legs.

Our experiments show that in order to enable the elasticity simulation to

generate sufficient muscle force without serious oscillation and instability, a large

Young’s modulus and damping coefficient must be used. For our simulation, the

Young’s modulus is 4000, the Poisson’s ratio is 0.4, and damping coefficient is 50.

Note that a biological muscle’s material properties are changing during actuation

and relaxation (Brozovich et al., 1988), which would require additional modeling

and simulation fidelity.
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 A  B  C
Figure 5.2: By morphing the rest shape of the deformable segments, we can
actuate the three segments for different kinds of movements. (A), (B): Periodic
flapping of the rigid segments (white). (C): Periodic shrinking and elongation of
the body, like a worm.

Figure 5.3: Curving the body to a ‘C’ shape. By simultaneously shrinking lleft of
the deformable segments’ rest shape.

Figure 5.4: Top: Simulation of four rigid cubes of different density under water;
Bottom: Simulation of four deformable cubes of different density under water.
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Note that our dynamic approach does not merely morph the geometry of the

deformable segments kinematically. As shown later, with appropriate external

forces from water, our F-PS controller can generate the natural lateral undulation

of the tail.

5.2 Simple Aquatic Simulation

To compute the hydrodynamic forces on the segmented body, we employ a force

model similar to those found in (Tu and Terzopoulos, 1994; Lentine et al., 2011).

The force on an infinitesimal surface element of area ds is computed as follows:

f(s) ds = −ρw max[0,n · v](n · v)n ds, (5.2)

where ρw is the density of water, n(s) is the outward normal of the surface element,

and v(s) is its velocity relative to the water. The total force on any object is the

integral over all water-exposed surfaces: fw =
∫
S

f(s) ds.

For the rigid segments, we add a high-resolution grid mesh over their surfaces

and compute the water force on each quad patch exposed to water according

to (5.2). Then we sum the forces and torques on those patches and feed them

as external forces to the rigid-body simulator. For the deformable segments, we

compute the force on each surface triangle exposed to water and distribute them

to the three nodes of the triangle. Fig. 5.4 shows the result of our simulated

rigid and deformable segments under water. For the segmented model, we sum

water forces over the surfaces immersed in water. Buoyancy forces may be added

by simply modifying the gravitational force g. Depending on the density of the

body ρb, the new gravity constant is ρb−ρw
ρw

g. We set our segmented body material

density to be the same as water, such that the buoyancy counteracts gravity.
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Figure 5.5: Anguilliform swimmer in a pool of water.

5.3 One-way Coupling with a Shallow-Water Simulation

To enhance the realism of our swimming animations, we couple the body of the

anguilliform swimmer with a real-time simulation of shallow water in a one-way

manner to generate vortices and wakes (Fig. 5.5). The main advantage of shallow-

water simulation is real time performance compared to time consuming 3D fluid

simulations via the full Navier-Stokes equations. Since it represents the water

surface as a height field, no expensive tracking algorithms (Yu and Turk, 2013)

are required to generate the water surface for the purposes of rendering. Our

program can update a 200 by 200 resolution mesh in real time on a single 3.2

GHz CPU core. The central region where the creature swims requires proper

coupling and poses difficulties for parallelization. However, for the outer regions,

with a better numerical grid for far field (Zhu et al., 2013) or parallelization on

GPU (Brodtkorb et al., 2012), the current mesh can be extended greatly while
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z

Figure 5.6: Illustration of a moving object in water on MAC grid

maintaining the real time performance.

The computational efficiency comes from the geometric simplification of 3D

fluid to a 2.5D height map, which excludes interesting effects such as splashes

and breaking waves.1 Appendix B provides the derivation of the shallow-water

equations from the incompressible Navier-Stokes equations and illustrates our

MAC-grid-based numerical method for solving the shallow-water equations with

different static boundary conditions.

Next, we will explain the coupling with the moving virtual animal. There are

all together five steps:

1. Identify the cells that the anguilliform body occupies (Fig. 5.6 and Fig. 5.7),

especially the boundary cells (blue). We test the center of each cell against

the body shape contour to determine the type of cell. We accelerate the cell

type determination by checking only cells in the bounding box that contains

two rigid segments.

1There are computationally cost-effective ways to restore them with particle systems (O’Brien
and Hodgins, 1995) (for splashes) and wave patches (Thurey et al., 2007) (for breaking waves).
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2. Calculate the normal nsi,j and velocity vsi,j of the body at each boundary cell

(i, j).

3. Update the height of internal cells (yellow) to be the height of the bottom

of the body. In our simulation, we set the body’s center height to be the

same as the water level, so the height of yellow cells are set to be lower than

the water level by half the body’s size in the y dimension.

4. Update the height of the boundary cells (blue) to be the average height of

surrounding water cells’ heights.

5. Update (u,w) of the water on the boundary cells such that

(u,w) · ns = vs · ns. (5.3)

Numerically, this is updated as follows:

(u,w)n+1
i,j = (u,w)ni,j −

(
(u,w)ni,j · nsi,j

)
nsi,j +

(
vsi,j · nsi,j

)
nsi,j

= (u,w)ni,j +
((

vsi,j − (u,w)ni,j
)
· nsi,j

)
nsi,j.

(5.4)

Fig. 5.7 shows our coupling results, two rows of lateral vortex rings can be

observed from the velocity field, which is the documented characteristic wake

pattern for anguilliform swimming (Kern et al., 2008). Fig. 5.5 shows our rendered

result of the anguilliform model swimming on the surface of a pool. Appendix E

describes our method for realistically rendering water.

5.4 Swimming Locomotion Controller

Researchers have done extraordinary work on modeling and simulating fish swim-

ming. In his pioneering work, Ekeberg (1993) built a neural network to control

a 2D mass-spring-damper based lamprey mechanical body in a simulated water
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Lateral Vortex Rings

Figure 5.7: Top: The red arrows show the velocity field of water around the
anguilliform swimmer. The arrow in the cells show direction and the intensity
of color represent scale. The blue and yellow cells are occupied by the body.
Bottom: Swimming in a moving box of shallow water. We use absorbing boundary
conditions for the water simulation. More detail can be found in Appendix B.

environment. Ekeberg’s neural network model is derived from neurological studies

of lampreys. From experiments, Grillner (1974) recorded rhythmic motoneuronal

activity alternating between the two sides of the spinal cord. Also, the alternations

occur with a phase shift along the body proportional to the distance between the

points. It is also pointed out that the phase shift between any pair of points along

the cord remains constant even when the speed of swimming changes. Ekeberg’s

neural network can produce a rhythmic segmental pattern at various frequencies

by changing the tonic brainstem input, as well as coordinated waves along the

spinal cord with constant phase shift. His simulated model can achieve propulsion

at various speeds and by making his tonic stimulation level asymmetric, turning
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can be performed.

Although Ekeberg did not adopt optimization methods for his neural network,

nor did he build an A-Life system for his simulated creature, his published work

stands among important independent efforts by Tu and Terzopoulos (1994) on

artificial fishes and by Ijspeert et al. (2007) on amphibious salamanders. In

Ijspeert’s work, a CPG is built in two stages to control the salamander swimming.

The first stage is a segmental oscillator that outputs periodic signals; the second

stage couples the segmental oscillators, to eventually deliver the constant phase

shift. However, the optimization of the CPG networks is purely based on fitness

functions that try to train for desired output signal shapes, without forward sim-

ulation to evaluate the true locomotive efficiency of the controller. In (Grzeszczuk

and Terzopoulos, 1995), optimal controllers are learned via forward simulation to

reward locomotive efficiency, which is evaluated as consuming the least energy for

the distance traveled. However, the optimization find only one global optimum,

while in reality, such creatures could locomote at various speeds all with optimal

energy efficiency. Recent work by Kern et al. (2008) used accurate calculation

of work exerted against water to optimize a anguilliform locomotion controller.

However, the body shape of the model described in the paper is completely

controlled by parametric curves, with no internal actuations, and is unaffected

by water forces.

Our goal is to build a swimming controller based on prior efforts, which

not only can generate realistic anguilliform swimming patterns, but can also be

trained to compute optimally energy-efficient parameters to achieve any swimming

speed. We would like correspondence of our simulation and training results

with experimental observations. Lucid understanding can often result from a

reduction of the complexity of a system to the point where only the most important

components remain and are analyzed. We took this strategy to shrink our control

space to include only two parameters, a frequency (f) and a segmental phase shift
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 C  D
Figure 5.8: The anguilliform model morphs to a serpentine shape and starts
swimming.

(ps). We name it the F-PS control model with F standing for frequency and PS

standing for phase shift. Our controller outputs left sl and right sr sinusoidal wave

signals with different frequency and phase shifts, and with amplitude in the range

of [0, 1], which represents the muscle activation level Signals sl and sr alternate

with each other such that s2
l + s2

r = 1 and are linearly mapped to ll and lr to

morph the deformable segments’ rest shape, resulting in muscle contraction and

relaxation. The mapping is as follows:

ll = lmin + sl(lmax − lmin)

lr = lmin + sr(lmax − lmin)
(5.5)

The parameters lmax and lmin define the range in which ll and lr fluctuates. In

our simulation, lmax = 1.0 and lmin = 0.5.
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 C  D
Figure 5.9: The anguilliform swimmer makes a clockwise circular turn.

5.4.1 The F-PS Controller

The F-PS controller preserves the key results from previous works, which all

employ antisymmetric left/right motonueron excitations and constant phase shifts

along the body. Fig. 5.8 shows our F-PS controller enabling the anguilliform

swimmer to swim in a straight line. The controller will first flex the body to

a serpentine shape for swimming. this initial stage is shown in the left control

signal panel of (A) and (B) in Fig. 5.8. Note that the amplitude of the undulations

increase from head to tail even though the amplitudes of muscle actuations are

identical for all the deformable segments. This increase in undulation toward

the tail is in agreement with natural anguilliform swimming (Gray, 1933) and it

is purely an emergent property of the F-PS controller and physical simulation.

Another observation is that the wave along the body propagates faster than

the swimming speed, which is also a well-known property of most undulatory
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Figure 5.10: Comparison of linear speed among anguilliform swimmers with
different muscle actuations. Obviously, the larger actuation frequency, the faster
the swimming.

Figure 5.11: Comparison of linear speed among creatures of different segmental
phase-shift. The blue anguilliform swimmer is fastest, indicating that there is an
optimal phase shift.

modes of swimming (Lighthill, 1970). Turning is achieved, as usual, by making

the amplitude of the actuation levels asymmetric. As shown in Fig. 5.9, our

anguilliform swimmer will turn toward the side that has a weaker actuation

level. A large curvature can be observed that bends toward the sides of turning

and propagates backwards along the body, this phenomenon is consistent with

observations of real lamprey turning (Gray, 1933).
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5.4.2 Optimal Control at All Speeds

The drastic reduction in the dimensionality of the control space enables a careful

inspection of the relationship between the controller parameters, f and ps, and

locomotion performance through forward simulation. Fig. 5.10 illustrates a race

experiment among five anguilliform swimmers of the same ps and increasing f .

Not surprisingly, a higher undulation frequency yields faster locomotion. Fig. 5.11

illustrates a race experiment among five anguilliform swimmers with the same

f and different ps. We discovered an optimal ps that results in the fastest

locomotion. Appendix C presents the details.

5.5 Autonomous Anguilliform Creature

To create an autonomous anguilliform swimmer in its aquatic environment (Fig. 5.12),

we use a vision-based sensory mechanism to guide its adaptive behavior. The

green fan represents the field of view within which the swimmer can see food

(green spheres). Whenever food falls inside the field of view (red sphere), the

swimmer will turn toward the food. For obstacle avoidance, the swimmer also

employs the Braitenberg vehicle steering mechanism. The yellow fan represents

its alert field of view. When it reaches the wall, it will make a turn towards the

side of the yellow fan that is not yet hitting the wall. If both sides of the yellow

fan hit the wall, the swimmer will repeatedly turn toward a random selected side

until the turn is completed. Our swimmer adjusts its speed depending on how far

it is from the food and obstacle. For instance, it will accelerate when it initially

spots food and slow down as it approaches the food; it will also slow down when

a large turn is required in a short time. Our swimming locomotion controller can

maintain optimal energy efficiency during the speed adaptations.

Fig. 5.13 shows snapshots from animations of multiple anguilliform swimmers

in a pool on a rainy day.
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Figure 5.12: An autonomous anguilliform creature swimming hydrodynamically
with its optimized F-PS controller, foraging while avoiding obstacles within its
field of view.

Figure 5.13: Multiple anguilliform swimmers simulated simultaneously in a pool of
water, with rain drops generating waves and caustic light patterns on the bottom
of the pool.
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CHAPTER 6

Simulations and Results

We implemented the biomechanical body structure and leg controller and par-

allelized the code with OpenMP. Our Intel Core i7-3930k (6 core, 3.2 GHz)

machine can update an 18 segment centipede model with 3 × 3 × 3 deformable

mesh resolution at a rate of 1.7 × 104 time-steps per second. Typically, a time-

step of 1/3000s is used, resulting in approximately 6× real-time speed. Most

of the time is consumed by the semi-implicit FEM simulation of the deformable

segments (fully implicit simulation should improve stability and speed). Different

body parameters can be used to model different types of Myriapoda, as shown in

Fig. 1.3. A detailed description of the simulation loop can be found in Appendix D.

Next we will present the various animation results produced by our implemented

animation system.

6.1 Irregular Terrain

The decentralized locomotion system works robustly in the presence of various

types of terrains. In order for the simulated creature to locomote over it, the

terrain model need to support three basic queries:

1. Determine if the tip P of a leg is touching the ground by doing an in-

side/outside test against the terrain geometry;

2. Obtain the height hi of the center ci of the rigid segment relative to the

terrain surface.
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Leg in 
STANCE State

Leg in SWAY-
FORWARD State

Leg in 
ADJUST State

Leg in SWAY-
BACKWARD State

Figure 6.1: Centipede Walking over an irregular surface paved with random
cylinders.

3. Obtain the normal vector of the terrain surface directly below ci.

The myriapod’s locomotion controller depend on the first queried data to update

its leg states and the later two to balance its rigid segments’ height and orientation

(Fig. 4.2).

6.1.1 Height-Field Terrain

We implemented a height-field-based terrain generator that can create arbitrary

terrains from mixtures of Gaussian functions. All three queries are straightforward

to perform for our height-field terrain. However, a height-field cannot represent a

surface that inverts, such as a bulge on the ground that forms an “Ω” shape. In

the next section, we will discuss our generalization to such terrains. Our myriapod
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simulator can also introduce additional surface obstacles, such as cylinders and

spheres for the creature to crawl over (e.g., Fig. 6.1). These cylinders and spheres

are analytical geometric entities, so the aforementioned queries can be determined

accurately.

6.1.2 Closed Surfaces

In addition to height-field-based terrain, we extended our simulator to support

arbitrary closed triangulated meshes. OBJ files of such mesh geometries can be

loaded into the simulator and serve as locomotion surfaces. Fig. 6.2 shows a

centipede walking over the mesh of a crystal human skull. The interface between

our simulated creature and the loaded mesh remain unchanged—the three queries

listed in the previous section. To perform the queries efficiently, a spatial hash

table is built as an acceleration structure for our triangle mesh storage. First, we

partition the bounding box of the object into a 3D grid of a certain resolution

(e.g., 50× 50× 50 for the cranium in Fig. 6.2). Then, for each triangle, based on

its position, we locate the index, idx, idy, and idz, of the cell that contains it. We

use the equation

hash key = idx× grid res y × grid res z + idy × grid res z + idz (6.1)

as the key to store the triangle into our hash table. Each table entry is a list of

triangles. To perform the query on whether a point is inside or outside the mesh,

we cast a ray along the positive z axis and count the number of intersections ni

with the mesh. If ni is even, this indicates that the point is inside the closed mesh.

An intersection is determined by checking against all triangles contained in the

grid cells along the ray; usually the internal cells are all empty so only ni number

of cells are needed. The second and third query both need to obtain the nearest

triangle to ci. For that, we simply iterate over the triangles in the same cell (and
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Figure 6.2: Centipede walking over a closed mesh of a human skull.
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neighboring cells in extreme cases) and calculate the distance of point ci to those

triangles. After obtaining the closest triangle, we can easily obtain the height to

the ground and its surface normal.

6.2 Walking in Shallow Water

Section 5.3 described how we couple the myriapod model with a shallow-water

simulation (Fig. 5.7). Fig. 6.3 shows stills from an animation in which a centipede

walks around obstacles toward food sources in shallow water. The water ripples

realistically under the legs of the myriapod, leaving a wake along the path.

One-way coupling of a myriapod’ legs with sand (Narain et al., 2010) or snow

(Stomakhin et al., 2013) would also generate realistic traces on such granular

surfaces. This would be an interesting topic for future work.

6.3 An Amphibious Centipede

Chapter 4 and 5 discussed the controllers we developed to allow our centipede

model for terrain locomotion and aquatic swimming. To make our simulated

myriapods amphibious, we straightforwardly combine the two systems by defining

new segment state, leg state, and body modes, as follows:

In Section 4.1, we defined two states for the rigid segments, that is supported

and unsupported. For swimming, we introduce another state, submerged. This

state is activated when the center of a rigid segment enters water and deactivated

when it exits water to ground. In Section 4.3, we presented the leg state machine

that is comprised of six leg states. We incorporate a switcher that monitors and

updates leg states according to a list of five rules. Here we introduce a new leg

state named TUCKED, it defines the set of joint angles for the legs, such that

they will tuck against the body when the myriapod is swimming in water. The
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Figure 6.3: A centipede walking in shallow water, attracted by food (green
spheres) and avoiding obstacles.
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Enter Body Mode When
In-air No legs ever enter STANCE state.

On-ground All segments’ legs can all enter STANCE state.
In-water All segments are in submerged state.

Air-to-ground The previous body mode is In-air and some but not all
segments’ legs can enter STANCE state.

Ground-to-water The previous body mode is On-ground and some but
not all segments are in submerged state.

Water-to-ground The previous body mode is In-water and some but not
all segments are out of submerged state.

Figure 6.4: Amphibious body mode rules.

update rule for the new leg state is as follows:

• When the rigid segment enters submerged state, its legs will enter the

TUCKED state;

• When the rigid segment exists submerged state, its legs will enter SF1 state.

To facilitate the transition of locomotion controllers, we define seven body modes

that indicate the physical state of the myriapod, which are monitored by the brain

in the head segment and updated accordingly by querying the states of the legs

and rigid segment. Fig. 6.4 tabulates the rules for determining each mode. The

body modes are used together with the brain modes, segment states, and leg states

to adjust locomotion controllers in high level and guide autonomous behaviors.

Land to Water: Fig. 6.5 shows the process of a virtual centipede walking down

the edge of a water pool and initiating swimming. First, lead by the head and

with the following mechanism, each segment will enter the water and the legs will

enter the TUCKED state. At the same time, the deformable segments will start

to morph to give the body a serpentine shape in preparation for swimming. As the

last segment enters the submerged state, the body mode switches from Ground-

to-water to In-water, and the swimming locomotion controller takes over.
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Figure 6.5: A centipede enters water from land.
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Figure 6.6: Centipede exits water to land.
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The propulsion and turning of the centipede are then achieved through the F-PS

controller, muscle actuation and hydrodynamics.

Water to Land: Fig. 6.6 shows the process of the virtual centipede exiting

water and crawling to the top of the partially submerged pillar at the center of

the pool. As the head segment exits water, the body mode switches to Water-

to-ground and the hybrid locomotion controller takes over. Each rigid segment

that exits water will inform its leg to enter the SF1 state and the rigid segment will

be governed kinematically by its Targeter to follow and balance during STANCE

states. At the same time, deformable segments that exit water will start to morph

back to their initial shapes. When the tail segment exists water, the body mode

is set back to On-ground and the centipede will be controlled entirely by the

decentralized locomotion controller.

Fig. 6.6 shows that our real-time simulation generates wakes in the water as

the centipede swims.
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CHAPTER 7

Conclusion

7.1 Summary

We have developed an A-Life framework for animating Myriapoda with lifelike

ambulation and anguilliform swimming in real time. To deal with the unique

body structure of Myriapoda relative to other arthropods, we devised a novel

physical body structure that is composed of alternating rigid and deformable body

segments. For legged locomotion, we devised a decentralized locomotion control

system composed of identical local leg controllers. The locomotion controller

demonstrates competence in various irregular terrains and over closed surface

objects. To generate realistic swimming locomotion, we enabled the deformable

body segments to be actively controlled and serve as muscles. We trained optimal

F-PS controllers to sustain a range of swimming speeds. To enhance the realism

of our real-time animations, we coupled our myriapod model with a shallow-water

simulation that generates realistic wakes as the creatures locomote in water.

In addition to their motor control system, our Myriapoda are equipped with

antennae for sensing food and obstacles, leading to interesting autonomous explo-

ration behaviors in complex terrestrial and aquatic environments. Animators can

take advantage of these high level behaviors to guide the locomotion path of our

simulated creatures.

On the one hand, during terrestrial locomotion the rigid segments of our

myriapod model with their attached legs serve as the active components that mo-
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tivate the animal while the deformable body segments respond passively. On the

other hand, once the animal starts swimming, the rigid segments become passive

while the deformable segments begin to actuate as active muscles. In the latter

mode, the simulated animal is amenable to the application of machine learning

algorithms to obtain optimized locomotion controllers, whereas the former mode

is more suitable for manually designed motor controllers, since the motor control

of the rigid body parts has fewer degrees of freedom and is simpler than controlling

deformable meshes.

Given its simplicity and physical realism, our use of efficient and highly robust

elastic components has the potential to supplant traditional mass-spring-damper

systems for simulating the deformable body structures of artificial animals (Miller,

1988; Tu and Terzopoulos, 1994; Ijspeert et al., 2007). There are various possible

ways to actuate such structures.

7.2 Limitations and Future Work

Coiled Body Shape: In nature, millipedes can coil up their bodies when

they feel threatened (Fig. 1.1 B). Centipedes can probe their head around and

turn their body suddenly when they attack. Myriapods achieve those agile and

irregular motions by actuating their segmental muscles in a highly collaborative

manner. In Chapter 5, our biomechanical model successfully swam forward with

emulated muscles. However, the actuation of the muscles are limited to only the

left and right side of the body segments (Fig. 5.1). To coil the body up, the

muscle actuation model must be extended to allow contraction and relaxation of

a segment in the top and bottom sides. Such extension will also allow the virtual

animal to steer vertically in the 3D aquatic environment. It will be interesting to

combine the actuation of the muscle segments on both sides and train for complex

swimming patterns under water.

59



Dynamic Lamé Parameters: In our simulation, we update the rest shapes

of the deformable segments to generate internal forces. However, the material

properties of the muscle remain unchanged. In real life, the Lamé parameter of a

muscle will vary as it exerts force. For example, the stiffness will increase when

a muscle bulges and decrease when it relaxes (Brozovich et al., 1988). Varying

Lamé parameters in a dynamic manner could potentially lead to more accurate

simulation results and stronger actuation forces. Also, the simulation time step

could be adaptive with the Lamé parameters, and larger stiffness would usually

require a smaller time step to guarantee numerical stability.

CPG for Swimming: The simplicity of the F-PS swimming controller allows us

to obtain optimal swimming parameters for a range of speeds. However, a trained

CPG that can perform optimal swimming for arbitrary speed is still the ideal

choice. The inherent advantages of CPG controllers include robustness to external

disturbances and smooth transition of the motion upon change of modulation

input (e.g., speed) (Si et al., 2014; Ijspeert, 2008). Traditionally, CPGs are trained

with an objective function that targets the global optimum. As a next step, we

would like to optimize it for all the speeds that it generates.

More Adaptive Behaviors: We have developed only simple myriapoda agents.

It would be a natural next step to enable communication between our currently

independent creatures. With proper local communication protocols, animations

of groups of millipedes could be procedurally generated. Predator/prey behavior

would be another interesting behavior to model. A fascinating objective would be

to animate a predator centipede and prey millipedes.

Other Body Shapes: The simulation framework that we developed for ani-

mating Myriapoda can be used as a substrate to build other artificial animals of

arbitrary body shape. With proper training algorithms such as genetic algorithm
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(Sims, 1994) and simulated annealing (Grzeszczuk and Terzopoulos, 1995), loco-

motion controllers can be obtained for those body shapes situated in the virtual

environment. Furthermore, the morphology of the animal can also be evolved in

order to obtain the most hydrodynamic body shapes.
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APPENDIX A

Deformable Finite Element Modeling and

Simulation

This appendix details our simulation of the deformable segments in our myriapod

model using the finite element method (FEM).

Φ

Figure A.1: Mapping of deformable object from initial shape to current shape.
The red triangle shows a discretized triangular element.

Let X be the material coordinates of a deformable body, and x(t) = φ(X, t) =

F(t)X+b(t) be the world coordinates (Fig. A.1). We discretize the material space

with a uniform tetrahedral mesh. In each tetrahedral element, the deformation

gradient F can be computed as

Fe = DsD
−1
m , (A.1)

62



where

Dm = (X4 −X1,X3 −X1,X2 −X1) (A.2)

are the edge vectors of the undeformed tetrahedron and

Ds = (x4 − x1,x3 − x1,x2 − x1) (A.3)

are the edge vectors of the deformed tetrahedron.

For hyperelastic material, we use the fixed corotational energy density function

Ψ = µ‖F−R‖2
F +

λ

2
(J − 1)2 (A.4)

= µ
∑
i

(σi − 1)2 +
λ

2
(J − 1)2, (A.5)

where λ and µ are Lamé parameters,1 J = det F is the determinant of F, R comes

from the polar decomposition F = RS, and σi are the singular values of F, which

we compute using the fast SVD method proposed by (McAdams et al., 2011).

The elastic forces on nodes are computed as

fi =
∑
e

V 0
e

∂Ψ(Fe)

∂xi
=
∑
e

V 0
e P

∂Fe

∂xi
, (A.6)

where V 0
e is the undeformed volume of tetrahedral element e, and P is the first

Piola-Kirchhoff stress, given by

P =
∂Ψ(F)

∂F
= 2µ(F−R) + λJ(J − 1)F−T . (A.7)

1In terms of Young’s modulus E and Poisson’s ratio ν, Lamé’s first parameter λ = Eν/(1 +
ν)(1− 2ν) and second parameter µ = E/2(1 + ν).
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The derivation of (A.7) is as follows:

δΨ = δ

(
µ

(∑
i

σ2
i − 2

∑
i

σi + 3

)
+
λ

2
(J − 1)2

)
(A.8)

= µ
(
δ
(
tr(FTF)

)
− 2δ(tr(S))

)
+ λ(J − 1)δJ (A.9)

= 2µ(F : δF− tr(δS)) + λ(J − 1)JF−T : δF, (A.10)

where the operators ‘tr’ and ‘:’ denote the trace (tr A =
∑

iAii) and double

contraction (A : B =
∑

i,j AijBij), respectively, and where

δF = δRS + RδS (A.11)

and

δS = RT δF−RT δRS. (A.12)

Now,

tr(δS) = tr(RT δF)− tr(RT δRS) (A.13)

= R : δF− (RT δR) : S (A.14)

= R : δF. (A.15)

For the boxed term, since RTR = I, we have

δ(RT )R + RT δR =
(
RT δR

)T
+ RT δR = 0. (A.16)

Obviously, RT δR is skew-symmetric, with S being symmetric, thus the boxed

term is zero. Thus,

δΨ = 2µF : δF− 2µR : δF + λ(J − 1)JF−T : δF (A.17)
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and
∂Ψ

∂F
: δF =

(
2µF− 2µR + λ(J − 1)JF−T

)
: δF. (A.18)

Since δF is arbitrary variation, (A.7) is obtained.

According to (A.6), the explicit force formula for each element can be written

as

[f e1 , f
e
2 , f

e
3 ] = V 0

e

∂Ψ(Fe)

∂[xe1,x
e
2,x

e
3]

= V 0
e PD−Tm , (A.19)

f e0 =
∂Ψ(Fe)

∂xe0
= −f e1 − f e2 − f e3 . (A.20)

The calculation of elastic forces on each mesh node must take into account the

contributions from each tetrahedral element; i.e.,

fEi =
∑
e,i∈e

f eie , (A.21)

where ie is the local index of node i in element e. The mass of each node is

calculated by averaging the mass over neighboring elements:

mi =
1

4

e∑
e,i∈e

ρV 0
e , (A.22)

where ρ is the density of the soft material.

We also introduce the damping force as

fDi = −γ
e∑

e,i∈e

V 0
e (vi −

1

4

4∑
k=1

vek), (A.23)

where ek is the index of node k of element e, and γ is the damping coefficient.

A semi-implicit time integration scheme is applied at each time step:

(I + ∆tM−1D)vn+1 = vn + ∆tM−1(fE + g + f), (A.24)
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xn+1 = xn + ∆tvn+1, (A.25)

where v is the nodal velocity vector, x is the nodal position vector, M is the

diagonal mass matrix assembled from (A.22), D is the damping matrix assembled

from (A.23), fE is the internal, elastic force vector, g denotes gravity, and f are

externally applied forces. In our simulations, we use a time step of ∆t = 1/3000

sec.

For the deformable segments in our myriapod body model, we set the density of

the hyperelastic material to ρ = 1.0, its Young’s modulus E = 4000, its Poisson’s

ratio ν = 0.4, and the damping coefficient γ = 50.
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APPENDIX B

Water Simulation

In this Appendix, we first derive the Shallow Water Equations (SWE) from the

Navier-Stokes equations. Then, we present the MAC-grid-based numerical scheme

for solving the SWE.

The Navier-Stokes Equations

The incompressible Navier-Stokes equations are a set of partial differential equa-

tions (PDEs) that govern the mechanics of incompressible fluid flow. They can

be drived from the laws of mass conservation and linear momentum conservation.

For mass conservation,

d

dt

∫
Ω

ρ dV = −
∫
∂Ω

ρ(v · n) dA, (B.1)

where ρ is the density of fluid, Ω is an arbitrary element volume, v = (u, v, w) is

fluid velocity and n is the outward unit normal vector on ∂Ω, and the conservation

of linear momentum (B.5). To derive the strong form, we assume continuity and

apply Gauss’ Theorem to the right hand side of (B.1), obtaining

d

dt

∫
Ω

ρ dV = −
∫

Ω

∇ · (ρv) dV. (B.2)

Since Ω is arbitrary,
∂ρ

∂t
+∇ · (ρv) = 0. (B.3)
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In most applications, the fluid density can be assumed constant, thus yielding the

first Navier-Stokes equation from (B.3), which states that v is divergence free:

∇ · v = 0. (B.4)

The weak form of linear momentum conservation states that

d

dt

∫
Ω

ρv dV +

∫
∂Ω

(ρv)v · n dA =

∫
Ω

ρg dV +

∫
∂Ω

Tn dA, (B.5)

where g is gravity and T is the Cauchy stress tensor. Applying Gauss’ Theorem

again gives

d

dt

∫
Ω

ρv dV +

∫
Ω

∇ · (ρvv) dV +

∫
Ω

ρg dV +

∫
Ω

∇ ·T dV. (B.6)

Assuming smoothness of ρv and since Ω is arbitrary, we obtain

∂

∂t
(ρv) +∇ · (ρvv) = ρg +∇ ·T. (B.7)

For incompressible isotropic Newtonian fluids, T = −pI + µ∇v, where µ is the

viscosity tensor. Inserting this into (B.7) yields:

∂v

∂t
+∇ · (vv) +

1

ρ
∇p = ρg +

µ

ρ
∇ · ∇v. (B.8)

Expanding the second term into (∇·v)v +v · (∇v) and applying (B.4), we obtain

the second Navier-Stokes equation:

∂v

∂t
+ v · ∇v +

1

ρ
∇p = ρg +

µ

ρ
∇ · ∇v. (B.9)
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For water, viscosity µ = 0, and (B.9) simplifies to

∂v

∂t
+ v · ∇v +

1

ρ
∇p = ρg. (B.10)

Note that Dv
Dt

= ∂v
∂t

+ v · ∇v is the material derivative of the velocity field.

The Navier-Stokes equations are therefore written as follows:

∇ · v = 0; (B.11)

∂v

∂t
+ v · ∇v +

1

ρ
∇p = ρg. (B.12)

The Shallow Water Equations

The Shallow Water Model assumes that the fluid depth is very small compared

to the horizontal wave length. For shallow water, the vertical velocity is ignored

and the Navier-Stokes equations are reduced to 2D, solving for the horizontal

components of the water flow velocity field and a height field that represents

the surface of the fluid. To obtain the SWE, the first assumption is hydrostatic

pressure

p(x, z) = ρgh(x, z), (B.13)

where h is the height field of the fluid. Substituting (B.13) into (B.12), we obtain

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= −g∂h

∂x
and

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= −g∂h

∂z
, (B.14)

which governs the update of the horizontal velocity field (u,w). Equation (B.11)

must also be satisfied:
∂v

∂y
= −∂u

∂x
− ∂w

∂z
. (B.15)

69



Because u and w do not depend on y, ∂v/∂y is constant vertically. With Dirichlet

boundary condition v · n = 0 at the static bottom surface,1

v(x, b, z) = u
∂b

∂x
+ w

∂b

∂z
. (B.16)

From (B.15) and (B.16), we can derive that

v(x, y, z) = u
∂b

∂x
+ w

∂b

∂z
−
(
∂u

∂x
+
∂w

∂z

)
(y − b). (B.17)

Such a linear v satisfies both (B.4) and the Dirichlet boundary condition at the

bottom.

To derive the update equation for the height field, note that φ(x, y, z) = y −

h(x, z) is the implicit surface function for the free surface. We know that the free

surface will be advected by the fluid velocity:

Dφ

Dt
= 0→ ∂h

∂t
+ u

∂h

∂x
+ w

∂h

∂z
= v. (B.18)

Substituting (B.17) into (B.18), we obtain

∂h

∂t
+ u

∂(h− b)
∂x

+ w
∂(h− b)
∂z

= −(h− b)
(
∂u

∂x
+
∂w

∂z

)
. (B.19)

Since ∂b/∂t = 0, we can solve for d = h − b and reconstruct h from b + d. For a

flat ground b = 0, and (B.19) can be further simplified to

∂h

∂t
+
∂(uh)

∂x
+
∂(wh)

∂z
= 0. (B.20)

The physical interpretation of (B.20) is the conservation of the total fluid volume.

1The bottom terrain surface can be represented as b(x, z), and its normal is n(x, z) =
(−∂b/∂x, 1,−∂b/∂z).
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x

z

Figure B.1: The two-dimensional MAC grid for solving the SWE. The height data
are stored at the centers of the cells, while the velocity data, u and w, are stored
at the cell faces.

Solving the SWE on a MAC Grid

There are many possible methods for discretizing the SWE, each with its own

pros and cons. We adopt the method described by Bridson (2008), which uses

a two-dimensional staggered Marker-And-Cell (MAC) grid and a time-splitting

approach. The MAC grid (Layton and van de Panne, 2002) is a staggered grid

where the different variables are stored at different locations. For our shallow

water simulation, we store the discrete height field hi,j at the centers of cells and

split the two components of v on the faces of cells. The x axis component u

is sampled at the centers of the vertical cell faces, such as ui+ 1
2
,j between cell

(i, j) and cell (i + 1, j). The z axis component v is sampled at the centers of the

horizontal cell faces, such as wi,j+ 1
2

between cell (i, j) and cell (i, j + 1).

The advantage of the MAC grid over a conventional grid is that the central

difference does not suffer from the non-trivial null-space problem. Also, compared
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to either forward or backward differences on normal grids, the central difference

on the staggered grid is unbiased and second-order accurate.

Rewriting (B.14) and (B.19) using the material derivative D
Dt

= ∂
∂t

+u ∂
∂x

+w ∂
∂z

,

and assume that the bottom b(x, z) is constant, we have

Du

Dt
= −g∂h

∂x
,

Dw

Dt
= −g∂h

∂z
,

Dh

Dt
= −h

(
∂u

∂x
+
∂w

∂z

)
.

(B.21)

We use the time-splitting approach to handle advection first, generating interme-

diate quantities u∗, w∗, and h∗:

u∗ = advect(vn,∆t, un),

w∗ = advect(vn,∆t, wn),

h∗ = advect(vn,∆t, hn).

(B.22)

Then, we update the velocities further with the pressure on the right hand side.

On the MAC grid (Fig. B.1), this is written as

un+1
i+ 1

2
,j

= u∗
i+ 1

2
,j
− g

h∗i+1,j − h∗i,j
∆x

∆t,

wn+1
i,j+ 1

2

= w∗
i,j+ 1

2
− g

h∗i,j+1 − h∗i,j
∆z

∆t.

(B.23)

Finally, we modify the height using the divergence of the new u and w fields such

that total water volume is preserved:

hn+1
i,j = h∗i,j

(
1−

(
un+1
i+ 1

2
,j
− un+1

i− 1
2
,j

∆x
+
wn+1
i,j+ 1

2

− un+1
i,j− 1

2

∆z

)
∆t

)
. (B.24)

For advection, we use the unconditionally stable semi-Lagrangian method (Stam,

1999) together with bilinear interpolation over the MAC grid. The semi-Lagrangian
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method solves the advection equation Dq/Dt = 0 by tracing imaginary particles

that carry the physical quantity q (i.e., u, w, or h) along its trajectory in time:

q∗(x, z) = qn(xp, zp), (B.25)

where (x, z) is the position of the particle in the current time step while (xp, zp)

is the position of the particle in the previous time step. A simple approximation

of (xp, zp) would be one forward Euler step:

(xp, zp) = (x, z)− (un(x, z), wn(x, z))∆t. (B.26)

A second-order Runge-Kutta method can improve accuracy by using velocity at

middle point (xm, zm):

(xm, zm) = (x, z)− 1

2
(un(x, z), wn(x, z))∆t,

(xp, zp) = (xm, zm)− 1

2
(un(xm, zm), wn(xm, zm))∆t.

(B.27)

Although we solve only for (x, z) at the cell and face centers, (xm, zm) and (xp, zp)

can be arbitrary and they are approximated by bilinear interpolation from the

discretized grid values. Finally, we must handle different boundary conditions for

those (x, z) on the boundary of the water domain.

Static Boundary Conditions

In this section we discuss the handling of static boundaries. Section 5.3 discusses

the coupling of the shallow water to the body of the swimming creature. In our

simulation, we indicate boundaries by setting a Solid flag in the cells of the

MAC grid. We support both the surrounding boundaries and immersed objects

as static boundaries. Two types of boundary conditions are implemented for

our simulation—reflecting boundaries can generate natural reflection of incoming
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waves, whereas absorbing boundaries give the illusion of open water of infinite

extent. We use the absorbing boundary condition for the box of water that moves

together with the creature during simulation.

Reflecting boundary conditions are achieved by setting water velocities at the

boundary to have a zero normal component:

(u,w)b · nb = 0. (B.28)

For the walls of a rectangle pool, this is as simple as setting u = 0 for the cells

forming the left and right wall and w = 0 for the cells forming the front and back

wall. The other boundary condition for the height field is traditionally set by

mirroring the height of the water along the boundary line:

(
∂h

∂x
,
∂h

∂z

)
· nb = 0. (B.29)

We modified this by setting it to a constant height hb = ht representing our target

water level. This achieves the same reflection result as mirroring and it keeps the

total water surface level around the target value, eliminating the possibility of

overflow or depletion of the pool water level due to the accumulation of numerical

errors.

Absorbing boundaries are more challenging. For absorbing boundary condi-

tions, we implemented the first-order Higdon (1994) boundary condition

(
∂

∂t
+
√
gh

∂

∂x

)
h = 0. (B.30)

We apply this absorbing boundary condition over a box centered around our

swimming creature. Without loss of generality, for the boundary cells at the left
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side of the box (i = 0), the height and velocity are set to

hn+1
0,j =

∆xhn0,j + ∆t
√
ghn+1

1,j hn+1
1,j

∆x+ ∆t
√
ghn+1

1,j

,

un+1
1
2
,j

= un1
2
,j
− g

hn+1
1,j − hn+1

0,j

∆x
∆t,

wn+1
0,j+ 1

2

= 0.

(B.31)

The update of u is the same as (B.23) to let waves flow past the boundary in the

x direction.

With absorbing boundaries, we can translate the fluid simulation grid together

with the creature during simulation. To this end, we monitor the difference of the

grid center and the creature center. When the difference along the x or z axes

exceeds the cell dimension ∆x or ∆z, we shift the grid by one cell in the respective

direction. We shift at most one cell at a time at the end of the simulation loop

(see Appendix D). In practice, if we shift, e.g., in x, we copy data from column

i + 1 to column i for all columns but the last. We simply retain the data of the

last column and, in next iteration, it serves as the right boundary cell and will be

updated accordingly by (B.31).

In our system, the update for the shallow water simulation iterates at 500 fps,

for a grid of 200 × 200 resolution that contains the anguilliform swimmer in a

80× 80 area, and it can move as much as 200 units of distance per second, which

suffices to keep up with the swimmer’s fastest swimming speed.
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APPENDIX C

Optimization of Locomotion Control

To gain more insight into the mapping of the control space to locomotion per-

formance, we defined measures of locomotion performance and did a quantitative

analysis. We measured two values in our locomotion experiments—the first is the

linear speed vs and the second value is the energy consumption rate re, calculated

as the total amount of work the body exerted against water in unit time to sustain

its speed. The total work against water over time ∆t is

W = ∆t

∫
S

−f(s) · v(s) ds. (C.1)

With f(s) as defined in (5.2) and re = W/∆t, we obtain

re =

∫
S

ρw max[0,n · v](n · v)2 ds. (C.2)

We approximate re in our simulator by calculating re of all exposed triangle

surfaces and summing them. Fig. C.1 shows our experiment over six anguilliform

swimmers with a combination of two different f and three different ps. Several

observations can be made from the chart of vs and re over time. First, as the

anguilliform swimmer oscillates its body during locomotion, vs and re also oscillate

at the same frequency. Second, there are two stages of locomotion—a ramp-up

stage and a stable-speed stage. For our subsequent experiments, we measure

only during the stable-speed stage to obtain stabilized vs and re. Finally, we can

see that although the green swimmer locomotes fastest, the red one is the real
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Time

Figure C.1: Measuring the speed and rec of different anguilliform swimmers during
ramp-up.

champion in terms of converting consumed energy into kinetic energy. Kern et al.

(2008) used this conversion rate of consumed energy toward kinetic energy as the

optimization goal. While this makes perfect sense if our goal is to find the one

best set of parameters for our anguilliform swimmer, it is not really useful for a

real eel. A real eel would locomote at different speeds when performing different

tasks: It could be swimming at a moderate speed when foraging and suddenly

speed up to chase a spotted prey; after catching and eating its prey, it might

then swim slowly while digesting. Since our simulated animals are autonomous

and will perform the aforementioned tasks with various speeds, we would like to

obtain the set of parameters that yield optimal energy efficiency for a range of

speeds, instead of just one global optimum.

Fig. C.2 shows the optimization we performed over a coarse grid of f -ps

parameter pairs. We run 10 anguilliform swimmers in parallel. For each, its
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Time

Time

Figure C.2: Heuristic training over 2D parameter space of frequency and phase-
shift, the result shown here is a coarse sampling of the parameter space.

swimming controller will be initialized with an (f, ps) parameter pair from the task

pool. After reaching stable the stage, it will be evaluated for its vs and re, then

assigned a new parameter pair. For our high resolution (200 by 200) results shown

in Fig. C.3 and Fig. C.4, the experiment took less than 2 hours to run. There are

two interesting observations from Figs. C.3 and C.4. First, both profiles share the

same hill shape, with the energy profile’s shape having a larger slope. As shown

in Fig. C.5(C), re and vs share a quadratic relationship. Second, for the majority

of the range of ps, the speed increases as frequency increase, however, when ps

become really small(0.10π–0.18π), the speed decreases as frequency continues to

increase. This extreme case happens probably due to the fact that when ps is

smaller than 0.18π, the body cannot even form a complete wave, but only a large

curvature that is hydrodynamically inefficient. Notice that the body is comprised

of 11 deformable segments, so 0.18π is just sufficient to form a complete wave of

2π.

After obtaining the profile of stable speed and re over the f -ps control space,

we can get the most energy efficient control parameters that sustain each speed.

In Fig. C.5(A), we first obtain the set of f -ps parameter pairs (green dots) that

achieve certain speed, then we locate their energy curve in (B) and find the lowest

energy point (red) in (D). (C) shows the quadratic relationship between the re
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Figure C.3: Stable speed profile over f -ps parameter space.

Figure C.4: Energy consumption rate profile over f-ps parameter space.
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Figure C.5: Optimizing f -ps parameters for each speed.

and the stable speed; essentially, we are selecting the red points that represent

the optimal controllers. To our surprise, the range of optimal phase shift is very

small (0.28π–0.33π). This result matches and explains the observations Grillner

(1974) made from his neurological experiments on lampreys. A nearly constant

phase shift for the segmental oscillators actually achieves optimal energy efficiency

toward all locomotion speeds. The optimal set of (f, ps) form a line and through

regression we can obtain its analytical expression to sample for any speed in the

range.

We use this result when setting the speed for our autonomous anguilliform

swimmer in Section 5.5.
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APPENDIX D

The Simulation Loop

In this Appendix, we detail the update procedures of our simulation. For our

object oriented implementation, each class has its own update procedure and they

are organized in a hierarchy. For example, the update function of the world class

will trigger the update of all registered objects, including the virtual myriapod and

the terrain with shallow water. Similarly, the update of the myriapod will trigger

the updates of its body parts, such as the antennae, head, and body segments.

The update procedures for the body parts usually contain two components, a

control update and a physics update. The updates of different objects such as

the shallow water and individual myriapods, can be parallelized using OpenMP

within the loop of world ’s update procedure.

Update of the Antenna

1. The rotation angles for the root link are updated with a constant rotation

velocity toward the target rotations;

2. The rotation angles for the remaining links are updated by sampling from a

wave function;

3. If a collision with an obstacle occurs, a retraction phase is triggered.

Update of the Head

1. The sensory information and internal states are processed and, if necessary,

the brain and body modes are switched. Sections 4.4 and 6.3 list the different
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brain and body modes;

2. If the body mode is In-air or Air-to-ground, the segment’s position and

orientation are updated via rigid-body dynamics simulation in air;

3. If the body mode is In-water, the segment’s position and orientation are

updated via rigid-body dynamics in water;

4. If the body mode is Water-to-ground or On-ground, update the segment

kinematically as follows:

(a) The Balancer adjusts the orientation and elevation of the segment to keep

it balanced;

(b) The head segment’s position and orientation are updated according to

the brain’s mode. The head always moves in the direction in which it is

pointing and its orientation is updated to execute a turn.

5. If the body mode is Ground-to-water, the segment is updated both kine-

matically to lead the body into water and dynamically to begin forming the

serpentine body shape.

Update of the Rigid Segments

1. If the segment is in the unsupported or submerged state, it will be updated

dynamically with or without water forces depending on its location.

2. If the segment is in the supported state, it will be updated kinematically, as

follows:

(a) The Balancer will adjust the orientation and elevation of the segment to

keep it balanced;

(b) The Follower will adjust the position and orientation of the segment. The

leg root positions are updated accordingly.
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Update of the Legs

1. The Switcher checks the leg states and updates them accordingly;

2. If a leg is in the STANCE state, the IK solver (Section 3.4) computes the leg

rotation angles from the tip and root position of the leg;

3. Otherwise, forward kinematics will update the leg rotations and tip positions

towards the target poses of that state.

Update of the Deformable Segments

1. The deformable segments are always dynamically updated via the elasticity

simulation (Appendix A) and the coupling method described in Section 3.3;

2. When the entire body is out of water, it deforms according to the simulation

passively;

3. When the entire body is in water, the rest shapes of the deformable segments

will be updated by the muscle controller to actuate the body for swimming;

4. When a segment is in water but the body mode is still Ground-to-water,

the rest shape of the deformable segments will be morphed to prepare for

swimming control.

Update of the Shallow Water

1. The velocity and height are advected using the semi-Lagrangian method.

2. The velocity field is updated according to the hydrostatic pressure.

3. The height field is updated by according to the velocity field to preserve volume.

4. If rain simulation is on, rain drops are added to the water height map.

5. The heights and velocities at cells that comprise the static boundary are up-

dated depending on the selected boundary condition, either reflective or ab-

sorbing.
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6. Cells occupied by the swimming creature are identified and updated to achieve

coupling.

7. If enabled, the entire simulation grid is translated to keep the moving creature

centered.
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APPENDIX E

Rendering

We use the open-source POV-Ray software to render our simulations. The rigid

segments and legs of the physical model are rendered as rigid primitives (cubes,

spheres, cylinders). The deformable segments are rendered as translucent jellies

(Fig. 1.3(C) and Fig. 3.1). We output the position and orientation of those prim-

itives into a .pov file that can be included by a POV-Ray scene script to render.

The scene script contains definitions of the camera, illumination, background,

and material properties of all the geometric entities. We output each deformable

segment as a mesh2 object that contains the surface triangle mesh of the segment,

along with vertex positions and normals.

For the textured myriapod mesh models shown in Fig. 1.3(A) and Fig. 6.2,

some extra work is needed to connect the physics output to the surface mesh. We

purchased the models from TurboSquid and rigged a skeleton that represents the

biomechanical model. After attaching the rig to the surface mesh, we can apply

basic affine transformations, such as translation and rotation, to nodes on the

rig. The geometric parameters of the mesh model, such as segment size and leg

length, are calibrated and set in the simulation. Per-frame data, including rigid

segment position, orientation, leg rotation angles, etc., are exported at 30 frames

per-second as .mel Maya script files to set keyframes of the rigged model. Maya

can then output the correctly rigged model as .obj files which can be used by

Pov-ray to render together with other objects.

The graphs in Fig. C.1 and Fig. C.5 are also rendered by POV-Ray, by
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representing the data points as spheres. The vector graphics in this thesis are

rendered using Inkscape (Fig. B.1) and Google Drawings (Fig. 3.4), both of which

are free software.

We rendered our shallow water model with caustics by casting millions of pho-

tons into the scene and having the water reflecting and refracting those photons.

It is a nontrivial trial-and-error process to set the correct rendering parameters

such that the water surface will look natural. Photon mapping tremendously

increases the rendering time required to achieve a reasonable output speed for our

rendering. We therefore compromised on the total number of photons cast and the

level of tracing that we perform. Our final animations are rendered using about

500 million photons with a max trace level of 4. It takes around 5–12 minutes

to render one frame of 1600 × 1200 pixels on a single core of our 3.2 GHz Intel

Core i7-3930k computer. The rendering speed varies greatly depending on the

projected area of water pool in the image.

For the animation shown in Fig. 5.12(B), we implemented a stable camera-

following mechanism in our simulator to mitigate high-frequency shaking of the

view. We store a position Pcam and heading Hcam for our camera. Position Pcam

is initialized to be distance d behind the center P of the creature’s body, and

Hcam is initialized to be the heading H of the creature. As the creature swims

autonomously, we monitor the difference between Hcam and H. If the angular

difference exceeds a threshold ατ , we turn the camera swiftly toward H, which

mitigates the transfer to the camera of high-frequency oscillations in H. The cam-

era position Pcam is constantly updated by Pcam += ∆tHcamk(d− |P−Pcam|),

which updates Pcam as if a spring with constant k (we use k = 10 in our simulation)

drags it in the direction of Hcam. Finally, we raise the camera by adding a positive

displacement to Pcam along the vertical axis and adding a negative vertical vector

to Hcam.
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