
UNIVERSITY OF CALIFORNIA

Los Angeles

Applying Medical Language Models to Medical Image Analysis

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Danfeng Guo

2024



© Copyright by

Danfeng Guo

2024



ABSTRACT OF THE DISSERTATION
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Medical image analysis powered by deep learning computer vision models has achieved

significant advancements in the past decade. Deep learning models have demonstrated

remarkable capabilities in a wide range of tasks, including medical image classification,

detection, and segmentation. However, the limited availability of annotations has become

a persistent challenge. Annotating medical images requires specialized professional

knowledge, making it a costly process. This dissertation aims to relieve the reliance

on medical image annotations by leveraging medical reports directly, which are usually

associated with corresponding medical images and readily available. This thesis delves

into the application of vision-language models, including large vision-language models,

for enhancing medical image analysis. Existing vision-language models are modified and

applied for three critical tasks: disease diagnosis, disease segmentation and medical report

generation. In particular, the main contributions include: (1) proposing two prompting

strategies to improve the accuracy of disease diagnosis through visual question answering

in large vision language models; (2) introducing a disease segmentation model using

medical reports as weak supervision; (3) evaluating medical large vision-language models

in terms of the hallucination in generated reports across multiple complex diseases and

applying existing techniques to mitigate the diagnostic errors in generated reports.
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CHAPTER 1

Introduction

Powered by deep learning, computer vision has developed rapidly in the past decade.

Deep learning models have achieved state-of-the-art performance in many computer vision

tasks such as image classification, segmentation and object detection. Inspired by these

successes in mainstream computer vision, there has been a surge in applying these models

to specialized fields, such as medical image analysis. Medical image analysis usually refers

to identifying or predicting the abnormalities in medical scans (CT, X-ray, MRI, etc). It

includes tasks such as detection, classification, segmentation, risk prediction, and report

generation. Many deep learning computer vision models have been modified, applied to

medical images, and have achieved excellent performance (Imran et al., 2020; Guo and

Terzopoulos, 2021).

The development of deep learning models for medical image analysis is hindered by

the limited availability of annotations. Most of these models are fully-supervised and

rely heavily on either image-level or pixel-level annotations for training. Unfortunately,

annotating medical images is an expensive and labor-intensive process because it requires

a substantial level of knowledge/expertise plus tedious labor. Among all tasks, medical

image segmentation requires the greatest effort because it demands annotations down to

the pixel level. This relative scarcity of annotated data prevents supervised models from

growing larger and performing better. This can also undermine the generalizability of

models and succumb to overfitting, which is fatal given that medical AIs are ultimately

intended to be deployed across hospitals and clinics for diagnostic purposes.

Numerous attempts have been made to address this problem. They mainly fall into

three categories:
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• Data augmentation: The simplest strategy is to augment the input images by

applying transformations to them, such as flipping, rotation, noising, etc. Besides

image manipulation, image generation models such as GANs (Goodfellow et al.,

2014) have been applied to generate synthetic medical images (Skandarani et al.,

2021), as have diffusion models (Kazerouni et al., 2023).

• Few-shot/unsupervised learning: Few-shot learning models need only a small quan-

tity of annotations to train. They usually train a supervised model using limited

labels, then use the trained model to generate pseudo labels for the unlabeled data,

and finally both the real and pseudo labeled data are used to train the final models

(Jiao et al., 2023). Unsupervised learning uses only medical images, without any

labels. It usually involves clustering pixels using crafted pixel features (Abdal et al.,

2021; Hamilton et al., 2022).

• Weakly-supervised learning: Instead of using the exact pixel-level annotations for

the segmentation ROIs, one can use coarse annotations such as rough contours

(Liu et al., 2022), boxes (Tian et al., 2021), polygons (Wang et al., 2020), points

(Bearman et al., 2015), or image-level tags (Selvaraju et al., 2017; Fan et al., 2020).

These coarse annotations require less effort to create. In the medical area, most

weakly-supervised models are for medical image segmentation.

Additionally, models trained using unsupervised and weakly-supervised learning can also

be used to generate new labels. The generated labels are combined with real labels for

training, which further improves model performance (Xu et al., 2019).

In recent years, the unification of computer vision and natural language processing has

become a leading trend of AI research. Sophisticated Vision-Language (VL) models are

able to perform VL tasks such as Image Captioning (IC) and Visual Question Answering

(VQA) (Lu et al., 2022; Wang et al., 2022c). They fuse visual features and text features, and

use cross-attention mechanisms to select the related visual and text features. Furthermore,

the recently popular pretrained Large Language Models (LLMs) (Radford et al., 2019;

OpenAI, 2022; OpenAI et al., 2023; Wu et al., 2023a; Chiang et al., 2023) have expanded

2



to multimodal domains. Large Vision-Language Models (LVLMs) can perform various

tasks such as captioning, summarizing and question answering (Liu et al., 2023c).

The success of VL models, including LVLMs, provide insights for medical image

analysis research, particularly in how reliance on human produced annotations can be

mitigated—by leveraging medical reports. Authored by clinicians, medical reports contain

the key findings and diagnoses corresponding to medical images. Medical reports are

widely available clinically because a medical image is usually associated with a medical

report. They can be fetched effortlessly, and the text can be cleaned automatically. The

textual features in medical reports can automatically be linked to visual features in

medical images and used to train models to perform medical diagnosis tasks. This can

significantly increase the quantity of training data, thus reducing the need for human

annotation.

Technically, VL models can perform medical image classification tasks through con-

trastive learning or VQA. The contrastive learning method classifies an image by selecting

the category word whose features are the most similar to the input image features. VQA

returns “Yes” or “No” answers to questions regarding the presence of a specific disease in

an image. VL models can also generate captions (reports) for medical images that also

contain the classification (diagnosis) of diseases. These approaches could effectively serve

as an alternative to traditional medical image classification or detection tasks. Moreover,

medical reports can provide weak supervision for training medical image segmentation

models (Xu et al., 2022).

1.1 Thesis Scope and Contributions

This thesis focuses on the usage of medical reports and medical VL models on three

medical image analysis tasks: medical image classification, medical image segmentation,

and medical report generation. For medical image classification, we focus on the diagnostic

VQA accuracy of LVLMs and improve performance through prompting. For medical

image segmentation, we propose a weakly-supervised learning framework to train the

3



medical image model only with medical reports. For medical report generation, we

examine the diagnostic accuracy of the reports generated by medical LVLM and apply

existing methods to mitigate its hallucination.

1.1.1 Medical Image Classification with Vision-Language Models

One prevalent approach for leveraging language models in the image classification task

is through contrastive learning. VL models that are pretrained using the contrastive

learning strategy can perform zero-shot classification (Radford et al., 2021). Contrastive

learning enables models to align the visual and textual features. To classify an image, the

model can assess the image alongside category-specific words and compare the similarity

scores to make a classification. However, models trained using contrastive learning easily

fail to identify minority classes (rare diseases), because the infrequent occurrence of these

minority classes in the training corpus makes it difficult for the models to learn their

features.

In recent years, research on LLMs has yielded astonishing achievements. Language

models with billions of parameters have demonstrated excellent capabilities in a wide

range of application scenarios (OpenAI, 2022; OpenAI et al., 2023; Chiang et al., 2023).

The success of LLMs quickly extended to the VL domain. The visual features can be

integrated into LLMs through training an adapter that projects visual features into those

that can be interpreted by LLMs (Li et al., 2023b; Zhang et al., 2023b; Liu et al., 2023c).

Medical image classification can be approached through medical VQA of LVLMs. The

users pose questions regarding the presence of an object and the LVLMs respond based

on their understanding of the images. VQA has become a basic skill of LVLMs and VQA

accuracy serves as a test metric for most models (Li et al., 2023b; Zhang et al., 2023b;

Zhu et al., 2023; Liu et al., 2023c). LVLMs have already been pretrained on medical

datasets (Li et al., 2023a; Liu et al., 2023d; Singhal et al., 2023) and the models have

been tested by medical VQA tasks (Lau et al., 2018; He et al., 2020). However, in existing

datasets, a large portion of the questions involve simple questions such as “what is the
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modality of this image” or “what is the organ/tissue in this image”. Medical LVLMs have

yet to be thoroughly evaluated on VQA accuracy across complex diseases. Additionally,

general VQA models are usually tested by the commonly known accuracy, which is the

percentage of correctly answered questions. However, this is not suitable for medical VQA

models, because they usually suffer from the data imbalance problem, which involves

many minority diseases. Medical image classification metrics, such as the Precision, Recall,

and F1, are more suitable for the evaluation of medical VQA models.

Moreover, for medical LVLMs, the problem of data imbalance is more severe, exacer-

bated by the fact that many diseases are minority categories in medical datasets and the

models are trained on large-scale data. Models may easily fail to learn the features of

less common diseases. Addressing data bias typically involves strategies like including

more data with better quality. However, given the scarcity of medical data, significantly

enlarging the dataset may not be feasible. Traditional models tend to re-sample the

data such that the positive and negative cases are relatively balanced. However, this

method poses challenges when the data involves multiple categories of disease. In addition,

re-sampling may not align well with the training needs of LLMs, which generally requires

a large amount of data to train. All these problems highlight the need of a cost-effective

approach to navigate the problem of minority categories in datasets.

There are several strategies to enhance the question answering of LLMs/LVLMs.

Examples include chain-of-thought prompting (Zheng et al., 2023), self-consistency (Wang

et al., 2023), and retrival-based augmentation (Caffagni et al., 2024). All these methods

involve fine-tuning the models, which is expensive. Training-free methods to improve the

VQA accuracy are desirable.

The crux of our study resides in the VQA of medical LVLM. An existing medical

LVLM, LLaVA-Med (Li et al., 2023a), is tested for chest X-ray VQA across 5 categories

of diseases. The results show that the model has low accuracy especially on minority

diseases. To enhance the VQA accuracy, we propose two prompting strategies. The

first involves enriching prompts with detailed descriptions of the queried disease. The

descriptions include how the queried disease is defined and how it appears in images. The
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second involves introducing an auxiliary weak-learner model as another agent. We train a

small image classifier and fine-tune it to identify negative images accurately. Then, the

negative predictions of this classifier are appended to the prompt as a reference for the

LVLM. In summary, our contribution includes

1. We test LLaVA-Med in terms of diagnostic accuracy across 5 categories of diseases

and show that it suffers from severe hallucination.

2. We improve the VQA accuracy by prompting the model with detailed descriptions

of diseases.

3. We introduce a low-cost weak learner model as a reference for LLaVA-Med, and

this effectively reduces the false positive (FP) answers.

We run our tests on the MIMIC-CXR-JPG (Goldberger et al., 2000) and Chexpert (Irvin

et al., 2019) datasets. The results show that our prompt strategies improve the F1

score significantly on most disease categories (highest +0.27). We also show that our

weak-learner-prompting strategy is applicable to the general domain. It reduces the false

negative predictions of general domain LVLMs and improves the Recall by around 7% on

POPE metrics (Li et al., 2023e).

Lastly, we train a traditional VL model on medical images and reports using contrastive

learning, then test its performance on the medical image classification task. The pretrained

VL model also serves as the backbone of our medical image segmentation model (introduced

in Section 4.1).

1.1.2 Medical Image Segmentation with Language Models

As stated previously, annotation for medical image segmentation tasks is the most

expensive among all medical image annotations because it demands pixel-level labels. An

approach to addressing this problem is weakly supervised learning. It uses only coarse

annotations: rough contours (Liu et al., 2022), boxes (Tian et al., 2021), points (Bearman

et al., 2015), or image-level tags (Selvaraju et al., 2017; Fan et al., 2020). Semi-supervised
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segmentation models use some portion of labeled data combined with unlabeled data (Lai

et al., 2021). While these approaches mitigate annotation cost, medical image segmentation

models have yet to be liberated from their annotation needs.

For common object segmentation, the prevalent approach to leveraging text as weak

supervision is to train the VL models by contrastive learning that aligns the visual features

with the textual features. Then, the visual encoder scans through the image to identify

the regions/patches whose features are highly similar to those of the text descriptions

(e.g., “a black cat”). Finally, the selected regions/patches may be processed to obtain

refined ROI boundaries. Works of this type include Li et al. (2022a), Strudel et al. (2022),

Mukhoti et al. (2022), Yi et al. (2023), Ren et al. (2023), and Xu et al. (2023). A mask

generator can also be trained such that the masked visual features are closely matched

with text features (Liang et al., 2023; Lai, 2024). The aforecited efforts cast light on how

language models can be leveraged in the medical image segmentation task. To train a

medical image segmentation model, one can link regional features to the corresponding

statements in reports (e.g., “tumor found in lower left lung”).

However, there are difficulties in applying these methods to medical image segmentation;

one being that the identification of most diseases requires not only regional but also global

information. For example, the diagnosis of Cardiomegaly requires identifying the heart

and assessing its size relative to the chest. This cannot be done by merely comparing

patch features. Moreover, existing training schemes fail to deal with normal, negative

cases. For a normal image, no segmentation should be generated, so the VL models have

no local features with which to align. Hence, current text-supervised image segmentation

strategies, which are often image-patch-based, should be revisited and modified before

they can successfully serve the purposes of medical image segmentation.

To overcome the aforementioned difficulties, we propose a novel strategy for text-

supervised medical image segmentation. We utilize a medical language model pretrained

with VL contrastive learning. The model encodes medical reports such that the encoded

features are aligned with their corresponding medical image features. In the training

stage, we use a positive and a negative prompt to guide the training. The visual encoder

7



learns to extract image features related to the positive prompt (e.g., “tumor is seen.”).

The visual decoder learns to generate a filtering mask that is applied to the original image

such that no salient features can be extracted, and the new image is aligned with the

negative prompt (e.g., “no tumor.”). The training is weakly-supervised, merely with

medical reports and images, without any segmentation annotations. We test our model

on the Chexlocalize (Saporta et al., 2022) and SIIM-ACR (Zawacki et al., 2019) datasets.

For the zero-shot segmentation of atelectasis, cardiomegaly, edema, pleural effusion, and

pneumothorax, our zero-shot model outperforms other weakly/semi-supervised full-shot

models by a significant margin.

1.1.3 Medical Report Generation

Medical report generation is in the realm of IC. Most image captioning models can be

fine-tuned to serve in medical report generation. However, compared with IC, medical

report generation has stricter requirements. Whereas IC aims to capture only the salient

features of an image, generated medical reports should encompass all abnormal findings.

Additionally, the diagnoses contained in the medical reports must be precise, given that

they will serve the purposes of patient care. On the contrary, the primary concern of

IC is often the human-like quality of the generated captions, and they are measured by

similarity scores such as BLEU (Papineni et al., 2002) and CIDEr (Vedantam et al., 2015).

Recent advancements in IC models have enabled the generation of highly human-like

medical reports that achieve impressive similarity scores (Wang et al., 2022e; Li et al.,

2022c). However, high similarity scores do not usually lead to high diagnostic accuracy.

For example, changing the word ’left’ to ’right’ in generated texts may not cause a large

drop in similarity scores, but it can result in erroneous facts.

It has been found that medical report generation models can easily gain high similarity

scores while the diagnosis accuracy is poor (Liu et al., 2019a; Boag et al., 2020; Miura

et al., 2021). This brings up the hallucination problem. Hallucination of image-to-text

generation refers to the situation when the generated text includes content not shown
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Generated Report:  

Lesion identified at the bottom right lung. No no 

evidence of pneumonia, edema or effusion. 

Ground Truth: no acute cardiopulmonary process. 

Generated Report:  

no acute cardiopulmonary process.  

Ground Truth:  

mild atelectasis at the left base. No other acute 

cardiopulmonary process.

Figure 1.1: Hallucinations in medical image generation.

in the input image or that is contradictory to the image. In medical report generation,

hallucination usually refers to the report containing an incorrect diagnosis; e.g., mistakes

on the types of diseases and their locations. Figure 1.1 shows an illustrative example,

where the top instance is an erroneous generation that reports a lesion whereas the

patient is actually normal, and the bottom instance is an erroneous generation that

reports normal whereas the image shows Atelectasis. Given their applications to medical

diagnosis, hallucination becomes a fatal flaw in medical report generation models, since

any wrong diagnosis can cause significant loss to both patients and clinicians.

In recent years, LVLMs have developed fast, demonstrating the ability to generate

responses to questions that involve images (Liu et al., 2023c; Zhang et al., 2023b; Li et al.,

2023b). They can be applied to medical image analysis. Albeit the impressive performance

of LVLMs on various tasks, they still suffer from hallucination problem (Huang et al.,

2024). While there have been efforts to fine-tune LVLMs for medical-specific tasks (Liu

et al., 2023d; Singhal et al., 2023; Li et al., 2023a), the effectiveness of these models

in producing accurate medical reports remains underexplored. In addition, to mitigate
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hallucinations, strategies like multi-task learning (Wang et al., 2022b), prompting (Cheng

et al., 2023) and contrastive decoding (Li et al., 2023d) have been proposed. It is still

unknown whether these strategies can help reduce hallucinations of multimodal medical

LLMs.

In this thesis, we generate medical reports using both traditional VL models and

LVLMs. We then evaluate the generated reports in terms of the accuracy of generation,

which includes the diagnosis accuracy of 5 critical medical findings. Furthermore, we

explore existing strategies to improve the faithfulness of the reports generated by LVLMs,

including instructional prompting and contrastive decoding. Our experiments show that

both approaches gain a certain level o f improvement while, in general, medical LVLMs

still suffer from poor report generation performance.

1.2 Overview

The remainder of this dissertation is structured as follows:

Chapter 2 reviews the development of medical image classification, segmentation

and medical report generation. For classification, it introduces how VL models can

be applied to it, and discusses the development of LVLMs as well as the hallucination

problem in the LVLM VQA. For segmentation, it briefly introduces existing strategies

for weakly-supervised segmentation and existing text-supervised segmentation models

in general domain. For medical report generation, it introduces the development of IC

models in general domain and their applications to medical report generation. It also

talks about the IC of LVLMs and the hallucination problem of generated reports.

Chapter 3 introduces our two prompting strategies to improve the VQA accuracy of

LVLMs. The corresponding experiment results are reported after the methodologies.

Chapter 4 introduces the proposed medical image segmentation model using medical

reports as supervision, followed by the experiment results.

Chapter 5 introduces the fine-tuning technique for LVLM and the two applied methods
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to control the hallucination (instructional prompting and contrastive decoding). Then it

lists the corresponding experiment results.

Chapter 6 draws conclusions from our research, discusses its limitations, and proposes

avenues for future work.
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CHAPTER 2

Related Work

2.1 Medical Image Classification

2.1.1 Traditional Medical Image Classification with Deep Learning

Traditionally, deep learning-based image classification is performed using models built

upon convolutional neural networks (CNN). Theses models can be fine-tuned for medical

image classification (Ye et al., 2019; Guo et al., 2020; Kim et al., 2022). The training

is usually performed in a fully-supervised manner. CNN-based models have achieved

excellent performance on many medical image classification datasets (Pham et al., 2020;

Seyyed-Kalantari et al., 2020). Since 2020, there have been efforts in applying transformers

(Vaswani et al., 2017) to computer vision models. Transformer-based computer vision

models (Dosovitskiy et al., 2021; Liu et al., 2021b) have also been applied to medical image

classification tasks (Manzari et al., 2023; Almalik et al., 2022). Both CNNs and vision

transformers can be modified and fine-tuned easily to excel in particular performance

metrics that are crucial in medical applications. For example, Yuan et al. (2021) introduce

a surrogate loss function to help maximize the AUC score. This gives classification

models more flexibility when addressing the unique challenges found in real-world medical

applications.

2.1.2 Medical Image Classification through Contrastive Learning

The first model to perform image classification through VL contrastive learning is ConVIRT

(Zhang et al., 2022). It consists of a visual encoder and a text encoder. They are trained to
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maximize the agreement between the features of the images and their corresponding reports.

It can be easily transferred to image classification tasks by fine-tuning a classification

layer after the visual encoder. Later, CLIP (Radford et al., 2021) and ALIGN (Jia et al.,

2021) were able to perform image classification tasks in a zero-shot/weakly-supervised

manner using crafting text prompts for categories (e.g., “an image of {object}”). The

encoded image features are matched with the text features of multiple prompts. An

image is classified as the class of the prompt who has the highest similarity score. CLIP

has also been adapted to medical image classification (Jang et al., 2022). Contrastive

learning is also an effective pretraining strategy for VL models because it helps the model

learn to align the high-level features from images and texts. To date, several medical VL

models have been pretrained using contrastive learning; e.g., Wang et al. (2022d) and Wu

et al. (2023b). They can be fine-tuned in a few-shot manner for various tasks including

classification, detection, and segmentation.

2.1.3 VQA of Medical LVLMs

LVLMs are built upon LLMs. A pretrained visual encoder is used to extract the visual

features and an adapter module is used to project the extracted features to the ones that

can be understood by the LLM. Models of this type include Liu et al. (2023c), Zhu et al.

(2023), and Zhang et al. (2023b). During training, the visual encoder and the LLM are

usually fixed. VQA is an essential skill of LVLMs. Given an input image, the models

should be able to answer questions regarding that image correctly. For medical LVLMs,

given a medical scan, models such as LLaVA-Med (Li et al., 2023a) and Med-PALM

(Liu et al., 2023d) are able to answer questions regarding the types of modalities, the

scanned organs, and medical indicators such as opacity. They have demonstrated fine

performance on medical VQA datasets such as VQA-RAD (Lau et al., 2018), SLAKE

(Liu et al., 2021a), and Path-VQA (He et al., 2020). However, most medical questions in

existing datasets are simple. Medical LVLMs have not been tested on a broader range of

complex diseases.
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2.1.4 Hallucination of LVLM VQA

The hallucination problem of LVLM usually refers to the model generating a response

that is not consistent with the input image. For VQA, the models may make mistakes on

the existence of an object, the location of an object, the attributes of an object, or the

mutual relationship between objects in the generated answers. Li et al. (2023e) find that

the frequent objects are easily hallucinated by LVLMs. The models tend to mention the

existence of a frequent object even if it is not in the image. Qian et al. (2024) and Liu

et al. (2023b) show that LVLMs sometimes presume the assumptions in questions are

true and easily give wrong answers when they are asked about some objects that do not

exist in the given image.

Hallucination can be incurred by bias in the training data, missing fine-grained visual

features, and LLM decoding strategies (Liu et al., 2024). For data bias, the imbalanced

distribution of data is an important aspect. When most of the answers to a question is

“Yes” in training data, the model tends to answer “Yes” consistently. Missing fine-grained

visual features is usually caused by the pretraining of the visual encoder. Most LVLMs

use the visual encoder of CLIP trained through contrastive learning. The resulting visual

encoder mainly focuses on salient features while ignoring the fine-grained features (Jain

et al., 2023). For decoding strategies, most LVLMs choose the next word as the one

having maximum conditional probability given previous texts and the input image. This

criteria can lead to hallucination when the model overly relies on the knowledge learned

in its training texts. There are also other causes such as model simplicity and insufficient

attention (Liu et al., 2024).

Strategies to mitigate hallucination of LVLMs mainly fall into two categories, prompt

engineering and model improvement. For prompt engineering, Liu et al. (2023b) leverage

the visual instructions, constructed from the bounding box information in the input image

to prompt the LLMs. Zheng et al. (2023) use chain of thought to prompt the models

to perform step-by-step visual-language reasoning like humans, which at last leads to

the correct answers. Wang et al. (2023) generate multiple chains of thought and use
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the one with majority vote as the answer. Caffagni et al. (2024) prompt the model

with explanations on the terms in questions. For model improvement, Sun et al. (2023a)

improve the visual and text feature alignment through reinforcement learning to reduce

hallucination. Leng et al. (2023a) propose a contrastive decoding strategy to reduce the

models’ reliance on pretrained knowledge. Favero et al. (2024) and Zhao et al. (2024)

also focus on the inference stage and propose specialized decoding strategies to mitigate

hallucination. Besides the two main strategies mentioned above, there are also other

strategies to reduce hallucination. Zhou et al. (2024) design a post-processing model to

detect the potential hallucinated objects and rephrase the generations. Sun et al. (2023b)

adapt a reinforcement learning strategy that uses human evaluation on the hallucination

level to improve the model.

Hallucination of LVLMs can be evaluated by two approaches. The first one is VQA.

The ground truth information of the input images is leveraged to construct questions

regarding the existence of objects in the images (e.g., Is there a black cat in the image?).

There are also questions asking about the objects which do not exist in the images.

The models are measured in terms of the percentage of correctly answered questions.

Metrics of this type include POPE (Li et al., 2023e), CIEM (Hu et al., 2023), and NOPE

(Lovenia et al., 2023). The other way is to use pre-designed prompts to let the models

produce various generations, then evaluate them. Examples include CHAIR (Rohrbach

et al., 2018), which counts the hallucinated objects in generated image captions, and

MMHAL-BENCH (Sun et al., 2023a), which uses GPT-4 (OpenAI et al., 2023) to compare

the generations with human answers and determine if there is hallucination.

2.2 Medical Image Segmentation

2.2.1 Fully-Supervised Medical Image Segmentation

Most medical image segmentation models are trained on fully-supervised manner with

pixel-level annotations. The models are trained to perform classification for each pixel.
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Most models are built upon U-Net (Ronneberger et al., 2015). Examples include Weng

et al. (2019), Guo et al. (2020) and Huang et al. (2020). Later, the convolutional layers in

computer vision models were partially replaced by transformers, and transformer-based

models are commonly used in medical image segmentation tasks (Guo and Terzopoulos,

2021; Yan et al., 2022; Cao et al., 2023).

2.2.2 Weakly Supervised Image Segmentation

According to the types of annotations used for training, most existing works on weakly

supervised segmentation can be categorized into the following groups: bounding boxes,

marks, and image-level tags. An example of the first type is Tian et al. (2021). The model

is trained such that the resulting masks have the same size as the annotated boxes, and

closely-connected pixels are assigned the same labels. Wang et al. (2020) require polygon

annotations; a patch-level classifier is trained using polygon annotations first and then the

positive patches are aggregated to form the final segmentation mask. Models of the second

type usually need a point (Bearman et al., 2015) or scribble (Lin et al., 2016) on the

target area. The loss function is modified such that the outputs have high probability on

the annotated pixels. For the third type, notable methods include Grad-CAM (Selvaraju

et al., 2017), Grad-CAM++ (Chattopadhay et al., 2018), and Eigen-CAM (Muhammad

and Yeasin, 2020). They first train a model for image classification. Then extract the

segmentation map by either computing the gradient of classification scores with respect

to the feature maps of the convolutional layers, or by computing the projection of those

feature maps on their eigenvectors. Li et al. (2018) use Grad-CAM output to mask out

the original image and train the model to classify the masked image as negative. This

further improves the segmentation accuracy.

Weakly supervised segmentation in the medical domain remains a popular topic. Most

approaches in recent years utilize image-level labels (Lerousseau et al., 2020; Chen et al.,

2022; Qian et al., 2022; Giancardo et al., 2023; Li et al., 2023c), which take the least effort

to acquire. Some approaches use bounding boxes (Mahani et al., 2022; Cai et al., 2022;
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Du et al., 2023a), and others use patch-level labels (Dang et al., 2022).

2.2.3 Segmentation With Text Supervision

Following the success of CLIP-based models, researchers have shown that they can be also

applied to segmentation because the text can serve as weak supervision. The key idea is

based on cross-modal feature alignment and pixel grouping. The input image is usually

divided into patches, and encoded by a patch-based encoder such as ViT (Dosovitskiy

et al., 2021). The target class is represented as text prompts (e.g., “A running bus.”) and

encoded by the text encoder. The text feature is compared with each patch feature to

construct a similarity matrix indicating the target locations. Patches with high similarity

with the prompts are merged to form the segmentation masks for the corresponding classes.

Approaches of this kind include Li et al. (2022a), Strudel et al. (2022), Mukhoti et al.

(2022), Yi et al. (2023) and Ren et al. (2023). Among those, Yi et al. (2023) introduce

a maximum response selection mechanism to let the model focus on the keywords and

corresponding patches. The resulting similarity matrix is post-processed to have smoother

and more accurate boundaries. Ren et al. (2023) align text features with the averaged

features of images from multiple views to reduce the ambiguity of text supervision.

Instead of directly aligning text features with patch features, GroupViT (Xu et al.,

2022) inserts “group tokens” in each layer of the ViT image encoder and uses them to

merge the patch features. Xu et al. (2023) also insert learnable tokens. The visual features

are first mapped to learnable tokens, then mapped to segmentation classes. The text

feature is compared with those inserted token features and the ones with high similarity

are selected to form the segmentation masks. Unlike the aforementioned approaches that

directly generate masks from the region-text feature alignment, Yu et al. (2023), Cha

et al. (2023), and Liang et al. (2022) add a visual decoder to generate masks and use

them to crop the original image. Their models are trained to align the cropped image

features and the prompt features. This helps the models learn local features.
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2.3 Medical Report Generation

2.3.1 Medical Report Generation

Medical report generation can be performed by IC models, which traditionally usually

consist of a visual encoder that extracts features from medical images, and a text decoder

to generate reports. Examples of this type include Jing et al. (2018), Liu et al. (2019b),

and Chen et al. (2020). Recent unified VL models (Lu et al., 2022; Wang et al., 2022c)

can also be fine-tuned for medical report generation. These models also use a visual

encoder (usually a transformer-based encoder) to extract the image features. The image

features are then concatenated with the prompt embeddings and sent to a multilayer VL

transformer. The cross-attention layers of the VL transformer select the related visual

features for text generation. One can prompt the model to perform IC; e.g., “Describe

the given image”. A challenge of image-to-text generation is the alignment of visual and

text features. Contrastive learning, introduced previously in Section 2.1.2, can address

this problem. The visual encoder and text encoder can be pretrained to align the visual

and text features. Li et al. (2022b) pretrain the model using an additional contrastive loss

and this achieves better accuracy on language generation task. Recently, there have been

several works applying IC models to medical report generation. Alfarghaly et al. (2021a)

pretrain a medical image classification model to predict a group of medical tags and send

the predicted tags to the language model for text generation. Li et al. (2022d) build a

knowledge cluster from the training reports to guide the visual encoder to extract the

image features. Li et al. (2023f) improve the cross-modal alignment while fusing visual

and text features. Wu et al. (2023c) divide medical report generation into two steps:

first they generate a one-sentence “impression” and then generate the multiple-sentence

medical findings.

Since 2022, LLMs such as ChatGPT (OpenAI, 2022) and GPT4 (OpenAI et al., 2023)

have achieved great success on content generation. Efforts have also been made to combine

LLMs with visual encoders such that the models can generate content based upon visual

inputs. The core strategy is to freeze the LLM and only train a small model that is
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responsible for converting visual features into text features that can be understood by

the LLM. The resulting LVLMs are able to perform common VL tasks such as IC and

VQA. BLIP-2 (Li et al., 2023b) freezes the LLM and visual encoder and then it trains a

Q-Former to align the visual features with text features. MiniGPT-4 (Zhu et al., 2023)

freezes the LLM, visual ecndoer, and the Q-Former in BLIP-2 and only trains a single

linear layer that is inserted after the Q-Former. LLaMA-Adapter (Zhang et al., 2023b)

feeds the encoded visual features to a trainable adapter that is attached to multiple

transformer layers in LLaMA (Touvron et al., 2023). LLaVA (Liu et al., 2023c) simplifies

the structure and it only adds a trainable projecting matrix after the visual encoder

to convert the encoded visual features. The converted features are concatenated with

language instruction embeddings and fed to Vicuna (Chiang et al., 2023).

The popularity of large models has quickly spread to the medical area. Nori et al.

(2023) tested GPT-4 on medical tasks and the results show that GPT-4 already exceeds

the performance of previous models on benchmark datasets without being fine-tuned

on medical tasks. Most medical LLMs focus on fine-tuning general LLMs on medical

datasets. Two notable medical LLMs are Med-PALM (Liu et al., 2023d) and Med-PALM

2 (Singhal et al., 2023). They apply instruction prompt tuning on a small set of examples

to make the model align with medical tasks. PMC-LLaMA (Wu et al., 2023a) fine-tunes

LLaMA-7b (Touvron et al., 2023) on medical academic papers. HuatuoGPT (Zhang

et al., 2023a) combines real-world data with distilled ChatGPT data for fine-tuning.

For LVLMs, Visual Med-Alpaca (Han et al., 2023) trains a captioning model to convert

medical images into text prompts, then sends them to LLaMA-7b. LLaVA-Med (Li et al.,

2023a) fine-tunes LLaVA on medical datasets and achieves state-of-the-art performance

on several medical tasks.

2.3.2 Evaluation of Medical Report Generation Models

General IC models are usually trained with cross-entropy loss and measured in terms of

similarity scores such as BLEU (Papineni et al., 2002), METEOR (Banerjee and Lavie,
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2005), and CIDEr (Vedantam et al., 2015). Although these methods and metrics prove

effective on the captioning of general images, they are not suitable for medical image

generation. Liu et al. (2019a) and Boag et al. (2020) have shown that, despite the fact

that medical reports generated by many models can achieve high similarity scores, their

diagnostic accuracy is poor. In Liu et al. (2019a), the model achieves 1.159 CIDEr score

while having only 0.3 average Precision in terms of diagnosis accuracy. To compensate for

the limitations of similarity scores, researchers use the clinical efficacy (Liu et al., 2019a)

to evaluate the factual correctness of the generated reports. Clinical efficacy assesses the

Precision, Recall, and F1 for each medical finding that may exist in the medical images.

To measure the clinical efficacy, the generated reports are parsed and the all medical

findings are categorized as positive, negative or unknown. They are compared with the

ground truth class labels. This approach provides a more comprehensive and medically

relevant assessment of a model’s performance, focusing on the accuracy of the generated

content rather than the linguistic similarity to ground truth reports.

2.3.3 Hallucination of Medical Report Generation Models

Hallucination, as previously introduced in Section 2.1.4, refers to the situations where the

model generates content that violates the given facts. For medical report generation, the

model may talk about medical findings that do not exist in the input image, or ignore

medical findings that appear in the input image.

A common strategy to reduce hallucination is to introduce an additional classification

task and perform multitask training. This helps models learn the fine-grained features of

each disease. One can also adjust the weights of minority classes. Wang et al. (2022f)

introduce a medical concept generation network trained to classify multiple medical

concepts. The output of the concept generation network is used by the text decoder

to generate the full report. Wang et al. (2022b) add classification tokens to the text

decoder. The tokens are trained to classify specific diseases in the input image. Alfarghaly

et al. (2021b) and Yang et al. (2023) pretrain their models for disease classification and
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fine-tune them for report generation. To date, multitask learning has been mostly applied

to traditional VL models rather than large models.

Prompt engineering is another effective strategy to mitigate hallucinations (Tonmoy

et al., 2024). Studies show that LLMs can be prompted to generate more reliable answers.

In Cheng et al. (2023), prompts are used to help GPT-3 balance demographic distribution

and reduce social biases. FreshLLM (Vu et al., 2023) utilizes a search engine to inject

up-to-date world knowledge into prompts to help the model answer questions that require

information after the model training date. Lester et al. (2021) insert soft prompts which

are learned during fine-tuning.

The decoding strategy of LLMs can also be improved to reduce hallucination. Con-

trastive decoding Li et al. (2023d) utilizes an expert model and an amateur model in

the inference stage and the decoding objective is to select the words with the maximum

difference between the likelihood of the two models. O’Brien and Lewis (2023) show that

contrastive decoding improves the reasoning skills of LLMs. Leng et al. (2023b) develop

a visual constrastive decoding strategy for LVLMs that mitigates object hallucination.

There are also other decoding strategies. Critic-driven decoding (Lango and Dusek, 2023)

combines the probability of LLM with that of a classifier that checks if the generation so

far matches the given text. DoLa (Chuang et al., 2023) selects the next-token distribution

by contrasting the differences in logits obtained from projecting the output of different

layers to the vocabulary space.
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CHAPTER 3

Medical Image Classification with Language Models

3.1 Methodology

In this thesis, we study medical image classification through both LVLM VQA and

contrastive learning. This chapter focuses on applying LVLMs to medical VQA and

introduces our two prompting strategies to improve the VQA performance. The details

of using contrastive learning to perform medical image classification is discussed in

Section A.1.

3.1.1 LVLMs

Figure 3.1 illustrates the structure of common LVLMs. They are based on a pretrained

unimodal LLM such as Llama (Touvron et al., 2023) and Vicuna (Chiang et al., 2023). A

visual encoder is applied to extract the image features, and the extracted features are

projected to the text features space through an adapter. The projected visual features

are concatenated with the text prompt embeddings and fed to the LLM. The adapter

usually consists of several linear layers with non-linear activations. The visual encoder is

a pretrained image encoder such as ViT (Dosovitskiy et al., 2021) or traditional CNNs.

During training, the visual encoder and the LLM are usually frozen.

In our work, we choose the pretrained LLaVA-Med (Li et al., 2023a) as our model.

LLaVA-Med is a medical LVLM built upon LLaVA (Liu et al., 2023c). The model

structure resembles Figure 3.1. It uses pretrained Vicuna (Chiang et al., 2023) as the

LLM and pretrained ViT encoder from CLIP (Radford et al., 2021) as the visual encoder.

The adapter is simply a trainable projection matrix. Both the visual encoder and LLM
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Language Model

Adapter ``Briefly describe this image.’’

Visual Encoder

In the image, a person is standing in a room with a yellow 

wall, holding a hair drier. There is a wooden cabinet with a 

shelf containing various items, and two pieces of fabric 

hanging on the wall.

Model Response

Figure 3.1: Structure of common LVLMs.

weights are frozen during training. LLaVA-Med fine-tunes LLaVA with two steps. Firstly,

it fine-tunes LLaVA to generate medical reports from input medical images. Secondly, it

uses GPT-4 to generate various questions from the ground truth reports and fine-tunes

the model for question answering.

3.1.2 Medical Multimodall LLM VQA

Nowadays, most medical LLMs are trained for medical VQA. Medical image classification

can be performed by asking questions related to various diseases, e.g., “Does this image

have lung lesion?”.

To reduce the model hallucination and improve the VQA accuracy, we propose two

prompting strategies at the inference stage: providing the model with detailed explanations

on the queried disease, and asking the model to refer to a weak learner.

Prompt with detail explanation Given the imbalanced training data, models might

not be able to learn the features of the minority diseases. To compensate for the
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Q: Pulmonary edema is the accumulation of fluid 

in the lungs. Some common X-ray features 

include:  

1. Increased density in the central lung fields 

resembling the shape of bat wings.  

2. Thin, linear opacities at the lung periphery, 

often indicating interstitial edema.  

3. Prominent blood vessel markings due to 

engorgement from increased.pressure in the 

pulmonary vasculature.  

Given the information above, does this 

image have edema? 

A: There is no edema in this image.

Figure 3.2: Example of prompting LVLM for medical VQA using disease explanations.

insufficient training, we provide a detailed explanation for the queried disease as prompt

at the inference stage. The explanation briefly defines the asked disease and lists several

key findings in medical images that may indicate its existence. An example is shown in

Figure 3.2. In the beginning, the model is informed that Pulmonary Edema is defined as

the accumulation of fluid in lungs. Then several chest X-ray findings that may suggest

its existence are provided. The model can determine if the given image has Pulmonary

Edema by linking the given key findings with the image features. The prompt templates

for all diseases are listed in Appendix B.

Prompt through weak learner For traditional image classification models, data

sampling is a commonly-used strategy to handle imbalanced datasets. Without re-

sampling, models might consistently return negative predictions for a minority diseases.

In contrast, models trained on sampled datasets often exhibit enhancements in terms of

the Precision and Recall scores. However, this method may not be applicable for LVLMs

for two-fold reasons. Firstly, it is difficult to balance a dataset containing many categories

of diseases. Secondly, LVLMs usually demand much larger dataset and the fine-tuning is

also expensive.
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Although direct re-sampling may not be suitable for LVLMs, one can still let the

LVLM benefit from training on sampled data by leveraging small models trained on

sampled datasets to assist the LVLM. Our method resembles the multiagent LLM system

such as Du et al. (2023b), where two LLMs debate with each other and hallucination

can be corrected by referring to the other model’s generation. Given that traditional

image classifiers are smaller, it is feasible to train multiple small classifiers each of which

is trained on sampled datasets of one disease. Those models can be further fine-tuned

to optimize a single aspect, such as fewer false positives (FP) or fewer false negatives

(FN). The classifiers are applied to the medical images and return preliminary predictions.

These predictions are selectively included in the prompts as references for the LVLM.

Hence, LVLMs can benefit indirectly from the nuanced understanding these specialized

models can provide. This method is meaningful because clinicians usually need to balance

the trade-off between overtreatment and undertreatment when making decisions. For

example, they may prefer models having low FP rate if the cost of overtreatment is higher

than that of undertreatment.

An example is shown in Figure 3.3, which asks about the presence of Edema. We

first provide the model with the detailed description of it. Then, we aim to use the weak

learner to suppress the FPs. The input image is sent to an Edema classifier, which has

been fine-tuned on balanced dataset for high sensitivity and high true negative rate. If

the prediction is negative, we craft the prompt “For this image, another agent thinks

the probability of Edema is 0.1” and append it after the disease descriptions. The

probability is manually chosen instead of the actual predicted probability because the

decision threshold has been fine-tuned and no longer 0.5. We do not use zero probability

because we do not want the model to overly trust the weak learner. Although in this

example we only target on reducing FPs, our strategy can also be applied to reduce FNs,

which can be simply done by fine-tuning the classifier for high true positive rate and

applying the prompt for positive predictions.
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Q: Pulmonary edema is the accumulation of fluid 

in the lungs. Some common X-ray features 

include:  

1. Increased density in the central lung fields 

resembling the shape of bat wings.  

2. Thin, linear opacities at the lung periphery, 

often indicating interstitial edema.  

3. Prominent blood vessel markings due to 

engorgement from increased.pressure in the 

pulmonary vasculature.  

Given the information above, does this 

image have edema? 

A: There is no edema in this image

Weak Learner 
For this image, another agent thinks the 

probability of edema is 0.1.
Probability of Edema = 0.1

(Fine-tuned for high sensitivity 

and high true negative rate)

Figure 3.3: Example of prompting LVLM for medical VQA using both disease explanations
and reference predictions.

3.2 Experiments and Results

3.2.1 Datasets

Test datasets The MIMIC-CXR-JPG (Goldberger et al., 2000) (MIMICCXR) and

Chexpert (Irvin et al., 2019) test sets are used to evaluate the zero-shot performance.

They include 5,159 and 668 images, respectively. Both datasets are chest X-rays.

MIMICCXR includes images and medical reports covering 13 diseases/findings (At-

electasis, Cardiomegaly, Consolidation, Edema, Enlarged Cardiomediastinum, Fracture,

Lung Lesion, Lung Opacity, Pleural Effusion, Pneumonia, Pneumothorax, Pleural Other,

Support Devices). The raw reports are parsed and rough image-level tags are automati-

cally generated by a rule-based approach (Irvin et al., 2019). Each label contains four

values: 1 (positive), 0 (negative), -1 (uncertain) and missing. For simplicity, we treat

both uncertain and missing as negative. MIMICCXR training set is also used to train the

weak learner models. It contains 227,827 chest X-rays with reports.

Chexpert covers the same 13 categories in MIMICCXR. However, it does not in-

clude medical reports and only has the image-level labels. There is no overlap between
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Atelectasis 178 490
Cardiomegaly 1,258 3,901 Cardiomegaly 175 493
Consolidation 326 4,833 Consolidation 35 633

Edema 959 4,200 Edema 85 583
Enlarged Cardio. 200 4,959 Enlarged Cardio. 298 370

Fracture 167 4,992 Fracture 6 662
Lung Lesion 202 4,957 Lung Lesion 14 654

Lung Opacity 1,561 3,598 Lung Opacity 310 358
Pleural Effusion 1,542 3,617 Pleural Effusion 120 548
Pleural Other 119 5,040 Pleural Other 8 660

Pneumonia 539 4,620 Pneumonia 14 654
Pneumothorax 144 5,015 Pneumothorax 10 658

Support Devices 1,457 3,702 Support Devices 315 353

Table 3.1: Splits of positive and negative cases for the 14 categories of MIMIC-CXR-JPG
and Chexpert test sets. The ’Uncertain’ is also seen as negative. “Enlarged Cardio.”
refers to Enlarged Cardiomediastinum.

MIMICCXR and Chexpert.

The split of categories (excluding normal) in MIMICCXR and Chexpert test sets

is shown in Table 3.1. One can find that, almost all diseases are minor classes, whose

positive data is much less than negative data.

We select the five diseases in the Chexpert Competition (Irvin et al., 2019) (Atelectasis,

Cardiomegaly, Consolidation, Edema and Pleural Effusion) for test. More results on other

medical findings are listed in the Appendix C.

LLaVA-Med pretraining dataset LLaVA-Med is trained on the PMC-15M (Zhang

et al., 2024) dataset. PMC-15M contains image-text pairs of multiple modalities, e.g., CT,

MRI, X-ray, etc. Note that PMC-15M does not overlap with MIMICCXR or Chexpert.

In its first stage, 467,710 image-report pairs are selected for training. In the second stage,

56,708 question-answer pairs are created from the data of the first stage to fine-tuned the

model. Table 3.2 shows the count of reports in the LLaVA-Med training data (second

stage) which mention one of the five test diseases as positive. Compared with the total

amount of data, all five categories are minorities.
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Positive Cases

Atelectasis 64
Cardiomegaly 31
Consolidation 335

Edema 1276
Pleural Effusion 260

Table 3.2: Counts of positive cases for the 5 test categories in LLaVA-Med training
dataset.

Setting Prompt

PLAIN “Does this image have {target}?”

EXP “{Descriptions} Given the information above, does this image have {target}?”

FINAL “{Descriptions} For this image, another agent thinks the probability that it
has {target} is {n} percent. Given the information above, does this image have
{target}?”

Table 3.3: Prompt templates used in three settings. {target} is the disease asked in the
questions. {Descriptions} contains the disease descriptions listed in Appendix B. {n} is
the crafted predicted probability of the weak learner.

3.2.2 Implementation Details

As mentioned in Section 3.1, we use the pretrained LLaVA-Med, without any further

fine-tuning. We convert the classification task into VQA by using the prompt template

shown in Row 1 of Table 3.3. This is referred as the PLAIN setting of LLaVA-Med in

our experiments. We first run pretrained LLaVA-Med on the PLAIN setting. Then, we

add disease explanations (Row 2 of Table 3.3) to the PLAIN setting and this setting is

referred as “EXP” setting. Following that, we further add the predictions of weak learners

into the prompts, noted as the “FINAL” setting (Row 3 of Table 3.3).

Our weak learner is designed to suppress FP predictions, which will be justified in

experiments. We use pretrained ResNet50 (He et al., 2016) as our model. For each

disease, the training dataset is sampled such that the ratio of positive and negative cases

is 2 : 1. The model is trained for 10 epochs with 1e− 4 learning rate. The training process

is monitored by the AUC score and the one with the highest validation AUC is kept.
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Then, the decision threshold is fine-tuned to optimize the weighted sum of specificity and

negative predictive value (NPV), which is

w1

TN

TN + FP
+ w2

TN

TN + FN
(3.1)

where w1 and w2 are preset as 0.2 and 0.8. The weak learners are applied to the medical

images to obtain preliminary predictions for each disease. Then, only the negative

predictions are selected to craft the additional prompts.

Lastly, the answers returned by LLaVA-Med are of various formats, e.g., “This image

has Edema”, “Edema is found”, and “The fluid in the lung indicates Edema”. An

off-the-shelf Llama-7B (Touvron et al., 2023) is used to summarize the long answers into

“Yes/No” such that the accuracy can be computed easily.

3.2.3 Results

Most existing medical image classification models report their results on MIMICCXR

and Chexpert in terms of the AUC-ROC scores. However, this is not applicable to our

context because the model generates a sequence of text instead of probabilities. One

state-of-the-art work that uses F1 scores is Tiu et al. (2022), which reports the F1 scores

for Atelectasis, Cardiomegaly, Consolidation, Edema and Pleural Effusion on Chexpert

dataset. It also includes the F1 scores of radiologists. Their results can serve as a

comparison benchmark for our experiments. Table 3.4 compares the radiologist scores,

state-of-the-art scores, and LLaVA-Med VQA scores. It shows that, the VQA performance

of LLaVA-Med (PLAIN setting) is unsatisfactory. The model is far from being deployed

for real-world applications. The last columns shows the results after applying our two

prompting strategies. Although still lower than radiologist level, a significant improvement

can be observed, especially on Atelectasis, Cardiomegaly and Edema where the increase

of F1 is around 0.17-0.21.

To demonstrate the efficacy of our prompting strategies, starting from the plain setting,

the diseases explanations are provided first (the EXP setting). Then, based on the results,
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Radiologist (Tiu et al., 2022) PLAIN FINAL

Atelectasis 69.2 64.6 26.5 41.3
Cardiomegaly 67.8 74.3 24.0 51.5
Consolidation 38.5 33.3 11.7 12.2

Edema 58.3 60.2 25.4 42.6
Pleural Effusion 73.7 70.4 35.5 46.8

Table 3.4: Comparison of F1 scores (represented as %) on 5 diseases in Chexpert dataset.
Radiologist means the score of radiologist diagnosis. PLAIN is the PLAIN setting of
LLaVA-Med VQA. FINAL is the best result achieved by applying both of our prompting
strategies.

weak learners are tailor made to improve the performance on specific aspects (the FINAL

setting).

3.2.3.1 Adding Disease Descriptions

Table 3.5 shows the Precision, Recall and F1 scores of plain setting and the exp setting on

MIMICCXR and Chexpert test set. On MIMICCXR, after adding diseases explanations,

the F1 scores of Atelectasis, Cardiomegaly, Edema, and Pleural Effusion show an increase,

while the Consolidation F1 only has trivial increase. On Chexpert, after adding diseases

explanations, the F1 scores of Atelectasis, Cardiomegaly, Edema show an increase, while

the other two have no increase.

From the Precision and Recall scores it can be noticed that, adding the explanations

generally leads to a large increase on the Recall while only has minimal influence on the

Precision. For minority diseases such as Consolidation whose F1 is dominated by the low

Precision, improving the Recall would not have much effect on the F1.

3.2.3.2 Referring to Weak Learners

Starting from the first prompting strategy, we use our second strategy to further improve

the accuracy. Based on the analysis of Table 3.5, the performance bottleneck is the

Precision. Table 3.6 counts the true positive (TP), false positive (FP) and false negative

(FN) predictions of LLaVA-Med prompted by disease explanations on Chexpert test set.
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MIMIC-CXR-JPG Chexpert

Diseases Metrics PLAIN EXP PLAIN EXP

Atelectasis
Precision 19.5 20.0 30.5 26.5

Recall 41.5 92.9 44.4 91.6
F1 26.5 33.0 36.5 41.0

Cardiomegaly
Precision 25.8 24.6 27.1 26.0

Recall 22.5 89.4 20.0 86.3
F1 24.0 38.6 23.0 40.0

Consolidation
Precision 6.8 6.3 6.0 5.2

Recall 42.3 98.5 40.0 97.1
F1 11.7 11.9 10.4 9.8

Edema
Precision 19.6 18.5 11.7 13.7

Recall 36.0 72.7 29.4 76.5
F1 25.4 29.5 16.8 23.2

Pleural
Effusion

Precision 30.4 30.0 22.3 17.9
Recall 42.8 92.7 49.2 90.0

F1 35.6 45.3 30.7 29.9

Table 3.5: LLaVA-Med VQA performance evaluated by Precision, Recall and F1 scores of
5 diseases on MIMICCXR and Chexpert test set.

It is observed that the large number of FP cases is the performance bottleneck. Hence,

the weak learners should be designed to suppress the FP predictions.

Table 3.7 compares the performance on Chexpert before and after referring to the weak

learner. It shows that the prediction accuracy (F1) can be largely increased by providing

reference predictions into the prompts. The F1 scores of Cardiomegaly, Edema and

Pleural Effusion increase by 0.115, 0.194 and 0.089, respectively. To further demonstrate

TP FP FN

Atelectasis 163 453 15
Cardiomegaly 151 430 24
Consolidation 28 557 7

Edema 65 410 20
Pleural Effusion 108 495 12

Table 3.6: Count of TP/FP/FN cases for LLaVA-Med prompted with disease explanations
(EXP setting).
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Diseases Metrics EXP FINAL

Atelectasis
Precision 26.5 28.8

Recall 91.6 83.1
F1 41.0 42.8

Cardiomegaly
Precision 26.0 38.1

Recall 86.3 79.4
F1 40.0 51.5

Consolidation
Precision 5.2 7.5

Recall 97.1 34.3
F1 9.8 12.2

Edema
Precision 13.7 36.8

Recall 76.5 50.6
F1 23.2 42.6

Pleural
Effusion

Precision 17.9 25.0
Recall 90.0 85.0

F1 29.9 38.8

Table 3.7: Diagnosis accuracy on Chexpert dataset for LLaVA-Med EXP setting and
LLaVA-Med using both disease explanations and references of trained weak learners
(FINAL setting).

the efficacy of our prompting strategy, we count the FP predictions for FINAL setting

and compare them with the EXP setting, which is shown in Table 3.8. The reduction of

FP cases is notable, especially on Edema, where the FP is reduced by 322 (78.5%).

This strategy can also be extended to general domain LVLMs. We study the perfor-

mance of LLaVA (Liu et al., 2023c) and MiniGPT-v2 (Zhu et al., 2023) on POPE (Li et al.,

2023e) metrics. POPE evaluates the hallucination of LVLMs by asking questions about

the presence of objects. The POPE scores of LLaVA and MiniGPT-v2 have high Precision

EXP FINAL

Atelectasis 453 365
Cardiomegaly 430 226
Consolidation 557 149

Edema 410 88
Pleural Effusion 495 304

Table 3.8: Count of FP cases on Chexpert for LLaVA-Med EXP setting and WL setting.
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POPE Adversarial POPE Popular POPE Random

Prec Recall F1 Prec Recall F1 Prec Recall F1

LLaVA 91 78.8 84.5 95.2 78.8 86.2 97.4 78.8 87.1
with ref 88.4 85.7 87.0 92.8 85.7 89 97.3 85.7 91.1

MiniGPT-v2 88.2 77.2 82.3 92.7 77.2 84.2 97.2 77.2 86.1
with ref 86.8 84.2 85.5 91.9 84.2 87.9 97.3 84.2 90.3

Table 3.9: Comparison of POPE scores for models with and without referring to the
predictions of weak learners. “Prec” refers to the Precision score.

and low Recall. Hence, the weak learner can be used to reduce the FN predictions. We

select an off-the-shelf Fast-RCNN (Girshick, 2015) as the weak learner and fine-tune the

detection threshold of bounding box scores for high Recall. Then, the positive predictions

of the weak learner are added to the prompts. Results in Table 3.9 show that the Recall

scores across three POPE categories are increased by around 7% and the Precision scores

decrease slightly. The overall F1 scores are improved.
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CHAPTER 4

Medical Image Segmentation with Language Models

4.1 Methodology

4.1.1 Pretraining

In the pretraining stage, we use contrastive learning to help our model learn to connect

the visual and text representations. Specifically, the model learns to link the text

representations of disease with corresponding image features. The steps are shown in

Figure 4.1. The input data contains N medical images and the corresponding N medical

reports, which describe the key observations in the medical images and include the

diagnosis of diseases. We use the ViT (Dosovitskiy et al., 2021) to encode the images into

sequences of patch features. The representation of each image is the global maximum

of its patch features. The medical reports are encoded by a multi-layer transformer

text encoder. The encoded visual and text representations are projected into the same

dimension D.

Let Fv ∈ RN×D be the projected visual representation and Ft ∈ RN×D be the projected

text representation. The similarity matrix is defined as S = Fv ∗ Ft
T ∈ RN×N , and S(i, j)

describes the closeness of image i and report j. We use the infoNCE loss (van den Oord

et al., 2019) as our training loss. For the images, the contrastive loss is

Lim = −Ei

[

log
expS(i, jc)

∑

j∈N expS(i, j)

]

, (4.1)

where jc is the text matched with image i. The loss for texts Ltxt is defined in the same

way. The final loss is the average of Lim and Ltxt.
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Figure 4.1: Pretraining of visual encoder and text encoder.

4.1.2 Model Design

We will now motivate our model design. The segmentation models with text supervision

reviewed in the previous section either directly align regional representations with prompt

representations (Li et al., 2022a; Strudel et al., 2022; Mukhoti et al., 2022) or generate

segmentation masks to crop the original images and match the cropped images with

prompts (Yu et al., 2023; Cha et al., 2023). We believe that these strategies are not

suitable for most medical images, for several reasons. First, most medical images are

grayscale and the abnormal regions usually appear as an area with high intensity. The

ROIs of different diseases share a high similarity and one can hardly identify the correct

type of disease simply by matching the text features and regional image features. Global

image information is also needed. For example, the diagnosis of cardiomegaly requires the

position of the ROI as well as its size relative to the chest. Figure 4.3 shows the ROIs of

four diseases cropped from chest X-rays. They are all bright areas and highly similar to

each other. Even pathologists may fail to identify the correct types merely by looking at

those cropped regions. Moreover, existing training schemes fail to deal with normal cases.

For a healthy scan, no segmentations are supposed to be generated and those models
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have nothing to align with.

To address the two aforementioned problems, we perform image-text alignment instead

of region-text alignment. On the one hand, the extracted image features contain global

information and are better aligned with texts of different diseases. On the other hand, we

can handle normal cases simply by aligning with texts such as “a healthy scan”.

As shown in Figure 4.2, our model consists of the visual and text encoder used in the

pretraining stage, and a visual decoder. Given an input image that contains the target,

we extract its visual representation using the same approach as pretraining. For the text,

rather than using the medical report as the input, we create two prompts: “{target}
is seen.” and “no {target}”, where {target} is the name of segmentation category; e.g.,

pleural effusion. We denote the two prompts as Ppos and Pneg. We use the text encoder

to obtain the representations of the two prompts.

Our model has two branches. In the first branch, the model is trained to align the

representation of the input image and Ppos. We expect that the visual encoder can learn to

extract features related to the {target}. In the second branch, we use a visual decoder to

generate a filtering mask from the encoded image features. The mask is used to generate

a healthy scan from a scan with the target disease. The new image is encoded by the

visual encoder and its representation is aligned with the representation of Pneg. The image

decoder is expected to generate masks which contain as much ROI as possible such that

the filtered image is as close as possible to a healthy one, whose representation has high

similarity with that of Pneg.

Note that during training, if the input image does not contain the target, the model

will be directly trained to align the image representation with the representation of Pneg.

Hence, image-level tags are needed. Instead of using human annotations, we use the

Chexpert labeling toolbox (Irvin et al., 2019) to automatically parse the report and

extract rough labels.

For the text encoder, we have two options: the multi-layer transformer of BLIP (Li

et al., 2022b) which is trained on RefCOCOg (Mao et al., 2016) for image-text alignment,
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Figure 4.2: Model architecture for text-supervised segmentation.

and the Clinical BERT (Alsentzer et al., 2019) trained on MIMIC-III (Johnson et al.,

2016) for medical report classification. For the visual decoder, we also consider two models,

Segformer (Xie et al., 2021) and Segmenter (Strudel et al., 2021). Both models use ViT

as visual encoders. The difference is that, for the decoder, Segformer uses linear layers

and Segmenter uses transformer layers. We also consider that both the linear layers and

transformer layers may not preserve spatial information among pixels well. Hence, we

explore adding convolutional layers behind. We will compare all the above options in our

Ablation Studies.

4.1.3 Image Filtering

In detail, given that for most diseases the intensity of the ROI is higher than for normal

cases, we think the high-intensity ROIs can be filtered such that the generated image is

close to normal ones. Then, the filtered images can be well aligned with the negative

prompt. Given the original image I and mask M, the filtered image is simply

If = I(1 −M), (4.2)

where M is the output of the image decoder and its values are between 0 and 1.
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Atelectasis Cardiomegaly

Consolidation Pleural Effusion

Figure 4.3: ROIs of Atelectasis, Cardiomegaly, Consolidation and Pleural Effusion, cropped
from chest X-rays.

4.1.4 Loss Function

The loss function is still based on the infoNCE loss, but unlike pretraining, we remove

Ltext:

Lm =











Lim(I, Ppos) + Lim(If , Pneg) I ∈ Ipos

Lim(I, Pneg)) I ∈ Ineg,

(4.3)

where Ipos, Ineg and If are images with positive labels, images with negative labels, and

filtered images with positive labels. To avoid generating a large mask that erases almost

all regions, we add another loss term Larea = mean(M) to restrict the size of the masks.

The final loss is

L = Lm + αLarea, (4.4)

where α is a hyperparameter to be tuned.
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4.2 Experiments and Results

4.2.1 Datasets

The medical reports and images in MIMIC-CXR-JPG (Goldberger et al., 2000) are used

for both pretraining and training. For validation and testing, we used the validation

(187 images) and test (499 images) sets of the Chexlocalize X-ray image segmentation

dataset (Saporta et al., 2022). There is no overlap between the MIMIC-CXR training set

and Chexlocalize. We evaluated our model on the segmentation of 5 diseases: Atelectasis,

Cardiomegaly, Consolidation, Edema, and Pleural Effusion. Furthermore, we also tested

its zero-shot performance on the SIIM-ACR Pneumothorax Segmentation dataset (Zawacki

et al., 2019) using the test split (1,737 images) from (Wang et al., 2022a; Wu et al., 2023b;

Wan et al., 2023).

4.2.2 Implementation Details

In the pretraining stage, our visual encoder is the ViT in segformer-b1 (Xie et al., 2021).

For the text encoder, we use the 12-layer transformer of BLIP (Li et al., 2022b). In the

training stage, we fix the text encoder. For the visual decoder, we use the linear decoder

of Segformer and add three convolutional layers after that. Our choices are justified by

our Ablation Studies.

Parameter α in (Equation 4.4) is an important hyperparameter that controls the size

of the generated masks. The value should be unique for each disease because different

diseases usually have different sizes. Hence, we tune α for each of the 5 diseases separately.

The α for Atelectasis, Consolidation, Edema, Pleural Effusion and Pneumothorax is 0.005

and for Cardiomegaly it is 0.001. Our above choices are justified by our ablation studies.

4.2.3 Results

For Chexlocalize, the results were evaluated in terms of mIOU with respect to human

annotations. Our model was compared with the baseline model, a full-shot Grad-CAM
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Base ChexSeg GroupViT Ours

Atelectasis 0.254 0.323 0.112 0.347
Cardiomegaly 0.452 0.461 0.341 0.488
Consolidation 0.408 0.110 0.231 0.332

Edema 0.362 0.257 0.401 0.447
Pleural Effusion 0.235 0.273 0.073 0.275

Table 4.1: Comparison of model segmentation performance measured by mIOU on
Ateletasis, Cardiomegaly, Consolidation, Edema, and Pleural Effusion. (The performances
reported by ChexSeg is only on 500 images annotated by their own radiologists.)

(Selvaraju et al., 2017) provided in the Chexlocalize publication, ChexSeg (Gadgil et al.,

2021), and GroupViT (Xu et al., 2022), which we trained. The Grad-CAM (Selvaraju

et al., 2017) is trained on the Chexlocalize training data with automatically extracted

image-level tags. ChexSeg is a semi-supervised segmentation model. It is trained on

Chexlocalize training data and uses pseudo segmentation labels generated by the baseline,

combined with a portion of human-annotated segmentation labels. GroupViT is trained

with images and medical reports from MIMIC-CXR-JPG, similar to our model, but the

difference is that it generates masks by directly matching text prompts with encoded

token features.

For SIIM-ACR, the performance was measured by the Dice score, and compared with

other models that reported Dice scores.

Table 4.1 and Table 4.2 report our results on Chexlocalize and SIIM-ACR. For

Chexlocalize, our model outperforms by a large margin on atelectasis, cardiomegaly,

edema, and pleural effusion. Especially, the comparison with GroupViT also supports

our position that directly aligning patch features with text prompts may not be suitable

for medical images. For SIIM-ACR, our model also outperforms other semi-supervised

models. In Row 5, we also post the result of the SIIM-ACR Challenge winner. There is

still a large gap between our zero-shot performance and the top runner. Figure 4.4 and

Figure 4.5 show segmentation examples compared with human-annotated labels for all 6

disease categories. The segmentations are shown as the heatmap of the filtering mask. In

Figure 4.6, we also show the heatmap for normal patients.
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Atelectasis
Model Segmentation Human Annotation Model Segmentation Human Annotation

Cardiomegaly
Model Segmentation Human Annotation Model Segmentation Human Annotation

Consolidation
Model Segmentation Human Annotation Model Segmentation Human Annotation

Figure 4.4: Visual comparison of segmentation heatmaps and human annotations for
Atelectasis, Cardiomegaly and Consolidation.

Dice Remark

MGCA (Wang et al., 2022a) 59.3 10% data
MedKLIP (Wu et al., 2023b) 60.8 10% data
MedUniC (Wan et al., 2023) 62.2 10% data
IMITATE (Liu et al., 2023a) 61.7 10% data
Winnder (Anuar, 2019) 86.79 fully-supervised
Ours 68.64 zero-shot

Table 4.2: Dice on SIIM-ACR pneumothorax segmentation.
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Edema
Model Segmentation Human Annotation Model Segmentation Human Annotation

Pleural Effusion
Model Segmentation Human Annotation Model Segmentation Human Annotation

Pneumothorax
Model Segmentation Human Annotation Model Segmentation Human Annotation

Figure 4.5: Visual comparison of segmentation heatmaps and human annotations for
Edema, Pleural Effusion and Pneumothorax.

4.2.4 Ablation Studies

Choices of encoders/decoders: Table 4.3 compares the effects of different text

encoders and visual decoders. The results are measured in terms of the mIOU for Pleural

Effusion segmentation. As mentioned previously, for the text encoder, we consider Clinical

BERT (Clin BERT) trained on medical reports for text classification and the text encoder

of BLIP trained on RefCOCOg (BLIP BERT) for VL feature alignment. For the visual

decoder, we consider the decoder of Segformer, which consists of linear layers, and the

transformer decoder of Segmenter. We also modify the linear visual decoder by appending
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Text Encoder Visual Decoder mIOU

Clin BERT Linear 0.242
BLIP BERT Linear 0.220
BLIP BERT Transformer 0.185
Clin BERT Linear + Conv 0.247
BLIP BERT Linear + Conv 0.275

Table 4.3: mIOU on Pleural Effusion using different types of encoders and decoders. “Lin-
ear” refers to the linear decoder of Segformer and “Transformer” refers to the transformer
decoder of Segmenter.

convolutional layers. Clin BERT (Row 1) yields a better score than BLIP BERT (Row 2).

Row 2 and Row 3 show that the linear decoder of Segformer is better than the transformer

decoder of Segmenter. A possible explanation could be that the transformer-based decoder

has much larger size and easily overfits the data. Row 4 and Row 5 show that appending

convolutional layers behind linear layers improves model performance. The best performer

is BLIP BERT with the linear+convolutional decoder and it is used as our preferred

architecture.

Cropping: We modified our model in the same way as (Yu et al., 2023; Cha et al.,

2023). Instead of using the mask to filter the original image, we use it to crop the image

and train our model to align local image features with Qpos. For Ipos, the new alignment

loss is the combination of global and local infoNCE loss:

Lm =











Lim(I, Ppos) + Lim(Ic, Ppos) I ∈ Ipos

Lim(I, Pneg)) I ∈ Ineg,

(4.5)

where Ic is the cropped image. Lastly, as in (Equation 4.4), we include αLarea. The

segmentation mIOUs for the five categories are shown in the right column of Table 4.4.

The cropping approach underperforms by a large gap, which further supports our claim

that the existing strategies are not suitable for medical images. The model fails to segment

Atelectasis, Consolidation, and Pleural Effusion. This is also aligned with the observations

in Figure 4.3 that one can hardly identify them simply using the cropped regions.
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Figure 4.6: Segmentation heatmap for normal patients.

Filtering Cropping

Atelectasis 0.347 0.007
Cardiomegaly 0.488 0.138
Consolidation 0.332 0.094
Edema 0.447 0.160
Pleural Effusion 0.275 0.065

Table 4.4: Comparison of using image filtering and cropping.

The influence of α: In Figure 4.7 we plot the mIOU over α values from 1.0 to 0.0001

for all five Chexlocalize classes. When α is large, our model is heavily penalized for

generating large masks and the mIOUs are lower. The accuracy first increases as α

decreases, then starts to decrease after a certain α. Although the performance is largely

affected by α, the scores are generally high for α between 0.0001 and 0.005, and some of

the lowest scores still exceed those of other models.

Prompt engineering: Finally, we explored the effect of different prompts. We created

a new pair of prompts, “{target}” for the positive prompt and “no {target}” for the

negative. This pair is also used by Jang et al. (2022) for chest X-ray classification. We

name our prompt as Pdefault and the new one as Pnew. The performance comparison is

shown in Table 4.5. Our Pdefault yields better performance.
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Figure 4.7: mIOU of five categories under different α values.

Pdefault Pnew

Atelectasis 0.347 0.343
Cardiomegaly 0.488 0.373
Consolidation 0.332 0.286
Edema 0.447 0.423
Pleural Effusion 0.275 0.241

Table 4.5: mIOU for Pdefault and Pnew
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CHAPTER 5

Medical Report Generation from Medical Images

5.1 Methodology

5.1.1 Parameter-Efficient Fine-Tuning (PEFT) LLMs on Medical Datasets

Given the huge number of parameters, it is expensive and time-consuming to fine-tune

LLMs. In addition, fine-tuning may also cause the model to lose the abilities learned

from the prior extensive training. Hence, instead of fine-tuning the whole model, we use

a PEFT method called Low-Rank Adaptation of Large Language Models (LoRA) (Hu

et al., 2022). LoRA is based on the hypothesis that, the fine-tuned weights Wnew ∈ R
d×k

are the original pretrained weights added by a low-rank sparse matrix Wnew = W0 + ∆W .

The low-rank matrix ∆W is further decomposed as the product of two smaller matrices

A ∈ R
d×r and B ∈ R

r×k, where r is the rank. During training, the pretrained weights

W0 are fixed. Only A and B are trainable. This method yields a large reduction in

memory and storage usage. LoRA is suitable for our situation because we are fine-tuning

a medical LVLM that is previously trained on medical images. Given that the training

image domains only have small differences, it is reasonable to assume that Wnew and W0

are close and the assumption of LoRA holds.

5.1.2 LLM Prompt Engineering

Prompt Engineering is a popular strategy to align LLMs with specific tasks. In our work,

we provide the LLM with instructional prompts and fine-tune it for report generation.

The prompts serve as a step-by-step guide that tells the model how to write a medical
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No Finding

Support Devices

Fracture

Lung Opacity

Enlarged Cardiomediastinum

Pleural Effusion

Pneumothorax

Atelectasis

Edema

Consolidation

Lesion Pneumonia

Pleural Other

Figure 5.1: The flow graph of describing a chest X-ray.

report. A template is shown below.

Instructions: You are a helpful radiology assistant. Firstly describe what lines,

tubes, and devices are present and each of their locations. Describe if fracture

is present. Describe if there is any pleural abnormality. If there is, check

if it is pneumothorax, pleural effusion, or other pleural disease. Describe if

there is enlarged cardiomediastinum. If it is, check if there is cardiomegaly.

Then, describe if lung opacity is present; if present, check whether atelectasis,

consolidation, edema, lung lesion or pneumonia exists.

The template follows the decision making process in (Irvin et al., 2019), shown in Figure 5.1.
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5.1.3 Visual Contrastive Decoding

Visual contrastive decoding is designed to mitigate the over-reliance of VL models on the

statistical bias and language priors. It is applied to the LLM decoding stage. Traditionally,

the model simply selects the next word wn with the maximum probability p(wn|wprev, v),

where wprev is the text sequence before wn and v is the input image. Visual contrastive

decoding introduces a second probability p(wn|wprev, v
′), where v′ is obtained by distorting

the input image with heavy noise. Then, the contrastive distribution is defined as

pvcd(wn|wprev, v, v
′) = softmax[(1 + α) logit(wn|wprev, v) − α logit(wn|wprev, v

′)]. (5.1)

The contrastive distribution is designed to penalize the entire outputs affected by v′. This

may potentially result in unfluent or unreasonable generations. Hence, pvcd is only used

for words with high probabilities:

pvcd(wn|wprev, v) ≥ β max[pvcd(wn|wprev, v)]. (5.2)

In other words, in the output vocabulary, their contrastive probabilities are set as 0.

5.2 Experiments and Results

5.2.1 Datasets

We use the MIMICCXR (Goldberger et al., 2000) and Chexpert (Irvin et al., 2019)

datasets. The MIMICCXR training set is used to fine-tuned the model. The test sets of

MIMICCXR and Chexpert are used for testing. The model is evaluated across the same

five diseases in Chapter 3 (Atelectasis, Cardiomegaly, Consolidation, Edema and Pleural

Effusion). Table 5.1 counts the positive cases for the five diseases in the training set.

Consolidation and Edema are minority categories. Even for Atelectasis, Cardiomegaly

and Pleural Effusion, their positive cases are much fewer compared with the normal cases.
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Count

Atelectasis 65,047 (17.2%)
Cardiomegaly 64,346 (17.1%)
Consolidation 14,675 (3.9%)
Edema 36,564 (9.7%)
Pleural Effusion 76,957 (20.4%)

Table 5.1: Count of positive cases in the MIMIC-CXR-JPG training set. The percentages
of the entire training data are bracketed.

Atelectasis Cardiomegaly Consolidation Edema Pleural
Effusion

Micro

(Chen et al., 2021) 31.1 40.4 9.4 33.8 36.6 34.6
(Miura et al., 2021) 53.0 46.6 5.5 58.5 73.1 56.7
(Yang et al., 2023) - - - - - 35.2
(Wang et al., 2022b) - - - - - 48.8
(Nicolson et al., 2023) 34.2 54.9 9.9 30.3 54.8 44.2
BLIP 30.8 38.2 4.0 34.7 53.5 39.0
Ours 31.8 42.5 0.6 18.4 51.0 38.6

Table 5.2: F1 score comparison for state-of-the-art medical report generation models on 5
categories of diseases on MIMIC.

5.2.2 Implementation Details

In our experiments, we use LLaVA-Med (Li et al., 2023a). The zero-shot performance on

the MIMICCXR (Goldberger et al., 2000) and Chexpert (Irvin et al., 2019) datasets is

first evaluated. Then, we fine-tune the model and apply both instructional prompts and

visual contrastive decoding.

To evaluate the diagnosis accuracy of the generated reports, we use the tools in

Irvin et al. (2019) to automatically parse and label the reports on the key medical

finding categories. We mainly compare the F1 scores across the 5 categories used by the

classification task in Section 3.2 (Atelectasis, Cardiomegaly, Consolidation, Edema and

Pleural Effusion).
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Vanila Fine-tuned
on MIMIC

Inst VCD

Atelectasis
Precision 20.8 32.1 32.0 31.8

Recall 14.3 33.0 31.3 32.6
F1 20.0 32.6 31.7 31.8

Cardiomegaly
Precision 26.0 30.0 29.7 29.6

Recall 16.3 69.8 74.6 75.4
F1 20.0 42.0 42.5 42.5

Consolidation
Precision 7.0 0 0 11.1

Recall 4.6 0 0 0.3
F1 5.5 0 0 0.6

Edema
Precision 10.7 48.3 47.6 40.7

Recall 0.8 4.4 4.1 11.9
F1 1.5 8 7.5 18.4

Pleural
Effusion

Precision 28.2 58.6 57.5 56.2
Recall 19.6 51.3 47.2 46.8

F1 23.1 54.7 51.8 51.0

Table 5.3: Diagnosis accuracy of generated reports measured by the Precision, Recall and
F1 scores of 5 diseases on MIMIC-CXR-JPG test set.

5.2.3 Results

Table 5.2 compares the best diagnostic accuracy we achieve using LLaVA-Med and that

of other medical report generation models (Row 1-5). All the models are traditional VL

models. We also compare the same pretrained BLIP model (Row 6) in Section 3.1. It

is first trained in a multi-task scheme that minimizes image-text contrastive loss and

language generation loss. Then the pretrained model is fine-tuned solely on the report

generation task, with larger image size (384 × 384).

The results show that, compared with traditional medical report generation models,

LLaVA-Med does not show an advantage. Figure 5.2 and Figure 5.3 show examples of

correctly and incorrectly generated reports. The comparison between the ground truth

reports and the generated reports clearly shows that similarity scores may not be suitable

for medical report generation. In the examples, a single disease can be described through

various valid expressions; e.g., “cardiomegaly” and “enlargement of the cardiac sihouette”.
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Vanila Fine-tuned
on MIMIC

Inst VCD

Atelectasis
Precision 23.1 56.8 50.9 53.9

Recall 10.1 25.8 31.5 35.4
F1 14.1 35.5 38.9 42.7

Cardiomegaly
Precision 24.4 42.3 40.8 34.9

Recall 16.0 54.9 64.6 62.3
F1 19.3 47.8 50 44.8

Consolidation
Precision 0 0 0 0

Recall 0 0 0 0
F1 0 0 0 0

Edema
Precision 13.3 60.0 72 54.2

Recall 2.35 3.53 21.2 15.3
F1 4 6.67 32.7 23.9

Pleural
Effusion

Precision 16.2 52.6 47.5 50.4
Recall 17.5 50.8 46.7 47.5

F1 16.8 51.7 47.1 48.9

Table 5.4: Diagnosis accuracy of generated reports measured by the Precision, Recall and
F1 scores of 5 diseases on Chexpert test set.

Conversely, an expression similar to the ground truth might still be considered invalid.

We have conducted ablation studies on our two methods. We first evaluated the

original LLaVA-Med (vanilla). Next we fine-tuned it on MIMICCXR for report generation

with and without the instructional prompt. Lastly, we applied visual contrastive decoding

to the LLaVA-Med fine-tuned with the instructional prompt. The results are reported

in Table 5.3 and Table 5.4. Vanilla LLaVA-Med has the poorest diagnostic accuracy.

The accuracy can be largely improved by fine-tuning it on MIMICCXR. The use of

instructional prompting improves the performance on Chexpert while not on MIMIC.

Visual contrastive decoding shows improvement only on a few categories. All settings fail

in the diagnosis of Consolidation because of the imbalanced training data.
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Ground Truth Report: 

there may be some minimal residual elevation of 

pulmonary venous pressure and small pleural effusion 

with bibasilar atelectasis. central catheter remains in 

place. 

Generated Report: 

the patient has been extubated and the nasogastric 

tube was removed. the lung volumes have slightly 

decreased. the patient shows signs of mild fluid overload 

and a small right pleural effusion. atelectasis at both 

lung bases, left more than right. no pneumonia.

Ground Truth Report: 

no evidence of pneumonia. borderline size of the 

cardiac silhouette without pulmonary edema. no 

pleural effusions. no inhomogeneous bone structure. 

mild tortuosity of the thoracic aorta. 

Generated Report: 

there is again enlargement of the cardiac silhouette 

without vascular congestion, pleural effusion, or acute 

focal pneumonia.

Ground Truth Report: 

lung volumes remain low, accentuating the cardiac 

silhouette and bronchovascular structures. with this 

limitation in mind, cardiomediastinal contours are stable in 

appearance. persistent elevation of left hemidiaphragm with 

adjacent atelectasis at the left lower lobe. right 

retrocardiac atelectasis is also similar to the prior study.  

Generated Report: 

the lung volumes have decreased. there is a newly appeared 

retrocardiac atelectasis. moderate cardiomegaly persists. 

no overt pulmonary edema. no larger pleural effusions. no 

pneumonia.  

Ground Truth Report: 

no evidence of acute intrathoracic process.', 'no evidence of 

the et tube. 

Generated Report: 

there is little change and no evidence of acute 

cardiopulmonary disease. no pneumonia, vascular 

congestion, or pleural effusion.

Figure 5.2: Examples of correctly generated reports.
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Ground Truth Report: 

mild pulmonary edema, mild pulmonary edema and mild-

to-moderate cardiomegaly with some mediastinal widening 

is worsened. 

Generated Report: 

there is little overall change. again there is enlargement of 

the cardiac silhouette with diffuse bilateral pulmonary 

opacifications consistent with pulmonary edema. in the 

appropriate clinical setting, superimposed pneumonia would 

have to be considered. the right ij catheter is unchanged.

Ground Truth Report: 

one of the right chest tubes appears to have 

been removed. no definite pneumothorax is 

appreciated. post-surgical changes persist in 

the right hemithorax and there is extensive 

subcutaneous gas along the right lateral chest 

wall. 

Generated Report: 

there is little overall change. again there is 

enlargement of the cardiac silhouette with 

some elevation of pulmonary venous pressure. 

no evidence of acute focal pneumonia.

Ground Truth Report: 

comparison is made with prior study performed a day earlier. 

interstitial opacities in the right lung have minimally increased, 

 likely due to edema. in the right upper hemithorax several air-fluid 

levels are more conspicuous than in prior studies .. right perihilar 

opacity is grossly unchanged, allowing the difference in position of 

the patient. the left lung is clear. the right chest tube remains in 

unchanged position. right chest wall subcutaneous emphysema 

has improved. 

Generated Report: 

there is a new parenchymal opacity in the right upper lobe. in 

addition, there is a newly appeared right pleural effusion. the 

changes are highly suggestive of pneumonia. no other 

parenchymal changes. normal size of the cardiac silhouette. no 

pulmonary edema.

Ground Truth Report: 

no acute intrathoracic process. 

Generated Report: 

there is no relevant change. the lung volumes are low. moderate 

cardiomegaly with mild fluid overload but no overt pulmonary 

edema. no pleural effusions. no pneumonia.

Figure 5.3: Examples of incorrectly generated reports.
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VQA RG VQA RG

Atelectasis
Precision 31.0 50.9

Cardiomegaly
Precision 27.1 40.8

Recall 44.4 31.5 Recall 20.0 64.6
F1 36.5 38.9 F1 23.0 50.0

Consolidation
Precision 6.0 0

Edema
Precision 11.7 72.0

Recall 40.0 0 Recall 29.4 21.2
F1 10.4 0 F1 16.8 32.7

Enlarged
Cardiomediastinum

Precision 49.3 28.6
Fracture

Precision 0.9 0
Recall 12.4 0.7 Recall 33.3 0

F1 19.8 1.3 F1 1.8 0

Lung Lesion
Precision 2.0 0

Lung Opacity
Precision 50.0 81.3

Recall 71.4 0 Recall 70.3 25.2
F1 3.9 0 F1 58.5 38.4

Pleural Effusion
Precision 22.3 47.5

Pneumonia
Precision 2.4 6.3

Recall 49.2 46.7 Recall 21.4 7.1
F1 30.7 47.1 F1 4.4 6.7

Pneumothorax
Precision 0 0

Support Devices
Precision 48.6 78.5

Recall 0 0 Recall 81.6 63.8
F1 0 0 F1 60.9 70.4

Table 5.5: Comparison of diagnostic accuracy (Precision, Recall, F1) for LLaVA-Med
VQA and report generation (RG) on Chexpert.

5.3 Factual Mismatch Between VQA and Report Generation

Table 5.5 compares the zero-shot LLaVA-Med VQA accuracy and the zero-shot diagnostic

accuracy of the reports generated by LLaVA-Med, on the Chexpert dataset. Both

experiments are on the vanilla setting, without any fine-tuning or additional prompts.

Notably there exists a significant inconsistency between the two tasks. On Atelectasis,

Lung Opacity and Support Devices, the VQA results show a low Precision and high

Recall, while the generated reports have high Precision and low Recall. On Consolidation,

Fracture, and Lung Lesion, the extremely low Precision and high Recall may suggest a

large number of FP predictions, while for report generation the model simply predicts

most cases as negative.

One of the reasons leading to the mismatch could be insufficient training. Minority
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classes such as Consolidation, Fracture, Lung Lesion, Pneumonia and Pneumothorax, are

rarely mentioned in the training corpus; hence, the generated reports tend to omit them.

When the model is asked about the presence of these diseases, it is unable to answer

because it does not learn their features well.
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CHAPTER 6

Conclusions, Discussion, and Future Work

This thesis explored the application of language models to medical image analysis. It

focused on three tasks, medical image classification, medical image segmentation, and

medical report generation from medical scans.

Medical Image Classification with Language Models: For medical image classifi-

cation, we tested LLaVA-Med on VQA regarding the diagnosis of diseases and the results

show that the model has unsatisfactory performance when asked questions regarding

complex diseases. Two prompting strategies were proposed to improve the VQA accu-

racy: providing descriptions of diseases and providing the predictions of weak learners as

references. The first one helped the model understand the minority diseases that it does

not learn well at the training stage. Referring the predictions of weak learners can help

improve the accuracy on specific aspects; e.g., suppressing FPs. More importantly, this

strategy can be extended to the general domain. It is meaningful because our strategy can

be applied not only to medical LVLMs but also to LVLMs in other specialized domains.

However, the two strategies are not effective on diseases that have extremely scarce data;

e.g., Consolidation, Fracture, Lung Lesion, Pneumonia, and Pneumothorax. For these

categories, providing text descriptions might not suffice since the visual encoder does not

learn the visual features either. Moreover, the data might not suffice to train the weak

learners. An approach to handle these rare categories would be a promising direction for

future research. Retrieval augmented generation (RAG) could be one potential solution.

For a disease, one can provide not only the text description but also typical example

images to help the model make decisions.
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Medical Image Segmentation with Language Models: For medical image seg-

mentation, we have devised an approach to medical image segmentation in a zero-shot

learning manner with text supervision. Crafting two prompts Ppos and Pneg, we trained

our model to generate a mask and used it to filter the original image. The model learns

to align the original image with Ppos and the filtered image with Pneg. When trained

on the MIMIC-CXR-JPG dataset and tested on the Chexpert and SIIM-ACR datasets,

our zero-shot model outperformed weakly-supervised/semi-supervised full-shot learning

models. A limitation of the proposed method is that it cannot be applied to low-intensity

ROIs (e.g., air in organs). For these ROIs, the mask should be added instead of subtracted

to make them normal. This can be addressed in future work. Moreover, it could be difficult

to obtain a normal image simply by adding a mask to the original image directly. A

synthetic image generation module can be considered. Another limitation is the minority

classes; these appear rarely in the training data and the model may not be able to learn

their features well. Hence, the model would be unable to distinguish Ppos and Pneg and

the decoder would not be guided during training. Lastly, the choice of α has significant

influence on the segmentation accuracy. In future work, instead of presetting, a learnable

α may be desired.

Medical Report Generation: For medical report generation, we evaluated the accu-

racy of LLaVA-Med in terms of diagnostic accuracy. The results showed that it suffers

from severe hallucination. To mitigate hallucination, we mainly applied two strategies,

instructional prompting and contrastive decoding. Neither of the two strategies yielded

significant improvement in accuracy. This indicates that the over-reliance on unimodal

priors might not be the main cause of hallucination for medical LVLMs. The failure of the

visual encoder may be the core problem. Most LVLMs use the ViT encoder, but it could

be extremely hard for the ViT to learn the features of multiple diseases from multiple

medical image modalities. Moreover, the imbalanced training data makes it more difficult

to learn minority diseases. Lastly, the observed performance mismatch between the VQA

and report generation tasks is meaningful. Mostly previous models were tested on either
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VQA or captioning, while the consistency between them was rarely studied. In future

work, the consistency between the two tasks could potentially serve as a new metric to

evaluate the hallucination of LVLMs.
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APPENDIX A

Medical Image Classification by Contrastive Learning

A.1 Classification with Pretrained VL Models

The method of image classification using language models follows ConVIRT and CLIP.

The image encoder and text encoder are trained on the image captioning dataset using

contrastive learning. The two encoders are trained to maximize the similarity between

correct image-caption pairs while minimizing that between wrong image-caption pairs.

This is usually achieved by computing the cosine similarity between all image and text

features and applying cross-entropy loss or contrastive loss. At the inference stage, one

matches the encoded image features with a sequence of class text features and selects the

one with the highest score as the prediction.

A.1.1 Model Architecture

Our model is trained for two tasks: image-text contrastive learning and medical report

generation, with the latter being an auxiliary task. The overall model architecture

(Figure A.1) follows BLIP, which consists of three modules: a visual encoder, a text

encoder, and a multimodal text decoder.

Visual/Text Encoder: The visual encoder is ViT encoder and the text encoder is a

multi-layer transformer. They are unimodal encoders that extract visual features and

text features respectively.
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Image 

Encoder

Ground Truth: Lesion identified at the 

bottom right lung. No no evidence of 

pneumonia, edema or effusion.

Multimodal 

Text Decoder

Text 

Encoder

Language Generation Loss 

(Negative Log-likelihood)CrossEntropy(Softmax((
0 0

0

0
), (

1

0

0
) + . . . + CrossEntropy(Softmax((

0 0

0

0
), (

1

0

0
)

Visual 

Features

Text 

Features

Generated Report: Lesion found at the 
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Figure A.1: Multitask training for contrastive learning models. The image encoder and
text encoder are trained to minimize the contrastive loss and the language generation
loss.

Multimodal Decoder: Similar to the multimodal encoder, it also shares parameters

with the text encoder. The bi-directional self-attention is replaced by uni-directional

self-attention. A special token is used to indicate the decoding mode.

A.1.2 Multitask Losses

Image-Text Contrastive Loss: This is the loss used by Li et al. (2021). It is the sum

of softmax text-to-image and image-to-text similarity:

Lt2i =
expS(I, Tj)

∑

j∈N expS(I, Tj)
, Li2t =

expS(Ij, T )
∑

j∈N expS(Ij, T )
, (A.1)

where S is the similarity computed using the image/text features encoded by the im-

age/text encoder. We use cosine similarity for S.
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Figure A.2: Medical image classification using contrastive learning

Language Generation Loss: The visual encoder and the multimodal decoder also

perform the report generation task. The loss function is the cross-entropy loss.

A.1.3 Inference

The inference steps are shown in Figure A.2. To perform disease classification, we create

two prompts, “{target}” and “no {target}”, where “target” is the disease word. They are

encoded by the text encoder and matched with the image features. The one with higher

similarity becomes the prediction result.

A.2 Datasets, Implementation Details, Experiments, and Re-

sults

We use the same datasets as the LLaVA-Med experiments: MIMICCXR and Chexpert.

The model is trained on the MIMICCXR training set and tested on both the MIMICCXR

and Chexpert test sets.

Table A.1 and Table A.2 report the classification F1 scores of the 5 disease categories

on the MIMICCXR and Chexpert datasets. We compare the pure contrastive learning
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Plain Plain + NLG

Atelectasis 17.44 41.5
Cardiomegaly 19.25 47.4
Consolidation 14.90 14.3
Edema 41.30 46.0
Pleural Effusion 61.10 64.0

Table A.1: Classification performance evaluated by F1 scores of 5 diseases on the MIMIC-
CXR-JPG test set.

Plain Plain + NLG

Atelectasis 12.5 58.5
Cardiomegaly 13.8 61.8
Consolidation 17.6 18.5
Edema 42.7 49.7
Pleural Effusion 28.1 59.3

Table A.2: Classification performance evaluated by F1 scores of 5 diseases on the Chexpert
test set.

setting and the multitask setting (contrastive learning and language generation). Adding

the report generation task generally leads to a significant improvement.

Compared with the performance of LLaVA-Med in Table 3.4, BLIP outperforms

LLaVA-Med on Cardiomegaly, Consolidation, Edema, and Pleural Effusion and has

comparable performance on Atelectasis. Smaller models like BLIP still have advantages

over large models.
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APPENDIX B

Prompts with Medical Explanations

The explanations of medical findings used in Chapter 3 are listed below.

Atelectasis: Atelectasis refers to the partial or complete collapse of a lung or a section of

lung. The features of atelectasis on an X-ray can vary depending on the cause and extent

of the collapse. Some common X-ray features include: 1. The affected area may appear

denser or whiter than normal lung tissue due to the collapse, leading to increased opacity

on the X-ray. 2. The affected portion of the lung may appear smaller or compressed

compared to the surrounding healthy lung tissue. 3. Atelectasis can cause a shift or

displacement of nearby structures, such as the trachea or heart, toward the affected area.

4. In obstructive atelectasis (caused by a blockage in the airways), there might be signs

of hyperinflation in the unaffected areas of the lung and a visible blockage or narrowing

in the affected bronchus. 5. Linear or band-like opacities may be visible, often referred to

as plate or band atelectasis, which can occur due to the collapse of small airways. Given

the information above, does this image have Atelectasis?

Cardiomegaly: Cardiomegaly is enlargement of the heart. The definition is when

the transverse diameter of the cardiac silhouette is greater than or equal to 50% of the

transverse diameter of the chest (increased cardiothoracic ratio) on a posterior-anterior

projection of a chest radiograph or a computed tomography. Given the information above,

does this image have Cardiomegaly?

Consolidation: Consolidation on an X-ray refers to the filling of the lung’s air spaces

with fluid inflammatory exudate, or cellular material. Typical X-ray findings suggesting
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consolidation include: 1. Areas of increased density in the lung tissue, appearing as an

opaque or hazy patch on the X-ray. Given the information above, does this image have

Consolidation?

Edema: Pulmonary edema is the accumulation of fluid in the lungs. Some common

X-ray features include: 1. Increased density in the central lung fields resembling the shape

of bat wings. 2. Thin, linear opacities at the lung periphery, often indicating interstitial

edema. 3. Prominent blood vessel markings due to engorgement from increased pressure

in the pulmonary vasculature. Given the information above, does this image have Edema?

Enlarged Cardiomediastinum: Enlarged cardiomediastinum refers to both an en-

larged heart and widened mediastinum (the space in the middle of the chest containing

the heart and other structures). Some common X-ray features include: 1. The width

of the heart compared to the width of the chest appears larger than normal. The heart

occupies more than 50% of the chest width on the X-ray. 2. The heart’s outline appears

larger and may extend beyond its usual boundaries, indicating cardiac enlargement. 3.

The space between the lungs where the heart, major blood vessels, and other structures

reside appears wider than normal. Given the information above, does this image have

Enlarged Cardiomediastinum?

Fracture: X-ray findings that suggest the presence of a fracture typically include: 1.

A line or gap in the normal bone structure. This could be a visible break, crack, or

irregularity in the bone’s smooth surface. 2. Bone segments may appear displaced or

misaligned compared to their normal anatomical position. 3. Swelling or soft tissue

changes around the site of the suspected fracture. 4. widening of the bone at the fracture

site. Given the information above, does this image have Fracture?

Lung Lesion: Lung lesion could include tumors, nodules, or other abnormalities. Some

common X-ray features include: 1. An abnormal area in the lung that appears denser

or more opaque than the surrounding healthy lung tissue. 2. The lesion may have
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well-defined or ill-defined margins. 3. Presence of calcifications within the lesion can

sometimes be observed. 4. Any associated changes in the lung tissue surrounding the

lesion, such as consolidation, collapse, or scarring.

Lung Opacity: The term “lung opacity” on a chest radiograph refers to areas in the

normally dark-appearing lung that appear denser, hazy, or gray.

Pleural Effusion: Pleural effusion is the accumulation of fluid in between the pari-

etal and visceral pleura. Some common X-ray features include: 1. Blunting of the

costophrenic/cardiophrenic angle. 2. Fluid within the horizontal or oblique fissures. 3.

Meniscus is seen. 4. Mediastinal shift occurs away from the effusion.

Pneumonia: Pneumonia is an infection that inflames the air sacs in one or both

lungs. Some common X-ray features include: 1. Areas of increased density in the lung

parenchyma, appearing as opacities or infiltrates. 2. Consolidation of an entire lobe or

segment of the lung, presenting as a dense and homogeneous opacity with sharp margins.

3. Patchy opacities that may be multifocal and scattered throughout the lung fields.

Pneumothorax: Pneumothorax occurs when air accumulates in the pleural space.

Some common X-ray features include: 1. A distinct dark area, often without lung

markings, between the lung and chest wall on the affected side. 2. Partial or complete

collapse of the lung on the affected side due to the presence of air, leading to reduced

lung volume and a smaller appearance of the affected lung. 3. The edge of the collapsed

lung may be shifted away from the chest wall, leading to a visible separation between

the lung edge and the chest wall. 4. An increased angle between the chest wall and the

diaphragm due to the absence of lung tissue in the pleural space. 5. In severe cases,

a tension pneumothorax can cause displacement of the mediastinal structures (trachea,

heart) toward the unaffected side.
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Support Devices : Common support devices in chest X-ray include tubes, oxygen

masks, sensor attachments, electrodes, catheters, probes.
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APPENDIX C

Additional Experiments With the LLaVA-Med VQA

Model

Table C.1 and Table C.2 report the results of LLaVA-Med PLAIN setting and EXP

setting across another 7 key medical findings: Enlarged Cardiomediastinum, Fracture,

Lung Lesion, Lung Opacity, Pneumonia, Pneumothorax, and Support Devices on the

MIMICCXR and Chexpert datasets. Providing diseases explanations generally yields

better results, but this is not obvious. For Fracture, Lung Lesion, and Pneumothorax,

where the Precision scores are extremely low, the EXP setting has almost no improvement.

Another special category is Support Devices, which refers to any medical devices implanted

into the chest. In the explanations, we provide only the names of several typical support

devices. The model might have more difficulties understanding these specific names.
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Diseases Metrics PLAIN EXP

Enlarged Cardiomediastinum
Precision 4.3 3.9

Recall 15 89
F1 6.7 7.4

Fracture
Precision 3.7 2.7

Recall 41.3 24.0
F1 6.7 4.9

Lung Lesion
Precision 3.9 3.9

Recall 77.2 100
F1 7.4 7.5

Lung Opacity
Precision 31.4 30.4

Recall 67.6 88.8
F1 42.8 45.3

Pneumonia
Precision 11.4 10.5

Recall 20.0 74.6
F1 14.6 18.4

Pneumothorax
Precision 3.0 2.6

Recall 16.7 78.5
F1 5.1 5.1

Support
Devices

Precision 29.2 27.7
Recall 81.3 51.8

F1 43 36.12

Table C.1: LLaVA-Med VQA performance of 7 diseases on the MIMICCXR-JPG test set
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Diseases Metrics PLAIN EXP

Enlarged Cardiomediastinum
Precision 49.3 44.1

Recall 12.4 85.2
F1 19.8 58.1

Fracture
Precision 0.9 0.6

Recall 33.3 16.7
F1 1.8 1.1

Lung Lesion
Precision 2.0 2.1

Recall 71.4 100
F1 3.9 4.1

Lung Opacity
Precision 50.0 47.2

Recall 70.3 90.7
F1 58.5 62.1

Pneumonia
Precision 2.4 1.7

Recall 21.4 57.1
F1 4.4 3.4

Pneumothorax
Precision 0 1.7

Recall 0 90.0
F1 0 3.3

Support
Devices

Precision 48.6 42.6
Recall 81.6 45.1

F1 60.9 43.8

Table C.2: LLaVA-Med VQA performance of 7 diseases on Chexpert test set
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APPENDIX D

Medical Image Segmentation with Transformers

D.1 Introduction

With the success of transformers (Vaswani et al., 2017) in language models, attempts have

been made to apply them to computer vision models. Besides replacing 2D convolution

layers with transformers (Dosovitskiy et al., 2021; Liu et al., 2021b), transformers can

also be applied to address the anisotropic problem of 3D medical images.

Deep learning models trained on a dataset with some specific slice spacing may perform

poorly on clinical images with a different slice spacing. The conventional approach to

dealing with the variable slice spacing problem is to “re-slice” all images such that they

have a common spacing and implement 3D convolutional neural networks (CNNs) that

encode information across the slices (Imran et al., 2020). Anisotropic convolutional kernels

and hybrid 2D/3D convolutions have also been employed. Ideally, however, a model

should adapt to variable slice spacing, for example, by replacing 3D convolutions with

recurrent networks to process information along the z-axis.

In our work, we propose a transformer-based approach to address the anisotropy

problem. We modify the transformer and apply it to 3D medical images. Our model

uses a self-attention mechanism to encode inter-slice information. It adapts to variable

slice spacing, is computationally efficient, and consumes fewer resources compared to 3D

convolutional and recurrent networks.
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Figure D.1: Model architecture. Dashed rectangles denote structure repetition. The
numbers below feature maps indicate the number of channels.

D.2 Methods

The core idea of our approach is to encode the information along the z axis by representing

the feature maps of a slice as a weighted sum of these maps and the feature maps of its

neighboring slices. Thus, all the feature maps of a sequence of slices are used to compute

the weight distribution for each slice. Such a weight distribution reflects how neighboring

slices are correlated with the target slice, and the weight decreases as the slice spacing

grows.

D.2.1 Task Formulation

We define our task as one of 3D semantic segmentation, because compared with tasks

such as classification or detection, segmentation requires more spatial information since

the regions of interest may have complex 3D structures and the anisotropy may have

more influence on the result. Hence, given a 3D lung CT image I of size Nx ×Ny ×Nz,

the task is to classify each pixel into one of two classes: cancer (1) and other (0). The

model must learn the mapping from I to its label ζ ∈ {0, 1}Nx×Ny×Nz .
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Figure D.2: Architecture of the transformer.

D.2.2 Network Structure

As shown in Figure D.1, our model uses the popular 2D U-Net (Ronneberger et al., 2015)

as a backbone. It consists of a down-sampling stream, an up-sampling stream, and a

transformer block. The feature maps of the down-sampling layers are forwarded to the

corresponding up-sampling layers. At the bottom layer, the feature maps of slices are

grouped as input sequences and passed to the transformer.

We use a transformer only at the bottom layer so that we can compare our approach

fairly with a recurrent network structure, Convolutional LSTM (ConvLSTM) (Shi et al.,

2015). If we were to use a transformer in each layer, then so should the ConvLSTM.

However, this would greatly increase the size of the network and we would not have enough

capacity to run experiments. We will discuss the possibility of applying the transformer

at higher resolution levels in Section D.4.

Transformer Module: Figure D.2 reveals the architecture of our transformer module.

The sequence of bottom layer feature maps is fed into three different local convolutional

layers to become the queries Q, keys K, and values V . The dk-dimensional queries and

keys are used to compute a group of softmax weights and the dv-dimensional values are

multiplied by the computed weights. Thus, the new feature map of each slice is a weighted

sum of its feature map and those of its neighboring slices. As in (Vaswani et al., 2017),
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the attention function is

Attention(Q,K, V ) = softmax

(

QKT

√
dk

)

V. (D.1)

Both queries and keys are feature maps and they are flattened. The product QKT

captures the correlations between the slices. The weighted sums of values are added

back to the original values and normalized. This is passed to a residual module with

two convolutional layers.For simplicity and a fair comparison in our study, we use only a

single-layer transformer with one head.

Positional Encoding: Unlike recurrent network structures, the transformer cannot

know the order (distance) of slices. To address this problem, they injected information

about the sequence order. Following their work, we designed Positional Encoding (PE),

which has the same dimensionality, dk, as the queries and keys so that they can be merged.

For slice j, where 0 ≤ j < Nz, it is an interleaving of sine and cosine functions:

PE(i, j) =











sin(j/w
i
dk ), i even,

cos(j/w
i
dk ), i odd,

(D.2)

where 0 ≤ i < dk and w = 104. The sinusoidal design allows generalizing to sequence

larger than the ones in training set easily. Because the PE of slice j+n can be represented

as a linear function of the PE at slice j. Referring to Figure D.2, PE is added to the queries

and keys after pooling. Vaswani et al. applied positional encoding to the queries, keys,

and values. We add PE only to the queries and keys because the positional information

is needed only to determine the relation of the slices in order to compute the attention

weights. PE is no longer useful once we have the attention weights, so we do not pad it

to the values.
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Figure D.3: Examples of lung CT slices. The cancer is highlighted by the green bounding
box.

D.2.3 Loss Function

We have designed our loss function as a multi-class soft Dice loss

L = 1 − 2|L ∩ S|
|L| + |S| , (D.3)

where L denotes the ground truth label and S denotes the segmentation output.

D.3 Experiments and Results

D.3.1 Experimental Setup and Baseline Models

We conducted experiments using the lung cancer segmentation dataset published by the

Medical Segmentation Decathlon (Simpson et al., 2019). It contains lung CT images

as well as corresponding labels from 63 subjects (Figure D.3). All subjects have cancer.

There are 20,707 slices in total, among which 2,027 are positive. The size of the images is

512 × 512 with the number of slices ranging from 112 to 636. The average voxel spacing

is 0.771 × 0.771 × 1.245 mm. The spacing along the z axis is from 0.64 to 4.1 times

that in the x, y plane. Given that both the number of positive slices and the size of the

cancer lesion are small, instead of using all the negative slices, we sampled only those

neighboring the positive slices. There are 1,890 negative slices in total. The image data
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were partitioned into 50 subjects for training and validation and 13 for testing.

The intensity of input images were truncated within the range [0, 200] Hounsfield Units

in order to minimize the influence of non-ROIs such as air and bones. The truncated

images were normalized to [0, 1]. The following image augmentation procedures were

applied in the training stage: random shearing (±10%), zooming (±20%), rotation (±90◦),

horizontal and vertical flipping, and shifting (±20 pixels). The Adam optimizer was used

and the learning rate was set to 10−5 with a decay factor of 0.9 for every 10 epochs.

We used the 3D U-Net and 2D U-Net with ConvLSTM (LSTMUNet) as comparison

models. The structure of the LSTMUNet is similar to our transformer model, TSFMUNet,

with the difference being that the transformer module is replaced by a one-layer, bi-

directional ConvLSTM module. The number of layers, number of channels, and kernel size

of the three models were kept as consistent as possible in order to make our comparisons

more fair.

We also re-sliced the original training set such that the voxel spacings along the three

dimensions are the same. Then we trained our three models on this isotropic dataset.

For a meaningful comparison, we tested the models on the original anisotropic test set.

The rationale is that by re-slicing the original data, we created a dataset that has a

new distribution of voxel spacing different from the original dataset. Then, by testing

the models on the original test data, we can compare their ability to adapt to variable

spacing. A model is adaptable to variable spacing if it is trained on isotropic images and

performs well on anisotropic images. The new dataset contains 2,314 positive slices and

2,142 negative slices. The average voxel spacing is 0.771 × 0.771 × 0.771 mm.

D.3.2 Results

We use the Dice score as the evaluation metric in all our experiments. The results of

the models trained on the original data and re-sliced data are reported in Table D.1 and

Table D.2, respectively. Table D.1 also reports the dice score of the 2D U-Net that serves

as the backbone of LSTMUNet and of our TSFMUNet. In Table D.2, all the models were
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Table D.1: Dice score comparison (original data).

Model Dice Score

TSFMUNet 0.8717
LSTMUNet 0.8573
3D U-Net 0.7744
2D U-Net 0.7309

trained on isotropic images and tested on the dataset used for Table D.1, which reveals

the drop of the Dice score compared with Table D.1. Figure D.4 shows 3D visualizations

of the segmentation result of models trained on the original dataset. Figure D.5 shows

those for the re-sliced dataset. The tables and figures confirm that our transformer-based

model outperforms the baseline models on both datasets.

Comparing the results in the two tables, one sees a performance drop: 3D U-Net

> LSTMUNet > TSFMUNet. Figure D.5 also reveals that the LSTMUNet and 3D

UNet failed to segment the targets. This is expected because the 3D U-Net uses fixed

kernels and therefore has the greatest dependency on voxel spacing. More specifically, the

model trained on images with smaller inter-slice spacing will assume a tighter relationship

between slices and the 3D kernels will have greater interaction between features from

different slices. A large performance drop is to be expected when this model is tested

on data with large spacing and less correlation between slices. Compared with the 3D

U-Net, the LSTMUNet is less affected because it operates on z-axis information only at

the bottom level. However, it too suffers from the same problem because the LSTM uses

the same kernel to compute the next state from previous states. Our TSFMUNet achieves

the least performance drop because it uses the self-attention mechanism and there are

no kernels working along the z axis—inter-slice information is encoded by computing a

weighted sum of neighboring slices based on their similarities.
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Table D.2: Dice score comparison (re-sliced data).

Model Dice Score Performance Drop

TSFMUNet 0.8674 0.0043
LSTMUNet 0.8217 0.0356
3D U-Net 0.7261 0.0483

Original Image TSFMUNet LSTMUNet 3D UNet

Figure D.4: Visualizations of the segmentation results on models trained on the original
dataset. The left column shows the visualizations of ground-truth cancer lesion segmenta-
tions and the other columns show segmentation results by the 3 models.
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Original Image TSFMUNet LSTMUNet 3D UNet

Figure D.5: Visualizations of segmentation results on models trained on re-sliced dataset.
The plotted images come from the original non-resliced test dataset. The left column shows
the visualizations of ground-truth cancer lesion segmentations and the other columns
show segmentation results by the 3 models.

D.4 Conclusions and Discussion

We have proposed a transformer-based network to deal with the anisotropy problem in

3D medical image analysis. Experimental results with a lung cancer segmentation task

reveal that our architecture outperforms baseline models. Our TSFMUNet model uses

a self-attention mechanism to encode spatial information and it adapts to images with

variable slice spacing. Moreover, unlike networks that have recurrent structures, our
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model can be parallelized. Our model requires the least capacity among the tested models

and is faster to train. To achieve the results in Table D.1, the 3D U-Net includes around

57 million parameters and the LSTMUNet has around 33 million parameters. However,

our TSFMUNet model requires only about 21 million parameters.

In our study, for comparison purposes, we used only a one-layer, single-head transformer

and incorporated it just on the bottom layer. Consequently, our model encodes inter-slice

information only at the low-resolution level. It may capture only the general shape

of the ROI but fail to align the detailed texture. In Figure D.4 and Figure D.5, the

segmentations generated by our model are too smooth. Given that some detailed features

will be lost in the downsampling process, we expect that the performance could be further

improved by also using transformers on the other layers to encode texture information at

the higher-resolution levels. In addition, recall that in our model the weight distribution of

the self-attention mechanism is derived from the product QKT of the queries and values.

This may not be the best approach to capturing the correlation between slices because

spatial information is lost when feature maps are flattened. Better representations of slice

correlation will be developed in future work.
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editors, Proceedings of the Fourth Conference on Medical Imaging with Deep Learning,
volume 143 of Proceedings of Machine Learning Research, pages 190–204. PMLR. 40

Giancardo, L., Niktabe, A., et al. (2023). Segmentation of acute stroke infarct core
using image-level labels on CT-angiography. NeuroImage: Clinical, 37:103362. 16

Girshick, R. (2015). Fast R-CNN. In Proceedings of the IEEE International Conference
on Computer Vision, pages 1440–1448. 33

Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark,
R. G., Mietus, J. E., Moody, G. B., Peng, C.-K., and Stanley, H. E. (2000). PhysioBank,
PhysioToolkit, and PhysioNet: components of a new research resource for complex
physiologic signals. Circulation, 101(23):e215–e220. 6, 26, 39, 48, 49

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., and Bengio, Y. (2014). Generative adversarial networks. 2

Guo, D. and Terzopoulos, D. (2021). A transformer-based network for anisotropic
3d medical image segmentation. In 2020 25th International Conference on Pattern
Recognition (ICPR), pages 8857–8861. IEEE. 1, 16

82



Guo, D., Wei, H., Zhao, P., Pan, Y., Yang, H.-Y., Wang, X., Bai, J., Cao, K., Song, Q.,
Xia, J., Gao, F., and Yin, Y. (2020). Simultaneous classification and segmentation of
intracranial hemorrhage using a fully convolutional neural network. 2020 IEEE 17th
International Symposium on Biomedical Imaging (ISBI), pages 118–121. 12, 16

Hamilton, M., Zhang, Z., Hariharan, B., Snavely, N., and Freeman, W. T. (2022). Unsu-
pervised semantic segmentation by distilling feature correspondences. In International
Conference on Learning Representations. 2

Han, T., Adams, L. C., Papaioannou, J.-M., Grundmann, P., Oberhauser, T., Löser,
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