UNIVERSITY OF CALIFORNIA

Los Angeles

Creating a Cognitive Agent in a Virtual World:
Planning, Navigation, and Natural Language
Generation

A dissertation submitted in partial satisfaction
of the requirements for the degree
Doctor of Philosophy in Computer Science

by

William Redington Hewlett 11

2013

(© Copyright by
William Redington Hewlett II
2013

ABSTRACT OF THE DISSERTATION

Creating a Cognitive Agent in a Virtual World:
Planning, Navigation, and Natural Language
Generation

by

William Redington Hewlett 11
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 2013

Professor Demetri Terzopoulos, Chair

Creating believable virtual humans for use in interactive video games and other
computer graphics applications is a serious challenge. Much research has focused
on how to create human models that exhibit realistic appearance and movement.
This dissertation investigates how to create virtual humans that act like real peo-
ple. In particular, we develop human agents that make plans, navigate through
complex environments, and communicate with one another. Despite their au-
tonomous behavior, our agents can be tightly controlled by content designers who
wish to script their virtual world behavior. Many virtual environments, particu-
larly those used in interactive games, have tight restrictions on memory and frame
rate, and we show how judicious offline computation can yield significant runtime
performance gains. We demonstrate a virtual world with agents that can plan,

navigate, and communicate in English.

i

The dissertation of William Redington Hewlett II is approved.

Alphonso Cardenas

Glenn Reinman

Eddo Stern

Demetri Terzopoulos, Committee Chair

University of California, Los Angeles

2013

iii

To my wife Kimberly

v

TABLE OF CONTENTS

Introduction 1

Control of Artificial Agents: Planning and State Machines . . 5

21 OVerview 5t
2.1.1 Why Plan?o >
2.1.2 Planning in a Finite Space 6
2.1.3 Planning with Multiple Agents 7

2.2 Related Work oo 9

2.3 Input 10

2.4 State Machines o 10
2.4.1 State Machines and Planning 10
2.4.2 State Machine Authoring 14
2.4.3 State Machine Specifics. 15

2.4.3.1 Beyond Finite State Machines 15
2.4.3.2 State Library 0000 15
2.4.3.3 Messaging System 16
2.4.4 Hierarchical State Machines 17

2.5 Planning Graph Creation 19

2.6 Planning under Uncertainty 20

Natural Language Generation 21

3.1 Overview. oL 21

3.2 Related Work 21

3.3 N-grams 24
3.3.1 N-gram Dataset, 24
3.3.2 Preparing Data 0oL 24
3.3.3 Real-Time Lookup 27
3.3.4 N-Gram problems 28

3.4 Sentence Generation 28
3.4.1 Sentence Input 28
3.4.2 Real Pro Sentence Realization 29
3.4.3 Sentence Creation 31
3.4.4 Sentence Choice 0. 33

3.5 Conversation State Machines L. 34
3.5.1 Conversational State Machine Example 34
3.5.2 Paired State Machines 34

3.6 Speech Synthesis 36

3.7 Imtegration with Planning 37

Path Finding 38

4.1 OVerview e e 38

4.2 Related Worko 39

4.3 Approach 43
4.3.1 Single Layer PPA* 43
4.3.2 Single Layer PPA*: Clustering and Analysis 49
4.3.3 Multi-Layer PPA*: Clustering and Precalculation 50
4.3.4 Multi-Layer PPA*: Search 54

44 Results. 60

vi

4.5 Integration with Planning 65

5 Simulation o 67
5.1 Introduction 67
5.2 Graphics and Animation 68
5.3 Planning and State Machines 70
5.4 Natural Language Generation 71

6 Conclusion and Future Work 75
6.1 Planning and State Machines 75
6.2 Natural Language Generation 76
6.3 PPA* . e 7

Bibliography 80

vii

LIST OF FIGURES

2.1 Simple Action List Example 11
2.2 Simple Action List Example (cont) 12
2.3 Results of Plan from Figure 2.1 13
2.4 StandSellTicket State Machine 18
3.1 Incorrect Ngrams 29
3.2 Sentence State Input L L0 30
3.3 RealPro Example Input 31
3.4 “I would like to buy a ticket to Boston” Perplexities 33
3.5 “You are booked on the flight to Boston” Perplexities 34
3.6 Simple Buy Ticket State Machine 35
4.1 All Pairs Shortest Path (APSP) distance matrix 39
4.2 Mapof Venice 44
4.3 Graphof Venice o 45
4.4 Nodes Clustered oo 45
4.5 Border Nodes and Border Edges 46
4.6 Virtual Edges oo 47
4.7 Parent Subgraph L oo oo A7
4.8 Start and Goal Subgraphs: Virtual Edges 48
4.9 Final Searchable Graph 48
4.10 Difficult edge caseo 58
4.11 Example of PPA* Search 60
4.12 Average search times (logarithmic scale) 61

viil

4.13

4.14

4.15

4.16

5.1

5.2

2.3

5.4

3.9

5.6

Expanded nodes per search (logarithmic scale) 62

Generated nodes per search (logarithmic scale) 63
Precalculation Times 65
Precomputed memory costs (logarithmic scale) 66
First Scene: Ticketing 68
Second Scene: Airport Gate 69
Scene 1 Dialog Example 72
Scene 2 Dialog Example 73
“What happened?” Perplexities 73
“The gate was changed” Perplexities 74

X

3.1

3.2

3.3

4.1

LisT OF TABLES

Google N-Gram Dataset: Basic Parameters 24
Google N-Gram Dataset: Words near “after” 25
N-Gram Database: Compressed 26
Comparison vs. Sturtevant et. al. on 200000 node room graph . . 63

ACKNOWLEDGMENTS

[would like to thank my advisor Professor Demetri Terzopoulos, who proposed
a vision of this work when I first visited UCLA. I would also like to acknowl-
edge my committee, Professors Glenn Reinman, Alphonso Cardenas, and Eddo
Stern. Many other UCLA professors helped me on my journey, but I am partic-

ularly indebted to Professors Petros Faloutsos, Richard Korf and Adam Meyerson.

I want to thank my close friends, coauthors, and coworkers in the Magix lab:

Brian Allen, Kresimir Petrinic, Gabriele Nataneli, Shawn Singh and especially
Wenjia Huang for helping produce the simulations using her virtual human ani-
mation system. Special thanks to Indiana University Professor Randall Beer, who
allowed me to work in his lab in Indiana for two years while my wife completed
her MBA degree, and Zach Haga, a fellow researcher from Professor Beer’s lab. I
would also like to thank Intel Corp., Microsoft Corp., and AMD/ATI Corp. for

their generous support through equipment and software grants.

Finally, I want to thank my parents, who encouraged me on the way, my chil-

dren Will and Guinevere, both of whom were born during my studies, and most

of all my wife Kimberly.

xi

VITA

1976 Born, Palo Alto, California, USA.

1995-2001 B.S. with Honors (Symbolic Systems), Stanford University

M.S. (Computer Science), Stanford University

2001-2003 Software Developer, The 3DO Company
2003 Software Developer, Pirate Games
20032006 Software Developer, Electronic Arts
2007 Summer Intern, SRI International

2009 Summer Intern, Blizzard Entertainment
2012 Summer Intern, Google Inc.

xii

PUBLICATIONS

William Hewlett. Partially Precomputed A*, IEEE Transactions on Computa-
tional Intelligence and Al in Games, June 2011, Volume 3(2), pages 119-128

Mubbasir Kapadia, Shawn Singh, William Hewlett, and Petros Faloutsos. Ego-
centric Affordance Fields in Pedestrian Steering. In Proceedings of the 2009 Sym-

posium on Interactive 3D Graphics and Games, 13D 2009, pages 215 to 223, New
York, NY, USA, 2009. ACM.

Shawn Singh, Mubbasir Kapadia, William Hewlett, Glenn Reinmann, and Petros
Faloutsos. A Modular Framework for Adaptive Agent-Based Steering. In Pro-
ceedings of the 2011 Symposium on Interactive 3D Graphics and Games, 13D
2011. pages 1 to 9, New York, NY, USA, 2011. ACM..

Mubbasir Kapadia, Shawn Singh, William Hewlett, Glenn Reinman, and Petros
Faloutsos. Parallelized Egocentric Fields for Autonomous Navigation. The Visual

Computer, pages 1 to 19, January 2012, Volume 28(12), pages 1209-1227

Willaim Hewlett, Michael Freed. Automatic Response Composition, Workshop
on Enhanced Messaging, AAAT, July 2008

xiil

CHAPTER 1

Introduction

The goal of virtual worlds, such as interactive video game worlds, is to create
animated scenarios that are realistic while conforming to the visions of their con-
tent creators. To this end, impressive work has been done, particularly involving
graphics, animation, and physics simulation, but the realism of animated char-
acters in virtual worlds has lagged behind. Animated agents in modern virtual
worlds such as games are typically controlled by finite state machines or rule-
based systems. These systems are simpler for programmers to create, but they
often require that content creators script every possible situation ahead of time,
which is work intensive and usually cannot adequately represent every situation

of interest.

Speech in video games and other virtual worlds is even more scripted. While
exceptions exist (such as Facade (Mateas and Stern, 2004)), the vast majority
of video games use prerecorded speech exclusively. Some recorded content can
be used multiple times, such as simple commands and exclamations, but most
audio clips are used only once. As modern video games become bigger and more
complex, the amount of scripted audio is rising quickly, but it still lacks adequate

coverage.

This dissertation presents a system for creating artificial intelligent agents in
virtual worlds. The agents have two primary cognitive abilities, the ability to
plan how to meet their goals, and the ability to communicate to other agents

using natural English. Planning and speech allow our agents to act realistically in

situations unanticipated by the content authors, while still allowing control of the
agents in predicted situations. Shao and Terzopoulos (2007) develop autonomous
pedestrians by breaking down the control of an animated intelligent agent into
multiple levels, including cognitive, behavioral, and motor control levels. This
thesis focuses on the cognitive model of an autonomous agent, which is both the

highest level of control and the least developed.

It is important to limit the scope of our work in order to make it tractable.
Our system does not create a completely intelligent “agent”. In particular, agents
are not able to communicate in English with humans in the real world. The
planning and speech of each agent is autonomous; agents do not see the plans of
other agents and conversations are generated on an agent-by-agent basis rather
than planning all conversational roles using a conversation manager. Furthermore,
agents do not understand the English language generated by other agents; they
communicate via normal programming channels of messaging and function calls,

rather than interpreting the English that they are receiving.

Agents in our system are for the most part “embodied”; each agent does its
own planning and speech generation, but they are not “embodied conversational
agents” because they do not communicate with each other through human speech
or with human non-verbal messages. For example, if Agent Bob knows that an
airplane flight is canceled, then Agent Alice will not get this information un-
til she approaches and converses with him, but while the conversation between
Agents Bob and Alice appears to be in English, their “speech” actually represents
computer messages sent between them at the same time as their conversation is

generated.

The vast majority of work in natural language processing and natural lan-
guage generation is focused on enabling computer-human discourse; communica-
tion in English between computer controlled agents is not a well-studied problem.

Computer-computer discourse avoids many of the problems that plague natural

language processing, such as interpreting the wide range of utterances that a hu-
man can make. While creating a machine that can talk with a human is one of
the most important problems of artificial intelligence, creating agents that can
talk to each other in English would be an important breakthrough for simulations
such as virtual worlds and games. Recently, a few other researchers have become
interested in conversation between computer agents, for example Hernault et al.

(2008) describes a system where agents discuss a newspaper article.

This project caters to three important groups, the system creators, the content
authors, and the users. The system creators construct the overall system including
modules such as a planning module or a natural language module, which can be
used to create many kinds of specific agents, while the content authors tailor agents
in a specific world with specific constraints and rules. For example, the system
creators create a planning system which allows agents to plan from their current
state to a goal state, and a natural language system that gives agents the ability
to communicate with one another in natural English. The content authors could
use the system to create an airport with agents that play the roles of tourists,
business people, and security officers. On the planning side, the content authors
choose the agents, the goals of the agents, the actions that the agents can take,
and the effect of those actions. On the natural language side, the content authors
create sets of sentences by specifying a few general concepts, and link together
these statements with conversational state machines. The users interact with and

experience the system once it has been built.

The remainder of this dissertation is organized as follows: There are four
additional chapters followed by our conclusion. In Chapter 2, we describe how
our virtual agents plan and utilize a system of state machines. In Chapter 3,
we show how the agents can speak to each other in English given some direction
from content creators. Chapter 4 describes a low level path finding algorithm that

scales well to large numbers of agents and huge worlds. In Chapter 5, we present

simulations that incorporate some of the previously developed techniques.

CHAPTER 2

Control of Artificial Agents: Planning and State

Machines

2.1 Overview

2.1.1 Why Plan?

The most common technique for controlling artificial characters in commercial
virtual worlds is finite state machines (FSM). There are a number of reasons for
this. First of all, FSMs are easy for system creators to implement. They have
low performance costs and are the simplest agent control structure for content
creators. The problem with state machines is that every possible situation to
which an artificial agent must react must be represented explicitly in the state

machine.

The goal of this thesis research is to maximize the realism and coverage of the
artificial intelligence while minimizing the work of the content authors. A content
author could write out exactly what a particular agent in a particular situation
should say or do, and this would provide maximum realism in that situation,
but that content would not necessarily be applicable by other agents or in other
situations. This specificity is known as lack of coverage. If the content author did
this for every situation and every agent, the amount of work involved would be
enormous. While techniques such as finite state machines and rule-based systems

can lower the authoring burden, Orkin (2004) argues that planning systems are

much more effective at reducing this burden in the game development cycle.

The virtual world system described in this dissertation uses state machines
extensively, but it also incorporates a planning system for higher-level processes.
One of the traditional weaknesses of planning systems in virtual worlds is that
they have expensive performance costs. Our system takes a novel approach to
minimizing performance costs while still providing the flexibility of a planning

system.

2.1.2 Planning in a Finite Space

The vast majority of planning algorithms work in infinite abstract spaces. For
example, imagine an agent that can move one unit in any of the four cardinal
directions on a two dimensional plane. Assuming the agent’s state is an (X,Y)
coordinate, we can easily describe the actions as changes in the state; for example,
MoveNorth = (X, Y +1). Both the start point and end point in this system would

be a (X,Y) coordinate, and any planner could solve for a plan in this space.

Now imagine that instead of an infinite plane, the plane is only 1000 x 1000,
with 1,000, 000 nodes. The actions have to change slightly (as you cannot go past
1000 in either direction), but its easy to map actions from the infinite domain
to the finite one. Of course, this new domain cannot handle searches between
nodes that are more than 1000 nodes apart in one direction, but it is difficult for
both computers and humans to manage search depths greater than 1000 anyway,
especially in real time. One of the keys of our planner is the fact that it works
in a finite space. This allows it to create plans on very large graphs much faster

than other planning algorithms, using techniques from Chapter 4.

Of course, many planning domains have more dimensions than the two in the
very simple planning domain above. There are two factors that allow us to con-

strain our planning to a finite space. The first is the insight that most people

are not able to plan more than a few steps ahead, and the second is that virtual
worlds tend to have a very limited number of actions that their computer agents
can take. Most agents can move according to a recorded animation, move to a
location, or pick up and use an item. Our agents can also engage in conversations,
but each conversation has very specified planning input and outputs (see Chap-
ter 3, Section 3.7). If we constrain our planning locations to specified locations
rather than (X,Y’) coordinates (for example “In Front of the Ticket Counter”),
we remove a significant number of nodes from the planning graph. This is par-
ticularly important for interaction between agents that move, because potentially
every combination of locations needs to be represented. In most video games and
virtual worlds, computer agents are mostly constrained to a particular area, and

only interact with other agents in that area.

A tricky problem with constraining our plans to finite size is an exponential
explosion in planning states. For example, suppose there are a planning agents
in the world, each of which could be in b locations, and each of which could have
some set of ¢ items. If we set up this space in a naive way, we will haveab2¢
possible states. Instead, it makes sense to constrain our states to those that are
actually important. If we frame each planning problem by what is important to
a single planning agent, we can minimize the state-space explosion. For example,
most planning agents only care about a very small subset of what other agents
carry, and only need to worry about where other agents are only if they are near

to them.

2.1.3 Planning with Multiple Agents

Given that there are potentially many agents that want to plan at the same time,
the planning system creates a single planning graph that is used by all agents.
Each plan is performed with respect to the agent currently using the planning

system. In some ways the planning system is similar to an emergency plan for a

building, where a person in the building might read directions that say “1) Take

bl

cover. 2) If you are a manager locate all of your staff. 3)...” Of course, each
planning operation involves some search of the PPA* (Partially Precomputed
A*) data structure, as opposed to a written plan. A more formal way to frame
this multiagent planning is that given an agent and a goal of that agent, we first
determine the state of the agent. This state corresponds to a node in a graph. The
goal may correspond to a single state or a set of states. PPA* then searches the
graph until it reaches one of the goal states, and the path that it finds corresponds
to a plan. (See Chapter 4, Section 4.5). Often, the plan will make assumptions
about states that are outside the agent’s immediate surroundings. For example,
an agent might assume an airplane is leaving from Terminal 1 only to arrive there
and find that it is leaving from Terminal 3. Then the agent calls the planner

again to replan with a different starting node. In this case, being wrong about its

assumptions causes the agent to make believable mistakes.

One aspect of multiple agent planning for which our system has only minimal
support is anticipation, or planning about other agents’ planning. For example,
in a chess game a planning agent might consider each of the possible actions of a
competitor and attempt to find the best move given the options of the opponent.
Similarly, we could imagine that one agent in a team might figure out what each
other agent on the team will do to maximize an expected value function. While
this functionality can be approximated by content designers by specifying certain
goals and actions in a plan, generally agents in our system do not reason about
the plans of other agents. Reasoning about other planning agents requires either
an exact or approximate model of their planning system and quickly leads to a

combinatorial explosion in the size of the planning state space.

2.2 Related Work

Orkin’s work on the FEAR game (Orkin, 2005) is one of the first applications
of planning systems in a successful virtual world. This work is interesting for
virtual worlds because, unlike many planners, it runs in real time while using
limited computing resources. There are many lessons to be learned from the
FEAR system. For one thing, the author draws a focus to the game designers and
the expressiveness of the system, which is a clear parallel to our content authors
and our goal of maximizing realism and coverage. There are other techniques in
the FEAR system that might be incorporated into our system. For example, to
achieve real-time performance, the authors hash action symbols into a look-up

table so that determining what actions are available is as fast as possible.

Agents (or “NPCs” in the game literature nomenclature) in FEAR also limit
their planning by focusing on a particular individual and only updating knowledge
about that individual. This is important because certain tests, such as line-of-
sight checks, are very expensive to perform at run-time. For example, suppose
a particular agent could talk to any agent in the simulation, but one of the pre-
conditions of talking was that one had to maintain line-of-sight to the agent to
whom one was speaking. Naively, one could test each agent in the system with a
line-of-sight check, but that would be expensive. Instead if one keeps track of the
current “target” to which an agent is speaking, one can converse with that target
and only test against that target until a higher-level planner decides to switch
targets. In some ways, this is similar to hierarchical planning techniques such
as SHOP (Nau et al., 1999), which break down large planning tasks into several
smaller planning problems, except that in this case the scope of the hierarchy is
explicitly set to be interactions with the target. The open source SHOP2 (Nau
et al., 2003) is the modern version of the SHOP architecture, and it is a possible

alternative to finite space planning.

2.3 Input

How content creators interact with a planning system is one of the key features
that distinguish planning systems from each other. In this work, the planning
system has a similar authoring philosophy as the Conversation State Machines
(see Chapter 3, Section 3.5). The basic idea is that there are two tiers of con-
tent creation, the plans themselves, which are created in a very simple planning
language, and the implementation of the planning actions and constraints, which
are programmed individually. This is similar to the Conversation State Machine
sub-system, where the logic is created in a simple language, but the states and
transitions are either created automatically or hand programmed. The advantages
of this system is that content creators can work on content creation without being

responsible for programming tasks.

In Figure 2.1 we can see a simple example of a plan for an agent that wants to
travel by airplane. Each action has a set of constraints and a set of effects. The
planning system performs a search of the space and arrives with the plan found
in Figure 2.3. The agent travels to a ticket counter, asks which gate to go to,
purchases a ticket, goes through security, waits for her plane, and finally boards

the plane.

2.4 State Machines

2.4.1 State Machines and Planning

Even though planning is employed by agents in our simulation, traditional fi-
nite state machines are used as well. First of all, there are some agents that are
not complex enough to require planning. For example, a ticket agent might stay
behind his desk throughout the simulation and run a set of Conversation State

Machines with planning agents that approach it. Second, even for the planning

10

Figure 2.1: Simple Action List Example
< ActionName >
#<Constraintl > <Constraint2> ... <ConstraintN>

#< Effect>

Get__On_ Plane
Have Ticket At Gate Correct Time

Travel

Go_To_ Gate
At_Past_Security Know Gate
At Gate

Wait At Gate
At _Gate Not_Correct Time

Correct Time

Ask For Gate
At _Ticket Counter

Know_Gate

Go_To_Ticket Counter
At _Main_Terminal

At _Ticket Counter
Ask For Ticket
At _Ticket Counter

Have Ticket

11

Figure 2.2: Simple Action List Example (cont)
Go_To_Security
At Main_Terminal

At Security

Pass Through Security
At Security Have Ticket

At _Past_Security

Go_To_ Main_Terminal
At _Ticket Counter

At Main Terminal

Check Gate
At _Wrong Gate

Know_Gate
Go_To_Correct_ Gate

At Wrong Gate Know Gate
At Gate

12

Figure 2.3: Results of Plan from Figure 2.1

State: Has Ticket: 0, Location: 3, Time: 0, Traveled:

State: Has Ticket: 0, Location: 2, Time: 0, Traveled:

Action: Go_To_Ticket Counter

State: Has Ticket: 0, Location: 2, Time: 0, Traveled:

Action: Ask For Gate

State: Has Ticket: 1, Location: 2, Time: 0, Traveled:

Action: Ask For Ticket

State: Has Ticket: 1, Location: 3, Time: 0, Traveled:

Action: Go_To Main _Terminal

State: Has Ticket: 1, Location: 1, Time: 0, Traveled:

Action: Go_To_ Security

State: Has Ticket: 1, Location: 4, Time: 0, Traveled:

Action: Pass Through Security

State: Has Ticket: 1, Location: 0, Time: 0, Traveled:

Action: Go_To_Gate

State: Has Ticket: 1, Location: 0, Time: 1, Traveled:

Action: Wait At Gate

State: Has Ticket: 1, Location: 0, Time: 1, Traveled:

Action: Get_On_Plane
13

0, Know:

0, Know:

0, Know:

0, Know:

0, Know:

0, Know:

0, Know:

0, Know:

0, Know:

1, Know:

agents there are some small tasks which involve state machines rather than the
planner. Each planning Action can be associated with a state machine that actu-
ally performs the action. For example, the Pass Through Security action from
Figure 2.3 might involve a number of mundane actions such as removing shoes or
taking your laptop out of its bag, but these actions do not have to be represented
in the plan of that agent. It is important to note, however, that these small State
Machines can end in a failure state. For example Pass Through Security might
fail because of some unexpected or outside action, such as a security breach that
shuts down a line, and in this case the State Machine would fail and the planner
for this agent would be restarted with a different starting node (which involves

different assumptions about the world).

2.4.2 State Machine Authoring

There are many different ways to manage state machine authoring by content
authors. One strategy is to write the state machine logic in an intermediate-level
computer language such as C++. If content authors also happen to be expert
programmers, then this allows them the most power and flexibility, but typically
content authors do not have such programming backgrounds. Another method
is to have content authors script their logic with an existing high level scripting
language, such as Python. This middle road requires that content authors have
some programming ability, but isolates them from critical low-level code. The
third option is to separate state machine authoring from programming languages
by having a specialized format for state machines that does not involve program-
ming. This thesis takes the third approach. States and Transitions in the state
machine are either created automatically by the Dialog System, or specially cre-
ated by C++ programmers. State Machine content authors construct the state
machines out of a library of possible states and transitions, and do not have to

concern themselves with programming. One of the advantages of this division of

14

labor is that state machines can be authored by end users without worrying that
such content authoring will break the entire system. Such an approach may not
work for all projects; the right approach depends significantly on the abilities of

the content creation team.

2.4.3 State Machine Specifics
2.4.3.1 Beyond Finite State Machines

Our state machines are similar to traditional Finite State Machines (Harrison,
1965), with a number of modifications. First, because each state can represent
a piece of code (see Subsection 2.4.2), our state machines are effectively Turing
Complete (Turing, 1936). Additionally, our State Machines encode additional
information in the State Machine description. For example, a traditional State
Machine has only states and transitions between states. We add an “Optional
Modifier” for a state, which is an argument for the code that represents that
state. For example, in Figure 2.4, the Gotol State has a modifier of “TicketCoun-
terLocation.” This means that this state should run the “Goto” state code with
“TicketCounterLocation” as a parameter for that code, which allows us to have
several states which reference the same code. Furthermore, we could have separate
states Gotol and Goto2 (or more generally Goto#) which utilize the Goto state
code but are separate states in the state machine. This allows content authors to
create states that link to these matching Goto states while keeping them separate

in the state space.

2.4.3.2 State Library

There are a number of different states that content creators can use to build
state machines, and some of them represent code written by project specific pro-

grammers. To create these states, these programmers use a state library. Each

15

programmer-created state has a name and optional initialization, update, and
cleanup functions. The name of a state is used by content creators to reference
the state. When a state machine transitions into a state, the state’s initialization
function is run, if it exists. Similarly, when the state machine transitions out of
a state, the cleanup function for that state is called. For each frame, the state
machine system is invoked with the time since the last frame. Then the update
function for each current state is run (if it exists). Often, states will only have
update functions defined, but there are circumstances where cleanup or initial-
ization functions are required. In our system, state transitions do not have code

associated with them, but it is possible to add such functionality in the future.

During system initialization, each state machine text file (which is prepared by
content creators) is read in, and then the state machines are created and linked.
Certain states have parameters (see Subsubsection 2.4.3.1) or child state machines
(see Subsection 2.4.4), and each state created this way is a separate instance of the
state code. For example, a “Goto Home” state is different from a “Goto Church”
state; each has a separate copy of the a Goto “Update” function which sends a

Agent that uses the state machine to a different location.

2.4.3.3 Messaging System

A number of messages need to be sent between state machines and actors. In
general, messages are passed between state machines owned by the same Agent or
between Agents (but not between state machines of different agents). For example,
consider a conversation between two agents, Agent Alice and Agent Bob. After
Alice makes a statement, the expectation is that Bob will make the next statement.
Humans use verbal and non-verbal clues to handle this turn-taking behavior. In
our system, this is handled by a messaging subsystem. After Alice finishes her
statement, her conversational state machine will message its parent state machine

(see Subsection 2.4.4) that it has finished its statement and is awaiting a response.

16

The parent state machine might be an animation state machine that would finish
her talk animation and pass a message to Agent Alice. Then Agent Alice would
send a message to Agent Bob, who would in turn message his state machines in
descending order until the message was processed, and Agent Bob’s state machines

would begin forming his next reply.

2.4.4 Hierarchical State Machines

State Machines in our system can be hierarchical, which means that a state in
a state machine can be represented by an entirely separate State Machine. For

example, consider the state machine found in Figure 2.4.

StandSellTicket is a state machine which describes the behavior of a ticket
seller behind an airline counter. The agent moves into the correct location, and
then waits for a customer to start a conversation. Once the conversation begins,
the agent invokes the SellTicket state machine, a Conversational State Machine
(see Chapter 3, Section 3.5). Notice the TalkStateMachine state and the Sell-
Ticket parameter on the ninth line of text in Figure 2.4. The TalkStateMachine
state is a generic state which handles the animation of a talking character while
it runs a child state machine. In this example, the child state machine is the
SellTicket state machine, which is the passed parameter on this line. By sep-
arating the TalkStateMachine state from the child state machine, we can reuse
the TalkStateMachine for other conversations. Once the SellTicket state machine
is finished, the StandSellTicket state machine does some post-talk cleanup, and
then loops back to traveling to the correct location. Thus, the agent running this
state machine can talk to a number of different buying agents in series. Hierar-
chical State Machines can be very effective because they can compartmentalize
state machines implementations from each other. In this example, when the Sell-
Ticket State Machine is created, its authors can assume that the buying and

selling agent are properly configured for a conversation. Furthermore, the Sell-

17

Figure 2.4: StandSellTicket State Machine
#<StateName>, <Optional Modifier>

< TransitionName>, <EndState>

Start

Empty, Gotol

Gotol, TicketCounterLocation

ReachedLocation, WaitForConversation

WaitForConversation

ConversationCoupled, TalkStateMachine

TalkStateMachine, SellTicket
EndStateMachine, FinishTalkState

FinishTalkState
FinishTalk, Gotol

18

Ticket state machine can be reused by a different parent state machine that sets
up its required conditions correctly. This hierarchical compartmentalization is
very effective when there are multiple state machine authors on a team, because
more general, lower-level state machines can be used as building blocks for many
parent state machines, and team members can work on authoring different state

machines at the same time.

2.5 Planning Graph Creation

To create a planning graph, where each node is a State and each transition is
an Action that transitions between states. The user specifies a starting state.
This starting state is simply a state in the graph that can be reached in a normal
situation. From there, we use a breath first node traversal to create every reachable
state similar to Dijkstra’s algorithm (Dijkstra, 1959). As each transition of a node
is expanded, we perform the Action associated with that transition to produce a
new State. We check that each new State has not been created before to prevent
loops, and if it is new, we add it to a queue of available states. In each iteration,
we take the top state from the queue and expand it, and once the state queue is

empty we have reached and created all possible states.

Because arbitrary actions and states can induce infinite graphs, we have a limit
to the number of states that can be created. One thing we would like to add in the
future is a state explosion debugger, which attempts to diagnose why a particular
plan graph becomes too large. For example, we could count the number of times
each type of action is expanded, although in some cases this may not reveal the
problem. For example, suppose we add a simple +1/-1 polarity to the example in
Section 2.1.2. The agent can now be at a (X, Y) location but now has the polarity
+1 or —1, with an action to switch polarities. If we run a breadth first search

over this space we will eventually reach our state limit. If we count the number

19

of Switch Polarity actions, we find that there are just as many as the number
of Travel North actions, even though the unconstrained Travel North action is a

problem and the Switch Polarity action is not.

2.6 Planning under Uncertainty

One aspect of modern planning systems that is not considered in this thesis is
planning under uncertainty. While planning for conditions which might occur
may be more realistic, it adds considerable computational expense to planning
operations. While plans in our system are deterministic, agents do not have an
omniscient view of the world. For example, an agent might plan to enter a room
but upon arriving at the door to the room, find it locked. The agent made a plan
that involved entering the room, but once the room is discovered by the agent to
be locked, a new plan must be made (which might involve searching for a key).
Unlike some planning systems that reason under uncertainty, agents in our sys-
tem do not explore areas of uncertainty (for example, trying every door to see if
it is locked), but plan given their current view of the world, update knowledge
as circumstances permit, and re-plan when a plan is broken by new information.
By ignoring uncertainty, but allowing for agents to possess incorrect knowledge,
realistic simulations can be created which are computationally affordable. Fur-
thermore, since our finite space planning system is faster than many infinite space

planning systems, it is feasible to re-plan often.

20

CHAPTER 3

Natural Language Generation

3.1 Overview

The Natural Language Generation (NLG) system creates English sentences from
input composed by content authors. For example, consider the sentence “I would
like to buy a ticket to Boston.” The content designer specifies the nouns {I,
ticket, <destination>} and the verbs {like, buy}, and the NLG system creates a
sentence from those words. The sentences are then ranked using data from a large
n-gram corpus. Finally, this collection of possible sentences is one state in a set
of conversational state machines. Each computer agent can employ one of these
state machines in order to communicate with other agents. The state machine will
proscribe when the agent should talk or listen, and after a conversation the agent
may have attained certain knowledge, gotten permission, or received an item that

will help it achieve one of its planning goals.

3.2 Related Work

The method of generating sentences used in our thesis is most similar to the Ni-
trogen system (Langkilde and Knight, 1998), which also overgenerates sentences
and uses an n-gram corpus to rank them. There are two major differences between
the Nitrogen system and our sentence generation system. First of all, the Nitro-
gen system uses a relatively small Wall Street Journal n-gram corpus, with only

bi-grams and uni-grams. Second, the Nitrogen system uses a more complex input

21

structure where content authors list concepts in a formatted structure rather than
nouns and verbs. In some ways, specifying semantic content can be more powerful,
but it requires a greater amount of linguistic sophistication from content authors.
One capability that Nitrogen possesses that our sentence generation does not is
the ability to use word synonyms to expand the breadth of possible outputs. For
example, the Nitrogren system might be given the input concept “airplane”, but
would also try to build sentences with synonyms of “airplane”, such as “plane” or
“aircraft”. Even though it is easier to create synonyms with semantic concepts
rather than words, expanding our system to use synonyms would increase the
range of generated sentences and is something we are exploring. One technique
would be to use synonym information from VerbNet (Schuler, 2005) and Word-
Net (Miller et al., 1990) and run all possible combinations of synonyms through
surface realizer. An additional alternative would be to first use our full NLG sys-
tem to find a set of grammatical sentences with the base words, and then generate
synonym variations and score them with the n-grams in a second pass, to avoid a

combinatorial explosion of possible sentences.

Another system that combines a surface realizer with n-gram sentence selec-
tion is the OpenCCG system (White; Baldridge and Kruijff, 2002; White and
Baldridge; Hockenmaier et al., 2004). We experimented with using OpenCCG
for this work but eventually choose RealPro as our surface realization system
(see Section 3.4.2). OpenCCG takes a categorical grammar (Ajdukiewicz, 1935;
Bar-Hillel, 1953), and grades sentences composed with the categorical grammar
using an n-gram database, but writing a categorical grammar for a broad range
of possible English sentences is a daunting task, and in practice RealPro had a
much broader coverage of the English language out of the box. As OpenCCG be-
comes more widespread and more grammars get written, it may be an attractive

alternative to RealPro, which is a proprietary system.

There are many natural language generation systems and it is generally dif-

22

ficult to compare between different ones. DeVault et al. (2008b), DeVault et al.
(2008a) and Traum et al. (2003) present an interesting technique where the words
in sentences from training data are matched one-to-one to semantic meanings by
a content author. Then this training set is used to learn a system of constructing
novel sentences from new semantic input. We attempted to recreate this sys-
tem, but after consulting with the author we determined that the published work

provided insufficient information for an implementation.

The language generation system developed by Chen et al. (2002) uses a com-
bination of different techniques to perform online sentence generation. First, se-
mantic input is fed into SPOT (Walker et al., 2001), a trainable sentence planner
that composes plans of several sentences and uses training data to choose how to
order and parse data between the sentences. These sentence plans are then fed
through FERGUS (Bangalore and Rambow, 2000) a surface realizer that is a suc-
cessor to RealPro. While FERGUS is in some ways more advanced than RealPro,
it is no longer available according to the author, and also lacks the broad English
coverage that RealPro enjoys. Using a sentence planner such as SPOT (Walker
et al., 2001) is a possibility for our NLG system, but because our sentences are
in conversations, we decided to have content authors create conversation state
machines (see Section 3.5) rather than attempting to automatically generate an
entire conversation from a single input. In some ways, this is more realistic since
human conversations are created by two agents rather than by a single planned
dialog. Nevertheless, it remains an interesting strategy for future work, since re-
moving the burden of authoring conversational state machines might be worth the

loss of realism.

23

Total Words

1,024,908,267,229

Total Sentences

05,119,665,584

Unique Words 13,588,391
Bi-grams 314,843,401
Trigams 977,069,902

Four-grams

1,313,818,354

Five-grams

1,176,470,663

Table 3.1: Google N-Gram Dataset: Basic Parameters

3.3 N-grams

3.3.1 N-gram Dataset

For this thesis work, we used the Google n-gram data set (Thorsten Brants, 2006).
An n-gram is a sequence of n consecutive words. For example “Four score and” is
a tri-gram, or three word n-gram. The Google n-gram data set is approximately
all publicly available English pages on the internet of January 2006. From these
web pages, 95 billion sentences were culled, with more than 1 trillion total words.
Words that appeared less than 200 times are replaced with the token <UNK>,
and sentence beginnings and ends are marked with the tokens <S> and </S>.

Figure 3.1 shows the basic size statistics of the Google n-gram data set.

3.3.2 Preparing Data

The Google n-gram data set is too large to be used efficiently; part of the work
of this thesis was to shrink the effective size to something more manageable.
Additionally, the data set contains a large amount of “nonsense” words, such as
misspelled words, non-English words, or machine created content. For example,
“Aften” is a Danish

consider the words before the word “after” in Table 3.2.

and Dutch word, “aftenoon” is a misspelling of “afternoon”, and “aftention” is a

24

Table 3.2: Google N-Gram Dataset: Words near “after”

aften 12195
aftenen 671
aftenoon 2283

aftenposten 712
aftenposten.no 536
aftention 221
afteor 379
after 277057138

misspelling of “attention.”

In order to fit n-gram data in memory, we should shrink our dictionary size to
ignore useless words. Our first attempt was to pick a threshold for the number of
times a word must appear to be in the dictionary. This was found to be an ineffec-
tive threshold because commonly misspelled words are so common. For example,
the word “teh”, a misspelling of “the”, is found 1.2 million times, whereas the word
“agony” is found 1.0 million times. Instead, we used the Scowl dictionary (Atkin-
son), which is a large spell check dictionary of configurable size. For the Scowl
dictionary, after some experimentation we settled on the “60,/100” sized dictio-
nary, which had 118 thousand words and includes words such as “legitimatized”
and “superposition” but not such words as “anticapitalist” and “magnetizer”. This
specific configuration contained about 18% of the 650,000 words in the scowl lexi-
con (some of which did not appear in the Google lexicon). To this list we added a
number of punctuation characters and additionally the special characters "<S>"
and "< /S>" which are used in the Google data set to signify the beginning and

end of a sentence. All told, our dictionary has around 117 thousand unique words.

Given a reasonable dictionary, the next step is to create a tri-gram database

that contains only those characters. Furthermore, we can shrink the size of our

25

Table 3.3: N-Gram Database: Compressed

Original Bi-grams

Original Tri-grams

Compressed Bi-grams

Compressed Tri-grams

Size 4.96GB 19.0GB 1.51GB 6.56GB
Number of Files 32 files 98 files 6 files 26 files
Number of Grams 315 million 977 million 113 million 440 million

Space/Gram

16.9 bytes/gram

20.9 bytes/gram

12 bytes/gram

16 bytes/gram

n-gram database by replacing strings with the dictionary index of the word. So
instead of the string “are” we can store the integer 4970, which saves some space

and makes fast searching feasible.

To create the compressed N-Gram files, we first read an uncompressed file
line by line and removed all capitalization. In the Google N-Gram data set,
capitalized words are stored separately, but this does not work because a word
might be found at the beginning of a sentence and not match the same word
elsewhere in a sentence. After capitalization is removed, we check if every word
in the n-gram is found in our dictionary. If it is, we temporarily add this n-
gram to our database. Once all of the tri-grams or bi-grams are loaded, we then
sort them and subsume duplicates. The duplicates exist because we removed the
capitalization, but we add them together rather than deleting them. In the C
language on Windows systems, it is difficult to read and write to files on disk
that are larger than 300MB, so once all the n-grams are loaded and sorted, we
write them out to a number of files. One entry for a tri-gram, for example, will
be 3 integers, each of which correspond to a word, followed by the count for that

tri-gram. Table 3.3 shows the size difference between the original n-grams and

our compressed versions.

If our dictionary was smaller, for example less than 65 thousand unique words
rather than 117 thousand unique words, and if we rounded our n-gram counts
(since all but a few digits are relatively insignificant), it is conceivable that we

might store each tri-gram in 16 bit shorts rather than 32 bit unsigned ints. This

26

would half our space/gram and the total space used to store the grams in memory.
We are exploring this additional compression in hopes of adding the four-grams

and five-grams to our n-gram database.

3.3.3 Real-Time Lookup

Given a set of sentences, we would like to rank them on how similar they are to

our data set. To do this, we use n-gram perplexity.
n—2
10g2((H)(T%/Bi))1/") (3.1)
The perplexity of a sentence is given by Equation 3.1, where T} is the tri-gram
starting with word 7, B; is the bi-gram starting with word 7, and n is the number of
words in the sentence. For example in the sentence, “You are booked on a flight to
Boston”, the inner product would include C(you are booked)/C(you are), where

C'(you are)is the count of the number of times the bi-gram “you are” appears in

the data set.

One interesting problem that occurred during implementation of the real-time
lookup system was that loading the tri-gram data set from disk at startup took
too long, even with the optimizations. To counteract this problem, we created
a separate tri-gram “server” that rates sentences. Each client process sends a
sentence to the tri-gram server, which performs the perplexity calculation above
and then returns the perplexity to the client process. This compartmentalizes the

n-gram process and allows debugging of the sentence generation system.

Another interesting implementation decision was the data structure used for
storing and retrieving the tri-grams. Given that the basic operation is to look up
a tri-gram from a large set of tri-grams, the natural data structure to use would be
a hash table. While a hash table would give us an O(1) lookup time (or arguably
O(k) where k is the size of the key), unfortunately it uses significantly more space,

which is a limiting factor. It is possible that a perfect hash function could be used

27

especially because the tri-gram table is constructed completely offline; the best
perfect hashing functions use around 2.5 bits/key (Wikipedia, 2013), or about
128MB of extra space for just the 440 million tri-grams. Instead of a hash table,
we keep the tri-grams sorted and do a binary search of the data, for a O(In(n))

search time.

3.3.4 N-Gram problems

There are a few sentences that are rated incorrectly by the N-Gram model in
our testing. For example, the sentences “You are booked on a flight to Boston”
and “You are booked on the flight to Boston” are rated slightly lower than the
ungrammatical sentence “You are booked a flight to Boston” (See Figure 3.1). The
reason for this is that, in this case, the tri-grams do not span enough of the sentence
for the incorrect grammar to be scored correctly. This would be ameliorated if
we used four-grams and five-grams, but it is unclear how to integrate them into
a perplexity model that also includes smaller sentences that might not have five-
gram representations. Furthermore, there is not enough main memory to hold all
five N-Gram datasets. If we knew in advance our entire lexicon and the lexicon
was small enough, we could use that lexicon instead of the scowl dictionary and
this would significantly lower the memory requirements, allowing us to use four-
gram and five-grams, but the preprocessing time of generating usable datasets

that fit in memory necessitates that this be an offline calculation.

3.4 Sentence Generation

3.4.1 Sentence Input

The Sentence Generator takes a small input of nouns and verbs for each sentence.

Figure 3.2 shows a set of possible user created sentence states. There are a number

28

Figure 3.1: Incorrect Ngrams
You are booked on a flight to Boston

(are booked on)[9822] (booked on a)[17476] (on a flight)[113187]

=7.82107°
(are booked)[113311] * (booked on)[124857] © (on a)[175586178] v

You are booked a flight to Boston

(are booked a)[1222] (booked a flight)[8829]

= 3.82107°
(are booked)[113311]x (booked a)[251133] v

of additional modifiers that content creators can add. For example, the QUES-
TTON modifier informs the sentence generation system that the desired sentence
is a question, which is followed by an interrogative word, such as “when” or “who”.
Similarly, the modifier PAST before a verb informs the system that the verb in

question should be in the past tense.

One of the more interesting modifiers is the VARIABLE modifier, which means
that the following term should be looked up at run time and will be changed by the
conversation state machine. For example, in Figure 3.2 the state WantTicketToX
has a VARIABLE CityName, so that the same state can be used for a ticket to

Boston or a ticket to San Francisco.

3.4.2 Real Pro Sentence Realization

Realization in Natural Language Generation is the process of turning a syntactic
grammar structure into a sentence. RealPro (Lavoie and Rambow, 1997) is a
realization software creates sentences from a deep syntactical structure in an XML
file. Two interesting properties of Real Pro are that it is relatively fast at sentence
generation, and that it is completely deterministic. Unfortunately, while a large
percentage of English sentences can be produced with RealPro, a large percentage

of RealPro inputs will not produce English sentences. By using RealPro as a piece

29

Figure 3.2: Sentence State Input
#<StateName >
#<verbl>, <verb2>, ... <verbN>

#<nounl>, <noun2>,... <nounN>

ConfirmFlightX
be, PAST book
you, flight, VARIABLE CityName

WhenTravel
like, travel

you QUESTION when

WantTicketToX
like, buy
I, ticket, VARIABLE CityName

LeaveAtX

like, leave

I, VARIABLE Time

30

Figure 3.3: RealPro Example Input

<dsynts>
<dsyntnode lexeme="have" class="verb" rel="nil" question="4">
<dsyntnode lexeme="you" pro="pro" rel="I" person="1st"/>

<dsyntnode lexeme="ticket" class="noun" rel="I1I1">

<dsyntnode lexeme="your" person="2nd" pro="poss" rel="-1"/>
</dsyntnode>
<dsyntnode lexeme—"can" rel="—1"/>
</dsyntnode>
</dsynts>

in a sentence generation system, we are able to reduce our input from sets of all
words in English to a relatively structured input. Figure 3.3 shows an example
of an input of the RealPro system that produces the output “Can I have your
ticket?” Each node in Figure 3.3 refers to a single word in the output sentence,
and the attributes describe how the specified word relates to other words in the
sentence. For example, the line

<dsyntnode lexeme="you" pro="pro" rel="1" person="1st" />

refers to the word “I”, which is a 1st person pronoun form of the word “you”, and
is the subject of the sentence, which is why it has the relation 7 to the verb node
above it. Our sentence generation system generates inputs similar to those found

in Figure 3.3 to create sentences.

3.4.3 Sentence Creation

Before using RealPro, the NLG system first takes the provided nouns and verbs
(see Figure 3.2) and creates a list of variations on them. Most of these variations
will not be grammatical sentences. There are several variations, including noun

article type, noun particle type, and the relationship between nouns and verbs.

31

Each of these variations is then converted into a RealPro XML representation of
a sentence (see Figure 3.3). These representations are then passed through Real
Pro, which creates actual sentences (most of which are ungrammatical). Some of
the new sentences are repeats of previous sentences. In the previous example, the
864 possible variations of “I would like to buy a ticket to Boston” become only 306
unique sentences. The reason that these repeats exist is that there can be many

RealPro inputs that create the same output sentences.

Sentence variation has two important properties. The first is that each sen-
tence state designed by content authors should have at least one grammatical
sentence. The other desired property is that there are many correct sentences
with the same meaning as the original sentence. Fach of these properties push us
toward generating as many variations as possible. There are two problems with
having a large number of generated sentences. The first is a performance issue.
Each potential sentences has to be generated by RealPro (see Section 3.4.2) and
checked by the n-gram sentence chooser (see Section 3.4.4). But the second, more
insidious problem with having too many generated sentences is that a grammat-
ical sentence might be generated that has a meaning different than the desired
meaning. For example, the sentence “Bob hit Sam” has a significantly different
meaning than the sentence “Sam hit Bob”, and it would be undesirable for both
sentences to be generated from the same input. The N-Gram Sentence chooser
is usually not able to choose between two grammatical sentences, so there is no
way to recover from this error. On the other hand, sometimes generated sentences
can have similar meanings. Consider the first two sentences of Figure 3.4. Both
of these sentences are grammatically correct and while they have slightly differ-
ent meanings, a speaker can usually use them interchangeably without sounding

incorrect.

32

Perplexity="-9.146734" Text="1 would like to buy a ticket to boston."
Perplexity="-9.888337" Text="1 would like to buy the ticket to boston."
Perplexity="-10.313545" Text="1 like to buy a ticket to boston."
Perplexity="-10.688484" Text="1 would like to buy ticket to boston."
Perplexity="-10.725578" Text="1 would like to buy a ticket to the boston."

Figure 3.4: “I would like to buy a ticket to Boston” Perplexities

3.4.4 Sentence Choice

For each sentence input, a large number of possible sentences are generated, many
of which are not grammatical. To choose a sentence, we run each of them through
the n-gram ranker (see Section 3.3.3) and prioritize them. While tri-gram perplex-
ity does a very good job of choosing which sentences are correct by ranking, it is
difficult to ascertain a probability of sentence correctness from perplexity values.
For example, compare Figure 3.4 which shows the perplexities of the top 5 of 306
sentences generated from a sentence state, with Figure 3.5, which is generated
from a different sentence state. Ideally, the perplexities would reveal that the first
sentence was used A% of the time, the second B%, and the rest were of so low
perplexity that we could ignore them altogether. With such a distribution, we
could have a computer agent say the first sentence most of the time and the sec-
ond sentence infrequently to provide variety. Unfortunately, the perplexity values
do not reveal which sentences are correct and which are not. Additionally, there
does not seem to be a perplexity value for which good sentences are above the
perplexity and bad sentences are below, and there does not seem to be any way
to match probability to perplexity. Our system uses a weighted average to pick

from the first two entries for each state.

33

Perplexity="-11.586642" Text="You are booked a flight to boston."
Perplexity="-11.717254" Text="You are booked on a flight to boston."
Perplexity="-12.336688" Text="You are booked on the flight to boston."
Perplexity="-12.838062" Text="You are booked on flight to boston."
Perplexity="-12.961783" Text="You would be booked on a flight to boston."

Figure 3.5: “You are booked on the flight to Boston” Perplexities

3.5 Conversation State Machines

3.5.1 Conversational State Machine Example

Conversation State Machines are used to create conversations. For example, con-
sider a conversation where a customer wants to buy a ticket from an airline agent
(See Figure 3.6). In this simple state machine, the buyer starts the conversation
with a salutation such as “Hello,” then requests a ticket to a location, tells the

selling agent what time to leave, and receives the appropriate ticket.

There are three kinds of states in a conversational state machine: dialog states,
one-off states, and special states. In Figure 3.6, Salutation is a one-off state that
holds certain greetings like “Hi” and “Hello”. These utterances do not use the Sen-
tence GGeneration module, but merely pick from a list of appropriate statements.
Dialog States do use the Sentence Generation module, and reference states cre-
ated in a document similar to Figure 3.2. Finally, Special States, such as Start

and Finish, are state machine specific and do not involve any dialog.

3.5.2 Paired State Machines

Conversational State Machines are unusual compared to most virtual world state
machines because they involve two agents simultaneously. While each agent is

represented with their own state machine, and does not have information about

34

#<StateName>, <Optional Modifier>

< TransitionName>, <EndState>

Start Empty, Salutation

Salutation FinishStatement, WantTicketToX

WantTicketToX WaitForResponse, Leave AtX

LeaveAtY WaitForResponse, Finish

Finish

Figure 3.6: Simple Buy Ticket State Machine

other agents’ state machines, the state machines of agents in a conversation are
tightly choreographed. In most conversations we see turn taking behavior, where
the first agent will say something while the second waits, and then their roles
are reversed. In practice, what happens in the state machines is that one agent
will be in a “listening” state until it receives a state machine message signaling it
to talk. In human conversations there are many techniques for passing priority
during conversational turn taking behavior, for example ending a sentence with
certain changes in pitch or changes in body language, but our system does not

simulate these hints.

Conversation is a relatively low priority activity which is easily interrupted.
For example, if during a conversation one of the conversing agents has its bag
stolen, they might abruptly end the conversation to pursue the thief or call for

help. This means that any conversation state machine has to be able to handle

35

interrupted conversation at any point. While it is common that State Machines in
virtual worlds have to deal with certain interruptions (for example being knocked
over), conversation state machines have to deal with interruptions of the other
conversing agent, and they may not have a list of ways that that agent can be

interrupted.

Special States (see Subsection 3.5.1) can also involve non-dialog actions that
have effects outside of the state machine. For example, during a Buy Ticket
Transaction, the seller agent might give the buyer a ticket. The normal way
to handle this type of situation would be for the Buy Ticket State Machine to
handle the transfer of the ticket after the Finish state. However, the Buy Ticket
State Machine might have additional dialog actions that occur after the physical
transaction, so it is important for the transfer of the ticket to happen inside of
the state machine rather than after it, in case later states are ignored through

interruption.

3.6 Speech Synthesis

Natural Language Generation is one of many problems that need to be solved
in a complete Natural Language system. Once text dialog is generated by our
Natural Language Generation system, a Speech Synthesis system turns the text
into audible speech. Speech Synthesis (also known as “Text-To-Speech”) is a well
studied problem that is not a focus of this dissertation. We use the Microsoft
Speech SDK version 5.0 (SAPI 5.0) as our Text-To-Speech solution. There is only
one high quality voice included in the SAPI system, so we also used MikTex 2.9
to create the male voice used in our simulations. Additionally, it is difficult to
integrate SAPI 5.0, a managed C+-+ program, with our system, which requires
the tighter memory control of unmanaged C++-. In practice, when we want to

create speech audio we launch a command line program in the background which

36

launches a separate project that generates and plays the audio. This series of
systems makes it difficult to perform other desirable tasks, such as integrating lip
synching animations into our Natural Language Generation system, and we are

exploring other solutions to the Speech Synthesis problem.

3.7 Integration with Planning

Each Conversation State Machine (see Section 3.5) can be evoked from an Action
in a plan. For example, an agent that wants to buy a ticket would perform the
Ask_For Tickel action, which would invoke the Buy Ticket Conversation State
Machine (see Figure 3.6). In practice, there might be an intermediate state ma-
chine that would be invoked by the Ask For Ticket action, which would wait in
line and move to the ticket counter before invoking the Buy Ticket Conversation
State Machine (see Chapter 2, Section 2.4.4). Additionally, both the intermediate
state machine and the Conversation State Machine might end in a failure state,
which would mean that the agent would have to replan. It is important that con-
tent creators consider failures when constructing State Machines, because certain
failures might be easier to handle at the State Machine level then at the Planning
level. For example, suppose an agent has a plan to talk to a second agent, but
the second agent is busy with a different conversation. It is more appropriate for
the State Machine to handle waiting for the blocking agent to be finished instead
of reporting a broken plan and forcing a replan. In this case the original plan is

sufficient, the agent just needs to wait until it can continue its conversation.

37

CHAPTER 4

Path Finding

4.1 Overview

One of the challenges that virtual world developers face is how to program virtual
characters that are capable of navigating to their goals. This problem is typi-
cally implemented by searching for a shortest path in a graph that represents the
reachable terrain of a virtual world. A* (Hart et al., 1968), the computationally
optimal technique for finding a shortest path, is a frequently used method for
path planning in video games and other virtual worlds because of its simplicity
and the size of navigational graphs. However, A* is becoming unmanageable for
the extensive levels and large numbers of characters in today’s video games. In
this thesis we introduce Partially Precomputed A* (Hewlett, 2011), a practical

method for achieving fast real-time search times in large graphs.

The simplest precomputation strategy is to calculate every possible shortest
path offline and store them in a large matrix. This technique is known as All
Puairs Shortest Paths (APSP). If there are n nodes in the graph, then the matrix
is n? in size, where entry 7, j contains a reference to the next node after i in a
shortest path from i to j (Figure 4.1). The time required to calculate the node
to travel to next is O(1), but the space required is O(n?). PPA* uses much less

memory than a full APSP matrix, and is faster than A* at run-time.

PPA* consists of both a precomputation technique and a search technique.

In the precomputation phase, an input graph is clustered into a hierarchy of

38

o 1 2 3

0 9(16)14
9 0 7 b

0
1
2|16 7 0 6
3|14 5 6 O

Distance(Shortest Path(0, 2)) = 16

Figure 4.1: All Pairs Shortest Path (APSP) distance matrix

many highly connected small subgraphs, and APSP calculations are made upon
each subgraph. To perform searches of the input graph after the precomputation
phase, PPA* performs an A* search on a related small generated graph, where a
shortest path in the generated graph exactly corresponds to a shortest path in the
large graph. Like A* PPA* always returns the shortest path if one exists. Our
experiments reveal that PPA* definitively outperforms A* on a test set of real
world graphs, and that PPA* has a more pronounced advantage on larger graphs.
Furthermore, it is easy to integrate PPA* into modern code bases because the in-
game search code is simply performing A* on a precalculated graph. PPA* is most
valuable when you have time to perform precalculations offline, when A* isn’t fast
enough to search graphs at run-time, and when APSP requires too much memory.
Video games or large virtual worlds are a good examples of domains where PPA*

is extremely valuable, because they have all three of these characteristics.

4.2 Related Work

A* (Hart et al., 1968) is provably the optimal algorithm for finding a single path

in an unknown graph, but if multiple searches are performed over the same graph

39

then other algorithms are competitive. Floyd-Warshall (Floyd, 1962; Warshall,
1962), and Johnson’s Algorithm (Johnson, 1977) are both techniques that find
every shortest path in a graph, but are too slow as run-time algorithms for graphs
with thousands of nodes. PPA* uses techniques from both A* and Johnson’s

Algorithm to quickly find single paths using precomputed results.

Several algorithms use a hierarchical approach to perform approzimate shortest
path computation. For example, the HPA* algorithm (Botea et al., 2004) produces
paths that are within 1% of optimal on maps for video games, with searches
that are 10 times as fast as A*. Sturtevant (2006) implements an alternative
approximate search algorithm for the game Dragon Age’™which expands 100
times less nodes than A*, while only using 3% additional memory. Given that
game graphs are usually approximations of the space that can be navigated, game
developers typically are not concerned with optimality, as long that the quality
of the result is close to optimal. Comparisons between PPA* and A* suggest
that our work is competitive with these approaches, while always producing the
optimal path, and presumably developers would prefer an optimal path over a
nearly optimal path if path generation speeds are similar. It is difficult to do
measured comparisons between optimal and near-optimal approaches, since near-
optimal approaches can typically trade off optimality for path generation speed.
For this reason in this paper we will compare PPA* to techniques that like PPA*

always produce the true shortest path.

A number of approaches are orthogonal to PPA* in that they could poten-
tially be applied in combination for additional performance enhancement. In
(Sturtevant et al., 2009), APSP matrices are partially computed and then used
to produce a better heuristic function for A*. In Section 4.4, we find that PPA*
searches faster and expands less nodes than this technique while using a compa-
rable amount of memory. Approaches such as that of Bjornsson and Halldorsson

(2006) and Hierarchical A* (Holte et al., 1996) also use clustering to create better

40

heuristic functions, but they improve performance over A* by less than a factor
of 2. PPA* can use any admissible heuristic, and in our tests we use the straight

line distance heuristic function for both A* and PPA*.

Cazenave (2007), and Louis and Kendall (2006) list a number of very useful
practical optimizations to A* algorithms. Of these, we use lazy cache optimization,
preallocation of memory, and maintaining the best path for each visited point in
the node in both our PPA* and A* algorithms. Because performing PPA* at
runtime involves performing an A* search, and because that A* search comprises
the majority of the runtime of PPA*, any technique which improves the speed of

A* will improve the speed of PPA* as well.

IDA* (Korf, 1985) trades performance in order to use less memory during a
search, so it is unlikely to be useful for games; however, in certain domains, such as
grid maps for games, algorithms such as Fringe Search (Bjornsson et al., 2005) use
a combination of A* and IDA*, promising a 10-40% speedup over A*. An open
question is whether a technique such as Fringe Search or heuristic methods such as
Sturtevant et. al. could be combined with PPA* to achieve further performance

gains.

There are some search techniques, such as D* Lite (Koenig and Likhachev,
2002), which search at a similar speed to A* but after changes to a graph can
replan faster than performing another search. While PPA* offline structures can
be dynamically altered if small changes are made to a graph (See Section 4.4),
replanning techniques such as D* Lite are faster if a large number of dynamic

changes are expected.

In the navigation search domain, there are a number of techniques with very
fast search times, but it is difficult to compare them to PPA*. For example, Bast
et al. produce shortest paths in an average of 5 milliseconds on a road map graph
of the entire US with 24 million nodes. These paths are for the travel time road

map, where each edge length is the amount of time to traverse that edge at posted

41

speed limits, rather than the distance graph, which is the embedded planar graph
and is used in our results. The travel time road map is a very different graph
topologically than the distance graph, since shortest paths in the travel time road
map use freeways almost exclusively, whereas shortest paths on the distance graph
are much more varied, often using surface streets. Because of this, techniques that
attempt to establish “corridors”, certain edges that are always traversed to get to
certain regions, are much more effective on travel time graphs. Navigation search
techniques are concerned about how long it will take to drive to a location, but
in virtual worlds travel times are mostly uniform over distance and the distance
graph is more relevant. It is unclear exactly how much faster it would be in general
to search travel time graphs, but for one subsection of the search in (Bast et al.)
(finding the total “distance” of the shortest path), searching the distance graph is

8 times slower than searching the travel time graph.

Bast et al. (2007) uses Dijkstra’s single-source shortest path algorithm (Dijk-
stra, 1959) to determine a highway hierarchy, a set of edges that are commonly
on shortest paths between nodes far away from each other. Like all precomputed
hierarchical approaches, it relies on performing searches on successively larger and
larger regions of the graph, but unlike PPA* which uses A* to search a simple
generated graph, it relies on a bidirectional Dijkstra’s search with lookups into
tables which contain the distances of the highway edges. As a speed optimization,
Bast et al. uses an APSP matrix for lookups of its highest graph, while PPA*
uses APSP matrices at every level of the hierarchy. ((Sanders and Schultes, 2005)
is a good introduction to this line of algorithms, based on approaches from the

graph theory community.)

Our approach is most similar to the HEPV algorithm (Jing et al., 1996) which
also comes from the Navigation Search literature. Like PPA* HEPV uses clus-
tering and APSP matrices to produce a precomputed data structure, but the

run-time search is different. Instead of searching the reduced graph using A*,

42

HEPYV searches it by beginning with the start and goal nodes and recursively
expanding nodes connected to them. This effectively expands every node in the
entire reduced graph, and in experiments it lags in performance behind A* on the
original graph.

The problem with high speed search on large graphs appears in many different
research communities. This paper bridges the gap between the navigation search
and virtual world search communities by providing a competitive precomputed
search algorithm that is easy for programmers to integrate into existing game

code because it reuses existing components.

4.3 Approach

Conceptually, there are three different steps in PPA*.

1. Partition a graph into subgraphs
2. Calculate APSP matrices for the subgraphs

3. Perform searches

In practice, the first two steps are performed offline and repeated at different
levels of the search data structure hierarchy. For ease of explanation, we will first
describe the full approach with a single hierarchical layer, and then explain how

the clustering and finally the search is expanded to multiple layers.

4.3.1 Single Layer PPA*

To describe single layer PPA* we will consider an example based on a 1913 map
of Venice (Baedeker, 1913). We would like to perform fast searches over this
map, for example from the triangle (Ex Campo Di Marte) to the star (Giardini

Pubblici) in Figure 4.2. First, each island in the city is marked with a node and

43

—
| VENEZIA

Figure 4.2: Map of Venice

each bridge corresponds to an edge as in Figure 4.3. Next, the nodes are clustered
as in Figure 4.4. The nodes in a cluster and the edges between these nodes form a
subgraph. The goal of the clustering is to minimize the number of nodes that have
edges that cross clusters. These nodes that have edges into different clusters are
called border nodes and the edges that cross into other clusters are border edges.
These special nodes and edges can be seen in Figure 4.5. As a precomputation
step, after clustering we calculate the APSP matrices for each subgraph, so that
at runtime we can lookup the shortest distance from any node in the subgraph to

any other node in the subgraph.

In addition to the lower level subgraphs, there is a higher level parent subgraph
that consists of all of the border nodes of each of its child subgraphs. Edges in
this higher level subgraph consist of the border edges as well as virtual edges.
Virtual edges are edges that we add to the higher level subgraph which represent
connectivity in the lower subgraphs. Each border node in a lower level subgraph
has a virtual edge to each other border node in its subgraph which represents the
shortest path between the two nodes as seen in Figure 4.6. This virtual edge has
a length of the precomputed shortest path. The entire highest level subgraph can

be seen in Figure 4.7. We will also precompute the APSP matrix for this highest

44

VENEZIA
e amm e

Figure 4.3: Graph of Venice

.
[A

Figure 4.4: Nodes Clustered

45

Figure 4.5: Border Nodes and Border Edges

level subgraph.

At runtime, we would like to perform a search on the graph of Venice. First we
construct virtual edges between the start node and the border nodes of the starting
node’s subgraph. The lengths of those edges will be the distances recorded in the
APSP matrix associated with the starting node’s subgraph. We can construct

similar virtual edges in the goal node’s subgraph as seen in Figure 4.8.

Finally, we can construct virtual edges between each of the border nodes of
the starting node’s subgraph and each of the border nodes of the ending node’s
subgraph. The lengths of these virtual edges can be found in APSP matrix of
the higher level subgraph. Putting these virtual edges together with the virtual
edges of the start and end subgraphs for this search we get the final search graph,
as seen in Figure 4.9. Instead of performing an A* search of the original graph
with almost 100 nodes, we perform a search on this constructed graph with only

7 nodes.

To search a Single Layer PPA* data structure, PPA* search behaves much like
A* search except that it searches over a different, smaller graph. The nodes of

this smaller graph are a subset of the nodes of the original graph. Like A*, PPA*

46

VENEZIA
i ey
[S M P

Figure 4.6: Virtual Edges

Figure 4.7: Parent Subgraph

47

VENEZIA
' 1imson
[T e A

Figure 4.8: Start and Goal Subgraphs: Virtual Edges

Figure 4.9: Final Searchable Graph

48

expands a start node, generates neighbors, and expands nodes until it expands
the goal node. Each node expanded by PPA* is a node that will be expanded by
A* and the nodes that are expanded by PPA* are expanded in the same order
as the nodes are expanded by A*. Furthermore, PPA* uses the same h() and
g() functions that A* uses, and when it evaluates a node, it obtains the same
outputs from the g() and h() functions for that node that A* does. The paths
returned by A* and PPA* are exactly the same. To verify the correctness of our
implementation, after each search in a testing run we compare the A* calculated

path against the PPA* calculated path.

4.3.2 Single Layer PPA*: Clustering and Analysis

In the simple single layer case, first a clustering algorithm (Karypis and Kumar,
1995) is used to cluster the original graph into a series of disjoint subgraphs. After
clustering, we identify border nodes, which are nodes in a subgraph with edges to
nodes in other subgraphs. Given a set of subgraphs, the ideal clustering of the
original graph will minimize the number of border nodes while allocating similar
numbers of nodes to each subgraph. In the planar Venice example (Figure 4.4),
our clustering is simple, but in general a clustering technique for PPA* should not
use the physical location of the nodes. Instead, minimizing the number of border
nodes is the only important clustering criterion.

Two nodes which are far apart may be in the same cluster, and clusters can

" as long as each node is contained by a single cluster

overlap in “physical space,’
and the number of border nodes per cluster are minimized. The PPA* algorithm
works on the graphs that A* works on; it requires a graph with no negative cycles
and an admissible heuristic. In many other precomputed techniques (especially
non-optimal techniques such as HPA* (Holte et al., 1996) and (Sturtevant, 2006)),

a single node represents a region of space and an entire child subgraph. In the

PPA* data structure, a parent subgraph consists of all border nodes of each child

49

subgraph, which is normally several nodes contributed per child subgraph.

Assume that the original graph is clustered into f subgraphs each with k& nodes.
For each subgraph, an APSP matrix is generated. The precalculated matrices are
each of size k%, so the asymptotic memory of storing these matrices is O(fk?).
We would like to estimate the algorithmic cost of memory in terms of n rather
than k& and f so that PPA* can be compared to other techniques. First we will
estimate the memory costs of Single-Layer PPA*, in Section 4.3.3 we will extend

these results to Multi-Layer PPA*.

Suppose there are ¢ border nodes in each subgraph. We will form a new sub-
graph from these nodes, called the parent subgraph. Each of the disjoint subgraphs
has the parent graph as a parent, but the parent graph only contains information
about the border nodes of its child subgraphs (as opposed to all nodes in the
original graph). The total number of nodes in the parent graph will be fe. We
will construct an APSP matrix for the parent graph as well. So the total space
for all of the APSP matrices of this graph will be O(fk* + (fc)?). As f and k
approach the square root of the total number of nodes, \/n (since fk = n), the
space cost approaches O(ny/n + nc), or O (ny/n) if ¢ is small. This Single-Layer
PPA* memory cost is too expensive, so we will reduce it by using multiple levels of

hierarchy (see Section 4.3.3). All results (see Section 4.4) use Multi-Layer PPA*,

4.3.3 Multi-Layer PPA*: Clustering and Precalculation

The offline precalculation step of PPA* consists of two sub-steps, partitioning
the original graph into a hierarchy of subgraphs and then calculating the APSP
matrix for each subgraph. To cluster a graph with a levels of hierarchy, we first
cluster the nodes of the original graph to produce several distinct child subgraphs
and then cluster each of the child subgraphs recursively. This process is similar

to that of a quad tree decomposition. Eventually, we reach the lowest level of

50

subgraphs, and the set of the lowest level of subgraphs will contain every node of
the original graph, with each node belonging to exactly one lowest level subgraph.
For the sake of clarity we will call these lowest level subgraphs level-0 subgraphs.
Like the parent graph in the single layer case, a parent subgraph of a set of level-
0 subgraphs will contain only the border nodes of those subgraphs (recall that
border nodes are those that have edges to other nodes outside the subgraph).
These level-1 parent subgraphs are disjoint from each other but not every node in
the original graph is contained by them, since many nodes are not border nodes.
We repeat the process of associating border nodes of level-1 subgraphs with their
level-2 subgraph parents, and so forth to the top graph, of level-(a — 1). This top
graph will only contain nodes which have edges that cross our first clustering of
the graph. While the top graph only contains a fraction of the total nodes of the
original graph, for any node we can get its level-0 subgraph, find the parent of
that subgraph, the parent of that subgraph and so forth up until the highest level
subgraph. In effect, each node has a list of “ancestor” subgraphs, but only the

lowest, level-0 subgraph in this list is guaranteed to contain that node.

There exist a plethora of graph clustering algorithms. For this work we chose
the Metis clustering algorithm (Karypis and Kumar, 1995). The Metis algorithm
clusters graphs quickly (an order of magnitude faster than other algorithms we
tested) and generally produces clusters which work very well with PPA*. The
Metis algorithm attempts to divide a graph into f subgraphs where each subgraph
has approximately the same number of nodes and where the number of edges that
has to be cut to separate the subgraphs (in effect, the border edges) is minimized.
Our metric is different; we want to find evenly sized subgraphs with as few border
nodes as possible; however, in practice the Metis clustering does a fair job of

meeting our metric.

Finally, after all subgraphs are determined, APSP matrices are computed

intra-subgraph. Lower level subgraph shortest paths are calculated first, so that

ol

virtual links can be constructed in higher subgraphs to properly calculate the
shortest path distances in those subgraphs. Since graphs in games and other vir-
tual worlds are relatively sparse, we use Johnson’s algorithm (Johnson, 1977)
to calculate the APSP matrices. Johnson’s algorithm has a running time of
O (V2logV + VE), which compares favorably to the O (V?) running time of
Floyd-Warshall (Floyd, 1962; Warshall, 1962),for graphs where E is closer to
V than V2.

We can model the algorithmic memory usage of PPA* by assuming as before
that the graph is broken up into subgraphs each with k£ nodes. We will assume
that we have a perfect hierarchical graph, where the number of border nodes ¢
per subgraph and the number of nodes k in a subgraph is constant at each of the
a levels of the hierarchy. To calculate the asymptotic bound we multiply the total
number of subgraphs by the memory of each subgraph, which is proportional to
k2. There is one highest level subgraph, and it has k nodes in it, like all subgraphs.
The number of subgraphs in the next level down of the hierarchy is k/c, since each
lower level subgraph has ¢ nodes that they contribute to the highest level subgraph.
Similarly, the level below that will have k/c graphs for every graph in the second
highest level, or (k/c)? total subgraphs. This chain can be extended down until
the lowest level, which will have (k/c)* subgraphs. We can then compute the total
number of subgraphs as sum of all of these quantities multiplied by the size of
each or O(k*((k/c)(a+1)—1)/(k/c—1)). The total number of nodes in the graph
is n, which is also equal to the number of subgraphs at the lowest level of the
hierarchical tree, multiplied by k, since every node appears exactly once in the
lowest level. Since there are (k/c)® lowest level subgraphs, n = k(k/c)*. Solving
for a we obtain a = log(N/k)/log(k/c). We can then plug this back into the
original memory equation to solve for the total amount of memory used by this
ideal hierarchical approach. Fortunately, it simplifies neatly to (k(n —c¢)/(k — ¢).

If k/c, or the ratio of border nodes to nodes in a subgraph is constant (which is

52

common in our experiments), we can simplify this to O(n) memory for PPA*.

It is simple to make small changes to the overall graph at runtime. This is
important for virtual worlds that might have dynamic events such as a fallen bridge
or a traffic jam, which might alter the in-game graph. There are four types of
possible dynamic graph changes, node insertion, node deletion, edge insertion, and
edge deletion. While each type of change uses a similar amount of computation,
our experiments focus on edge deletion because it involves the smallest changes
to the data structure of the graph. To perform an edge deletion, first the edge is
removed, then the subgraph which contains the edge is recalculated. Each parent
subgraph above this subgraph is also recomputed, so deleting a high level edge
is faster than deleting a low level edge. For example, if a map has a number of
islands connected by bridges, removing a bridge will be faster than removing a
street on an island, since when a bridge is deleted only the “bridge-level” subgraph
has to be recomputed, whereas when a street is removed both subgraph which
contains the island as well as the bridge subgraph have to be recomputed, since
the “bridge level” subgraph contains virtual links over the island between bridges
which might use the removed street. To improve update times, at each level we
check the distances between each border node of a subgraph before and after a
dynamic change. If the distances between border nodes do not change, we cease
recursing and avoid recalculating higher level graphs. While recompute times of
about 0.20 seconds (see Section 4.4) are reasonable for some applications, if there
are large scale dynamic changes then it is likely that a complete re-clustering will

be necessary to preserve fast search speeds.

The precalculation phase is readily amenable to parallization. Precalcula-
tion consists of two stages, clustering and APSP calculations. Each clustering
operation is independent of every other clustering operation, although top level
clustering operations must be performed before lower level clustering operations.

The calculation of APSP matrices is embarrassingly parallel; that is, each matrix

53

can be calculated completely independently, although lower level APSP matrices
must be calculated before their parents. All of our tests were done with a single
processor, but it should be noted that with k& processors we expect a precalculation

speedup of nearly k.

4.3.4 Multi-Layer PPA*: Search

Performing searches on hierarchical graphs with more than one level is similar
to the single layer case (Figure 4.3.4). An important difference from the single
layer case is that subgraphs will have higher level parent super-subgraphs that
contain them. Fach node has a subgraph that immediately contains it, which in
turn is contained by a higher level subgraph, and there is a such a parent for each
level of the hierarchy. So if there are four levels of hierarchy then each node has
four subgraphs which are associated with it. Higher level subgraphs only contain
APSP distance information for border nodes of their immediate child subgraphs,
not every node contained by those subgraphs. Given a start node in a lowest level
subgraph, PPA* generates the border nodes of that subgraph. The distance to
each of the border nodes is the precalculated distance to them in the APSP matrix
for the subgraph. To expand one of these border nodes, consider the parent graph
containing it. This parent graph will have its own border nodes, which are nodes
that connect to border nodes in other parent graphs. The distance to each parent
border node is available in the parent graph APSP matrix. This process generates
and expands nodes toward the uppermost parent graph. The search also expands
nodes downwards towards the goal node. If a node is being expanded and one
of its subgraphs is in the set of subgraphs associated with the goal node, PPA*
generates border nodes for the child subgraph associated with the goal which is
below the common subgraph. Finally, if a node is in the same immediate subgraph

as a goal node, PPA* can generate the goal node. (See Pseudo-code 1)

For example, consider a street search from the UCLA campus in Los Angeles,

54

for i=0 to levelsOfHierarchy do
Subgraph(n,i) returns ith ancestor subgraph of n currentSubgraph =

Subgraph(currentNode, i)

startSubgraph = Subgraph(startNode, 1)
goalSubgraph = Subgraph(goalNode, 1)

if (currentSubgraph == startSubgraph) then

foreach borderNode in currentSubgraph do
| Add border Node to Open List

end
end
if (currentSubgraph == goalSubgraph) then

if (i == 0) then
| Add goalNode to Open List

end

else
ls = Subgraph(goalNode, i-1)

foreach borderNode in ls do
| Add borderNode to Open List

end

end

end

end

%)

California to the Carnegie Mellon campus in Pittsburgh, Pennsylvania (See Fig-
ure 4.3.4). Suppose that this is a three level hierarchy where each city has its own
subgraph, each state has its own subgraph, and the highest subgraph is the entire
United States. The search will first expand the start node, which will generate the
border nodes for Los Angeles. These border nodes for Los Angeles are the nodes
which have connections outside of Los Angeles. When one of these Los Angeles
border nodes is expanded, it will generate the border nodes for California, since
California is higher level subgraph for the Los Angeles subgraph. Border nodes
of the California subgraph are contained in the United States subgraph, but in
this example the United States does not have border nodes, since it is the highest
subgraph. Since the United States subgraph is an eventual parent subgraph of the
Carnegie Mellon goal node, we expand downwards into the child subgraph of the
United States containing Carnegie Mellon, which is the Pennsylvania subgraph.
When a California border node is expanded, each border node of Pennsylvania is
generated. Note that border nodes from Nevada will not be expanded, even though
the eventual path might travel from California through Nevada, since Nevada is
not an ancestor subgraph of Carnegie Mellon. Since Pennsylvania is an ancestor
of the immediate subgraph containing Carnegie Mellon, when expand the border
nodes of Pennsylvania we generate the border nodes of the Pittsburgh subgraph.
Finally, when one of the Pittsburgh border nodes is expanded we generate the
Carnegie Mellon goal node, and when we expand the Carnegie Mellon goal node
we are finished. The path is our UCLA start node, a Los Angeles border node,
a California border node, a Pennsylvania border node, a Pittsburgh border node,
and finally our Carnegie Mellon goal node. The actual path is constructed using

the information stored in the APSP matrices.

In order to construct a complete path from a PPA* search, it is necessary
to find the nodes that connect each PPA* node together. This path is always

contained in a set of existing APSP graphs. There are two possible methods of

o6

recomputing this path: store paths in APSP matrices or perform a secondary
search. In our experiments we always performed these secondary searches to
construct full paths, and our APSP matrices only contain distance information.
To perform a secondary search for an APSP graph, one can run A* on subgraph,
but one must use the APSP distance values as the heuristic function, since the
APSP values are the exact distance to the goal. Because this is an exact heuristic
function, the A* algorithm will only expand nodes along the direct path to the
goal. Some edges in a subgraph are “virtual” in that they do not exist in that
subgraph but are contained in a lower level subgraph and APSP matrix. We

recursively perform A* on these links in the lower level subgraphs.

In this paper we use a simplified version of A* called ResolvePath for this step.
(See Pseudo-code 2) Since the heuristic is perfect there is no need to maintain an
open list or “expand” nodes, instead for each node we look through each of its

neighbors and the correct “next” node is immediately calculated.

In our example above (See Figure 4.3.4), we had a California border node
and a subsequent Pennsylvania border node which were produced by our search.
The actual best path might travel from California through the neighboring state
Nevada on the way to Pennsylvania. In this case the optimal path in the United
States subgraph would travel first to a Nevada border node on the California
side of Nevada to a Nevada border node on the other side of Nevada. The edge
across Nevada between these border nodes would be virtual, since information
about the path would be stored in the Nevada subgraph rather than the United
States subgraph. We would then run our ResolvePath function between these
nodes in the Nevada subgraph, which might recurse into a Nevada city subgraph.
Each node in the overall path is visited only once and in practice ResolvePath
consumes less than 20% of the total search time. All reported results include this

path resolution step in the time required to generate a path.

There are a few edge cases which are unintuitive. For example, suppose the

57

Procedure ResolvePath(c,n, s, p)

Input: ¢ = The current node

Input: n = The next node

Input: s = The subgraph containing ¢ and n
Input: p = The path between ¢ and n
Output: p = The path between ¢ and n

while ¢ # n do
edge.cost = edge.length + distance(edge.to, n)

bestEdge = arg min edge.cost; edge € c
edge

if lbestEdge.virtual then
| Append(p, best Edge.to)

end

else
ls = LowerSubgraph(s,n)

s is child of s, contains node n ResolvePath(n,bestEdge.to,ls,p)

end

c = bestEdge.to

end

S and G are in same
Precomputed Subgraph,
but shortest path between
them travels outside
Precomputed Subgraph,
from S to A, to C, to B,
and thento G

Figure 4.10: Difficult edge case

28

start node and the goal node are in the same graph (Figure 4.10). It might appear
that PPA* could just use the precomputed path between them. Unfortunately,
while PPA* can generate the goal node in this case, it might be that the short-
est path between the start and goal nodes travels through border nodes and in
different subgraphs. The APSP matrix only stores a shortest path contained in
the subgraph and does not consider paths that travel outside the subgraph. In
this example, the goal node and border node A are generated from the start node.
Assuming an admissible heuristic function, PPA* will next expand border node
A. Node A is contained by an ancestor graph of the goal graph, so PPA* looks for
members of this super graph which are also members of the lower goal subgraph.
The lower subgraph from the super graph on the ancestor list is the goal subgraph,
so PPA* generates B, a border node of the goal subgraph. Since g() 4+ h() for
node B is less than g() + h() for the goal node through the start node, PPA*
expands node B. Finally, PPA* generates the goal node a second time, and once
it expands the goal node it will have a shortest path from the start to the goal.
To produce the actual set of nodes in the final shortest path, PPA* consults the
APSP matrix for each subgraph it traverses. In this example, when resolving the
edge from A to B, the shortest path is in the super graph: A = C = B. The
final shortest path is start = A = C' = B = goal. Unlike approximate shortest

path algorithms, PPA* always returns the shortest path.

The PPA* search of a graph is an A* search on every border node in the
ancestor subgraph lists for the start subgraph and the goal subgraph. The order of
expansions is based on the g() and () functions, so PPA* might expand one node
downwards and later expand another node upwards, just as A* will sometimes
expand nodes that are two steps away from the start node before expanding all of
the nodes that are one step away. As the number of border nodes per subgraph
increases, the performance of PPA* decreases. If there are ¢ border nodes per

subgraph and a levels of hierarchy the number of nodes that PPA* needs to

99

USA
PT

Figure 4.11: Example of PPA* Search

expand in the worse case is ¢?*. In effect, A* is being performed on a graph with a
depth of 2a and a branching factor of c. In Section 4.4, we will show experimental
results which indicate that PPA* outperforms A* on real world graphs by a wide
margin.

One concern that software engineers may have when confronted with a complex
algorithm like PPA* is that it is too difficult or dangerous to integrate into an
existing codebase. While the offline precomputation step is intensive, the in-
game search algorithm can easily be integrated into an existing A* algorithm.
The heuristic function and the overall logic of the A* algorithm are exactly the
same, but the Add Neighbors to the Open List function is different. In A*, the
edge length is the distance of an outgoing edge, but in PPA* the edge length is
calculated by consulting the stored APSP matrix. Similarly, the successors to a
node in A* are merely the neighbors of a node, but in PPA* they are the border
nodes of the appropriate subgraph. To reduce complexity (at the cost of memory),
the successor nodes as well as distances can be stored in APSP matrices, otherwise

an algorithm such as ResolvePath should be used.

4.4 Results

Our results consist of two sets of experiments. For one set of experiments, we used
road maps of California from the US Census Bureau. These maps vary in size
from 11383 to 200288 nodes, and our experiments on them show the performance

of PPA* on a range of different map sizes with relatively irregular node place-

60

& A" - PPA*

1000

100

Milliseconds
N
o

0.1
0 50000 100000 150000 200000

Graph Nodes

Figure 4.12: Average search times (logarithmic scale)

ment. The second set of experiments are performed on 5122512 “room” maps of
around 200000 nodes that are used by Sturtevant et al. (2009) and are publicly
available. This second set of experiments clearly demonstrate the value of PPA*

in comparison to a heuristic based search approach.

Each search consisted of picking two vertices at random and then finding the
shortest path between them. The same set of vertices were used for both PPA*
and A*. For each test, we performed 1000 such searches and averaged the results.
The searches were evaluated on a 2.6 GHz Core i7 using a single thread. The
average search time for PPA* was significantly less than for A* (Figure 4.12).
Like all of the graphs in the results section, this graph uses a logarithmic scale to
allow for comparison. It should be noted that the time listed in this graph is the

total time to produce the entire optimal path for each method.

A method for comparing search algorithms that is independent of the hardware
is to consider the number of nodes that the search expands or generates. The best
way of explaining the difference between expanded nodes and generated nodes is

to use A*, since PPA* uses A* to search its smaller graph. In A*, the start node

61

B Expanded ¢ Expanded

PPA* A*
100000
10000 & 3 . .
3.:}‘ :3 ¢ . ® ¢
ko] o*
[0 *
T 1000
@
a
b
L
a 100
% o et e =g = 85 "
z m "
10

1
0 50000 100000 150000 200000
Graph Nodes

Figure 4.13: Expanded nodes per search (logarithmic scale)

is first placed on the open list, which is a priority list of nodes that need to be
expanded. The top node of the open list is then expanded, and its neighbors that
have not been expanded yet are added to the open list. The search ends when the
goal node is expanded. The generated nodes are nodes that are added to the open
list, while the expanded nodes (a much smaller subset of the generated nodes)
are only the nodes that get expanded. Figure 4.13 shows the large difference in
the number of expanded nodes between A* and PPA*. This discrepancy can be
explained by the fact that a path in the PPA* graphs is much shorter than a path
in the A* graph.

The number of nodes generated by both A* and PPA* is closer (Figure 4.14),
but PPA* still outperforms A* by an order of magnitude. The reason that the
generated nodes are closer is that the PPA* graph is highly connected, so each
time a node is expanded, a large number of nodes are generated. In effect, the
branching factor of A* is smaller than PPA*, but the number of steps required
to travel from the start to the goal node is so much lower in PPA* that the

number of total nodes generated (and the search time) is much lower in PPA*.

62

B Generated ¢ Generated

(PPA*) (A%
100000
10000 : 2 .o .
33}‘ w'oee ¢
3 ¢ .
T 1000 ——
[} =]
g I. .F ’ m =]
@ 100 °°
°
[e]
Z
10

1
0 50000 100000 150000 200000
Graph Nodes

Figure 4.14: Generated nodes per search (logarithmic scale)

Table 4.1: Comparison vs. Sturtevant et. al. on 200000 node room graph

Average Average Nodes
Precomputation
Search Time Expanded Per Precomputed Memory | % of APSP memory
Time (seconds)
(milliseconds) Search
Sturtevant 2009 54 3479 N/A 70.1% N/A
PPA* 1.4 53 176 MB 0.1% 213

Additionally, most of the work done in each search is per expanded node rather
than per generated node, and most search algorithms are compared by the number

of expanded nodes rather than the number of generated nodes.

The second set of experiments also consisted of 291 random searches performed
on a 5122512 “room” map, the same map which was used by (Sturtevant et al.,
2009) These searches all had a solution length between 256 and 512 nodes. With an
optimized distance heuristic with advanced placement (the most effective search
in Sturtevant et. al.), an average of 3479 nodes were expanded and each search
took an average of 0.054 seconds. On the same map, PPA* expanded an average
of 53.25 nodes and each search took an average of 0.0014 seconds, significantly

better in both nodes expanded and execution time (See Table 4.1). It should be

63

noted that the number of nodes expanded by PPA* is usually smaller than the
total path length of a search in the original graph because PPA* is effectively
searching a much smaller graph. Additionally, in these experiments PPA* used a
straight line heuristic, which while correct is less effective than the octile heuristic

used by Sturtevant et. al. for this problem.

Precomputation consisted of two stages, clustering and computing APSP ma-
trices. It took 469 seconds to precalculate our largest roadmap graph, which has
200284 nodes (Figure 4.15). Computing APSP matrices dominated the time spent
on precomputation. Because clustering was such a small percentage of overall pre-
computation time, a more specialized clustering technique might be more effective
for PPA* both in precomputation time and for run-time performance. Graphs of
more than 50000 nodes had 5 levels of hierarchy with 4 subgraphs per parent
subgraph for a total of 1365 subgraphs, of which 1024 were level-0 subgraphs.

PPA* has substantial storage benefits. An alternative to PPA* would be to
calculate the APSP matrix for the entire graph during precomputation time. A
search at run time of this matrix would be very fast, but the matrix would be
unacceptably large. Assuming that each entry used four bytes, the fully precom-
puted matrix for 205373 nodes would take 169GB of space, which is too large for
most practical applications. The same 5122512 “room” map with 205373 nodes
and four levels of hierarchy requires 176 MB of space for PPA*. Figure 4.16 shows
the dramatic memory savings of PPA* compared to full APSP matrices. PPA*
has a competitive memory footprint with Sturtevant et al. (2009), who reported
that their technique used 1/1000 of the total memory needed for the full APSP
matrices (See Table 4.1).

It is relatively inexpensive to recalculate the APSP matrices after small dy-
namic changes. Using the 200000 node “room” graph of Sturtevant et. al., we built
our normal precomputed graph which took 4.99 seconds to cluster and 207.87 sec-

onds to build all 1365 APSP matrices, for a total precomputation time of 212.86

64

— Offline
Calculation
Time

500

/
/

m

T 300

[o]

(]

[0

2} /
o 200

£

- /

100 W
0

0 50000 100000 150000 200000
Graph Nodes

Figure 4.15: Precalculation Times

seconds. Then we deleted 100 edges at random, rebuilding the APSP matrices af-
ter each edge deletion. It took an average of 0.197 seconds to perform all required

APSP matrix rebuildings after each edge was deleted.

4.5 Integration with Planning

Chapter 2, Section 2.5 describes how our planning space can be mapped onto a
graph, with States that correspond to Nodes and Actions that correspond to Tran-

sitions. Once this planning graph is generated, we create a PPA* data structure

that contains this graph.

65

< Full APSP 18 PPA*
memory memory

1000

100

Memory (GB)

0.1

0 50000 100000 150000 200000

Nodes

Figure 4.16: Precomputed memory costs (logarithmic scale)

One feature that our planning system requires is that a search may have mul-
tiple goal nodes (with a single start node). When there is more than one goal
node, we are using a modified version of A* rather than PPA*. In this multi-goal
A* there are two differences. The first difference is that in the inner A* loop
where we would normally check if an expanded node is the goal node we now have
to check a set of goal nodes rather than just a single one. The second difference
is that any heuristic function now has to predict the distance to the nearest goal
node, rather than a distance to a unique goal node. This is tricky because the
heuristic function is not admissible if it overestimates the distance to the nearest

goal node, even if some of the goal nodes are further away than its prediction.

Fortunately, our A* implementation and our PPA* algorithm make no assump-
tions on the heuristic function and instead require the user to implement one (or
return 0, which is always admissible because of the lack of negative distance tran-
sitions). It should be noted that many planning algorithms distinguish themselves
by how effective their heuristic is, and techniques that improve heuristics could

be added to our system to make it faster.

66

CHAPTER 5

Simulation

5.1 Introduction

In order to demonstrate some of the techniques presented in this thesis, we have
created a virtual airport where agents use natural language generation, planning,
and state machines to perform human-like behaviors and make human-like deci-
sions. We selected two scenes from this simulation, both of which demonstrate
hierarchical state machines and our natural language generation systems, while

the second also demonstrates a “failed” plan.

Our simulation does not demonstrate the partially precomputed A* technique
introduced in Chapter 4, because the virtual world is not large enough to require
this speedup. Additionally, Figure 4.1 and Figure 4.12 in Chapter 4 show that

PPA* outperforms alternative techniques on random graphs by a large margin.

In the first scene (Figure 5.1), computer animated customers move through a
number of lines to communicate in English with airport ticketing counter atten-
dants. During these dialogs the customers communicate with the ticket sellers to
choose destinations and travel times. Finally, the customers receive their tickets
and exit the lines. In the second scene (Figure 5.2), which takes place in a differ-
ent section of the airport, the featured traveler has proceeded to her gate, but she
realizes that the gate is closed. This means that her original plan to travel has
failed. She then re-plans and talks to an airline representative in order to find her

new departure gate.

67

Figure 5.1: First Scene: Ticketing

5.2 Graphics and Animation

Our simulation uses the Ogre (2013) open source rendering engine to help man-
age its graphics and animation systems. Figure 5.1 is a visual example of our

characters engaging in dialog during the simulation.

We extended the OGRE engine with the animation systems used in Singh
et al. (2011) and Kapadia et al. (2009) so that the animations can smoothly blend
into one another. This animation system was further developed by Huang and
Terzopoulos (2013) to create talking animations and to use inverse kinematics for
the footwork. We used the steering solution described in (Singh et al., 2011) to
guide our agents through the simulation. It is important to note the difference
between a path finding system (see Chapter 4) and a steering solution. Path
finding locates a path to a goal while steering chooses a realistic looking local path

near this correct global path. Singh et al. (2011) uses A* as a sub-component to

68

Figure 5.2: Second Scene: Airport Gate

69

its steering system, and it may be possible to replace this A* sub-component with

PPA* to improve performance in future versions of our system.

5.3 Planning and State Machines

The characters in the simulation use state machines to determine their behavior.
For example, in the first scene (Figure 5.1) the ticket sellers run state machines
similar to the one found in Chapter 2, Figure 2.4. Each character is running two
hierarchical state machines; the parent state machine handles the animation and
movement while the child state machine handles the natural language generation.
In the first scene, the customers are performing the Ask For Ticket action de-
scribed in Chapter 2, Figure 2.3, and do not need to invoke the planner because

there are no problems with the current plan.

In the second scene (Figure 5.2), the featured agent also actively engages the
planning system. Once she discovers that she is at the wrong gate, she updates
her planning state to reflect that she is at the wrong gate and that she does not
know from which gate her flight is leaving. Then she re-plans based on this new
information. If we visualize the planning space as a graph, where each node is
a planning state and each edge is an action between planning states, a plan is
a path through that graph. A planning agent traverses the plan graph following
the plan path from its current node (state) to a goal node (state). Occasionally,
external factors such as a changed gate will cause a re-plan. In this case, the agent
effectively believes that it is in a different node (state) then it actually is. Once
this incorrect assumption is corrected, the agent adjusts which node it is in on
the planning graph and re-plans a new path to the goal. After the featured agent
re-plans, she talks to the gate agent to determine her new gate, because learning

her new gate is the first step in her new plan.

One feature of our planning system is that agents can hold incorrect beliefs,

70

which can increase their realism. For example, if the gate for a flight is changed
but not announced over a public address system, agents will not immediately
change direction to travel to the correct gate. Instead, each agent will continue
with its incorrect assumptions until they learn of this new information. Once they
detect an inconsistency, they change their believed planning node (state) and re-
plan from this new node. Because of the high performance of the finite planning

space, such re-planning can be performed quickly.

5.4 Natural Language Generation

Figure 5.3 and Figure 5.4 show the dialog generated by our system for each scene
of the simulation. In both scenes there are two paired state machines that create
this dialog, one for each agent in the conversation. In the first scene, the buyer’s
state machine is similar to the state machine in Chapter 3, Figure 3.6, while the
sentences are generated from data similar to that found in Chapter 3, Figure 3.2.
From this content author data, large numbers of variations are generated as de-
scribed in Section 3.4.3. Each of these variations are run through the RealPro
software to generate possible sentences, and these sentences are ranked by their
tri-gram perplexity as described in Section 3.3.3. For each dialog state in the
state machine, we generate speech from the top ranked sentence generated from

the original data.

To generate the speech audio we use the techniques described in Section 3.6.
We have muted the other agents to avoid a cacophony of spoken interactions.
Multiple agents talking over each other in many different conversations might
be desirable for certain virtual worlds, but would draw attention away from the

generated dialog in our simulation.

The final statement of the first scene “You are booked a flight to Boston” is

an example of a mistake our system can make (see Chapter 3, Figure 3.1). We

71

Customer: Hello.

I would like to buy a ticket to Boston.

Ticket Agent: OK.

When would you like to travel?

Customer: I would like to leave at seven.

Ticket Agent: OK. You are booked a flight to Boston.
Figure 5.3: Scene 1 Dialog Example

have included this error in our simulation to demonstrate that while our Natural
Language Generation system can make mistakes, they may not be so glaring in a

conversation as to break realism.

In the second scene (Figure 5.4), the traveling agent is trying to find out
where her new gate is, by talking to the gate agent. There are some interesting
issues with this conversation. First of all, in the sentence “What happened to
the flight to Boston?”, the natural language generation system picks the correct
sentence, but it should be noted that a grammatical sentence with the wrong
meaning is generated. The third sentence (in order of tri-gram perplexity) is
“What happened on the flight to Boston?”, as shown by Figure 5.5 While this
sentence is grammatically correct, it is not what the content author meant to
express, and even if the perplexities correctly distinguished grammatical sentences
from ungrammatical sentences, this sentence would not be removed. This type
of error is noted in Section 3.4.3. Finally, in the sentence “Gate was changed”,
shown in Figure 5.6, we can see that tri-gram perplexity is not enough to separate
the correct sentence “The gate was changed” from the grammatically incorrect

sentence produced. Fortunately, this error is similar to the problem with the

72

Traveler: Hello

What happened to the flight to Boston?

Gate Agent: Gate was changed

You need to go to Gate Two.

Traveler: OK

Thank you very much

Figure 5.4: Scene 2 Dialog Example

<Sentence Perplexity="-11.935594" Text="What happened to the flight to
boston?" />
<Sentence Perplexity="-12.059346" Text="What happened on a flight to
boston?" />
<Sentence Perplexity="-12.194072" Text="What happened on the flight to

boston?" />

Figure 5.5: “What happened?” Perplexities

sentence “You are booked a flight to Boston”, in that while the produced sentence
is not grammatical, it is not wildly incorrect enough to break the realism of the
dialog. These sort of perplexity errors can be fixed by the techniques mentioned

in Section 6.2.

73

<Sentence Perplexity="-10.415640" Text="Gate was changed." />
<Sentence Perplexity="-11.052237" Text="Gate would be changed." />
<Sentence Perplexity="-12.695483" Text="The gate was changed." />

Figure 5.6: “The gate was changed” Perplexities

74

CHAPTER 6

Conclusion and Future Work

In this dissertation, we introduced three interrelated systems for creating believ-
able virtual human agents in virtual worlds. The first is the Natural Language
Generation system, which allows content developers to script conversations be-
tween human characters. The second system is PPA*, an algorithm for calculat-
ing shortest paths that is well suited to the virtual world domain and significantly
better than existing techniques. Finally, our planning and state machine environ-
ment uses the first two systems to build artificial agents that can plan, navigate,
and talk. The planning, state machine, and NLG systems are hand tunable by
content authors with no programming experience, and the system scales well to

real time simulations with large numbers of agents.

6.1 Planning and State Machines

A finite space planning algorithm has advantages and disadvantages. The main
advantage is extremely fast plan resolution that allows many agents to plan simul-
taneously at runtime and also perform frequent replanning operations. There are
two disadvantages. The first is that there is somewhat of a loss of realism since,
unlike humans, finite space planners cannot make general plans, and plans in one
domain do not help in others. The second problem is that even in finite spaces, it
is too easy to create state graphs that grow too quickly relative to the number of
agents, the number of locations, or the number of items. We would like to explore

techniques for avoiding such combinatorial explosions in graph size; for example,

75

by placing certain restrictions on plans.

We also would like to explore more natural authoring of planning problems.
Using a hierarchical planning system like SHOP2 (Nau et al., 2003) is a highly
attractive method of approaching the authoring problem, but it is unclear how to
integrate hierarchical planning into our finite space planner. Finally, something
that we would like to investigate in the future is a hybrid planner that sometimes
uses fast planning over a finite search space and at other times uses a relatively

slow but bounded search over infinite or arbitrarily large search spaces.

The interaction of State Machines and Planning systems is a relatively unex-
plored area of research. Currently, in our system, state machines must be hand
linked to planning nodes. For example, a programmer connects a Goto planning
action and a Goto state machine. If State Machines published their planning
inputs and outputs, then there could be a state machine library that could be ac-
cessed by the planning algorithms in the same way that a content author chooses

a state from a library of possible states when constructing a state machine.

6.2 Natural Language Generation

Our Natural Language Generation system gives content authors a high degree of
control over formulating conversations, without requiring programming experience
or linguistic expertise. It is designed to fit into a system of goals and plans that
create a believable facsimile of human intelligence, while allowing relatively tight

control over content.

There are two improvement directions that we would like to explore with the
NLG system. First, we would like to greatly expand the number of correct sen-
tences that are generated, without compromising either the runtime or introducing
incorrect meanings. The most promising strategy is to introduce synonyms after

a first pass of sentence generation. The second problem is that occasionally the

76

n-gram model scores an incorrect sentence too high. The solution to this is to use
four-grams and five-grams, in addition to the uni-grams, bi-grams, and tri-grams
that we are already using. There are a number of techniques that we are explor-
ing to lower the memory requirements of the entire tri-gram system in order to

include higher n-grams.

While much of sentence generation is done automatically, conversational state
machine creation is left mostly in the hands of the content authors. It would
be better to have conversational templates as an alternative to state machines
for most routine conversations. These templates would ultimately resolve into
state machines, but would encapsulate frequently used conversational state ma-
chine patterns. It may be the case that sentence planning techniques could allow
content authors to script only general outlines for a conversation and the natural

generation system would create the rest of the dialog.

6.3 PPA*

Many developers use A* or completely calculated shortest paths to navigate agents
in virtual worlds. As the size and number of agents in these worlds increase, these
algorithms will be too expensive in compute time and memory. We introduced
the Partially Precomputed A* (PPA*) algorithm. PPA* makes large performance
and memory improvements on these existing algorithms and is simple and safe to

integrate into existing game engines.

We would like to make further improvements in our search algorithm. One
promising avenue is to use bidirectional search, which begins at both the start
and goal node instead of searching from the start node to the goal. Since the
middle of the PPA* graph is much more dense than the ends, this technique

promises dramatic speed gains.

In the longer term, we would like to extend PPA* to situations where APSP

77

matrices are not precomputed, but are gradually filled in as more searches are
completed. This is similar to Lifelong Planning A* (Koenig et al., 2004), which
performs successive searches of a graph with different start nodes and a fixed goal
node, except we would allow arbitrary start and goal nodes. The intuition is that
certain PPA* subgraphs are likely to be traversed by a number of searches, and
shortest paths to and from the border nodes of these subgraphs are gradually

developed.

All of the experiments done with PPA* use a straight-line heuristic, which
is correct but can be improved. Most other techniques for improving A* focus
on improved heuristics. Since PPA* is heuristic-independent and accepts any
admissible heuristic, it follows that these other techniques could be used to speed
up PPA* just as they speed up A*. Tt is unclear at this time which heuristics are
most effective on the condensed graph that PPA* uses; this is an active area of

our research.

We hope to expand PPA* functionality to include multiple goals, but this is
much more complicated than the multi-goal A* we are using for planning. For
example, consider Pseudo Code 1 from Chapter 4, Section 4.3.4. In normal PPA*,
we build a set of all of the subgraphs which are ancestors of the goal subgraph.
In multi-goal PPA*, we would need to create one of these sets of goal subgraphs
for each of our goals. In normal PPA*, when we expand a node that is in a
goal subgraph ancestor A, we add the neighbor nodes of the goal subgraph A — 1
contained by A that is one subgraph down from A in the goal subgraph chain, as
we expand downwards towards the goal node. In multigoal PPA* we might have
to add neighbor nodes in different graphs when we expand downwards, because
different goal nodes might share the same subgraph ancestor A but not the same
subgraphs A —1. Using multi-goal A* is much slower than using PPA*, but it still
produces a correct path and therefore a correct plan. Fortunately, our multi-goal

A* algorithm can search a PPA* data structure because all of the normal graph

78

information is still present.

We are interested in finding applications where many A* searches need to
be done quickly, without a separate precomputation time, which might be good
candidates for PPA*. PPA* is clearly useful in settings where precomputation is

not an issue and computational performance is vital.

79

BIBLIOGRAPHY

Ajdukiewicz, K. (1935). Die syntaktische konnexitét. Studia Philosophica, 1(1):27.
22

Atkinson, K. SCOWL. version 7.1. Available at http://wordlist.sourceforge.net /.
25

Baedeker, K. (1913). Northern Italy handbook for travelers. 43

Baldridge, J. and Kruijff, G.-J. M. (2002). Coupling ccg and hybrid logic depen-
dency semantics. In IN PROC. ACL 2002, pages 319-326. 22

Bangalore, S. and Rambow, O. (2000). Exploiting a probabilistic hierarchical
model for generation. In Proceedings of the 18th conference on Computational
Linguistics-Volume 1, pages 42-48. Association for Computational Linguistics.

23

Bar-Hillel, Y. (1953). A quasi-arithmetical notation for syntactic description.
Language, 29(1):47-58. 22

Bast, H., Funke, S., Matijevic, D., Sanders, P., and Schultes, D. In transit to
constant time shortest-path queries in road networks. In 9th Workshop on
Algorithm Engineering and Experiments (ALENEX’07), New Orleans, USA.
41, 42

Bast, H., Funke, S., Sanders, P., and Schultes, D. (2007). Fast routing in road
networks with transit nodes. Science, 316(5824):566. 42

Bjornsson, Y., Enzenberger, M., Holte, R., and Schaeffer, J. (2005). Fringe search:
Beating A* at pathfinding on computer game maps. Proceedings of the IEEE
Symposium on Computational Intelligence in Games, pages 125-132. 41

80

Bjornsson, Y. and Halldorsson, K. (2006). Improved heuristics for optimal path-
finding on game maps. Proceedings of the Second Artificial Intelligience and

Interactive Digital Entertainment Conference, pages 9-14. 40

Botea, A., Muller, M., and Schaeffer, J. (2004). Near optimal hierarchical path-
finding. Journal of Game Development, 1:7-28. 40

Cazenave, T. (2007). Optimizations of data structures, heuristics and algorithms
for path-finding on maps. In Computational Intelligence and Games, 2006 IEEE
Symposium on, pages 27-33. IEEE. 41

Chen, J., Bangalore, S., Rambow, O., and Walker, M. A. (2002). Towards au-
tomatic generation of natural language generation systems. In Proceedings of
the 19th international conference on Computational linguistics-Volume 1, pages

1-7. Association for Computational Linguistics. 23

DeVault, D., Traum, D., and Artstein, R. (2008a). Making grammar-based gen-
eration easier to deploy in dialogue systems. In Proceedings of the 9th SIGdial
Workshop on Discourse and Dialogue, pages 198-207. Association for Compu-

tational Linguistics. 23

DeVault, D., Traum, D., and Artstein, R. (2008b). Practical grammar-based NLG
from examples. In Proceedings of the Fifth International Natural Language Gen-

eration Conference, pages 77-85. Association for Computational Linguistics. 23

Dijkstra, E. (1959). A note on two problems in connexion with graphs. Numerische

mathematik, 1(1):269-271. 19, 42

Floyd, R. W. (1962). Algorithm 97: Shortest path. Commun. ACM, 5(6):345. 40,
52

Harrison, M. A. (1965). Introduction to switching and automata theory, volume 65.

McGraw-Hill New York. 15

81

Hart, P., Nilsson, N., and Raphael, B. (July 1968). A formal basis for the heuristic
determination of minimum cost paths. Systems Science and Cybernetics, IEEE

Transactions on, 4(2):100-107. 38, 39

Hernault, H., Piwek, P., Prendinger, H., and Ishizuka, M. (2008). Generating dia-
logues for virtual agents using nested textual coherence relations. In Intelligent

Virtual Agents, pages 139-145. Springer. 3

Hewlett, W. (2011). Partially precomputed A*. Computational Intelligence and
Al in Games, IEEE Transactions on, 3(2):119-128. 38

Hockenmaier, J., Bierner, G., and Baldridge, J. (2004). Extending the coverage
of a CCG system. Journal of Language and Computation, 2:165-208. 22

Holte, R. C., Perez, M. B., Zimmer, R. M., and MacDonald, A. J. (1996). Hier-
archical A*: Searching abstraction hierarchies efficiently. In AAAI/IAAL Vol.
1, pages 530-535. 40, 49

Huang, W. and Terzopoulos, D. (2013). Door and doorway etiquette for virtual

humans. 68

Jing, N., Huang, Y.-W., and Rundensteiner, E. A. (1996). Hierarchical optimiza-
tion of optimal path finding for transportation applications. In CIKM, pages
261-268. 42

Johnson, D. B. (1977). Efficient algorithms for shortest paths in sparse networks.
J. ACM, 24(1):1-13. 40, 52

Kapadia, M., Singh, S., Hewlett, W., and Faloutsos, P. (2009). Egocentric affor-
dance fields in pedestrian steering. In Proceedings of the 2009 symposium on

Interactive 3D graphics and games, pages 215-223. ACM. 68

Karypis, G. and Kumar, V. (1995). A fast and high quality multilevel scheme for
partitioning irregular graphs. Technical Report TR 95-035. 49, 51

82

Koenig, S. and Likhachev, M. (2002). Improved fast replanning for robot naviga-
tion in unknown terrain. In in Proceedings of the International Conference on

Robotics and Automation, pages 968-975. 41

Koenig, S., Likhachev, M., and Furcy, D. (2004). Lifelong planning A*. Artif.
Intell., 155(1-2):93-146. 78

Korf, R. E. (1985). Depth-first iterative-deepening: an optimal admissible tree
search. Artif. Intell., 27(1):97-109. 41

Langkilde, I. and Knight, K. (1998). Generation that exploits corpus-based statis-
tical knowledge. In Proceedings of the 36th Annual Meeting of the Association
for Computational Linguistics and 17th International Conference on Computa-
tional Linguistics - Volume 1, volume 1 of ACL 98, pages 704-710, Montreal,

Quebec, Canada. Association for Computational Linguistics. 21

Lavoie, B. and Rambow, O. (1997). A fast and portable realizer for text generation
systems. In Proceedings of the Fifth Conference on Applied Natural Language

Processing. 29

Louis, S. J. and Kendall, G., editors (2006). Proceedings of the 2006 IEEE Sympo-
sium on Computational Intelligence and Games (CIG06), University of Nevada,
Reno, campus in Reno/Lake Tahoe. IEEE. 41

Mateas, M. and Stern, A. (2004). Natural language understanding in Facade:
Surface-text processing. Technologies for Interactive Digital Storytelling and

Entertainment, pages 3—13. 1

Miller, G., Beckwith, R., Fellbaum, C., Gross, D., and Miller, K. (1990). WordNet:
An on-line lexical database. International journal of lexicography, 3(4):235-312.
22

83

Nau, D., Au, T., llghami, O., Kuter, U., Murdock, J., Wu, D., and Yaman, F.
(2003). SHOP2: An HTN planning system. Journal of Artificial Intelligence
Research, 20(1):379-404. 9, 76

Nau, D., Cao, Y., Lotem, A., and Muftoz-Avila, H. (1999). SHOP: Simple hier-

archical ordered planner. pages 968-973. 9

Ogre (2013). Ogre 3D open-source graphics rendering engine.
http://www.ogre3d.org/. 68

Orkin, J. (2004). Symbolic representation of game world state: Toward real-time
planning in games. In Proceedings of the AAAI Workshop on Challenges in
Game Artificial Intelligence. 5

Orkin, J. (2005). Agent architecture considerations for real-time planning in
games. Proceedings of the Artificial Intelligence and Interactive Digital En-

tertainment. 9

Sanders, P. and Schultes, D. (2005). Highway hierarchies hasten exact shortest
path queries. Algorithms—ESA 2005, pages 568-579. 42

Schuler, K. (2005). A BROAD-COVERAGE, COMPREHENSIVE VERB LEX-
ICON. PhD thesis, University of Pennsylvania. 22

Shao, W. and Terzopoulos, D. (2007). Autonomous pedestrians. Graph. Models,
69(5-6):246-274. 2

Singh, S., Kapadia, M., Hewlett, B., Reinman, G., and Faloutsos, P. (2011).
A modular framework for adaptive agent-based steering. In Symposium on

Interactive 8D Graphics and Games, pages PAGE-9. ACM. 68

Sturtevant, N. R. (2006). Memory-efficient abstractions for pathfinding. Proceed-
ings of the Third Artificial Intelligience and Interactive Digital Entertainment
Conference, pages 31-36. 40, 49

84

Sturtevant, N. R., A, F., M, B., J, S., and N, B. (2009). Memory-based heuristics
for explicit state spaces. International Joint Conference on Artificial Intelli-

gence, pages 609-614. 40, 61, 63, 64
Thorsten Brants, A. F. (2006). Web 1t 5-gram version 1. 24

Traum, D., Fleischman, M., and Hovy, E. (2003). NI generation for virtual humans

in a complex social environment. Defense Technical Information Center. 23

Turing, A. M. (1936). On computable numbers, with an application to
the entscheidungsproblem. Proceedings of the London mathematical society,

42(2):230-265. 15

Walker, M. A., Rambow, O., and Rogati, M. (2001). SPoT: A trainable sentence
planner. In Proceedings of the second meeting of the North American Chapter of
the Association for Computational Linguistics on Language technologies, pages

1-8. Association for Computational Linguistics. 23
Warshall, S. (1962). A theorem on boolean matrices. J. ACM, 9(1):11-12. 40, 52
White, M. OpenCCG: The opennlp ccg library (openccg.sourceforge.net). 22

White, M. and Baldridge, J. Adapting chart realization to CCG. In IN: PROC.
22

Wikipedia (2013). Perfect hash function — Wikipedia, the free encyclopedia.
[Online; accessed 2-May-2013]. 28

85

	1 Introduction
	2 Control of Artificial Agents: Planning and State Machines
	2.1 Overview
	2.1.1 Why Plan?
	2.1.2 Planning in a Finite Space
	2.1.3 Planning with Multiple Agents

	2.2 Related Work
	2.3 Input
	2.4 State Machines
	2.4.1 State Machines and Planning
	2.4.2 State Machine Authoring
	2.4.3 State Machine Specifics
	2.4.3.1 Beyond Finite State Machines
	2.4.3.2 State Library
	2.4.3.3 Messaging System

	2.4.4 Hierarchical State Machines

	2.5 Planning Graph Creation
	2.6 Planning under Uncertainty

	3 Natural Language Generation
	3.1 Overview
	3.2 Related Work
	3.3 N-grams
	3.3.1 N-gram Dataset
	3.3.2 Preparing Data
	3.3.3 Real-Time Lookup
	3.3.4 N-Gram problems

	3.4 Sentence Generation
	3.4.1 Sentence Input
	3.4.2 Real Pro Sentence Realization
	3.4.3 Sentence Creation
	3.4.4 Sentence Choice

	3.5 Conversation State Machines
	3.5.1 Conversational State Machine Example
	3.5.2 Paired State Machines

	3.6 Speech Synthesis
	3.7 Integration with Planning

	4 Path Finding
	4.1 Overview
	4.2 Related Work
	4.3 Approach
	4.3.1 Single Layer PPA*
	4.3.2 Single Layer PPA*: Clustering and Analysis
	4.3.3 Multi-Layer PPA*: Clustering and Precalculation
	4.3.4 Multi-Layer PPA*: Search

	4.4 Results
	4.5 Integration with Planning

	5 Simulation
	5.1 Introduction
	5.2 Graphics and Animation
	5.3 Planning and State Machines
	5.4 Natural Language Generation

	6 Conclusion and Future Work
	6.1 Planning and State Machines
	6.2 Natural Language Generation
	6.3 PPA*

	Bibliography

