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Image analysis based on machine learning has gained prominence with the advent of

deep learning, particularly in medical imaging. To be effective in addressing challenging

image analysis tasks, however, conventional deep neural networks require large corpora

of annotated training data, which are unfortunately scarce in the medical domain, thus

often rendering fully-supervised learning strategies ineffective.

This thesis devises for use in a variety of medical image analysis applications a series

of novel deep learning methods, ranging from fully-supervised, single-task learning to

scarcely-supervised, multi-task learning that makes efficient use of annotated training

data. Specifically, its main contributions include (1) fully-supervised, single-task learning

for the segmentation of pulmonary lobes from chest CT scans and the analysis of scoliosis

from spine X-ray images; (2) supervised, single-task, domain-generalized pulmonary

segmentation in chest X-ray images and retinal vasculature segmentation in fundoscopic

images; (3) largely-unsupervised, multiple-task learning via deep generative modeling for

the joint synthesis and classification of medical image data; and (4) partly-supervised,

multiple-task learning for the combined segmentation and classification of chest and spine

X-ray images.
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CHAPTER 1

Introduction

A general objective of medical image computing is to make predictions. In the machine

learning approach, predictions are enabled based on models trained on collections of

medical image data. In deep learning, which involves neural network models with

numerous hidden layers, significant hierarchical relationships within the data can be

discovered algorithmically, replacing the traditional laborious hand-crafting of image

feature extractions. However, training deep neural networks usually requires copious

data. Given set of properly annotated or labeled training data (input-output pairs), a

supervised learning algorithm can learn the mapping from input to output. A well-trained

supervised model can make predictions about previously unseen examples.

1.1 The Problem of Limited Training Data

Although there has been explosive progress in the production of vast quantities of high

resolution images, large collections of properly labeled or annotated images required

for fully-supervised learning remain scarce. Expert annotation of medical images is

expensive, time-consuming, and prone to human subjectivity, inconsistency, and error.

Even when properly labeled datasets become available, they are often limited in size

due to privacy issues and are highly imbalanced and non-uniformly distributed. In an

imbalanced dataset, there will be an over-representation of common medical problems

and an under-representation of rarer conditions. Such biases make the training of neural

networks across multiple classes with consistent effectiveness very challenging.

The success of deep learning is based on the assumption that the training data are

1



Fundus Image Data
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STARE
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Figure 1.1: Disparities in the distributions of different datasets with varying data sources,
sizes, ratios of normal/abnormal cases, etc.

independently and identically distributed (i.i.d.). However, this assumption may not hold

in real world scenarios. Moreover, the problem is exacerbated due to varying medical

conditions, imaging configurations and modalities, among other factors. Generalization

refers to how well a model performs on previously unseen data. Difficulties further

compound if the unseen data have different distributions than the training data (Figure 1.1).

This leads to the domain shift problem—when a model trained on data from one source

does not generalize well to out of distribution (o.o.d.) test data from a different source,

which can cause even the most sophisticated deep learning models to make non-intuitive,

erroneous predictions.

1.2 Generative Models

The limited training data problem is traditionally mitigated through simplistic and often

cumbersome data augmentation schemes, usually by creating new training examples

through translation, rotation, flipping, etc. The missing or mismatched label problem

may be addressed by evaluating similarity measures over the training examples; however,

this is not always robust and its effectiveness depends largely on the performance of

the similarity measuring algorithms. A more intuitive approach could be via generative

modeling where the aforementioned issues are tackled algorithmically and automatically.

2



(a) Discriminative (b) Generative

Figure 1.2: Illustration of how a a generative model works compared to a discriminative
model. The discriminative model learns only a decision boundary—a conditional
distribution p(y | x)—whereas the generative model learns a joint probability distribution
p(x, y), thus enabling both generation and discrimination. (Images from
https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-supervised-learning.)

Unlike discriminative models that directly learn a classifier to make predictions

given the training data, generative models learn the data generation process along with

a classifier (Ng and Jordan, 2002). Figure 1.2 illustrates the working principle of a

generative model compared to a discriminative model. Generative models offer a powerful

way to estimate data distributions through unsupervised learning, by constructing density

over all the observable quantities (MacKay, 2003). This property of generative models is

useful for unsupervised learning in realistic image generation and the clustering of images.

Deep learning-based generative models work mostly based on latent coding, which helps

elucidate hidden phenomena and similarities among observations. More generally, treating

generative modeling as an auxiliary task leads to semantically meaningful, unsupervised

representation learning. Furthermore, generative modeling can infer causal relations as

opposed to mere data correlations (Rottman and Hastie, 2014).

Our medical image analysis models are expected to learn from small quantities of

labeled data, while also leveraging larger quantities of unlabeled examples, and to achieve

effective generalization for consistent performance across different data domains. To this

end, it is preferable to employ generative models over their discriminative counterparts.

3
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1.3 Semi-Supervised Learning

Especially in the medical imaging domain, there is growing interest in leveraging potentially

large quantities of unlabeled data along with limited quantities of labeled data. Such

approaches are called semi-supervised learning (SSL). For them to be effective, however,

the knowledge gained from the unlabeled medical image data must be significant to the

model (Chapelle et al., 2009). Depending on how unlabeled data are leveraged, semi-

supervised learning can be accomplished in several ways, and this has recently emerged as

a growing body of research, yielding schemes such as transfer learning, domain adaptation,

self-supervised learning, adversarial learning, and multitask learning.

In transfer learning, a model is first trained on similar tasks in some other domains

with labeled data, and the pre-trained model is then fine-tuned with a limited set of

labeled data in the target domain. In domain adaptation, a model is trained on labeled

data from the source domain and unlabeled examples from the target domain, and then

evaluated on unseen examples from the target domain. Self-supervised learning is closely

related to transfer learning. Unlike transfer learning, the model is pre-trained on some

surrogate tasks in the same domain, and then the pre-trained model is evaluated on the

actual medical image analysis tasks. Self-supervised learning is usually based on the

assumption that the predicted labels from the original data and the augmented data

should be the same. Adversarial learning augments the class labels with an additional label

to differentiate the generated data and real data. A well balanced adversarial learning

helps towards learning useful visual features from the unlabeled data. Multitask learning

(MTL) is basically defined as optimizing more than one loss within the same model. In

MTL, multiple related tasks are jointly learned, which results in better generalization of

the model.
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Figure 1.3: Spectrum of thesis contributions. Our contributions progress from supervised,
single-task learning to sparingly-supervised multi-task learning.

1.4 Contributions

As illustrated in Figure 1.3, the contributions reported in this thesis range from fully-

supervised, single-task to sparingly-supervised, multi-task deep learning, through domain

generalization and deep generative modeling. In greater detail, the six contributions are

as follows:

1. Volumetric medical image segmentation: Automatic, reliable lung lobe seg-

mentation is crucial to the diagnosis, assessment, and quantification of pulmonary

diseases. Existing pulmonary lobe segmentation techniques are prohibitively slow,

undesirably rely on prior (airway/vessel) segmentation, and/or require user in-

teractions for optimal results. To address the need for accurate and robust lobe

segmentation, we have pursued a fully automatic and reliable deep learning solution

based on a Progressive Dense V-Network (PDV-Net). Our 3D PDV-Net model

inputs an entire CT volume and generates accurate segmentation of the lung lobes

in about 2 seconds in only a single forward pass of the network, eliminating the need

for any user interaction or any prior segmentation of the lungs, vessels, or airways,

which are common assumptions in the design of existing models. An extensive

robustness analysis of our method demonstrates reliable lobe segmentation of both

healthy and pathological lungs in CT images acquired by scanners from different

vendors, across various CT scan protocols and acquisition parameters. This work is
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published in (Imran et al., 2018, 2019a).

2. 2D medical image segmentation & disease quantification: Scoliosis is a

congenital disease in which the spine is deformed from its normal shape. Radiography

is the most cost-effective and accessible modality for imaging the spine. Conventional

spinal assessment, diagnosis of scoliosis, and treatment planning relies on tedious

and time-consuming manual analysis of spine radiographs that is susceptible to

observer variation. A reliable, fully-automated method that can accurately identify

vertebrae, a crucial step in image-guided scoliosis assessment, has been unavailable

in the literature. Leveraging a novel, deep-learning-based image segmentation model,

we develop an end-to-end spine radiograph analysis pipeline that automatically

provides an accurate segmentation and identification of the vertebrae, culminating

in the reliable estimation of the Cobb angle, the most widely used measurement to

quantify the magnitude of scoliosis. Our experimental results with anterior-posterior

spine X-ray images indicate that our system is effective in the identification and

labeling of vertebrae, and can potentially provide assistance to medical practitioners

in the assessment of scoliosis. This work is published in (Imran et al., 2019c, 2020a).

3. Deep generative modeling for simultaneous image generation and classi-

fication: From relatively small corpora of training data, deep generative models can

learn to generate realistic images approximating real-world distributions. In particu-

lar, the proper training of Generative Adversarial Networks (GANs) and Variational

AutoEncoders (VAEs) enables them to perform semi-supervised image classifica-

tion. Combining the power of these two models, we introduce Multi-Adversarial

Variational autoEncoder Networks (MAVENs), a novel deep generative modeling

that incorporates an ensemble of discriminators in a VAE-GAN network in order

to perform simultaneous adversarial learning and variational inference. We apply

MAVENs to the generation of synthetic images and propose a new distribution

measure to quantify the quality of these images. Our experimental results with only

10% labeled training data from the computer vision and medical imaging domains
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demonstrate performance competitive to state-of-the-art semi-supervised models in

simultaneous image generation and classification tasks. This work is published in

(Imran and Terzopoulos, 2019a, 2021).

4. Generalized and improved medical image segmentation: The performance

of fully-supervised models for various image analysis tasks (e.g., anatomy or le-

sion segmentation from medical images) is limited to the availability of massive

amounts of labeled data. Given small sample sizes, such models are prohibitively

data biased with large domain shift. To tackle this problem, we propose a novel

end-to-end medical image segmentation model, namely Progressive Adversarial

Semantic Segmentation (PASS), which can make improved segmentation prediction

without requiring any domain-specific data during training time. Our extensive

experimentation with 8 public diabetic retinopathy and chest X-ray image datasets,

confirms the effectiveness of PASS for accurate vascular and pulmonary segmen-

tation, both for in-domain and cross-domain evaluations. This work appears in

(Imran and Terzopoulos, 2020).

5. Semi-supervised multi-task learning: We propose a novel multi-task learning

model for jointly learning a classifier and a segmentor, from chest X-ray images,

through semi-supervised learning. In addition, we propose a new loss function

that combines absolute KL divergence with Tversky loss (KLTV) to yield faster

convergence and better segmentation performance. Based on our experimental

results using a novel segmentation model, an Adversarial Pyramid Progressive

Attention U-Net (APPAU-Net), we hypothesize that KLTV can be more effective in

improving generalizability of multi-task learning models while being competitive in

segmentation-only tasks. This work is published in (Imran and Terzopoulos, 2019b).
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6. Self-supervised, semi-supervised, multi-task learning: Leveraging adversar-

ial training and self-supervision, we propose a novel general purpose semi-supervised,

multiple-task model—namely, self-supervised, semi-supervised, multi-task learning

(S4MTL)—for accomplishing two important tasks in medical imaging, segmentation

and diagnostic classification. Experimental results on chest and spine X-ray image

datasets suggest that our S4MTL model significantly outperforms semi-supervised

single task, semi/fully-supervised multi-task, and fully-supervised single-task models,

even with a 50% reduction of class and segmentation labels. We hypothesize that

our proposed model can be effective in tackling limited annotation problems for

joint training, not only in medical imaging domains, but also for general-purpose

vision tasks. This work is published in (Imran et al., 2020d).

1.5 Overview

The remainder of this dissertation is organized as follows:

Chapter 2 briefly reviews the developments in supervised learning, semi-supervised

learning, deep generative modeling, self-supervision, multitasking, and domain general-

ization, especially applied to medical image segmentation, image synthesis, and image

classification. We also review related work on applications such as pulmonary lobe seg-

mentation from chest CT, measurement of scoliosis from spine radiographs, simultaneous

image generation and classification, semi-supervised multitasking for combined image

classification and segmentation, and improved segmentation with domain generalization

without domain-specific data.

Chapter 3 develops the deep learning models and associated algorithms, ranging from

fully-supervised, single-task learning to scarcely-supervised, multi-task learning, which

were described in the previous section and Figure 1.3.

Chapter 4 presents an extensive collection of experimental results with our proposed

algorithms and models. Appendix A describes all the datasets used, data insights, class

distributions, and dataset partitionings for training, testing, and validation.
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Chapter 5 concludes the dissertation with a summary of our work and promising

future research directions.
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CHAPTER 2

Related Work

We will now review prior work relevant to the six contributions listed in Section 1.4. The

material in this chapter is organized into two parts; first we review supervised learning

approaches to medical image segmentation followed by approaches requiring only limited

supervision.

2.1 Supervised Learning for Medical Image Segmentation

Image segmentation can classically be defined as the partitioning of an image into non-

overlapping, coherent regions that are homogeneous based on some characteristic such as

intensity or texture (Gonzalez et al., 2004). Image segmentation is usually considered the

most important part of medical image analysis as it extracts regions of interest (ROI) and

simplifies the representation by focusing attention to smaller regions crucial to disease

diagnosis/prognosis. Segmentation simply assigns labels to a set of constituent regions,

whereas semantic segmentation understands and recognizes image regions at the pixel level;

i.e., semantic segmentation assigns class labels to each pixel in an image. In this section,

we review related work on fully-supervised learning approaches semantic segmentation in

general and prior deep learning methods for the segmentation of anatomical structures

from 2D (e.g., X-rays) and 3D (e.g., CT scans) medical image data.

With the advent of deep convolutional neural networks (CNNs) in computer vision and

medical image analysis, automatic feature learning algorithms via deep learning emerged

for medical image segmentation. These methods perform segmentation via pixel-wise

classification, overcoming the limitations of the conventional pixel or super-pixel based
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methods requiring hand-crafted features (Mehra and Neeru, 2016). CNNs employed in

medical image segmentation can be categorized into two approaches: patch-wise and

whole image-based processing. Ciresan et al. (2012) proposed a patch-wise sliding window-

based convolutional network for the automatic segmentation of neuronal membranes

in electron microscopy images. Kamnitsas et al. (2017) proposed a dual pathway 3D

CNN architecture with a fully connected random field (CRF) for refining patch-based

brain lesion segmentation from multi-channel MRI patient data. Long et al. (2014)

proposed semantic segmentation using an end-to-end fully convolutional network (FCN)

by transforming classification networks (Krizhevsky et al., 2012; Simonyan and Zisserman,

2014; Szegedy et al., 2015). This opened up the pixel-wise classification over the full

images differing the earlier patch-wise, sliding window strategies. The fully-connected

layers from the classification networks were replaced by convolution layers which allowed

the model perform dense prediction (pixel-to-pixel) on arbitrary sized inputs and outputs.

Moreover, coarse, high layer information were combined with fine, low layer information

which resulted in predicting finer details.

Ronneberger et al. (2015a) proposed the U-Net architecture for biomedical image

segmentation which won the ISBI 2015 cell tracking challenge. The architecture employs

a contraction path for capturing context and a symmetric expansion path for the precise

localization of object(s) of interest. At every layer of the expansion path, high resolution

features from the contraction layer are combined in order to reconstruct it and achieve

better segmentation prediction. Gu et al. (2019) proposed a context encoder network

(CE-Net) that captures more high-level information while preserving spatial information,

and applied the model to several 2D medical image segmentation applications (vessel

detection, lung segmentation, etc.).

Extending the previous U-Net architecture, Çiçek et al. (2016) proposed the 3D U-Net

for volumetric segmentation of Xenopus kidney. Replacing the 2D operations by their 3D

counterparts, the 3D U-Net model was applied in semi-automated and automated setup

for dense prediction in volumetric images. (Milletari et al., 2016) proposed a 3D CNN

model namely V-Net for the segmentation of prostate volumes in MR images. To optimize
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the training, a Dice-based objective function was proposed which deals with the imbalance

between the number of foreground and background voxels. Each of the compression and

decompression stages learns a residual function that ensures faster convergence.

By extracting intra-slice features with a 2D DenseU-Net and hierarchically aggre-

gating volumetric contexts with a 3D DenseU-Net, Li et al. (2018) proposed a hybrid

H-DenseUNet for liver and tumor segmentation from CT volumes.

Among different variants of the U-Nets and V-Net, attention U-Net (Oktay et al.,

2018), nested U-Net (Zhou et al., 2019), hierarchical 3D U-Net (Roth et al., 2017) and

3D dense V-Net for abdominal segmentation(Gibson et al., 2018) are noteworthy.

2.1.1 3D Segmentation

Our work on 3D segmentation (Imran et al., 2018, 2019a), which is developed in Sec-

tion 3.1.1, focuses on the segmentation of pulmonary lobes in 3D CT images of the

chest. We will next discuss the lung lobe segmentation problem and review the relevant

literature.

Human lungs are divided into five lobes. The inner membrane of the lung (visceral

pleura) folds towards the center of the lung and creates double layer fissures that define

the five lobes. The lobar boundaries are made of two major (oblique) fissures and a minor

(horizontal) fissure. As shown in Figure 2.1, the left lung has two lobes separated by a

major fissure—the upper (superior) lobe and the lower (inferior) lobe. Along with upper

and lower lobes, the right lung has a middle lobe; a minor fissure separates the upper lobe

from the middle lobe and a major fissure separates the lower lobe from the middle lobe.

Each of the five lobes is functionally independent, with its own bronchial and vascular

systems.

Automatic segmentation of the lung lobes is important for both clinical and technical

purposes. From the clinical perspective, automatic lung lobe segmentation can help

radiologists review chest CT scans more efficiently. This is because radiologists often

report their pulmonary findings by indicating the affected lung lobe, whose identification
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Figure 2.1: An axial lung CT slice with visible fissures. In the left lung, the left upper
lobe (LUL) and left lower lobe (LLL) are defined by a major fissure (indicated by red
arrows). In the right lung, the right upper lobe (RUL), right middle lobe (RML), and
right lower lobe (RLL) are defined by a major fissure (indicated by red arrows) and a
minor fissure (indicated by yellow arrows).

requires them to navigate through the nearby slices and search for fissure lines, which are

often visually indistinct. Automatic lung lobe segmentation can eliminate the need for

such a tedious and time-consuming process. From the technical perspective, accurate lung

lobe segmentation can assist several subsequent clinical tasks, including nodule malignancy

prediction (cancers mostly occur in the left or right upper lobes), automatic lobe-aware

report generation for each nodule (see Figure 2.2), and assessment and quantification of

chronic obstructive pulmonary diseases (COPD) and interstitial lung diseases (ILD), by

narrowing down the search space to the lung lobes most-likely to be affected.

However, identifying fissures poses a challenge for both human and machine perception.

First, fissures are most often incomplete, not extending to the lobar boundaries. This is

shown in Figure 2.2 where the horizontal fissure is incomplete, unlike the oblique fissures.

Several studies in the literature have confirmed the incompleteness of fissures as a very

common phenomenon. After reviewing 100 fixed and inflated lung specimens, Raasch

et al. (1982) found incomplete right major fissures in 70% of the cases, left major in 46%
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(a) (b)

(c) (d)

Figure 2.2: (a) A coronal slice where the major fissures are complete and visible, but
the minor fissure (circled) is incomplete. (b) Nodule shown in the bounding box. (An
example nodule report: 5mm nodule found in the left upper lobe). (c) Accessory
fissure (arrows) in a left lung sagittal slice, which looks similar in shape to a minor fissure.
(d) Azygos fissure (arrow) in an axial slice creates an extra lobe (azygos lobe) in the right
lung.

of the cases, and 94% across the minor fissures. Moreover, the studies of Gulsun et al.

(2006) and Aziz et al. (2004) also showed more than 50% incompleteness in pulmonary

fissures. Second, the visual characteristics of lobar boundaries change in the presence of

pathologies. The changes could also be related to their thicknesses, locations, and shapes.

Third, there also exist other fissures in the lungs that can be misinterpreted as the major

and minor fissures that separate the lobes. Examples include accessory fissures (sagittal

slice in Figure 2.2) and azygos fissures (axial slice in Figure 2.2).

There have been several efforts to segment lung lobes using semi-automatic and
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automatic techniques. We categorize these approaches into two groups: reliant approaches,

which rely on a prior segmentation or anatomical information, and non-reliant approaches,

which do not rely on such prior segmentations.

2.1.1.1 Prior-Based Segmentation

Reliant approaches require as input a segmentation mask of lungs or lobes (different

modalities), airways and vessels, or fissure initialization. A good example of the latter

is the work by Doel et al. (2012), in which lobe segmentation is performed based on

an initialization via fissure detection. In another example of fissure initialization,Iwano

et al. (2013) proposed semi-automatic and automatic lobe segmentation methods based

on region-growing. The semi-automatic approach requires major and minor fissure

initialization, whereas for the automatic approach, recognition of lobar bronchi and

localization of fissures are performed prior to the final lobar segmentation. On average,

the semi-automatic approach takes approximately 80 seconds and the automatic approach

takes approximately 44 seconds per case.

A number of works depend on prior segmentation of airways, vessels, or fissures. The

work by Bragman et al. (2017) is a good representative, wherein the method relies on

the prior segmentation of airways and vessels. Specifically, a population model of fissure

priors was constructed and combined with patient-specific anatomical information for

non-parametric surface fitting. Despite the promising results, the model lacks robustness

and its reliance on prior knowledge limited the study. In recent work, Giuliani et al. (2018)

proposed an approach to segment lobes from an approximate segmentation based on the

airway tree. The final lobe segmentation was generated by combining the approximate seg-

mentation with all the lung structures (airways, vessels, lungs, and fissures) segmentation

using a multilevel graph cut algorithm. This segmentation method is highly reliant on

the quality of the prior airway and vessel segmentations, as well as anatomical knowledge.

Lassen and van Rikxoort (2013) proposed a watershed-based lobe segmentation method

by combining anatomical information from lungs, fissures, vessels, and bronchi. Despite
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reporting improved segmentation in the presence of incomplete fissures, the failure of

individual prior segmentations limited the performance of the overall segmentation. Based

on this work, Lassen-Schmidt et al. (2017) proposed an interactive lobe segmentation

method to interactively correct lobe segmentation error through user inputs. However,

this improvement was obtained at the price of prolonged segmentation sessions. Lim

et al. (2016) performed quantification of emphysema in 66 patients with moderate to

severe emphysema who had undergone CT for lung volume reduction planning. They

used lobar segmentation from four different prototypes for inter-software variability in

lobe-wise emphysema quantifications. Although the lobe segmentation performance is

not reported, it is dependent on prior airway and vessel segmentation.

Other works also rely on prior lung or lobe segmentation masks. For example, Bauer

et al. (2018) segmented the lung lobes in the expiration phase based on a prior lobe

segmentation mask obtained from a CT image acquired in the inspiration phase. An

automated lung and lobe segmentation pipeline was proposed by Blaffert et al. (2010),

in which a lung model mesh based on watershed segmentation is adapted to lobar

segmentation. Final lobe regions are obtained by adjusting based on overlaid lungs in a

post-processing step. However, the authors do not report a quantitative evaluation of

lobar segmentation. The model takes 20 seconds to perform lobar segmentation in each

CT scan.

2.1.1.2 Atlas-Based Segmentation

Another variation of reliant segmentation is registration using mutual information with

a previously segmented atlas. The performance of final lobe segmentation is greatly

dependent on the performance of the segmentation algorithm used in creating a reference

atlas. Among atlas-based approaches for lobe segmentation, Ross et al. (2010) employed

the thin-plate spline and a maximum a posteriori estimation method using a manually-

defined atlas as a reference. Fissure points were selected based on the atlas and the final

lobe segmentation was generated after a post-processing step. Although this method
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does not rely on any prior airway and vessel segmentation, the execution time was long.

Moreover, the creation of the atlas is very cumbersome and prone to poor results in

pathological lung cases. By contrast, Pu et al. (2009) performed lobe segmentation

by fitting an implicit function to fissures without reliance on prior airway or vessel

segmentation. Although they achieved good accuracy for healthy lungs, the performance

of their method degraded in the case of lungs with abnormal orientations. Unlike the other

atlas-based segmentations, van Rikxoort et al. (2010) made use of multiple atlases for

lobe segmentation. Their method showed promise albeit at the expense of slow execution.

2.1.1.3 Non-Reliant Segmentation

Recently, a few convolutional neural-network-based lobe segmentation techniques have

been proposed (George et al., 2017; Ferreira et al., 2018; Wang et al., 2018). The

segmentation method of George et al. (2017) employs a 2D fully convolutional network

followed by a 3D random walker algorithm. This approach does not rely on a prior

segmentation of airways or vessels nor on any pre-computed atlases; however, it cannot

generate lobe segmentation in a single pass, nor in an end-to-end manner. Furthermore,

the 3D random walker algorithm relies on a number of heuristics for the initialization of

seeds and weights. Ferreira et al. (2018) proposed a lobe segmentation model based on a

fully regularized V-Net model with deep supervision and carefully chosen regularization.

Although the performance looks impressive, the model was trained with few examples, so

it lacks generalizability and may not be effective for varying CT scan cases. A 3D Dense

Net-based lobe segmentation method was proposed by Wang et al. (2018). Although they

reported good accuracy for pathological lungs, their lobe segmentation method relies on

prior lung segmentation and assumes the presence of five lobes, which might not always

be the case (e.g., (LOLA11, 2011)).

Our work (Imran et al., 2018, 2019a), which we develop in Section 3.1.1, mitigates

the aforementioned limitations—namely, reliance on prior masks, slow runtime, and lack

of robustness—through an end-to-end learning network. Without relying on any prior
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airway/vessel segmentation or anatomical knowledge or atlases, our method performs

lobe segmentation in a single pass of the network. Owing to the full utilization of the 3D

context in our model, the resulting lobe segmentation is smooth and nearly noise-free,

which eliminates the need for any subsequent post-processing to fill holes or remove noisy

patches from outside the lung area. Our method shows promise for the potential clinical

use in quantification of pulmonary diseases and automatic generation of radiological

reports.

2.1.2 2D Segmentation

In this section, we review the literature relevant to our work on the segmentation of

vertebrae in 2D spinal X-ray images and the development of a segmentation-based pipeline

for the measurement and analysis of scoliosis (Imran et al., 2019c, 2020b), which we

develop in Section 3.1.2.

Scoliosis is an abnormal condition defined by spinal curvature towards the left or

right. Early detection is key and, when accurate, it can lead to better treatment planning

(Weinstein et al., 2008). Radiography (X-Ray) is the preferred imaging technique for

clinical analysis and measurement of scoliosis as it is highly available, inexpensive, and

yields quick results. Conventional spine image analysis tasks involve tedious manual labor

with hand-crafted feature extraction for the measurement of scoliosis. The Cobb angle,

the standard metric of scoliosis, is estimated by calculating the angle between the two

tangents of the upper and lower end plates of the upper and lower vertebrae. A person

with a 10◦ or greater Cobb angle is usually considered for scoliosis diagnosis (Kim et al.,

2010). Figure 2.3 illustrates the procedure for the calculation of the Cobb angle through

the labeling of relevant vertebrae in an X-Ray image.

Conventionally, scoliosis measurement and assessment, which requires the identification

and labeling of specific vertebral structures, is performed manually by clinicians, but this

poses several difficulties. First, large anatomical variation between patients and low tissue

contrast in spinal X-ray images make it challenging to accurately and reliably assess the

18



ApexCobb angle T12
L1

L5

T1
C7

T11

L2
L3

L4

T10

T2

T9

T3
T4
T5
T6
T7
T8

Figure 2.3: Illustration of the Cobb angle calculation in an anterior-posterior spine X-ray,
by selecting the most tilted upper vertebra above the apex and the most tilted lower
vertebra below the apex. From the extended upper edge of the upper vertebra and lower
edge of the lower vertebra, tangents are drawn and the intersection angle is calculated as
the Cobb angle.
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severity of scoliosis Wu et al. (2017), and effects on the spine and body as a whole, as well

as on individual vertebra, pose extra difficulty in the quantification of scoliosis Kawchuk

and McArthur (1997). Second, measurement error is prevalent in the routine clinical

assessment of scoliosis due to instrumentation, vertebral rotation, and patient positioning

Kim et al. (2010). Thus, 5◦–10◦ intra- or greater inter-observer variation has commonly

been reported in measuring the Cobb angle Beauchamp et al. (1993); Pruijs et al. (1994).

While several methods for vertebrae segmentation and scoliosis measurement are

available, these topics are still under-explored in the literature. Existing vertebral

segmentation methods rely on manual interaction Mateusiak and Mikolajczyk (2019),

hand-crafted feature engineering limited to customized parameters Taghizadeh et al.

(2019); Anitha and Prabhu (2012), patch-based approaches that lose full spatial context

Qadri et al. (2019); Horng et al. (2019), are limited in scope, and fail to consider all the

required vertebrae at a time Lessmann et al. (2019), etc. For Cobb angle estimation, a

minimum bounding rectangle has been used for patch-wise segmented vertebrae Horng

et al. (2019), an approach that relies on pre-processing steps including spinal region

isolation and vertebrae detection. Kusuma et al. Kusuma (2017) proposed a K-means and

curve-fitting approach for Cobb angle measurement that requires a set of pre-processing

steps Kusuma (2017). Other Cobb angle estimation methods have been proposed based

on directly finding vertebrae corners as a form of regression task Wu et al. (2018); Sun

et al. (2017); Imran et al. (2019b); Wu et al. (2017). Although promising, these supervised

methods are less viable for clinical applications because of limited accuracy, due to the

loss of fine details in the process and the lack of explainability.

2.2 Limited Supervision

The scarcity of labeled or annotated medical image data and/or access to substantial

quantities of unlabeled data motivates efforts to train deep learning models with limited

supervision. We review the literature on limited supervision, including semi-supervised

learning facilitated by deep generative modeling, adversarial learning, self-supervision,
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multi-task learning, and domain generalization techniques, in the following sections.

2.2.1 Semi-Supervised Learning

Semi-supervised learning has recently been explored both in computer vision and medical

imaging due to the availability of vast amounts of unlabeled data and computing power

to process them. Semi-supervised learning is usually performed with a small portion of

labeled and a larger portion of unlabeled data, assuming that both are from the same

or similar distributions. In standard protocols, semi-supervised models are evaluated by

retaining only a portion of the labels from a dataset while the remainder are treated as

unlabeled data (Zhai et al., 2019). Depending on the approach to gaining information

from large quantities of unlabeled data, semi-supervised learning can be performed in at

least two different ways—self-supervised learning and adversarial training.

Self-supervised learning is similar to unsupervised learning in its goal of using a vast

amount of unlabeled data to learn visual representation without any human annotation.

Usually, self-supervised learning is performed by formulating a pretext or surrogate task

only on the unsupervised data portion. Examples of pretext tasks could include image

reconstruction, image colorization, predicting image rotations, etc. In self-supervision, the

data itself lends to supervision; i.e., proxy labels created from the data on which training

can provide useful visual features from unlabeled data. Tajbakhsh et al. (2019a) showed

the effectiveness of training models from pre-trained surrogate tasks in different medical

imaging applications, including diabetic retinopathy classification, nodule detection, and

lung lobe segmentation with limited labeled data. Moreover, without training separately,

both the pretext and downstream tasks can be combined in jointly learning useful visual

features. Tran (2019) proposed a semi-supervised learning scheme based on self-supervised

regularization, where the model is trained like full-supervision—a supervised branch for

the labeled data and a self-supervised branch for the unlabeled data—to predict some

geometric transformations.

Adversarial learning is closely related to the Generative Adversarial Networks (GANs)
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Goodfellow et al. (2014). In adversarial learning, class labels are augmented with an

additional label to distinguish generated data from real data. A well balanced generator-

discriminator helps towards learning useful visual features from the unlabeled data

Donahue et al. (2016). Adversarial learning can effectively be adapted to semi-supervised

learning for classification of both natural and medical images (Salehinejad et al., 2018;

Imran and Terzopoulos, 2019a). Adversarial learning has also been utilized in segmentation

(semantic-aware generative adversarial nets (Chen et al., 2018), structure correcting

adversarial nets (Dai et al., 2018), etc.) as well as in disease classification (semi-supervised

domain adaptation (Madani et al., 2018), attention-guided CNN (Guan et al., 2018)).

2.2.2 Deep Generative Modeling

With the advent of deep generative models such as Variational AutoEncoders (VAEs)

(Kingma and Welling, 2013) and Generative Adversarial Networks (GANs) (Goodfellow

et al., 2014), the ability to learn underlying data distributions from training samples

has become practical in common scenarios where there is an abundance of unlabeled

data. With minimal annotation, efficient semi-supervised learning could be the preferred

approach (Imran and Terzopoulos, 2019b). More specifically, based on small quantities of

annotation, realistic new training images may be generated by models that have learned

real-world data distributions (Figure 2.4a). Both VAEs and GANs may be employed for

this purpose.

VAEs can learn dimensionality-reduced representations of training data and, with an

explicit density estimation, can generate new samples. Although VAEs can perform fast

variational inference, VAE-generated samples are usually blurry (Figure 2.4b). On the

other hand, despite their successes in generating images and semi-supervised classifications,

GAN frameworks remain difficult to train and there are challenges in using GAN models,

such as non-convergence due to unstable training, diminished gradient issues, overfitting,

sensitivity to hyper-parameters, and mode collapsed image generation (Figure 2.4c).

Several techniques have been proposed to stabilize GAN training and avoid mode
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(a) Good (b) Blurry (c) Mode collapsed

Figure 2.4: Image generation based on the CIFAR-10 dataset (Krizhevsky and Hinton,
2009): (a) Relatively good images generated by a GAN. (b) Blurry images generated by
a VAE. Based on the SVHN dataset (Netzer et al., 2011): (c) Mode collapsed images
generated by a GAN.

collapse. Nguyen et al. (2017) proposed a model where a single generator is used alongside

dual discriminators. Durugkar et al. (2016) proposed a model with a single generator

and feedback aggregated over several discriminators, considering either the average loss

over all discriminators or only the discriminator with the maximum loss in relation to

the generator’s output. Neyshabur et al. (2017) proposed a framework in which a single

generator simultaneously trains against an array of discriminators, each of which operates

on a different low-dimensional projection of the data. Mordido et al. (2018), arguing that

all the previous approaches restrict the discriminator’s architecture thereby compromising

extensibility, proposed the Dropout-GAN, where a single generator is trained against a

dynamically changing ensemble of discriminators. However, there is a risk of dropping

out all the discriminators. Feature matching and minibatch discrimination techniques

have been proposed (Salimans et al., 2016) for eliminating mode collapse and preventing

overfitting in GAN training.

Realistic image generation helps address problems due to the scarcity of labeled data.

Various architectures of GANs and their variants have been applied in ongoing efforts to

improve the accuracy and effectiveness of image classification. The GAN framework has

been utilized as a generic approach to generating realistic training images that synthetically

augment datasets in order to combat overfitting; e.g., for synthetic data augmentation in
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liver lesions (Frid-Adar et al., 2018), retinal fundi (Guibas et al., 2017), histopathology

(Hou et al., 2017), and chest X-rays (Salehinejad et al., 2018; Imran and Terzopoulos,

2019b). Calimeri et al. (2017) employed a LAPGAN (Denton et al., 2015) and Han et al.

(2018) used a WGAN (Arjovsky et al., 2017) to generate synthetic brain MR images.

Bermudez et al. (2018) used a DCGAN (Radford et al., 2015) to generate 2D brain

MR images followed by an autoencoder for image denoising. Chuquicusma et al. (2018)

utilized a DCGAN to generate lung nodules and then conducted a Turing test to evaluate

the quality of the generated samples. GAN frameworks have also been shown to improve

the accuracy of image classification via the generation of new synthetic training images.

Frid-Adar et al. (2018) used a DCGAN and an ACGAN (Odena et al., 2017) to generate

images of three liver lesion classes to synthetically augment the limited dataset and

improve the performance of a convolutional neural net (CNN) in liver lesion classification.

Similarly, Salehinejad et al. (2018) employed a DCGAN to artificially simulate pathology

across five classes of chest X-rays in order to augment the original imbalanced dataset

and improve the performance of a CNN in chest pathology classification.

The GAN framework has also been utilized in semi-supervised learning architectures to

leverage unlabeled data alongside limited labeled data. The following efforts demonstrate

how incorporating unlabeled data in the GAN framework has led to significant improve-

ments in the accuracy of image-level classification: Madani et al. (2018) used an order

of magnitude less labeled data with a DCGAN in semi-supervised learning yet showed

comparable performance to a traditional supervised CNN classifier and furthermore

demonstrated reduced domain over-fitting by simply supplying unlabeled test domain

images. Springenberg (2015) combined a WGAN and CatGAN (Wang and Zhang, 2017)

for unsupervised and semi-supervised learning of feature representation of dermoscopy

images.

Despite the aforecited successes, GAN frameworks remain challenging to train, as we

discussed above. Our MAVEN framework (Imran and Terzopoulos, 2019a, 2021), which

we develop in Section 3.2.1, mitigates the difficulties of training GANs by enabling training

on a limited quantity of labeled data, preventing overfitting to a specific data domain
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source, and preventing mode collapse, while supporting multiclass image classification.

2.2.3 Domain Generalization

The domain shift problem is usually mitigated using two approaches: unsupervised

domain adaptation and domain generalization. Domain generalization involves acquiring

knowledge from an arbitrary number of related domains and applying it to previously

unseen domains. In unsupervised domain adaptation, a model is pre-trained on similar

tasks in some other domain(s) with labeled data, and the pre-trained model is then

fine-tuned with a limited set of labeled data in the target domain. Domain adaption can

also be performed to learn a generic representation where the model is fully-supervised for

source data and unsupervised for data from the target domain (Yang et al., 2019; Zhuang

et al., 2019). These methods typically rely on the availability of unlabeled (Chen et al.,

2019; Huo et al., 2018) or even labeled data (Zhang et al., 2018b; Dou et al., 2018) for

the target domain. Therefore, with the unavailability of labeled/unlabeled data from the

target domains or disparate data distributions, such models become less useful.

Also, approaches are described in the literature for learning generalized albeit error-

prone initial segmentation across domains and applying different techniques to improve

the final segmentation. For example, post-processing approaches inconsistently improve

segmentation results but require extensive parameter tuning (Kamnitsas et al., 2017)

and error propagation before the post-processing (Larrazabal et al., 2019). ErrorNet

is another method proposed recently that can learn error correction in a systematic

manner via learning a prior distribution of the segmentation masks (Tajbakhsh et al.,

2019b). However, all of these methods are based on explicit error propagation whether it

is handcrafted or model-derived. This adds vulnerability to the models for segmentation

prediction and might increase shifts across different application tasks. Moreover, the

over-reliance on the post-processing or secondary error correction steps diminishes the

quality of visual representation learning.

Departing from all the previous methods, we proposed the PASS model (Imran
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and Terzopoulos, 2020), which we develop in Section 3.2.2. PASS is end-to-end and

fully automatic, devoid of any pre- or post-processing and explicit error designs (hand-

crafted/systematic), and, most importantly, better generalized for tackling domain shifts

in segmentation tasks.

2.2.4 Multitask Learning

Multitask learning (MTL) can be accomplished in several ways, such as learning from

auxiliary tasks to support the main task (Liebel and Körner, 2018), learning to learn

multitask models (Zhang et al., 2018a), joint learning of multiple tasks (Liu et al., 2019;

Imran and Terzopoulos, 2019b), etc. By performing multiple tasks, the domain-specific

information in the training signals of related tasks is actually improved (Caruana, 1993).

MTL is particularly useful for implicit data augmentation through better representation,

focusing attention on the most relevant features, learning one task through another, and

regularizing among them (Ruder, 2017).

The literature includes several efforts on performing multiple tasks within the same

model. Several prior efforts address multitask learning with CNNs and generative modeling.

Rezaei et al. (2018) combined a set of auto-encoders with an LSTM unit and an FCN as

discriminator for semantic segmentation and disease prediction. Girard et al. (2019) used

a U-Net-like architecture coupled with graph propagation to jointly segment and classify

retinal vessels. Mehta et al. (2018) proposed a Y-Net, with parallel discriminative and

convolutional modularity, for the joint segmentation and classification of breast biopsy

images. Another multitasking model was proposed by Yang et al. (2017) for skin lesion

segmentation and melanoma-seborrheic keratosis classification, using GoogleNet extended

to three branches for segmentation and two classification predictions. Khosravan and

Bagci (2018) used a semi-supervised multitask model for the joint learning of false positive

reduction and nodule segmentation from 3D computed tomography (CT) images.

We propose novel SSL models for the joint classification and segmentation in an

adversarial learning framework. These include our APPAU-Net model (Imran and
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Terzopoulos, 2019c), which is developed in Section 3.2.3, and our S4MTL model (Imran

et al., 2020c), which is developed in Section 3.2.4 and further incorporates self-supervision

for the unlabeled data.
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CHAPTER 3

Models and Associated Learning Algorithms

This chapter develops our novel models and associated learning algorithms, first of the

fully-supervised type and then of the semi-supervised type.

3.1 Fully-Supervised Learning Models

We target our supervised learning models to the tasks of fully automated pulmonary

lobe segmentation in 3D CT 3D images of the chest and vertebra segmentation in

anterior-posterior spine X-Ray images for the measurement of scoliosis.

3.1.1 3D Pulmonary Lobe Segmentation in Chest CT Images

Combining ideas from dense V-Networks (Gibson et al., 2018) and progressive holistically-

nested networks (Harrison et al., 2017), we propose a new architecture—the Progressive

Dense V-Network (PDV-Net), an end-to-end solution for organ segmentation in 3D

volumetric data.

3.1.1.1 Progressive Dense V-Net

As shown in Figure 3.1, the input to the network is first down-sampled and concatenated

with a strided 5× 5× 5 convolution of the input with 24 kernels. The concatenation result

is then passed to 3 dense feature blocks, each consisting of 5, 10, and 10 densely-wired

convolution layers respectively. The growth rates of the dense blocks are set to 4, 8,

and 16 respectively. All the convolutional layers in a dense block have a kernel size of
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Figure 3.1: PDV-Net model for the segmentation of lung lobes. Segmentation outputs in
different pathways are progressively improved to yield the final result.

3× 3× 3 and are followed by batch normalization and parametric rectified linear units

(PReLU). The outputs of the dense feature blocks are consecutively utilized in low and

high resolution passes via convolutional down-sampling and skip connections. This enables

the generation of feature maps at three different resolutions. The outputs of the skip

connections of the second and third dense feature blocks are further up-sampled in order

to be consistent with the size of the output in the first skip connection. The feature maps

from skip1 are passed to a convolutional layer followed by a softmax, which outputs the

probability maps. In the second pathway, the feature maps from skip1 and skip2 are

merged and the output probability maps are produced by a convolutional layer followed

by softmax. Similarly, we obtain the final segmentation from the merged feature maps

resulting from the skip2 and skip3 connections. Unlike the dense V-Net, the PDV-Net

generates the final output by progressively improving the outputs at previous pathways.

The PDV-Net is trained using a subset S of a volumetric medical image dataset D. The

training set S contains 3D CT scan images and their corresponding ground truth labels. So,

S = (Xn,Yn), for n = 1, . . . , N , where the input CT volumes X (m)
n = x

(n)
i ; i = 1, . . . |X |n,
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and the corresponding ground truth labeled volumes Y(m)
n = y

(n)
i ; i = 1, . . . |Y|n, y(n)

l ∈

{0 . . . L}. Here, |S| is the total number of training examples passed to the network and

L is the number of labels provided in the ground truth data through per-voxel labeling

(l). To train the PDV-Net, we use a Dice loss function (Milletari et al., 2016) at each

level of the progressive network, which directly maximizes the similarity between the

predicted values and the ground truth over all voxels. This loss properly handles the class

imbalance problem prevalent in lung lobe segmentation: lung lobes have different sizes

and background regions can be large. We employ a multi-class Dice for the segmentation

task:

d =
L∑
l=1

∑Z
j=1 p

l
jg
l
j∑Z

j=1(plj)
2 +

∑Z
j=1(glj)

2
, (3.1)

where Z is the total number of voxels, L is the number of classes, plj denotes the predicted

probabilities for each class, and glj denotes the corresponding ground truth for each class.

3.1.2 Segmentation and Scoliosis Quantification in Spine Radiographs

Fig. 3.2 illustrates our scoliosis quantification system’s image analysis pipeline, which we

explain in greater detail in this section.

3.1.2.1 Vertebral Segmentation Using a Progressive U-Net

As a first step, our system segments the spine in the input X-ray image to reveal n

well-separated vertebrae relevant to the analysis of scoliosis (Fig. 3.3).

Assuming an unknown data distribution p(X, Y ) over images X and associated

reference vertebrae segmentation labels Y , our segmentation model has access to the

labeled training set D(x,y) sampled i.i.d. from p(X, Y ). As detailed in Algorithm 1, the

segmentation network Fφ has a set of learnable parameters φ. The training objective is

minφF L(y,ŷ), where y is the reference vertebral segmentation mask and ŷ is the model’s

predicted mask in each of the training iterations.

Following the progressive dense V-Net model (Imran et al., 2019a, 2018), we propose
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Normal

Mild

Moderate

Severe

Input X-Ray Vertebrae Segmentation Vertebrae Labelling &
Scoliosis Measurement Scoliosis Classification

T11

L4

Scoliosis Analysis Framework

Input X-Ray Vertebral Segmentation Vertebral Labeling & Classification
Cobb Angle Measurement

Figure 3.2: Overview of our system for scoliosis analysis from a spine X-ray. The processing
pipeline includes vertebrae segmentation, vertebrae labeling, Cobb angle measurement,
and scoliosis classification. To measure the Cobb angle, the most tilted vertebrae above
and below the apex are identified, tangents are drawn by extending the upper edge of the
upper vertebra and lower edge of the lower vertebra, and the Cobb angle is estimated for
scoliosis classification.

Side-outputs

Input Segmentation

Figure 3.3: Architecture of our segmentation network (Progressive U-Net): Side outputs
at three different resolutions (x/8, x/4, x/2) are generated and progressively added to
the next stage side-outputs. The output from the third side-output is added to the last
stage before the final convolution to generate the final segmentation output.
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Algorithm 1: Training of progressive U-Net model Fφ with learnable parameters
φ for vertebral segmentation in spine X-ray images

Require: Training data x, y ∈ D, including spine X-ray images x and reference vertebra
segmentation masks y

for each step over D do
Sample minibatch M : x(i) ∼ pD(x)

Compute model outputs for the minibatch: ŷ(i) ← F(φ)(x)
Calculate loss L(y,ŷ) for the model predictions
Update the model F along its gradient

∇ψF

1

|M|
∑
i∈M

[
LF

(y(i),ŷ(i))

]
end for

a novel, progressive U-Net with some purposeful adjustments in the U-Net (Ronneberger

et al., 2015b). As shown in Fig. 3.3, our model has an encoder and a decoder with

skip connections. In each encoder layer, two 3× 3 convolutions are followed by instance

normalization, ReLU activation, and a 2× 2 max-pooling. A dropout is applied in every

encoder and decoder stage of the network. We generate side-outputs in every stage of

the decoder. Progressively adding one side-output to the next improves the segmentation

performance compared to collecting the final output from the final decoder stage in a

U-Net. However, one key difference with (Imran et al., 2018; Imran and Terzopoulos,

2019b) is that our model is trained without side-supervision. Only the side-outputs are

generated and added progressively, yielding an improved segmentation at the final output.

A convolution operation is performed to generate the side-output from each decoder stage.

The progressive side-outputs also ensure that micro-structure is not lost from any level of

the decoder through the convolutional operations. We generate side outputs at x/8, x/4,

and x/2 resolutions, before the final output at resolution x.

3.1.2.2 Measurement of Scoliosis

Our system’s pipeline makes use of the vertebrae segmentation mask to automatically

estimate the Cobb angle, according to Algorithm 2. First, contours are extracted from
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Algorithm 2: Cobb angle calculation

Input: Predicted vertebral segmentation mask ŷ
Output: Cobb angle θ

From the binary mask ŷ, extract all the contours
for each contour in contours do

if Number of pixels ≤ threshold then
Remove contour {remove any noise patches}

end if
end for
{now n well-separated contours are bounding vertebrae}
Order the n contours from top to bottom in the image
Fit lines to the upper & lower segments of each contour

for u = 1 to n− 2 do
for l = u+ 2 to n do
{vertebrae pair separated by at least one vertebra}
mu = slope of the upper line of contour u
ml = slope of the lower line of contour l

τu,l =
∣∣∣tan−1

(
mu−ml
1+muml

)∣∣∣
end for

end for
Cobb angle θ = max of the τu,l

the binary segmentation mask, each of which is a list of pixels. Contours for which the

number of pixels does not exceed a threshold are removed as noise, thereby yielding

well-separated, contours bounding vertebrae. These n contours are then ordered from

top to bottom in the image. Next, lines are least-squares fitted to the upper and lower

segments of each quasi-rectangular contour. Finally, for all contour pairs separated by at

least one contour, the pair with the maximum absolute angular difference τu,l between

the slope of the upper line associated with the upper contour u and the slope of the lower

line associated with the lower contour l determines the Cobb angle θ.

The severity of scoliosis can be categorized and appropriate treatment planning is

performed depending on the calculated Cobb angle from the spine X-ray of a patient. The

final step of our system’s pipeline therefore performs an automatic diagnostic classification

following the clinically recognized scoliosis severity classes, as shown in Table 3.1. Active

treatment is typically not needed when it is mild and rigid braces can stop the progression
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Table 3.1: Clinically accepted classification and treatment planning for adolescent scoliosis
based on measured Cobb angles

Cobb Angle θ Severity Treatment Recommendation

θ < 10◦ normal —
10◦ < θ < 25◦ mild Check in every 2 years
25◦ < θ < 45◦ moderate Wear a brace for 16–23 hours/day
45◦ < θ severe Revision surgery in 20–30 years

of scoliosis when it is in moderate stage. Surgery is the last resort for severe cases, but it

can be delayed for the adolescent period Yang et al. (2016).

3.2 Learning From Limited Labeled Data

In the context of learning from limited labeled images, we next develop the following

methods: (1) deep generative modeling for simultaneous image generation and classifica-

tion, (2) domain generalization without domain specific data for improved medical image

segmentation, (3) semi-supervised multi-task learning in an adversarial learning framework

for joint image classification and segmentation, and (4) self-supervised semi-supervised

multi-task learning for combined classification and segmentation of medical images.

3.2.1 Simultaneous Image Generation and Classification

We develop a novel deep generative model namely, Multi-Adversarial Variation AutoEn-

coder Networks (MAVENs) for simultaneously performing realistic image generation and

improved classification.

3.2.1.1 MAVENs

Figure 3.4 illustrates the models that serve as precursors to our MAVEN architecture.

The VAE is an explicit generative model that uses two neural nets, an encoder

E and decoder D′. Network E learns an efficient compression of real data x into a
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Figure 3.4: Our MAVEN architecture compared to those of the VAE, GAN, and VAE-
GAN. In the MAVEN, inputs to D can be real data X, or generated data X̂ or X̃. An
ensemble ensures the combined feedback from the discriminators to the generator.

lower dimensional latent representation space z(x); i.e., qλ(z | x). With neural network

likelihoods, computing the gradient becomes intractable; however, via differentiable,

non-centered re-parameterization, sampling is performed from an approximate function

qλ(z | x) = N(z;µλ, σ
2
λ), where z = µλ + σλ � ε̂ with ε̂ ∼ N(0, 1). Encoder E yields µ

and σ, and with the re-parameterization trick, z is sampled from a Gaussian distribution.

Then, with D′, new samples are generated or real data samples are reconstructed; i.e.,

D′ provides parameters for the real data distribution pλ(x | z). Subsequently, a sample

drawn from pφ(x | z) may be used to reconstruct the real data by marginalizing out z.

The GAN is an implicit generative model where a generator G and a discriminator D

compete in a minimax game over the training data in order to improve their performance.

Generator G tries to approximate the underlying distribution of the training data and

generates synthetic samples, while discriminator D learns to discriminate synthetic samples

from real samples. The GAN model is trained on the following objectives:

max
D

V (D) = Ex∼pdata(x)[logD(x)] + Ex∼pg(z)[log(1−D(G(z))]; (3.2)

min
G
V (G) = Ex∼pz(z)[log(1−D(G(z))]. (3.3)

G takes a noise sample z ∼ pg(z) and learns to map it into image space as if it comes

from the original data distribution pdata(x), while D takes as input either real image data
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or generated image data and provides feedback to G as to whether that input is real or

generated. On the one hand, D wants to maximize the likelihood for real samples and

minimize the likelihood of generated samples; on the other hand, G wants D to maximize

the likelihood of generated samples. A Nash equilibrium results when D can no longer

distinguish real and generated samples, meaning that the model distribution matches the

data distribution.

Makhzani et al. (2015) proposed the adversarial training of VAEs; i.e., VAE-GANs.

Although they kept both D′ and G, one can merge these networks since both can generate

data samples from the noise samples of the representation z. In this case, D receives

real data samples x and generated samples x̃ or x̂ via G. Although G and D compete

against each other, the feedback from D eventually becomes predictable for G and it

keeps generating samples from the same class, at which point the generated samples lack

heterogeneity. Figure 2.4c shows an example where all the generated images are of the

same class. Durugkar et al. (2016) proposed that using multiple discriminators in a GAN

model helps improve performance, especially for resolving this mode collapse. Moreover,

a dynamic ensemble of multiple discriminators has recently been proposed to address the

issue (Mordido et al., 2018).

As in a VAE-GAN, our MAVEN has three components, E, G, and D; all are CNNs

with convolutional or transposed convolutional layers. First, E takes real samples x and

generates a dimensionality-reduced representation z(x). Second, G can input samples

from noise distribution z ∼ pg(z) or sampled noise z(x) ∼ qλ(x) and it produces generated

samples. Third, D takes inputs from distributions of real labeled data, real unlabeled

data, and generated data. Fractionally strided convolutions are performed in G to obtain

the image dimension from the latent code. The goal of an autoencoder is to maximize

the Evidence Lower Bound (ELBO). The intuition here is to show the network more real

data. The greater the quantity of real data that it sees, the more evidence is available to

it and, as a result, the ELBO can be maximized faster.

In our MAVEN architecture (Figure 3.4), the VAE-GAN combination is extended to

include multiple discriminators aggregated in an ensemble layer. K discriminators are
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Figure 3.5: The three convolutional neural networks, E, G, and D, in the MAVEN.
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collected and the combined feedback

V (D) =
1

K

K∑
k=1

wkDk (3.4)

is passed to G. In order to randomize the feedback from the multiple discriminators, a

single discriminator is randomly selected.

3.2.1.2 Semi-Supervised Learning in MAVENs

Algorithm 3 presents the overall training procedure of our MAVEN model. In the forward

pass, different real samples x into E and noise samples z into G provide different inputs

for each of the multiple discriminators. In the backward pass, the combined feedback

from the discriminators is computed and passed to G and E.

In the conventional image generator GAN, D works as a binary classifier—it classifies

the input image as real or generated. To facilitate the training for an n-class classifier, D

assumes the role of an (n+1)-classifier. For multiple logit generation, the sigmoid function

is replaced by a softmax function. Now, it can receive an image x as input and output

an (n + 1)-dimensional vector of logits {l1, . . . , ln, ln+1}, which are finally transformed

into class probabilities for the n labels in the real data while class (n+ 1) denotes the

generated data. The probability that x is real and belongs to class 1 ≤ i ≤ n is

p(y = i | x) =
exp(li)∑n+1
j=1 exp(lj)

(3.5)

while the probability that x is generated corresponds to i = n + 1 in (3.5). As a semi-

supervised classifier, the model takes labels only for a small portion of the training data. It

is trained via supervised learning from the labeled data, while it learns in an unsupervised

manner from the unlabeled data. The advantage comes from generating new samples.

The model learns the classifier by generating samples from different classes.
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Algorithm 3: MAVEN Training procedure. m is the number of samples; B is
the minibatch-size; and K is the number of discriminators.

steps← m/B
for each epoch do

for each step in steps do
for k = 1 to K do

Sample minibatch zi; z
(1), . . . , z(m), zi ∼ pg(z)

Sample minibatch xi; x
(1), . . . , x(m), xi ∼ pdata(x)

Update discriminator Dk by ascending along its gradient:

∇θDk

1

m

m∑
i=1

[logDk(xi) + log(1−Dk(G(zi)))]

end for
Sample minibatch zki ; 1 ≤ i ≤ m, 1 ≤ k ≤ K, zki ∼ pg(z)
if ensemble is ‘mean’ then

Assign weights wk for each of the discriminators Dk

Determine the mean discriminator Dµ of the discriminators D1, ..., Dk

Dµ =
1

K

K∑
i

wiDi

end if
Update the generator G by descending along its gradient from the ensemble of
discriminator Dµ:

∇θG

1

m

m∑
i=1

[log(1−Dµ(G(zi)))]

Sample minibatch xi; x
(1), . . . , x(m), xi ∼ pdata(x)

Update encoder along its expectation function:

∇θEqλ(z|x)

[
log

p(z)

qλ(z | x)

]
end for

end for

39



3.2.1.3 Losses

Three networks, E, G, and D, are trained on different objectives. E is trained on

maximizing the ELBO, G is trained on generating realistic samples, and D is trained to

learn a classifier that classifies generated samples or particular classes for the real data

samples.

D Loss: Since the model is trained on both labeled and unlabeled training data, the

loss function of D includes both supervised and unsupervised losses. When the model

receives real labeled data, it is the standard supervised learning loss

LDsupervised
= −Ex,y∼pdata log[p(y = i | x)], i < n+ 1. (3.6)

When it receives unlabeled data from three different sources, the unsupervised loss contains

the original GAN loss for real and generated data from two different sources: synG directly

from G and synE from E via G. The three losses,

LDreal
= −Ex∼pdata log[1− p(y = n+ 1 | x)], (3.7)

LDsynG
= −Ex̂∼G log[p(y = n+ 1 | x̂)], (3.8)

LDsynE
= −Ex̃∼G log[p(y = n+ 1 | x̃)], (3.9)

are combined as the unsupervised loss in D:

LDunsupervised
= LDreal

+ LDsynG
+ LDsynE

. (3.10)

G Loss: For G, the feature loss is used along with the original GAN loss. Activation

f(x) from an intermediate layer of D is used to match the feature between real and

generated samples. Feature matching has shown much potential in semi-supervised

learning (Salimans et al., 2016). The goal of feature matching is to encourage G to

generate data that matches real data statistics. It is natural for D to find the most
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discriminative features in real data relative to data generated by the model:

LGfeature
= ‖Ex∼pdataf(x)− Ex̂∼Gf(x̂)‖2

2 . (3.11)

The total G loss becomes the combined feature loss (3.11) plus the cost of maximizing

the log-probability of D making a mistake on the generated data (synG / synE); i.e.,

LG = LGfeature
+ LGsynG

+ LGsynE
, (3.12)

where

LGsynG
= −Ex̂∼G log[1− p(y = n+ 1 | x̂)], (3.13)

and

LGsynE
= −Ex̃∼G log[1− p(y = n+ 1 | x̃)]. (3.14)

E Loss: In the encoder E, the maximization of ELBO is equivalent to minimizing the

KL-divergence, allowing approximate posterior inferences. Therefore the loss function

includes the KL-divergence and also a feature loss to match the features in the synE data

with the real data distribution. The loss for the encoder is

LE = LEKL
+ LEfeature

, (3.15)

where

LEKL
= −KL [qλ(z | x) ‖ p(z)] = Eqλ(z|x)

[
log

p(z)

qλ(z | x)

]
≈ Eqλ(z|x)

(3.16)

and

LEfeature
= ‖Ex∼pdataf(x)− Ex̃∼Gf(x̃)‖2

2 . (3.17)
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Figure 3.6: Schematic of the proposed PASS model: The segmentation mask generator S
takes either input x or the transformed input xa via a transformation function g(x). The
generated side outputs are passed to the corresponding discriminators D2, D4, and D8

and the final outputs ya/ŷ are passed to the discriminator D. The shape encoder E also
takes y/ŷ as input to get the latent vector z/ẑ.

3.2.2 Domain Generalization Without Domain Specific Data

We next develop a novel model, namely Progressive Adversarial Semantic Segmentation

(PASS), for improved segmentation across different data domains in medical imaging.

To formulate the problem, we assume an unknown data distribution p(X, Y ) over

images and segmentation labels. The model has access to the labeled training set D. and

unlabeled set DA through on-the-fly transformation from p(X) after marginalizing out Y .

We set the learning objectives for the segmentation task as:

min
ψ,φ,θ

LL(D, (ψ, φ, θ)) + λLA(DA, (ψ, φ, θ)), (3.18)

where the supervised objective LL is defined on the labeled data and the unsupervised

objective LA is defined on the unlabeled data, λ is a non-negative weight parameter, and

ψ, φ, and θ denote the parameters of the segmentor S, discriminator D, and encoder E
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Algorithm 4: PASS Training.

Require:
Training set of labeled data x, y ∈ D
Transformation function g(x) to generate xa from x
Network architecture Sφ, Dψ.Eθ ∈ F(φ,ψ,θ)

with learnable parameters φ, ψ, θ

for each epoch over D do
Generate minibatches of unlabeled inputs MA using g(x):
xa = g(x)

for each step do
Sample minibatch M: x(i);x(1), . . . , x(m) ∼ pD(x)

Compute model outputs for the labeled inputs:
ŷ ← F(φ, ψ, θ(M)
Compute model outputs for the unlabeled inputs:
ŷa ← Fφ, ψ, θ(MA)

Update the discriminators Di, i = 1, . . . , d, along their gradients:

∇ψDi

1

|M|
∑
i∈M

[
LDi(x(i),y(i),ŷ(i))

]
+ α

1

|MA|
∑
i∈MA

[
L
Di

(
xa(i) ,ŷa(i)

)] .
Update the shape encoder E along its gradient:

∇θE

1

|M|
∑
i∈M

[
LE

(x(i),y(i),ŷ(i))

]
.

Update the segmentation mask generator S along its gradient:

∇φS

1

|M|
∑
i∈M

[
LS

(y(i),ŷ(i))

]
+ α

1

|MA|
∑
i∈MA

[
LS

(y(i),ŷa(i))

]
.

end for
end for

networks, respectively.

3.2.2.1 Progressive Adversarial Semantic Segmentation (PASS)

Figure 3.6 illustrates the PASS model. The training algorithm is detailed in Algorithm 4.

PASS is based on the backbone of a progressive U-Net with some careful adjustments in the

U-Net with side-adversary and side-supervision capabilities. As in a U-Net (Ronneberger
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et al., 2015b), PASS has a segmentor (S) with skip connections in an encoder-decoder

architecture.

In each encoder layer, two 3× 3 convolutions are followed by instance normalization,

leaky-ReLU activation, and a 2× 2 max-pooling. We generate side-outputs in every stage

of the decoder. The side-outputs are collected at the resolutions of x/8, x/4, and x/2

before the final output at the resolutions of x. According to the shape of the side-outputs,

discriminators are employed and layers are added progressively. Progressively adding one

side-output to the next improves the segmentation performance compared to collecting the

output from the final decoder stage (Imran et al., 2018). The progressive side-outputs also

ensure that the network does not lose track of objects of interest. Moreover, progressively

growing the discriminators enables the model to receive feedback at different resolutions via

the side-outputs. Tables 3.3-3.6 detail the architectures of the discriminators D, D2, D4,

and D8. While the discriminators are employed at different side-outputs, the segmentor

tries to generate side-outputs closer to the ground truths progressively for an improved

and accurate final segmentation. A shape encoder E (detail architecture in Table 3.2)

is used in PASS to match the latent representation of the stacked input and output of

S with the stacked input and reference so that the model becomes shape-aware while

mapping an input to the segmentation mask. Moreover, during training, a transformation

function is used to obtain xa from input x, and PASS makes a segmentation prediction

on xa. Note that xa is used without any corresponding label information. Through this,

PASS is trained on an enlarged scope of the data distribution, useful for cross-domain

predictions.

3.2.2.2 Loss Functions

The three networks S, D, and E in the PASS model, are trained on separate objectives:

Segmentor Loss: The objective of segmentor S is based on the segmentation maps

generated in different resolutions. We chose Dice loss to penalize the model for the

segmentation map predictions. Therefore, the objective of S includes segmentation loss
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Table 3.2: Architecture details of the shape encoder (E)

Name Feature maps (input) Feature maps (output)

Conv layer - 1a 256× 256× 3 256× 256× 16
Conv layer - 1b 256× 256× 16 256× 256× 16
Max pool - 1 256× 256× 16 128× 128× 16
Conv layer - 2a 128× 128× 16 128× 128× 32
Conv layer - 2b 128× 128× 32 128× 128× 32
Max pool - 2 128× 128× 32 64× 64× 32
Conv layer - 3a 64× 64× 32 64× 64× 64
Conv layer - 3b 64× 64× 64 64× 64× 64
Max pool - 3 64× 64× 64 32× 32× 64
Conv layer - 4a 32× 32× 64 32× 32× 128
Conv layer - 4b 32× 32× 128 32× 32× 128
Max pool - 4 32× 32× 128 16× 16× 128
Conv layer - 5a 16× 16× 128 16× 16× 256
Conv layer - 5b 16× 16× 256 16× 16× 256
encoder flatten - 5 16× 16× 256 65,536
encoder dense - z 65,536 256

Table 3.3: Architecture details of the Discriminator (D)

Name Feature maps (input) Feature maps (output)

Conv layer - 1a 256× 256× 3 256× 256× 16
Conv layer - 1b 256× 256× 16 256× 256× 16
Max pool - 1 256× 256× 16 128× 128× 16
Conv layer - 2a 128× 128× 16 128× 128× 32
Conv layer - 2b 128× 128× 32 128× 128× 32
Max pool - 2 128× 128× 32 64× 64× 32
Conv layer - 3a 64× 64× 32 64× 64× 64
Conv layer - 3b 64× 64× 64 64× 64× 64
Max pool - 3 64× 64× 64 32× 32× 64
Conv layer - 4a 32× 32× 64 32× 32× 128
Conv layer - 4b 32× 32× 128 32× 32× 128
Max pool - 4 32× 32× 128 16× 16× 128
discriminator flatten - 4 16× 16× 128 32768
discriminator dense - l 32768 1
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Table 3.4: Architecture details of the Discriminator (D2)

Name Feature maps (input) Feature maps (output)

Conv layer - 1a 128× 128× 3 128× 128× 32
Conv layer - 1b 128× 128× 32 128× 128× 32
Max pool - 1 128× 128× 32 64× 64× 32
Conv layer - 2a 64× 64× 32 64× 64× 64
Conv layer - 2b 64× 64× 64 64× 64× 64
Max pool - 2 64× 64× 64 32× 32× 64
Conv layer - 3a 32× 32× 64 32× 32× 128
Conv layer - 3b 32× 32× 128 32× 32× 128
Max pool - 3 32× 32× 128 16× 16× 128
discriminator flatten - 3 16× 16× 128 32768
discriminator dense - l 32768 1

Table 3.5: Architecture details of the Discriminator (D4)

Name Feature maps (input) Feature maps (output)

Conv layer - 1a 64× 64× 3 64× 64× 64
Conv layer - 1b 64× 64× 64 64× 64× 64
Max pool - 1 64× 64× 64 32× 32× 64
Conv layer - 2a 32× 32× 64 32× 32× 128
Conv layer - 2b 32× 32× 128 32× 32× 128
Max pool - 2 32× 32× 128 16× 16× 128
discriminator flatten - 2 16× 16× 128 32768
discriminator dense - l 32768 1

Table 3.6: Architecture details of the Discriminator (D8)

Name Feature maps (input) Feature maps (output)

Conv layer - 1a 32× 32× 3 32× 32× 128
Conv layer - 1b 32× 32× 128 32× 32× 128
Max pool - 1 32× 32× 128 16× 16× 128
discriminator flatten - 1 16× 16× 128 32768
discriminator dense - l 32768 1
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as a weighted sum of all the side-output and side-adversarial losses, where S wants

the discriminators Di to maximize the likelihood for the predicted segmentations. For

the segmentation predictions, we employ Dice losses and the final loss is calculated as

LSseg =
∑4

i wiL(yi,ŷi). A second segmentation loss term is used for logit-wise distribution

comparison. Since xa is not paired with any reference segmentations, it is not possible to

directly compare segmentation loss. Rather, we employ Kullback-Leibler (KL) divergence

to penalize S for not maintaining the distribution of the predicted segmentation of the

labeled data. The KL loss is calculated as

LSKL
=

m2∑
i

∣∣(ŷpk(i)− ŷapk(i)) log(ypk(i)/ŷapk(i))
∣∣ . (3.19)

Then, the segmentor’s adversarial loss is calculated from the stacked input image and

predicted segmentation when S wants D to maximize the likelihood as

LSpred(xi,ŷi) = −Exi,ŷi∼S log[1−Di(xi, ŷi)]. (3.20)

Since the main objective of the segmentor is to generate the segmentation map, LSpred

is usually weighed using a small number α. In addition, a feature loss is calculated

by collecting intermediate convolutions from the discriminators. The goal of feature

matching is to push S to generate segmentations that match reference data statistics. It

is natural that D can find the most discriminative features. The feature loss across all

the discriminators is calculated and summed as

LSfeature =
d∑
i

||fx,y∼D(xi, yi)− fx,ŷ∼S(xi, ŷi)||22. (3.21)

Discriminator Loss: The discriminator has only unsupervised loss objectives. When

the model receives the stacked input image and reference segmentation label (x, y) from

two different sources, the unsupervised loss contains the original adversarial loss for real

data:

LDireal = −Exi,yi∼pdata log[1−Di(xi, yi)]. (3.22)
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Figure 3.7: (a) Basic structure of the proposed APPAU-Net model. The segmentor S
predicts segmentation ŷ from a given image x. The discriminator D predicts the class
label ẑ from image-real label pair (x, y); z = 0, . . . , n are real disease classes and z = n+ 1
denotes the predicted class; (b) Detailed architecture of the Discriminator D (as a CNN)
network of the APPAU-Net model.

Similarly, the adversarial loss for predicted data is calculated from the stacked input

image and predicted segmentation label x, ŷ as follows:

LDipred = −E(xi,ŷi)∼S log[Di(xi, ŷi)]. (3.23)

Encoder Loss: The encoder is trained on matching the shapes of the predicted masks

with the reference masks. The encoder E is fed with input image stacked with either the

reference mask or the predicted mask, and their latent representations are acquired as

the outputs. The encoder loss is simply the mean-square error between the two latent

representations:

LE =
1

n

n∑
i

||z − ẑ||, (3.24)

where z is the latent vector representation of the reference segmentation and ẑ is the

latent vector representation of the predicted segmentation.

3.2.3 Semi-Supervised Multitask Learning

Next, we develop an Adversarial Pyramid Progressive Attention U-Net, or APPAU-Net,

semi-supervised multitask learning model.
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3.2.3.1 Adversarial Pyramid Progressive Attention U-Net (APPAU-Net)

Our proposed APPAU-Net model consists of two major building blocks, a segmentor S

and a discriminator D (Figure 3.7). S consists of a pyramid encoder and a progressive

attention-gated decoder modifying a U-Net. The S network, which is illustrated in

Figure 3.8, receives the image input x at different scales in different stages of the encoder

(Fu et al., 2018). This pyramidal input allows the model to access class details at different

scales. Moreover, while lowering resolution, the model can keep track of the ROIs, avoiding

the possibility of losing them after the subsequent convolutions. The pyramid input to

the encoder network enables the model to learn more locally-aware features crucial to

semantic segmentation.

Following Imran et al. (2018), with deep-supervision, APPAU-Net generates side-

outputs at different resolutions from the decoder. The side-outputs are progressively

added to the next side-outputs before reaching the final segmentation at the original

image resolution. Combining pyramid inputs and progressive side-outputs helps the model

perform better in segmenting small ROIs. The side-output segmentation maps ŷi are

compared to the ground truth mask to calculate the side-losses of varying weights (higher

resolutions are usually assigned higher weights). Therefore, the final segmentation loss is

calculated as

Lseg(x,y) =
4∑
i=1

wiL(yi,ŷi), (3.25)

where the wi are weights associated with the losses Li’s.

However, generating segmentation maps (side-outputs) at different stages of the

decoder might lead to loss of spatial detail. In cases with substantial shape variability of

the ROIs, this eventually incurs larger false positives. To tackle this problem, we adapt

soft-attention gates that help draw relevant spatial features from the low-level feature

maps of the pyramid encoder (Oktay et al., 2018). Feature maps are then propagated

to the high-level features to generate side-outputs at different stages of the decoder.

Attention-gated (AG) modules produce attention coefficients α ∈ [0, 1] at each pixel i

that scale input feature maps x(i)l at layer l to semantically relevant features x̂(i)l. A
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Figure 3.8: Architecture of the segmentor or PPAU-Net in our APPAU-Net model. The
encoder takes inputs at different scales and progressively adds the side-outputs from the
attention-gated decoder. The discriminator takes image-label or image-predicted label
pairs and classifies the images.

gating signal from coarser resolution, serves to determine the focus regions through the

computation of intermediate maps, as follows:

Gl
attn = ψT (σ(wTx x

(i)l + wTg g
(i)l + bg)) + bψ. (3.26)

The linear attention coefficients are computed by element-wise summation and a 1× 1

linear transformation. The parameters are wx, wg, bg, and bψ. The intermediate maps are

then transformed using ReLU σ1 and sigmoid σ2 activations. Finally, after element-wise

multiplication of the feature map x(i)l (via skip) and nonlinear transformation, x̂(i)l is

generated at each decoder stage.

The attention coefficients αi retain the relevant features by scaling the low level query

signal x(i)l through an element-wise product. These pruned features are then concatenated

with upsampled output maps at different stages of the decoder. A 1 × 1 convolution

and sigmoid activation is applied on each output map in the decoder to generate the
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Algorithm 5: Adversarial Pyramid Progressive Attention U-Net (APPAU-Net)
Training Procedure. m is the number of samples and b is the minibatch-size.

steps← m
b

for each epoch do
for each step in steps do

Sample minibatch yi; y
(1), . . . , y(m), yi ∼ pdata(y)

Sample minibatch xi;x
(1), . . . , x(m), xi ∼ pdata(x)

Update discriminator D by ascending along its gradient:

∇θD

1

m

m∑
i=1

[logD(xi, yi) + log(1−D(xi, S(xi))]

Sample minibatch xi;x
(1), . . . , x(m), xi ∼ pdata(x)

Update the segmentor S by descending along its gradient from the discriminator
D and also the segmentation loss (depending on the choice of loss function):

∇θS

1

m

m∑
i=1

[
log(1−D(xi, S(xi))) + Lseg(i)

]
end for

end for

side-outputs at different resolutions. With deep supervision and gating from the pyramid

encoder, the model becomes semantically more discriminative.

3.2.3.2 Loss Functions

The overall training procedure of the proposed APPAU-Net model is presented in Al-

gorithm 5. The real samples and labels to S are presented in the forward pass. In

the backward pass, the feedback from D is determined and passed to S. Similar to the

semi-supervised learning of MAVENs( 3.2.1.2), D in APPAU-Net is trained as (n+1)-class

classifier. The two building blocks of our APPAU-Net model have different objectives.

Segmentor Loss: As in the semi-supervised learning-scheme, the segmentor’s objective

is just based on the labeled samples. We employ Tversky loss, a generalization of Dice loss

that weighs false negatives higher than than false positives in order to balance precision

and recall. The segmentor’s objective includes a segmentation loss and an adversarial
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loss, where the segmentor wants the discriminator D to maximize the likelihood for

the predicted segmentation generated by the segmentor. We combine an absolute KL

divergence with a Tversky loss, proposing the new loss function

LS = LSseg(y,ŷ) + cLSadv(x,ŷ) , (3.27)

where LSseg(y,ŷ) = aLSKL + bLSTV , with LSKL =
∑m2

i |(ypl(i)− ŷ
(i)
pl ) log(y

(i)
pl /ŷ

(i)
pl )|, and

LSTV = 1−
∑m2

i y
(i)
pl ŷ

(i)
pl + ε∑m2

i y
(i)
pl ŷ

(i)
pl + α

∑m2

i y
(i)

pl̄
ŷ

(i)
pl + β

∑m2

i y
(i)
pl ŷpl̄(i) + ε

, (3.28)

where ŷpl(i) is the prediction probability that pixel i is assigned label l (one of the ROI

labels) and ŷpl̄(i) is the probability that the pixel i is assigned the non-ROI (background)

label. Similarly, ypl(i) and ypl̄(i) denote the pixel-wise mapping labels in the ground-truth

masks. Hyper parameters a, b, α, and β can be tuned to weigh the KL-divergence against

the Tversky loss (first pair) and weigh FPs against FNs. Small constant ε avoids division

by zero. The second term in the segmentor’s objective is an adversarial loss, where the

segmentor wants the discriminator to maximize likelihood for the paired data x and

predicted segmentation ŷ. Therefore, the segmentor’s adversarial loss is

LSadv(x,ŷ) = −Ex,ŷ∼S log[1− p(z = n+ 1 | (x, ŷ)]. (3.29)

Since the main objective of the segmentor is to generate the segmentation map, LSadv is

usually weighed using a small number c.

Discriminator Loss: The discriminator is trained on multiple objectives—adversary

on the segmentor’s output and classification of the images into one of the real classes.

Since the model is trained on both labeled and unlabeled training data, the loss function

of the discriminator D includes both supervised and unsupervised losses. When the model
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receives image-label pairs (x, y), it is just the standard supervised learning loss

LDsup = −Ex,y,z∼pdata log[p(z = i | x, y; i < n+ 1)]. (3.30)

When it receives unlabeled data (x, y) or (x, ŷ) from two different sources, the unsupervised

loss combines the original adversarial losses for image-real label and image-prediction

pairs:

LDlabel = −Ex,y∼pdata log[1− p(z = n+ 1 | x, y)] (3.31)

and

LDpred = −E(x,ŷ)∼S log[p(z = n+ 1 | x, ŷ)]. (3.32)

3.2.4 Self-Supervised, Semi-Supervised, Multi-Task Learning (S4MTL)

We next combine the concepts of self-supervision and adversarial learning in a semi-

supervised multitask learning scheme for jointly performing image-level prediction or

pixel-wise classifications within the same model. To formulate the problem, we assume an

unknown data distribution p(X, Y,C) over images, segmentation labels, and class labels.

The model has access to the labeled training set DL sampled i.i.d. from p(X, Y,C) and to

the unlabeled training set DU sampled i.i.d. from p(X) after marginalizing out Y and C.

We set the learning objectives for both classification and segmentation tasks as

min
ψ,θ
LL(DL, (ψ, θ)) + αLU(DU , (ψ, θ)), (3.33)

where the supervised loss LL is defined on the labeled data and the unsupervised loss

LU is defined on the unlabeled data, α is a non-negative weight parameter, and ψ and θ

denote the parameters of the classification and the segmentation networks, respectively.

Referring to Figure 3.9, the S4MTL model comprises two main components—a seg-

mentation mask generator G and a class discriminator D. Generator G can be any

segmentation network, such as U-Net (Ronneberger et al., 2015b), and any CNN classifier

(LeCun et al., 2010) may be used as discriminator D. We employed an encoder-decoder
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Figure 3.9: Schematic of the self-supervised, semi-supervised, multitask learning model
(S4MTL). A segmentation mask generator produces masks on taking inputs from labeled
or unlabeled samples. A class discriminator takes concatenated inputs from labeled
data-mask or unlabeled data-mask pairs and predicts the class labels. For the labeled
data branch, it is fully supervised. By contrast, using unlabeled data, the self-supervised
branch employs self-generated labels using a geometric transformation function t(x). The
predicted segmentation output is obtained from the decoder (DEC) and the diagnostic
classification prediction is received at the discriminator (DISC).
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Figure 3.10: Detailed architecture of the segmentation mask generator (G) network.
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architecture with skip connections as shown in Figure 3.10 for the segmentation mask

generator network G and the previous architecture (Figure 3.7b) for the class discriminator

network D. The model has a supervised branch for the labeled data and a self-supervision

branch for the unlabeled data, and the two branches share the same G and D. Labeled

data are passed through the supervised branch and supervised losses are calculated. Un-

supervised losses are computed by feeding the unlabeled data through the self-supervised

branch. The two networks G and D are trained in an adversarial learning manner, where

the mask generator and the class discriminator compete against each other. The objective

in (3.33) is therefore specified as two losses LD and LG for the two networks D and G,

respectively:

min
ψ
LD(L(DL, ψD) + αL(DU , ψD)),

min
θ
LG(L(DL, θG) + αL(DU , θG)).

(3.34)

Algorithm 6 specifies the overall training procedure of the S4MTL model.

3.2.4.1 Self-Supervision

Self-supervision is usually formulated on two tasks—a surrogate or pretext task and a

downstream or main task. Unlike fine-tuning on the downstream task using the pre-

trained model from the pretext task, we combine them and refer to the combination as

the pre-stream (i.e., Pretext + downstream) task for concurrently performing supervision

and self-supervision. Although the self-supervision can be applied to both labeled and

unlabeled data, we confine self-supervision only to the unlabeled data. We define pretext

tasks for the unlabeled data DU . The self-supervision applies to the class discriminator

D, whereas it is still unsupervised at the mask generator G. For the classification, we use

a transformation function t(x) to randomly flip (horizontal/vertical) or rotate (0, 90, 180,

etc.) the unlabeled images and allow the network D predict them.
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Algorithm 6: S4MTL Mini-Batch Training.

Require:
Training set of labeled data xl, yl, cl ∈ DL
Training set of unlabeled inputs xu ∈ DU
Transformation function t(x) to generate cu from xu
Network architecture Dψ, Gθ ∈ F(ψ,θ) with learnable parameters ψ, θ

for each epoch over DU do
Generate minibatches of unlabeled inputs MU using t(x)

for each step do
Sample minibatch xl(i) ;xl(1) , . . . , xl(m)

∼ pDL(x)

Sample minibatch xu(i) ;xu(1) , . . . , xu(m)
∼ pDU (x)

Compute model outputs for the labeled inputs:
ŷl, ĉl ← F(ψ,θ)(ML)
Compute model outputs for the unlabeled inputs:
ŷu, ĉu ← F(ψ,θ)(MU)

Update the class discriminator D along its gradient:

∇ψD

1

|ML|
∑
i∈ML

[
LD(

xl(i)
,yl(i)

,ŷl(i)
,cl(i)

,ĉl(i)

)
]

+ α
1

|MU |
∑
i∈MU

[
LD

(xu(i) ,ŷu(i) ,ĉu(i))

]
Update the segmentation mask generator G along its gradient:

∇θG

1

|ML|
∑
i∈ML

[
LS(

xl(i)
,yl(i)

,ŷl(i)

)
]

+ α
1

|MU |
∑
i∈MU

[
LG

(xu(i) ,ŷu(i))

]
end for

end for

3.2.4.2 Classification

The real samples and labels to G are presented in the forward pass. In the backward pass,

the feedback from D is passed to G. In order to facilitate the training of an n-class classifier,

the class discriminator D is trained to perform as an (n+ 1)-classifier. For multiple logit

generation, we utilize softmax function, such that it can receive concatenated image-mask

(xl, yl), image-predicted mask (xl, ŷl) for labeled data, and (xu, ŷu) for unlabeled data

as inputs, and output an (n + 1)-dimensional vector of logits {l1, l2, . . . , ln+1}, which

are finally transformed into class probabilities for the final classification. The class
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probabilities for the labeled data are calculated as

p(ĉl = (cl = i) | (xl, yl)) =
exp(li)∑n+1
j=1 exp(lj)

(3.35)

and for the unlabeled data as

p(ĉu = (cu = i) | (xu, ŷu)) =
exp(li)∑n+1
j=1 exp(lj)

. (3.36)

3.2.4.3 Segmentation

The segmentation mask generator takes input xl and generates ŷl for the labeled data.

For the unlabeled data, mask prediction ŷu is generated from input xu. For the labeled

data, it is just like regular supervised segmentation. We used Dice loss for the base model.

Since the ground truth mask yl is also available, the segmentation loss is calculated as

LGL(seg) = 1−
∑m2

i y
(i)
pk ŷ

(i)
pk∑m2

i y
(i)
pk ŷ

(i)
pk + 1

2

∑m2

i y
(i)

pk̄
ŷ

(i)
pk + 1

2

∑m2

i y
(i)
pk ŷpk̄(i)

. (3.37)

On the other hand, the ground truth mask for the unlabeled data is not available; therefore,

we cannot directly calculate the segmentation loss on the predicted mask ŷu. Instead,

we used two unsupervised losses—unpaired consistency regularization loss and logit-wise

KL divergence. The logit-wise absolute KL divergence (Imran and Terzopoulos, 2019b)

between the ground truth of labeled data yl and prediction on unlabeled data ŷu over

each pixel i and logit k is

LGKL(DU ) =
m2∑
i

∣∣(ylpk(i)− ŷupk(i)) log(ylpk(i)/ŷupk(i))
∣∣ . (3.38)

The consistency loss for the prediction ŷu of the unlabeled data against prediction ŷl

of the labeled data is

LGcyc(DU ) = Eŷu ∼ p(DL)[||ŷl − ŷu||1] + Eŷl ∼ p(DU)[||ŷu − ŷl||1]. (3.39)

57



3.2.4.4 Final Losses

Depending on the source of the model inputs, G and D have multiple objectives for

labeled and unlabeled data, combined for training with gradient descent.

Like any supervised learning model, G’s supervised loss is just based on the labeled

samples (at pixel-level). We employ the generalized Dice loss in this regard. As in

adversarial training, the generator’s objective includes segmentation loss and adversarial

prediction loss, where the segmentation mask generator G wants the class discriminator

D to maximize the likelihood for the generated segmentation masks. For the labeled

examples, we calculate two-way losses from image-label and image-prediction pairs, which

differs from the unlabeled examples, where only image-prediction pairs are taken into

account. The segmentation loss terms are calculated using Eqns. (3.37)–(3.39). The

unsupervised adversarial prediction loss terms include adversarial prediction losses for

the labeled and unlabeled data. The mask generator G wants the class discriminator to

maximize the likelihood for the image-prediction pairs xl, ŷl. Therefore, the adversarial

prediction loss in S is

LGpred(xl,ŷl)
= −Exl,ŷl∼G log[1− p(zl = n+ 1 | (xl, ŷl)]. (3.40)

Similarly, for the unlabeled data, xu, ŷu, the adversarial prediction loss is

LGpred(xu,ŷu)
= −Exu,ŷu∼G log[1− p(zu = n+ 1 | (xu, ŷu)]. (3.41)

Since the main objective of G is to generate the segmentation map, a small weight is used

for the adversarial loss terms for both labeled and unlabeled data.

The class discriminator D is trained on multiple objectives—adversary on the segmen-

tation mask generator G’s output and classification of the images into the real or surrogate

classes. Since the model is trained on both labeled and unlabeled training data, the

loss function LD of the class discriminator D includes both supervised and unsupervised

losses. Function LD includes five different loss terms: 1) supervised classification loss
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on (ĉl | xl, yl), 2) self-supervised classification loss on unlabeled data (ĉu | xu, ŷu), 3)

adversarial real loss on xl, yl, 4) adversarial prediction loss on xl, ŷl, and 5) adversarial

prediction loss on xu, ŷu. The supervised losses are calculated as

LDsup = −Exl,yl,cl∼pDL
log [p(ĉl = (cl = i) | xl, yl; i < n+ 1)] (3.42)

and

LDself
= −Exu,ŷu,cu∼pDU

log [p(ĉu = (cu = i) | xu, yu; i < n+ 1)] . (3.43)

Now, for the labeled data DL, D can receive two-way inputs (xl, yl) or (xl, ŷl). Therefore,

the adversarial losses for DL are

LDgt(DL) = −Exl,yl∼p(DL)
log[1− p(cl = n+ 1 | xl, yl)] (3.44)

and

LDpred(DL) = −E(xl,ŷl)∼S log[p(cl = n+ 1 | xl, ŷl)]. (3.45)

For the unlabeled data DU , we calculate only the adversarial prediction loss

LDpred(DU ) = −E(xu,ŷu)∼S log[p(cu = n+ 1 | xu, ŷu)]. (3.46)
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CHAPTER 4

Experimental Evaluations

This chapter presents implementation details and experiments with the models developed

in Chapter 3 and reports our results. The details of the datasets employed are provided

in Appendix A.

4.1 3D Segmentation of Pulmonary Lobes

The segmentation of lung lobes from chest CT scans, using the PDV-Net model presented

in Section 3.1.1, was validated using three datasets: LIDC, LTRC, and LOLA11.

4.1.1 Implementation Details

Baseline: For our baseline comparison, we used a U-Net architecture (Ronneberger

et al., 2015a) and a dense V-Net (DV-Net). The former is used in the most recent

published article for lung lobe segmentation (George et al., 2017) and the latter is a strong

baseline for comparison, which we are the first to employ for lung lobe segmentation.

Training DV-Net and PDV-Net: The models were trained on the LIDC dataset;

and tested on all three (LIDC, LTRC, and LOLA11) sets. For the DV-Net and our

PDV-Net models, the training volumes were first normalized, followed by rescaling to

512× 512× 64, using one NVIDIA Titan XP GPU. Due to the large memory footprint of

the model, the gradient check-pointing method (Bulatov, 2018) was used for memory-

efficient back-propagation. Additionally, batch-wise spatial dropout (Gibson et al., 2018)

was incorporated for regularization purposes. The training was performed on a 64-bit
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Intel Xeon E5-2697 v4 2.30 GHz CPU system with 256 GB of RAM. We used the Adam

optimizer (Kingma and Ba, 2014) with a learning rate of 0.01 and a weight decay of

1e− 7.

Training U-Net: For the 2D U-Net model, the implemented architecture is symmetric

and consists of four contracting and expanding layers, starting with 16 features in the first

layer and doubling the number of features in each step. Each contracting layer consists

of two 3× 3 convolutions and a ReLU activation followed by a 2× 2 max-pooling layer.

The expansion path consists of an up-convolution with feature concatenation from the

respective contracting layer, and two 3× 3 convolutions. In addition, all the ReLU layers

are preceded by a batch-normalization layer. To improve the training process, we also

used a generalized Dice score as the loss function, such that the contribution of each class

in the image to the gradients is balanced. We trained the network with axial slices from

all the training volumes, each sized 512× 512 and normalized to have values between 0

and 1. To avoid over-fitting to the background class, we used only the axial slices, wherein

at least one lung lobe is present. We used the Adam optimizer with a learning rate of

5e− 5 and batches of 10 images.

4.1.2 LIDC Results

Table 4.1 shows the calculated overall and lobe-wise Dice scores and standard deviations

for each of the models. Our PDV-Net model, with an overall score of 0.939 ± 0.020,

significantly outperformed the 2D model and yielded consistently larger Dice scores for

each of the lung lobes against both the DV-Net and U-Net. Moreover, the lower standard

deviation for each lobe indicates that our progressive model is more robust. Figure 4.1

provides a qualitative comparison between the three models, showing that our PDV-Net

model captures lung fissures better than the 2D U-Net and DV-Net. The superiority of

our PDV-Net model is evident both in slice (axial, coronal, sagittal) and 3D views.

We further used Bland-Altman plots to measure the agreement between our PDV-Net

and ground truth segmentations of the 84 LIDC cases (Figure 4.2). Good agreement was

61



Table 4.1: Performance comparison of our 3D progressive dense V-Net against the 2D
U-Net and 3D dense V-Net models in segmenting 84 LIDC and 154 LTRC cases. Mean
Dice score and standard deviation for each of the five lobes are reported.

Dataset Model RUL RML RLL LUL LLL Overall

LIDC(84)
2D U-Net 0.908 ± 0.049 0.844 ± 0.076 0.940 ± 0.054 0.959 ± 0.042 0.949 ± 0.056 0.920 ± 0.043
3D DV-Net 0.929 ± 0.036 0.873 ± 0.058 0.951 ± 0.018 0.958 ± 0.020 0.949 ± 0.041 0.932 ± 0.023
3D PDV-Net 0.937 ± 0.031 0.882 ± 0.057 0.956 ± 0.017 0.966 ± 0.014 0.966 ± 0.037 0.939 ± 0.020

LTRC(154)
2D U-Net 0.914 ± 0.039 0.866 ± 0.054 0.952 ± 0.023 0.961 ± 0.023 0.954 ± 0.021 0.929 ± 0.025
3D DV-Net 0.949 ± 0.013 0.901 ± 0.021 0.959 ± 0.009 0.961 ± 0.007 0.958 ± 0.012 0.946 ± 0.008
3D PDV-Net 0.952 ± 0.011 0.908 ± 0.020 0.961 ± 0.008 0.966 ± 0.006 0.960 ± 0.010 0.950 ± 0.007

Raw Slice GT U-Net DV-Net PDV-Net
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Figure 4.1: Qualitative comparison of PDV-Net’s superior performance, both in slice and
volume level, against DV-Net and U-Net. Note how noisy patches and rough boundaries
are removed from the final segmentation generated by the PDV-Net. Color coding:
almond: LUL, blue: LLL, yellow: RUL, cyan: RML, pink: RLL.
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Figure 4.2: Bland-Altman plots show the agreement between our 3D PDV-Net and ground
truth.

observed between our segmentation model and ground truth in every plot (Lung and

LLL being the two best agreements). Pearson correlation showed that all six volume sets

in ground truth are strongly correlated with the corresponding six volume sets in the

PDV-Net segmentation, with p < 0.001.

4.1.3 LTRC Results

Table 4.1 shows that the 3D progressive dense V-Net achieves an average Dice score

of 0.950± 0.007, significantly improving the dense V-Net (0.946± 0.008). Once again,

the progressive dense V-Net model outperformed the 2D U-Net model with an average

Dice score of 0.929± 0.025. Individual lobes were segmented better by our proposed 3D

progressive dense V-Net model than by the 3D dense V-Net and the 2D U-Net models

(Table 4.1). Note that the LTRC dataset includes many pathological cases where the

fissure lines are either invisible, distorted, or absent in the presence of pathologies such as

emphysema, fibrosis, etc. As a result, lobe segmentation becomes far more challenging.

Nevertheless, our model performed well in segmenting lobes in pathological cases from

the LTRC dataset. Moreover, our model outperformed the model of George et al. (2017)

in segmenting the LTRC cases both in Dice score (0.941 ± 0.255) and inference speed
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Table 4.2: Performance evaluation of our 3D PDV-Net model on 55 LOLA cases, showing
lobe-wise mean Dice scores, standard deviations, median scores, first quartiles, and third
quartiles

Lobe Mean ± SD Q1 Median Q3

RUL 0.9518 ± 0.1750 0.9371 0.9688 0.9881
RML 0.8621 ± 0.4149 0.8107 0.9284 0.9663
RLL 0.9581 ± 0.1993 0.9621 0.9829 0.9881
LUL 0.9551 ± 0.2160 0.9644 0.9834 0.9924
LLL 0.9342 ± 0.3733 0.9546 0.9805 0.9902

Overall 0.9345
(Giuliani et al., 2018) 0.9282
(Bragman et al., 2017) 0.9384
(van Rikxoort et al., 2010) 0.9195

Jaccard score to Dice score conversion: Dice = 2× Jaccard/(1 + Jaccard)

(4-8 minutes per case).

4.1.4 LOLA11 Results

Our segmentation results for the LOLA11 cases were evaluated by the organizers of

LOLA11. To be consistent with our previous analyses, the Jaccard scores computed

by the organizers were converted to Dice scores. The results are shown in Table 4.2.

Our method achieved an overall Dice score of 0.934, which is very competitive to the

state-of-the-art reliant method (Bragman et al., 2017) with a Dice score of 0.938 (reliant

approach), while outperforming the methods of Giuliani et al. (2018) and van Rikxoort

et al. (2010).

Figure 4.3 shows the segmentation results for the LOLA11 cases. For the left lung in

Case 8, the LUL and LLL Dice scores were 0.9940 and 0.9926, respectively. For the right

lung in Case 6, the scores are as follows: RUL: 0.9580, RML: 0.9480, and RLL: 0.9869.

Again, for the left lung of Case 21, the segmentation Dice scores were relatively low. For

the left lung in Case 21, the LUL score was 0.8170 and the LLL score was 0.3035. For

the right lung in Case 55, although the right lower lobe was segmented with a high Dice

score of 0.9818, because of the invisibility of the horizontal fissure, the RUL and RML

had low segmentation Dice scores of 0.6827 and 0.7499, respectively.
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Figure 4.3: Sagittal plane visualization of LOLA11 segmentation by our 3D PDV-Net:
good cases (upper row) and failure cases (bottom row)

4.1.5 Robustness Analysis

We further investigated the robustness of our model by grouping the 84 LIDC cases in

three ways. For the first grouping, the Dice scores were put in three different Z-spacing

buckets: Z-spacing ≤ 1, 1 < Z-spacing < 2, and Z-spacing ≥ 2. In the second grouping,

the Dice scores were put in four manufacturer buckets: GE, Philips, Siemens, and Toshiba.

In the third grouping, the Dice scores were grouped according to the reconstruction kernel

into 3 buckets: soft, lung, and bone. A one-way ANOVA analysis confirmed that there

were no significant differences (p-value < 0.05) between the average Dice scores of the

buckets within each grouping, suggesting that our model is robust against the choice of

reconstruction kernel, size of reconstruction interval, and different CT scanner vendors.
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Figure 4.4: Plots of lobe-wise and overall segmentation accuracy (Dice scores) of our model
versus the emphysema indices of the LTRC test cases reveal insignificant correlation.

Moreover, nodule volume in each of the 84 cases does not affect the lobe segmentation

performance. There is no correlation between nodule volume and lobe segmentation

accuracy, found from Pearson correlation (p-value < 0.05).

We also studied how the segmentation correlation is affected by lung pathologies,

by analyzing the correlation between Dice scores and the emphysema index; i.e., the

proportion of the lungs affected by emphysema (in the range 0–1). For the LTRC cases,

we associated lobe-wise emphysema indices by calculating the proportion of emphysema

voxels (voxels marked as emphysema in the LTRC ground truth) in each of the lobes, as

well as overall emphysema indices for both lungs. Figure 4.4 shows plots of the per-lobe

and overall emphysema indices versus segmentation performance. The small Pearson

correlation (p-value < 0.05) reveals that the lobe segmentation accuracy is uncorrelated

with the emphysema index, confirming the robustness of our model in segmenting lobes

in challenging cases with clear evidence of emphysema.

4.1.6 Speed Analysis

Our 3D PDV-Net model takes approximately 2 seconds to segment lung lobes from one

CT scan using a single Nvidia Titan XP GPU, which is 6x faster than the 2D U-Net model

and at least 120x faster than the 2D U-Net followed by random walker-based approach
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(George et al., 2017). To our knowledge from the lung lobe segmentation models reported

in literature, ours is by far the fastest model. Note that no prior published research

considered a 3D CNN model for lung lobe segmentation.

4.2 2D Segmentation & Analysis of Scoliosis

For the segmentation of vertebrae and measurement of scoliosis from spine X-ray images,

using the progressive U-Net model of Section 3.1.2, we used the APSeg dataset.

4.2.1 Implementation Details

Baselines As baselines, we used a regular U-Net model with a choice of binary cross-

entropy (XE) and Dice as loss function. We denote the models as UD (UNet with

Dice loss), UX (UNet with XE loss), PUD (Progressive UNet with Dice loss), and PUX

(Progressive UNet with XE loss).

Training The models were trained on the training set. Their performances were

evaluated on the testing set. The validation set was used for hyper-parameter tuning and

model selection.

Inputs All the images are resized and normalized to 1024× 512× 1 before feeding them

to the network.

Hyperparameters We used the Adam optimizer with adaptive learning rate starting

with an initial rate of 0.01 and decreasing 10 times after every 20 epochs. We applied

dropout with a rate of 0.25.

Machine Configuration We implemented Algorithm 1 in TensorFlow running on a

Tesla P40 GPU in a system with a 64-bit Intel(R) Xeon(R) 440G CPU.
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Segmentation Evaluation For segmentation evaluation, along with qualitative visu-

alization of masks and edges, we used the Dice similarity (DS), structural similarity index

(SSIM), average Hausdorff distance (HD), and F1 score (F1). The DS, SSIM, and F1 scores

range in [0.0, 1.0], with higher scores denoting better segmentation agreement between

reference and prediction. Lower HD scores indicate better segmentation prediction. The

DS overlap measure is calculated as 2|y∩ŷ|
|y|+|ŷ| .

Scoliosis Evaluation For the evaluation of scoliosis, we measure Cobb angles, the

indices of upper and lower tilted vertebrae, and perform severity classification. Since the

expert annotations include only the vertebrae labels for segmentation reference, we follow

the same scoliosis measurement procedure for both the reference measurements and for

our progressive U-Net-based approach.

4.2.2 Segmentation Results

Experimental results based on both qualitative and quantitative evaluations confirm the

superiority of our model, which consistently provides improved segmentation with varying

choice of loss functions (Dice loss and XE loss). Visualizations of the segmented vertebrae

(Figure 4.5 and Figure 4.6) depict better distinctions of the individual vertebrae merely

with binary segmentation. In all four quantitative measures, our models achieve better

scores than the baseline models (Table 4.3). The superiority of our models is further

confirmed by the whisker-box plots in Figure 4.7 and Bland-Altman plots in Figure 4.8.

Moreover, our end-to-end vertebrae segmentation achieves a better Dice similarity

score than the recently published patch-wise segmentation method (Horng et al., 2019)

(0.993 vs 0.952). While superior DI and F1 justifies the progressive addition of the

side-outputs in pixel-wise predictions, better SSIM and HD depict the model’s ability to

learn the intrinsic shape and structure of the segmented vertebrae.
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Raw GT UD PUD UX PUX PUDA PUXA

Figure 4.5: Boundary visualization of the predicted vertebrae in a spine X-ray shows
the superiority of our PUD and PUX models over the baseline models, with individual
vertebrae showing better separation in the segmentations output by our models.

Table 4.3: Performance comparison of the vertebrae segmentation models

Model DI SSIM HD F1

UD 0.970 0.961 5.246 0.896
UX 0.956 0.955 6.767 0.868
PUD 0.993 0.966 4.597 0.919
PUX 0.993 0.970 4.677 0.922
PUDA 0.992 0.966 4.181 0.913
PUXA 0.992 0.967 4.956 0.911

4.2.3 Scoliosis Results

For the evaluation of scoliosis, we compare the performance of our PUX model-based

measurement against the reference measurement obtained by processing the expert’s

annotations. Figure 4.9 visualizes the Cobb angle results from vertebra masks of two

sample X-rays. As reported in Table 4.4, our segmentation-based pipeline achieves very

accurate Cobb angles. Good agreement is observed between our model and the reference

measurement in each of the X-Rays in the test set with a mean absolute deviation of

just 2.41◦, which is well below the acceptable error limit recommended by the experts

(Cassar-Pullicino and Eisenstein, 2002). Comparing with some of the existing Cobb
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Raw GT UD PUD UX PUX PUDA PUXA

Figure 4.6: Visualization (zoomed) of the predicted vertebrae masks in a spine X-Ray
shows consistent improvement by our model over all other models.

angle measurement techniques, our method achieves lower measurement error than those

reported by Kusuma (2017) and Horng et al. (2019). Moreover, the categorization of

scoliosis (Chowanska et al., 2012) indicates 100% diagnostic accuracy of our approach

relative to the reference.

4.3 Semi-Supervised Simultaneous Image Generation and Clas-

sification

Two natural image datasets (SVHN, CIFAR-10) and two medical image datasets (CXR,

SLC) were used for evaluating the performance of semi-supervised joint image generation

and classification using our MAVEN model of Section 3.2.1.

4.3.1 Implementation Details

To compare the image generation and multiclass classification performance of our MAVEN

model, we used two baselines, the Deep Convolutional GAN (DC-GAN) (Radford et al.,

2015) and the VAE-GAN. The same generator and discriminator architectures were used

for DC-GAN and MAVEN models and the same encoder was used for the VAE-GAN and
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Figure 4.7: Whisker-Box plots of all four models showing consistent performance of our
model with varying losses in segmenting 18 scoliosis-relevant vertebrae from the spine
X-ray test set.
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Figure 4.8: Bland-Altman plots show better agreement of our model relative to competing
models with Dice loss in segmenting 18 vertebrae from the scoliotic X-Ray images in the
test set.
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Input X-Ray Image Vertebral Segmentation Mask Cobb Angle Measurement

Cobb Angle (T11, L04): 21.79◦

Cobb Angle (T05, T11): 24.17◦

Figure 4.9: Processing pipeline from input radiograph (left), to segmentation mask
prediction (center), to vertebrae identification and scoliosis measurement (right).
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Table 4.4: Performance of our method for calculating Cobb angle and scoliosis severity in
the test set relative to reference measurements

Test Reference Measurement Prediction of our PUX Model |Deviation|
ID Upper vert Lower vert Cobb angle Severity Upper vert Lower vert Cobb angle Severity

01 T10 L03 21.92◦ mild T10 L03 19.26◦ mild 2.66◦

02 T12 L04 09.52◦ normal T06 L03 04.75◦ normal 4.77◦

03 T11 L03 13.88◦ mild T11 L03 14.48◦ mild 0.60◦

04 T05 T10 18.78◦ mild T05 T11 16.16◦ mild 2.62◦

05 T06 T10 20.53◦ mild T10 L04 20.22◦ mild 0.31◦

06 T11 L04 20.38◦ mild T11 L04 23.35◦ mild 2.97◦

07 T10 L02 40.71◦ moderate T11 L03 41.38◦ moderate 0.67◦

08 T06 T12 23.96◦ mild T06 T12 20.93◦ mild 3.03◦

09 T05 T11 21.07◦ mild T06 T11 23.22◦ mild 2.15◦

10 T06 T10 14.81◦ mild T01 L03 16.10◦ mild 1.29◦

11 T12 L04 31.94◦ moderate T12 L04 28.60◦ moderate 3.34◦

12 T10 L01 24.82◦ mild T09 L01 18.92◦ mild 5.92◦

13 T12 L03 15.69◦ mild T10 L03 14.79◦ mild 0.90◦

14 T12 L04 24.25◦ mild T08 T12 22.72◦ mild 1.53◦

15 T12 L03 21.02◦ mild T11 L03 18.61◦ mild 2.41◦

MAVEN models. For our MAVENs, we experimented with 2, 3, and 5 discriminators. In

addition to using the mean feedback of the multiple discriminators, we also experimented

with feedback from a randomly selected discriminator. The six MAVEN variants are

therefore denoted MAVEN-m2D, MAVEN-m3D, MAVEN-m5D, MAVEN-r2D, MAVEN-

r3D, and MAVEN-r5D, where “m” indicates mean feedback while “r” indicates random

feedback.

All the models were implemented in TensorFlow and run on a single Nvidia Titan

GTX (12GB) GPU. For the discriminator, after every convolutional layer, a dropout layer

was added with a dropout rate of 0.4. For all the models, we consistently used the Adam

optimizer with a learning rate of 2.0−4 for G and D, and 1.0−5 for E, with a momentum

of 0.9. All the convolutional layers were followed by batch normalizations. Leaky ReLU

activations were used with α = 0.2.

4.3.2 Evaluation

4.3.2.1 Image Generation Performance

There are no perfect performance metrics for measuring the quality of generated samples.

However, to assess the quality of the generated images, we employed the widely used
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Fréchet Inception Distance (FID) (Heusel et al., 2017) and a simplified version of the

Descriptive Distribution Distance (DDD) (Imran et al., 2017). To measure the Fréchet

distance between two multivariate Gaussians, the generated samples and real data samples

are compared through their distribution statistics:

FID = ‖µdata − µsyn‖2 + Tr
(

Σdata + Σsyn − 2
√

ΣdataΣsyn

)
. (4.1)

Two distribution samples, Xdata ∼ N (µdata,Σdata) and Xsyn ∼ N (µsyn,Σsyn), for real

and model data, respectively, are calculated from the 2,048-dimensional activations of

the pool3 layer of Inception-v3 (Salimans et al., 2016). DDD measures the closeness

of a generated data distribution to a real data distribution by comparing descriptive

parameters from the two distributions. We propose a simplified version based on the

first four moments of the distributions, computed as the weighted sum of normalized

differences of moments, as follows:

DDD = −
4∑
i=1

logwi
∣∣µdatai − µsyni

∣∣ , (4.2)

where the µdatai are the moments of the data distribution, the µsyni are the moments of

the model distribution, and the wi are the corresponding weights found in an exhaustive

search. The higher-order moments are weighted more in order to emphasize the stability

of a distribution. For both FID and DDD, lower scores are better.

4.3.2.2 Image Classification Performance

To evaluate model performance in classification, we used two measures, image-level

classification accuracy and class-wise F1 scoring. The F1 score is

F1 =
2× precision× recall

precision + recall
, (4.3)
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Table 4.5: Minimum FID and DDD scores achieved by the DC-GAN, VAE-GAN, and
MAVEN models for the two natural image datasets (CIFAR-10, SVHN).

CIFAR-10 SVHN

Model FID DDD Model FID DDD

DC-GAN 61.293±0.209 0.265 DC-GAN 16.789±0.303 0.343
VAE-GAN 15.511±0.125 0.224 VAE-GAN 13.252±0.001 0.329
MAVEN-m2D 12.743±0.242 0.223 MAVEN-m2D 11.675±0.001 0.309
MAVEN-m3D 11.316±0.808 0.190 MAVEN-m3D 11.515±0.065 0.300
MAVEN-m5D 12.123±0.140 0.207 MAVEN-m5D 10.909±0.001 0.294
MAVEN-r2D 12.820±0.584 0.194 MAVEN-r2D 11.384±0.001 0.316
MAVEN-r3D 12.620±0.001 0.202 MAVEN-r3D 10.791±0.029 0.357
MAVEN-r5D 18.509±0.001 0.215 MAVEN-r5D 11.052±0.751 0.323
DO-GAN (Mordido et al., 2018) 88.60±0.08 -
TTUR (Heusel et al., 2017) 36.9 -
C-GAN (Unterthiner et al., 2017) 27.300 -
AIQN (Ostrovski et al., 2018) 49.500 -
SN-GAN (Miyato et al., 2018) 21.700 -
LM (Ravuri et al., 2018) 18.9 -

with

precision =
TP

TP + FP
and recall =

TP

TP + FN
, (4.4)

where TP, FP, and FN are the number of true positives, false positives, and false negatives,

respectively.

4.3.3 Results

We measured the image classification performances of the models with cross-validation

and in the following sections report the average scores from running each model 10 times.

4.3.3.1 SVHN

For the SVHN dataset, we randomly selected 7,326 labeled images and they along with the

remaining 65,931 unlabeled images were provided to the network as training data. All the

models were trained for 300 epochs and then evaluated. We generated new images equal

in number to the training set size. Figure 4.10 presents a visual comparison of a random

selection of images generated by the DC-GAN, VAE-GAN, and MAVEN models and real

training images. Figure 4.11 compares the image intensity histograms of 10K randomly
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(a) Real samples (b) DC-GAN (c) VAE-GAN

(d) MAVEN-m2D (e) MAVEN-m3D (f) MAVEN-m5D

(g) MAVEN-r2D (h) MAVEN-r3D (i) MAVEN-r5D

Figure 4.10: Visual comparison of image samples from the SVHN dataset against those
generated by the different models.
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Table 4.6: Minimum FID and DDD scores achieved by the DC-GAN, VAE-GAN, and
MAVEN models for the two medical image datasets (CXR, SLC).

CXR SLC

Model FID DDD Model FID DDD

DC-GAN 152.511±0.370 0.145 DC-GAN 1.828±0.370 0.795
VAE-GAN 141.422±0.580 0.107 VAE-GAN 1.828±0.580 0.795
MAVEN-m2D 141.339±0.420 0.138 MAVEN-m2D 1.874±0.270 0.802
MAVEN-m3D 140.865±0.983 0.018 MAVEN-m3D 0.304±0.018 0.249
MAVEN-m5D 147.316±1.169 0.100 MAVEN-m5D 1.518±0.190 0.793
MAVEN-r2D 154.501±0.345 0.038 MAVEN-r2D 1.505±0.130 0.789
MAVEN-r3D 158.749±0.297 0.179 MAVEN-r3D 0.336±0.080 0.783
MAVEN-r5D 152.778±1.254 0.180 MAVEN-r5D 1.812±0.014 0.795

Real DC-GAN VAE-GAN MAVEN-m2D MAVEN-m3D MAVEN-m5D MAVEN-r2D MAVEN-r3D MAVEN-r5D

Figure 4.11: Histograms of the real SVHN training data, and of the data generated by
the DC-GAN and VAE-GAN models and by our MAVEN models with mean and random
feedback from 2, 3, and 5 discriminators.

sampled real images and equally many images sampled from among those generated by

each of the different models.

Generally speaking, our MAVEN models generate images that are more realistic than

those generated by the DC-GAN and VAE-GAN models. This was further corroborated

by randomly sampling 10K generated images and 10K real images. The generated image

quality measurement was performed for the eight different models. Table 4.5 reports

the resulting FID and DDD scores. For the FID score calculation, the score is reported

after running the pre-trained Inception-v3 network for 20 epochs for each model. The

MAVEN-r3D model achieved the best FID score and the best DDD score was achieved

by the MAVEN-m5D model.

Table 4.7 compares the classification performance of all the models for the SVHN

dataset. The MAVEN model consistently outperformed the DC-GAN and VAE-GAN

classifiers both in classification accuracy and class-wise F1 scores. Among all the models,

our MAVEN-m2D and MAVEN-m3D models were the most accurate.
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(a) Real samples (b) DC-GAN (c) VAE-GAN

(d) MAVEN-m2D (e) MAVEN-m3D (f) MAVEN-m5D

(g) MAVEN-r2D (h) MAVEN-r3D (i) MAVEN-r5D

Figure 4.12: Visual comparison of image samples from the CIFAR-10 dataset against
those generated by the different models.
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Table 4.7: Average cross-validation accuracy and class-wise F1 scores in the semi-
supervised classification performance comparison of the DC-GAN, VAE-GAN, and
MAVEN models using the SVHN dataset.

Model Accuracy F1 scores

0 1 2 3 4 5 6 7 8 9

DC-GAN 0.876 0.860 0.920 0.890 0.840 0.890 0.870 0.830 0.890 0.820 0.840
VAE-GAN 0.901 0.900 0.940 0.930 0.860 0.920 0.900 0.860 0.910 0.840 0.850
MAVEN-m2D 0.909 0.890 0.930 0.940 0.890 0.930 0.900 0.870 0.910 0.870 0.890
MAVEN-m3D 0.909 0.910 0.940 0.940 0.870 0.920 0.890 0.870 0.920 0.870 0.860
MAVEN-m5D 0.905 0.910 0.930 0.930 0.870 0.930 0.900 0.860 0.910 0.860 0.870
MAVEN-r2D 0.905 0.910 0.930 0.940 0.870 0.930 0.890 0.860 0.920 0.850 0.860
MAVEN-r3D 0.907 0.890 0.910 0.920 0.870 0.900 0.870 0.860 0.900 0.870 0.890
MAVEN-r5D 0.903 0.910 0.930 0.940 0.860 0.910 0.890 0.870 0.920 0.850 0.870

4.3.3.2 CIFAR-10

For the CIFAR-10 dataset, we used 50K training images, only 5K of them labeled. All

the models were trained for 300 epochs and then evaluated. We generated new images

equal in number to the training set size. Figure 4.12 visually compares a random selection

of images generated by the DC-GAN, VAE-GAN, and MAVEN models and real training

images. Figure 4.13 compares the image intensity histograms of 10K randomly sampled

real images and equally many images sampled from among those generated by each of

the different models. As the tabulated results in Table 4.5 suggest, our MAVEN models

achieved better FID scores than some of the recently published models. Note that those

models were implemented in different settings.

As for the visual comparison, the FID and DDD scores confirmed more realistic image

generation by our MAVEN models compared to the DC-GAN and VAE-GAN models.

The MAVEN models have smaller FID scores, except for MAVEN-r5D. MAVEN-m3D

has the smallest FID and DDD scores among all the models.

Table 4.8 compares the classification performance of all the models with the CIFAR-10

dataset. All the MAVEN models performed better than the DC-GAN and VAE-GAN

models. In particular, MAVEN-m5D achieved the best classification accuracy and F1

scores.
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Real DC-GAN VAE-GAN MAVEN-m2D MAVEN-m3D MAVEN-m5D MAVEN-r2D MAVEN-r3D MAVEN-r5D

Figure 4.13: Histograms of the real CIFAR-10 training data, and of the data generated by
the DC-GAN and VAE-GAN models and by our MAVEN models with mean and random
feedback from 2, 3, and 5 discriminators.

Table 4.8: Average cross-validation accuracy and class-wise F1 scores in the semi-
supervised classification performance comparison of the DC-GAN, VAE-GAN, and
MAVEN models using the CIFAR-10 dataset.

Model Accuracy F1 scores

plane auto bird cat deer dog frog horse ship truck

DC-GAN 0.713 0.760 0.840 0.560 0.510 0.660 0.590 0.780 0.780 0.810 0.810
VAE-GAN 0.743 0.770 0.850 0.640 0.560 0.690 0.620 0.820 0.770 0.860 0.830
MAVEN-m2D 0.761 0.800 0.860 0.650 0.590 0.750 0.680 0.810 0.780 0.850 0.850
MAVEN-m3D 0.759 0.770 0.860 0.670 0.580 0.700 0.690 0.800 0.810 0.870 0.830
MAVEN-m5D 0.771 0.800 0.860 0.650 0.610 0.710 0.640 0.810 0.790 0.880 0.820
MAVEN-r2D 0.757 0.780 0.860 0.650 0.530 0.720 0.650 0.810 0.800 0.870 0.860
MAVEN-r3D 0.756 0.780 0.860 0.640 0.580 0.720 0.650 0.830 0.800 0.870 0.830
MAVEN-r5D 0.762 0.810 0.850 0.680 0.600 0.720 0.660 0.840 0.800 0.850 0.820

Table 4.9: Average cross-validation accuracy and class-wise F1 scores for the semi-
supervised classification performance comparison of the DC-GAN, VAE-GAN, and
MAVEN models using the CXR dataset.

Model Accuracy F1 scores

Normal b-Pneumonia v-Pneumonia

DC-GAN 0.461 0.300 0.520 0.480
VAE-GAN 0.467 0.220 0.640 0.300
MAVEN-m2D 0.469 0.310 0.620 0.260
MAVEN-m3D 0.525 0.640 0.480 0.480
MAVEN-m5D 0.477 0.380 0.480 0.540
MAVEN-r2D 0.478 0.280 0.630 0.310
MAVEN-r3D 0.506 0.440 0.630 0.220
MAVEN-r5D 0.483 0.170 0.640 0.240
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(a) Real samples (b) DC-GAN (c) VAE-GAN

(d) MAVEN-m2D (e) MAVEN-m3D (f) MAVEN-m5D

(g) MAVEN-r2D (h) MAVEN-r3D (i) MAVEN-r5D

Figure 4.14: Visual comparison of image samples from the CXR dataset against those
generated by the different models.

81



4.3.3.3 CXR

With the CXR dataset, we used 522 labeled images and 4,694 unlabeled images. All the

models were trained for 150 epochs and then evaluated. We generated an equal number of

new images as the training set size. Figure 4.14 presents a visual comparison of a random

selection of generated and real images. The FID and DDD measurements were performed

for the distributions of generated and real training samples, indicating that more realistic

images were generated by the MAVEN models than by the GAN and VAE-GAN models.

The FID and DDD scores presented in Table 4.6 show that the mean MAVEN-m3D model

has the smallest FID and DDD scores.

The classification performance reported in Table 4.9 suggests that our MAVEN model-

based classifiers are more accurate than the baseline GAN and VAE-GAN classifiers.

Among all the models, the MAVEN-m3D classifier was the most accurate.

4.3.3.4 SLC

For the SLC dataset, we used 160 labeled images and 1,440 unlabeled images. All the

models were trained for 150 epochs and then evaluated. We generated new images equal

in number to the training set size. Figure 4.15 presents a visual comparison of randomly

selected generated and real image samples.

The FID and DDD measurements for the distributions of generated and real training

samples indicate that more realistic images were generated by the MAVEN models than

by the GAN and VAE-GAN models. The FID and DDD scores presented in Table 4.6

show that the mean MAVEN-m3D model has the smallest FID and DDD scores.

The classification performance reported in Table 4.10 suggests that our MAVEN model-

based classifiers are more accurate than the baseline GAN and VAE-GAN classifiers.

Among all the models, MAVEN-r3D is the most accurate in discriminating between

non-melanoma and melanoma lesion images.
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(a) Real samples (b) DC-GAN (c) VAE-GAN

(d) MAVEN-m2D (e) MAVEN-m3D (f) MAVEN-m5D

(g) MAVEN-r2D (h) MAVEN-r3D (i) MAVEN-r5D

Figure 4.15: Visual comparison of image samples from the SLC dataset against those
generated by the different models.
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Table 4.10: Average cross-validation accuracy and class-wise F1 scores for the semi-
supervised classification performance comparison of the DC-GAN, VAE-GAN, and
MAVEN models using the SLC dataset.

Model Accuracy F1 scores

Non-melanoma Melanoma

DC-GAN 0.802 0.890 0.120
VAE-GAN 0.810 0.890 0.012
MAVEN-m2D 0.815 0.900 0.016
MAVEN-m3D 0.814 0.900 0.110
MAVEN-m5D 0.812 0.900 0.140
MAVEN-r2D 0.808 0.890 0.260
MAVEN-r3D 0.821 0.900 0.020
MAVEN-r5D 0.797 0.890 0.040

4.4 Domain Generalization Without Domain-Specific Data

The progressive adversarial semantic segmentation (PASS) model of Section 3.2.2 was

validated on two applications tasks: vascular segmentation and pulmonary segmentation.

For the blood vessel segmentation, five different datasets were used (ARIA, CHASE,

DRIVE, HRF, and STARE). For evaluation on the presence of domain shift, models

trained on the ARIA and CHASE datasets, were tested against all five. Three chest

X-Ray datasets (MCU, JSRT-V2, and CHN-V1) were used for the segmentation of lungs.

Each of the chest X-ray datasets was used for separately training the models and testing

was done against all three each time.

4.4.1 Implementation Details

Baselines: We employed a number of baseline and state-of-the-art models for medical

image segmentation and domain adaptation: U-Net, U-Net with CRF, Pyramid U-Net

(PU-Net), Progressive U-Net (ProgU-Net), Attention U-Net (AttnU-Net), Progressive

U-Net with Side-Supervision (ProgU-NetSS), Adversarial U-Net (AU-Net), V-GAN,

Adversarial Pyramid Progressive U-Net (APPU-Net), Unsupervised Domain Adaptation

(UDA), ErrorNet, and Conditional Domain Adaptation with GAN (CoDAGAN).
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Table 4.11: Comparison between PASS and other performance baselines for retinal vessel
segmentation (Dice score).

Model
Train on −→ CHASE ARIA

Test on −→ CHASE DRIVE ARIA STARE HRF Avg. CHASE DRIVE ARIA STARE HRF Avg.

U-Net (Ronneberger et al., 2015b) 80.40 63.20 64.50 66.76 63.82 67.74 76.70 77.30 72.00 71.28 72.30 73.90
U-Net+CRF (Tajbakhsh et al., 2019b) 81.20 65.40 62.60 56.40 63.60 65.80 78.40 69.50 73.00 64.60 73.50 71.80
PU-Net (Fu et al., 2018) 81.58 64.04 63.03 66.20 62.66 67.50 76.70 77.30 72.00 71.28 72.30 73.90
AttnU-Net (Oktay et al., 2018) 81.37 65.23 62.91 64.28 65.72 67.90 76.70 77.30 72.00 71.28 72.30 73.90
ProgU-Net (Imran et al., 2019c) 82.91 61.02 63.28 66.58 63.43 67.44 47.21 64.54 70.56 66.57 60.17 61.81
ProgU-NetSS (Imran and Terzopoulos, 2019b) 80.16 62.13 62.41 65.44 63.78 66.78 57.96 65.93 74.47 69.08 60.08 65.50
V-GAN (Son et al., 2017) 79.70 71.50 64.20 61.00 66.40 68.50 68.70 75.80 69.90 66.20 69.30 70.00
AU-Net (Izadi et al., 2018) 82.20 63.20 61.84 67.17 63.37 67.56 68.06 70.21 78.12 74.95 69.69 72.21
APPU-Net (Imran and Terzopoulos, 2019b) 82.58 62.50 61.22 66.17 62.60 67.01 66.20 69.68 78.48 76.34 69.31 72.00
UDA (Dong et al., 2018) 72.30 69.30 68.20 64.70 67.40 68.40 71.50 72.90 73.20 71.30 70.70 71.90
ErrorNet (Tajbakhsh et al., 2019b) 81.50 73.20 66.50 65.20 68.60 71.00 76.70 78.90 72.00 74.00 72.60 74.80
PASS without g(x) 89.06 80.76 80.72 82.72 75.26 81.70 85.06 88.14 91.92 90.78 82.62 87.70
PASS 91.96 84.96 84.18 86.84 78.57 85.30 86.32 90.55 92.08 91.50 83.15 88.72

Inputs: All the images were resized and normalized to 256 × 256 × 3 for the retinal

images and 256× 256× 1 for the chest X-rays before feeding them to the network.

Hyperparameters: We used the Adam optimizer with adaptive learning rate starting

with initial rates of 0.01 for S, and 0.001 for D and E. The learning rates were decreased

90% after every 5 epochs with exponential decay. We apply the dropout with a rate of

0.25. We used λ = 0.3 for weighting LA in (3.18).

Machine Configuration: We implemented PASS in Tensorflow on a Nvidia Titan V

GPU and a 64-bit Intel(R) Core(TM) i7-9700K CPU.

Evaluation: Along with qualitative visualization of segmentation masks and edges

overlaid on the original input images, we calculated Dice score (DS), structural similarity

index (SSIM), and average Hausdorff distance (HD) for the evaluation of pulmonary and

vascular segmentations by different models.

4.4.2 Results

As reported in Tables 4.11 and 4.12, PASS outperforms all the baselines and state-of-the-art

models for both retinal vessel and lung segmentation tasks.

In vessel segmentation, PASS achieved an overall average Dice score of 85.30 and cross-

domain score of 83.74 (domain gap of 8.32), when trained on the small CHASE dataset.
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Input Reference PredictionInput Reference PredictionInput Reference PredictionInput Reference Prediction

GT MCU (98.99) JSRT (97.27) CHN (98.60)

Figure 4.16: Consistency in the in-domain and cross-domain segmentation predictions by
our PASS model: Test result for a chest X-ray from the MCU dataset when the model is
trained on the MCU, JSRT, and CHN datasets.

Fundus Image GT ARIA CHASE

Figure 4.17: Visualization of retinal vessel segmentation by PASS from a fundus image
when trained on the ARIA and CHASE datasets.

Table 4.12: Comparison between PASS and other performance baselines for lung segmen-
tation from chest X-ray images (Dice score).

Model
Train on −→ MCU JSRT CHN

Test on −→ MCU JSRT CHN Avg. MCU JSRT CHN Avg. MCU JSRT CHN Avg.

U-Net (Ronneberger et al., 2015b) 97.67 39.39 94.48 77.18 92.00 95.02 90.54 92.58 93.72 43.46 95.84 77.67
PU-Net (Fu et al., 2018) 97.89 21.24 97.84 72.33 84.97 94.94 73.68 84.53 93.57 73.88 95.90 87.78
AttnU-Net (Oktay et al., 2018) 97.86 30.31 94.07 74.08 6.70 94.95 65.00 55.55 81.25 74.24 95.56 83.68
ProgU-Net (Imran et al., 2019c) 97.83 10.98 91.32 66.71 34.89 95.20 86.28 72.12 84.79 60.03 95.35 80.06
ProgU-NetSS (Imran and Terzopoulos, 2019b) 97.90 33.98 95.32 75.33 13.16 95.09 65.00 57.75 94.24 67.29 95.63 85.72
AU-Net (Izadi et al., 2018) 97.86 94.68 95.08 95.87 89.12 97.85 92.46 93.14 95.58 95.88 96.22 95.89
APPU-Net (Imran and Terzopoulos, 2019b) 97.81 95.07 94.77 95.88 90.46 97.80 91.76 93.34 95.72 96.25 96.11 96.03
CyUDA (Chen et al., 2018) 95.61 92.84 – 94.23 – – – – – – – –
SeUDA (Chen et al., 2018) 95.61 94.51 – – – – – – – – – –
CoDAGAN (Oliveira et al., 2019) – – – – 84.58 96.45 88.99 90.01 – – – –
PASS without g(x) 97.74 96.43 96.76 96.98 95.11 98.26 95.92 96.43 96.62 96.11 97.61 96.68
PASS 98.22 96.56 97.24 97.34 95.70 98.27 96.06 96.68 97.27 97.15 97.65 97.36
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Table 4.13: Comparison between PASS and other performance baselines for pulmonary
segmentation (HD score).

Model
Train on −→ MCU JSRT CHN

Test on −→ MCU JSRT CHN Avg. MCU JSRT CHN Avg. MCU JSRT CHN Avg.

U-Net 3.689 9.948 4.849 6.162 7.923 4.128 5.594 5.882 4.874 9.161 4.378 6.138
PU-Net 3.723 11.049 5.346 6.706 10.926 4.159 6.618 7.234 5.347 7.438 4.362 5.716
AttnU-Net 3.841 10.189 5.057 6.362 11.628 4.181 7.374 7.728 6.989 7.257 4.453 6.233
ProgU-Net 3.729 11.706 5.564 6.999 10.491 4.052 5.700 6.748 6.788 8.702 4.494 6.661
ProgU-NetSS 3.874 9.907 4.673 6.151 11.602 4.117 7.509 7.743 4.885 7.906 4.362 5.718
AU-Net 3.780 4.625 4.651 4.352 4.879 3.705 5.126 4.570 4.327 4.499 4.301 4.376
APPU-Net 3.736 4.537 4.725 4.333 4.732 3.706 5.055 4.498 4.485 4.278 4.401 4.388
PASS without g(x) 3.332 4.552 4.857 4.247 5.109 3.867 5.138 4.705 4.580 4.441 4.545 4.522
PASS 3.262 3.996 4.675 3.978 4.680 3.702 5.021 4.468 4.269 4.397 4.112 4.259

Table 4.14: Comparison between PASS and other performance baselines for pulmonary
segmentation (SSIM score).

Model
Train on −→ MCU JSRT CHN

Test on −→ MCU JSRT CHN Avg. MCU JSRT CHN Avg. MCU JSRT CHN Avg.

U-Net 0.968 0.754 0.935 0.886 0.803 0.949 0.908 0.887 0.929 0.738 0.949 0.872
PU-Net 0.967 0.672 0.921 0.853 0.698 0.948 0.839 0.828 0.931 0.836 0.949 0.905
AttnU-Net 0.967 0.699 0.926 0.864 0.679 0.948 0.820 0.816 0.869 0.837 0.946 0.884
ProgU-Net 0.968 0.656 0.919 0.848 0.732 0.951 0.889 0.857 0.886 0.837 0.946 0.889
ProgU-NetSS 0.968 0.716 0.941 0.875 0.689 0.949 0.828 0.822 0.934 0.822 0.948 0.901
AU-Net 0.967 0.9191 0.936 0.941 0.892 0.961 0.916 0.923 0.942 0.937 0.951 0.943
APPU-Net 0.967 0.922 0.934 0.941 0.902 0.960 0.913 0.925 0.944 0.940 0.950 0.945
PASS without g(x) 0.962 0.921 0.932 0.938 0.913 0.953 0.921 0.929 0.939 0.931 0.945 0.938
PASS 0.968 0.923 0.942 0.944 0.918 0.955 0.920 0.931 0.942 0.939 0.956 0.946

Table 4.15: Comparison between PASS and other performance baselines for retinal vessel
segmentation (SSIM score).

Model
Train on −→ CHASE ARIA

Test on −→ CHASE DRIVE ARIA STARE HRF Avg. CHASE DRIVE ARIA STARE HRF Avg.

U-Net 0.812 0.645 0.665 0.684 0.507 0.663 0.682 0.734 0.791 0.776 0.571 0.711
PU-Net 0.815 0.678 0.666 0.699 0.501 0.672 0.679 0.722 0.769 0.751 0.537 0.692
AttnU-Net 0.808 0.645 0.648 0.687 0.498 0.657 0.675 0.725 0.764 0.753 0.543 0.692
ProgU-Net 0.819 0.611 0.653 0.679 0.490 0.650 0.677 0.739 0.791 0.774 0.595 0.715
ProgU-NetSS 0.802 0.624 0.652 0.659 0.501 0.648 0.698 0.741 0.797 0.783 0.586 0.721
AU-Net 0.812 0.624 0.641 0.658 0.482 0.643 0.706 0.738 0.789 0.779 0.632 0.729
APPU-Net 0.820 0.619 0.636 0.654 0.484 0.643 0.695 0.738 0.796 0.789 0.632 0.730
PASS without g(x) 0.827 0.682 0.661 0.699 0.505 0.675 0.696 0.742 0.798 0.791 0.610 0.725
PASS 0.830 0.685 0.660 0.701 0.510 0.677 0.707 0.772 0.797 0.802 0.611 0.738

Table 4.16: Comparison between PASS and other performance baselines for retinal vessel
segmentation (average HD score).

Model
Train on −→ CHASE ARIA

Test on −→ CHASE DRIVE ARIA STARE HRF Avg. CHASE DRIVE ARIA STARE HRF Avg.

U-Net 7.929 8.306 7.490 7.807 8.916 8.089 9.177 8.095 6.404 7.209 9.017 7.980
PU-Net 7.287 8.260 7.526 7.551 8.815 7.887 9.381 8.247 6.905 7.420 9.403 8.271
AttnU-Net 7.436 8.515 7.672 7.899 8.982 8.100 9.765 8.297 7.186 7.691 9.543 8.496
ProgU-Net 7.233 8.408 7.613 7.850 9.000 8.021 9.400 8.144 6.627 7.316 9.133 8.124
ProgU-NetSS 7.498 8.478 7.560 8.055 9.012 8.121 8.857 8.072 6.478 7.089 9.143 7.928
AU-Net 7.406 8.482 7.665 7.792 8.946 8.058 8.508 7.770 6.448 6.606 8.510 7.568
APPU-Net 7.196 8.492 7.732 7.824 8.979 8.045 8.486 8.009 6.344 6.519 8.655 7.602
PASS without g(x) 7.154 7.809 7.397 7.346 8.261 7.593 8.349 8.132 6.301 6.120 8.074 7.396
PASS 7.129 7.341 7.187 7.745 8.028 7.486 8.285 8.012 6.336 6.123 7.399 7.231
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Figure 4.18: Visualization of lung boundaries for the predicted segmentations of a chest
X-Ray image from the MCU dataset when trained on the MCU, JSRT, and CHN datasets.
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Figure 4.19: Visualization of vascular segmentation from fundoscopic image from the
STARE dataset when the models are trained on the CHASE and ARIA datasets.
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When trained on the relatively larger ARIA dataset, the overall average Dice score of 88.72

and cross-domain score of 87.88 are achieved with domain gap of 4.22. This demonstrates

the effectiveness of PASS across the domains as it is capable of performing the semantic

segmentation with the ability to learn diversity in shapes and distributions. Similarly,

in the segmentation of lungs, PASS outperformed all the baselines and state-of-the-art

models (Table 4.12).

Along with Figs. 4.16 and 4.17, Figure 4.18 (edges) shows the consistency of PASS in

segmenting lungs from the chest X-ray and Figure 4.19 (edges) shows the consistency of

PASS in segmenting retinal vessels from both in-domain and cross-domains irrespective

of the varying imaging configurations and abnormalities. While some of the baseline

models completely failed in evaluations on the JSRT dataset when trained on MCU and

vice-versa, PASS consistently performs better in either scenario. With PASS, we have a

domain gap of only 1.32 when trained on MCU, 2.39 when trained on JSRT, and 0.44

when trained on CHN. The poorer performance of the PASS model without g(x) justifies

the inclusion of this transformation function and the logit-wise distribution matching.

The HD and SSIM scores are reported for lung segmentation in Table 4.16 and

Table 4.14, and for retinal vessel segmentation in Table 4.16 and Table 4.15. The

consistently lower HD scores and higher SSIM scores compared to the baseline and

state-of-the-art models provide further evidence of the superior performance by our PASS

model.

4.5 Semi-Supervised Multi-Task Learning

Three publicly available chest X-ray datasets (MCU, CHN-V2, and JSRT-V1), and the

combined Chest datasets were used for evaluating semi-supervised multi-task learning

model of Section 3.2.3 in jointly segmenting lungs and classification of lung abnormalities.
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Figure 4.20: Visual comparison of the lung segmentation by the proposed APPAU-Net
model with TV loss and KLTV loss. The predicted lung mask with TV and KLTV losses
are overlaid with the ground truth mask.

4.5.1 Implementation Details

For the supervised segmentation, we used the proposed APPAU-Net model and KLTV as

a loss function. We compared against all the preliminary segmentation models and losses.

Then we performed semi-supervised multi-tasking for semi-supervised diease classification

and lung segmentation from chest X-ray images. Except the Chest dataset, all datasets

were used for binary classification (normal, tuberculosis/nodule), while the Chest dataset

was used for 3-class classification (normal, nodule, tuberculosis). The X-ray images

were normalized and resized to 128 × 128 × 1 pixels. We consistently used the Adam

optimizer with momentum of 0.9 and learning rates of 1e − 5 (segmentor), and 1e − 4

(discriminator) for multi-tasking. Each model was trained using a minibatch size of 16.

All the convolutional layers were followed by batch-normalization except the convolutions

for generating side-outputs. We performed droptout with a rate of 0.4 in the discriminator.

Each model was evaluated using the best model selected based on validation performance,

after running for 300 epochs. For the classification task, along with overall accuracy, we

also reported class-wise F1 scores. For the segmentation evaluation, we used a number of

performance metrics: Dice similarity (DS), Average Hausdorff distance (HD), Jaccard

score (JS), Sensitivity (SN), Specificity (SP), F1 score, Structural Similarity Measure

(SSIM), Precision (PR), and Recall (RE) scores.
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Figure 4.21: Training and Validation loss plots for the U-Net model with varying loss
functions using the MCU dataset.
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Figure 4.22: Training and Validation accuracy plots for the U-Net model with varying
loss functions using the MCU dataset.
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Table 4.17: Segmentation-Only performance evaluations for different models with varying
loss functions on the MCU dataset.

Model DS JS SSIM F1 HD SN SP PR RC

U-Net-XE 0.991 0.983 0.951 0.967 2.896 0.956 0.992 0.977 0.957
U-Net-Dice 0.991 0.983 0.952 0.967 2.932 0.968 0.988 0.966 0.970
U-Net-TV 0.991 0.983 0.950 0.966 2.968 0.965 0.989 0.968 0.965
U-Net-KLTV 0.990 0.980 0.947 0.962 3.009 0.966 0.985 0.958 0.966

Pyramid U-Net-XE 0.991 0.983 0.951 0.966 2.837 0.956 0.992 0.977 0.956
Pyramid U-Net-Dice 0.992 0.985 0.956 0.970 2.781 0.968 0.990 0.972 0.968
Pyramid U-Net-TV 0.990 0.979 0.945 0.960 2.814 0.968 0.983 0.952 0.968
Pyramid U-Net-KLTV 0.991 0.983 0.951 0.966 2.858 0.951 0.994 0.983 0.951

Progressive U-Net-XE 0.991 0.983 0.950 0.966 2.888 0.966 0.988 0.966 0.966
Progressive U-Net-Dice 0.991 0.982 0.950 0.965 3.019 0.955 0.991 0.974 0.955
Progressive U-Net-TV 0.991 0.982 0.949 0.966 2.856 0.972 0.986 0.959 0.972
Progressive U-Net-KLTV 0.987 0.974 0.935 0.949 2.973 0.953 0.981 0.944 0.953

Attention U-Net-XE 0.990 0.981 0.946 0.963 3.034 0.957 0.990 0.969 0.967
Attention U-Net-Dice 0.988 0.977 0.938 0.956 3.316 0.946 0.988 0.965 0.946
Attention U-Net-TV 0.984 0.968 0.922 0.937 3.768 0.915 0.987 0.960 0.915
Attention U-Net-KLTV 0.990 0.980 0.941 0.960 3.063 0.957 0.987 0.962 0.957

Pyramid Progressive U-Net-XE 0.991 0.982 0.949 0.965 2.847 0.967 0.987 0.963 0.967
Pyramid Progressive U-Net-Dice 0.988 0.976 0.933 0.954 3.239 0.957 0.983 0.950 0.957
Pyramid Progressive U-Net-TV 0.984 0.968 0.919 0.938 3.978 0.932 0.981 0.944 0.932
Pyramid Progressive U-Net-KLTV 0.987 0.974 0.930 0.948 3.438 0.934 0.988 0.963 0.934

Pyramid Attention U-Net-XE 0.988 0.976 0.935 0.955 2.922 0.965 0.980 0.945 0.965
Pyramid Attention U-Net-Dice 0.989 0.978 0.941 0.957 3.367 0.948 0.989 0.967 0.948
Pyramid Attention U-Net-TV 0.991 0.982 0.946 0.965 2.969 0.971 0.985 0.958 0.971
Pyramid Attention U-Net-KLTV 0.988 0.976 0.934 0.952 3.313 0.945 0.986 0.960 0.945

Progressive Attention U-Net-XE 0.986 0.973 0.927 0.947 3.434 0.941 0.984 0.954 0.941
Progressive Attention U-Net-Dice 0.982 0.964 0.914 0.931 3.697 0.942 0.972 0.921 0.942
Progressive Attention U-Net-TV 0.987 0.973 0.927 0.949 3.397 0.957 0.979 0.941 0.957
Progressive Attention U-Net-KLTV 0.983 0.966 0.917 0.930 3.748 0.886 0.993 0.978 0.886

Pyramid Progressive Attention U-Net-XE 0.984 0.968 0.918 0.937 3.576 0.927 0.982 0.947 0.927
Pyramid Progressive Attention U-Net-Dice 0.988 0.977 0.936 0.955 3.203 0.952 0.985 0.957 0.952
Pyramid Progressive Attention U-Net-TV 0.989 0.978 0.936 0.958 3.143 0.967 0.982 0.949 0.967
Pyramid Progressive Attention U-Net-KLTV 0.984 0.970 0.921 0.939 3.470 0.915 0.988 0.964 0.915
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Table 4.18: Segmentation-Only performance evaluations for different models with varying
loss functions on the CHN dataset.

Model DS JS SSIM F1 HD SN SP PR RC

U-Net-XE 0.969 0.940 0.878 0.960 3.706 0.964 0.867 0.956 0.964
U-Net-Dice 0.966 0.935 0.871 0.957 3.959 0.973 0.820 0.942 0.973
U-Net-TV 0.964 0.931 0.860 0.955 4.181 0.975 0.799 0.936 0.975
U-Net-KLTV 0.960 0.923 0.850 0.950 4.023 0.963 0.803 0.936 0.963

Pyramid U-Net-XE 0.966 0.934 0.869 0.957 3.932 0.966 0.838 0.947 0.966
Pyramid U-Net-Dice 0.966 0.933 0.868 0.956 4.101 0.972 0.818 0.941 0.972
Pyramid U-Net-TV 0.964 0.930 0.863 0.954 4.121 0.978 0.787 0.932 0.978
Pyramid U-Net-KLTV 0.967 0.936 0.869 0.957 3.682 0.956 0.875 0.958 0.956

Progressive U-Net-XE 0.965 0.933 0.868 0.956 3.951 0.968 0.828 0.944 0.968
Progressive U-Net-Dice 0.968 0.939 0.873 0.959 3.776 0.964 0.864 0.955 0.964
Progressive U-Net-TV 0.955 0.913 0.842 0.945 4.408 0.984 0.701 0.908 0.984
Progressive U-Net-KLTV 0.964 0.931 0.860 0.954 3.758 0.951 0.873 0.958 0.951

Attention U-Net-XE 0.956 0.915 0.841 0.945 4.447 0.972 0.742 0.919 0.972
Attention U-Net-Dice 0.966 0.935 0.866 0.957 3.978 0.969 0.831 0.945 0.969
Attention U-Net-TV 0.958 0.919 0.842 0.948 4.562 0.983 0.725 0.915 0.983
Attention U-Net-KLTV 0.965 0.933 0.862 0.955 3.684 0.946 0.894 0.964 0.946

Pyramid Progressive U-Net-XE 0.967 0.937 0.871 0.958 3.836 0.967 0.846 0.950 0.967
Pyramid Progressive U-Net-Dice 0.966 0.935 0.871 0.957 3.955 0.973 0.820 0.942 0.973
Pyramid Progressive U-Net-TV 0.961 0.925 0.854 0.951 4.311 0.979 0.763 0.926 0.979
Pyramid Progressive U-Net-KLTV 0.966 0.934 0.864 0.956 3.725 0.952 0.879 0.959 0.952

Pyramid Attention U-Net-XE 0.967 0.937 0.869 0.958 3.919 0.958 0.874 0.958 0.958
Pyramid Attention U-Net-Dice 0.963 0.928 0.856 0.953 4.296 0.966 0.816 0.941 0.966
Pyramid Attention U-Net-TV 0.951 0.906 0.829 0.941 4.892 0.988 0.661 0.898 0.988
Pyramid Attention U-Net-KLTV 0.966 0.937 0.863 0.955 3.664 0.946 0.896 0.965 0.990

Progressive Attention U-Net-XE 0.960 0.923 0.849 0.950 4.623 0.969 0.782 0.931 0.970
Progressive Attention U-Net-Dice 0.963 0.928 0.854 0.953 4.358 0.970 0.801 0.936 0.970
Progressive Attention U-Net-TV 0.950 0.906 0.828 0.940 4.772 0.987 0.660 0.897 0.987
Progressive Attention U-Net-KLTV 0.961 0.925 0.849 0.950 3.750 0.942 0.875 0.958 0.942

Pyramid Progressive Attention U-Net-XE 0.968 0.939 0.877 0.960 3.789 0.967 0.857 0.953 0.967
Pyramid Progressive Attention U-Net-Dice 0.968 0.937 0.873 0.959 3.887 0.967 0.849 0.951 0.967
Pyramid Progressive Attention U-Net-TV 0.954 0.913 0.838 0.944 4.523 0.983 0.700 0.908 0.983
Pyramid Progressive Attention U-Net-KLTV 0.968 0.936 0.870 0.957 3.801 0.959 0.865 0.955 0.960
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Table 4.19: Segmentation-only performance evaluations for different models with varying
loss functions on the JSRT dataset.

Model DS JS SSIM F1 HD SN SP PR RC

U-Net-XE 0.991 0.983 0.946 0.988 2.678 0.988 0.970 0.987 0.988
U-Net-Dice 0.990 0.981 0.942 0.986 2.730 0.991 0.959 0.982 0.999
U-Net-TV 0.989 0.979 0.937 0.985 2.804 0.989 0.956 0.981 0.989
U-Net-KLTV 0.990 0.980 0.940 0.986 2.553 0.977 0.988 0.995 0.977

Pyramid U-Net-XE 0.991 0.983 0.947 0.988 2.670 0.989 0.969 0.986 0.990
Pyramid U-Net-Dice 0.990 0.981 0.942 0.986 2.857 0.988 0.966 0.985 0.988
Pyramid U-Net-TV 0.990 0.981 0.942 0.986 2.742 0.995 0.950 0.978 0.994
Pyramid U-Net-KLTV 0.990 0.980 0.940 0.986 2.729 0.982 0.975 0.989 0.982

Progressive U-Net-XE 0.991 0.982 0.945 0.987 2.678 0.988 0.968 0.986 0.988
Progressive U-Net-Dice 0.990 0.981 0.941 0.986 2.644 0.987 0.968 0.986 0.987
Progressive U-Net-TV 0.989 0.978 0.934 0.984 2.911 0.993 0.943 0.975 0.993
Progressive U-Net-KLTV 0.989 0.977 0.933 0.984 2.756 0.988 0.953 0.979 0.988

Attention U-Net-XE 0.991 0.982 0.943 0.987 2.738 0.986 0.973 0.988 0.986
Attention U-Net-Dice 0.984 0.968 0.911 0.977 3.259 0.993 0.912 0.962 0.993
Attention U-Net-TV 0.988 0.977 0.929 0.983 2.882 0.993 0.940 0.974 0.993
Attention U-Net-KLTV 0.989 0.977 0.932 0.984 2.781 0.981 0.970 0.986 0.981

Pyramid Progressive U-Net-XE 0.990 0.981 0.942 0.986 2.692 0.985 0.971 0.987 0.985
Pyramid Progressive U-Net-Dice 0.991 0.982 0.945 0.987 2.730 0.990 0.966 0.985 0.990
Pyramid Progressive U-Net-TV 0.991 0.981 0.942 0.987 2.735 0.990 0.962 0.983 0.990
Pyramid Progressive U-Net-KLTV 0.990 0.980 0.939 0.985 2.652 0.980 0.980 0.991 0.980

Pyramid Attention U-Net-XE 0.991 0.982 0.942 0.987 2.797 0.989 0.964 0.984 0.989
Pyramid Attention U-Net-Dice 0.989 0.979 0.934 0.985 2.861 0.987 0.961 0.983 0.987
Pyramid Attention U-Net-TV 0.990 0.980 0.938 0.986 2.846 0.993 0.952 0.979 0.993
Pyramid Attention U-Net-KLTV 0.988 0.976 0.934 0.982 2.805 0.986 0.957 0.987 0.985

Progressive Attention U-Net-XE 0.990 0.981 0.940 0.986 2.838 0.981 0.985 0.987 0.985
Progressive Attention U-Net-Dice 0.988 0.975 0.928 0.982 3.102 0.992 0.940 0.973 0.992
Progressive Attention U-Net-TV 0.989 0.977 0.933 0.984 3.022 0.990 0.949 0.978 0.990
Progressive Attention U-Net-KLTV 0.990 0.981 0.940 0.986 2.595 0.980 0.983 0.992 0.800

Pyramid Progressive Attention U-Net-XE 0.991 0.982 0.944 0.987 2.706 0.988 0.970 0.987 0.988
Pyramid Progressive Attention U-Net-Dice 0.988 0.976 0.928 0.983 3.068 0.988 0.949 0.972 0.988
Pyramid Progressive Attention U-Net-TV 0.991 0.981 0.941 0.987 2.768 0.992 0.958 0.981 0.992
Pyramid Progressive Attention U-Net-KLTV 0.990 0.979 0.937 0.985 2.751 0.987 0.959 0.982 0.987
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Figure 4.23: Visual comparison of the lung segmentation in an abnormal (TB) X-Ray
image, for different models against the Chest dataset with varying loss functions: XE
(cross-entropy loss), DICE (DICE loss), TV (Tversky loss), and KLTV (KL divergence-
Tversky loss).

4.5.2 Segmentation-Only

At first, we evaluated the performance of our proposed PPAU-Net model for segmentation

task only, and compared with the baseline models used incrementally. Tables 4.17-4.20

report the performance measures of different models for the segmentation-only task

varying choices of loss (TV and KLTV). Figures 4.21-4.22 illustrate the loss and accuracy

plots (training/validation) for varying choice of weights in the KLTV loss. As shown in

the tables, our model is competitive with the other models in each setting.

4.5.3 Segmentation and Classification

For semi-supervised multi-tasking, we used our PPAU-Net model in an adversarial training

mechanism. Along with TV loss, we used XETV loss (Zhu et al., 2019) and the proposed

KLTV loss. Only 10% labeled data were used from the training set for every dataset. As

the tabulated classification and segmentation results from Table 4.21 show, the APPAU-

Net model with the new KLTV loss consistently outperformed APPAU-Net model with

TV and XETV losses for all four datasets in both overlap and distance measures. It
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Table 4.20: Segmentation-Only performance evaluations for different models with varying
loss functions on the Chest dataset.

Model DS JS SSIM F1 HD SN SP PR RC

U-Net-XE 0.968 0.0.939 0.882 0.954 3.599 0.963 0.893 0.944 0.963
U-Net-Dice 0.976 0.954 0.902 0.965 3.527 0.968 0.928 0.962 0.968
U-Net-TV 0.978 0.958 0.907 0.968 3.322 0.974 0.928 0.962 0.974
U-Net-KLTV 0.969 0.939 0.874 0.953 3.502 0.946 0.926 0.960 0.946

Pyramid U-Net-XE 0.976 0.54 0.899 0.965 3.496 0.968 0.928 0.962 0.968
Pyramid U-Net-Dice 0.979 0.959 0.909 0.968 3.343 0.968 0.941 0.968 0.968
Pyramid U-Net-TV 0.975 0.952 0.897 0.964 3.53 0.978 0.904 0.950 0.977
Pyramid U-Net-KLTV 0.972 0.946 0.884 0.958 3.365 0.951 0.936 0.966 0.951

Progessive U-Net-XE 0.973 0.947 0.885 0.958 3.644 0.945 0.950 0.972 0.945
Progessive U-Net-Dice 0.966 0.934 0.877 0.950 3.715 0.969 0.868 0.932 0.969
Progessive U-Net-TV 0.969 0.940 0.881 0.955 3.687 0.980 0.866 0.932 0.980
Progessive U-Net-KLTV 0.962 0.927 0.863 0.945 3.518 0.951 0.9882 0.938 0.951

Attention U-Net-XE 0.966 0.935 0.865 0.951 3.936 0.959 0.890 0.942 0.959
Attention U-Net-Dice 0.976 0.954 0.898 0.965 3.513 0.968 0.927 0.961 0.968
Attention U-Net-TV 0.970 0.941 0.878 0.956 3.643 0.972 0.883 0.940 0.972
Attention U-Net-KLTV 0.971 0.943 0.877 0.956 3.481 0.944 0.941 0.968 0.944

Pyramid Progressive U-Net-XE 0.973 0.947 0.891 0.960 3.602 0.967 0.910 0.953 0.967
Pyramid Progressive U-Net-Dice 0.977 0.954 0.901 0.965 3.528 0.970 0.925 0.960 0.970
Pyramid Progressive U-Net-TV 0.977 0.955 0.901 0.966 3.511 0.980 0.908 0.952 0.980
Pyramid Progressive U-Net-KLTV 0.975 0.949 0.876 0.958 3.475 0.968 0.912 0.957 0.966

Pyramid Attention U-Net-XE 0.968 0.938 0.879 0.953 3.527 0.966 0.884 0.940 0.966
Pyramid Attention U-Net-Dice 0.972 0.946 0.882 0.959 3.693 0.969 0.904 0.950 0.969
Pyramid Attention U-Net-TV 0.972 0.946 0.885 0.959 3.743 0.982 0.878 0.938 0.982
Pyramid Attention U-Net-KLTV 0.959 0.921 0.851 0.940 3.749 0.947 0.871 0.932 0.947

Progressive Attention U-Net-XE 0.954 0.912 0.841 0.934 4.237 0.960 0.822 0.910 0.960
Progressive Attention U-Net-Dice 0.974 0.949 0.891 0.961 3.611 0.970 0.909 0.952 0.970
Progressive Attention U-Net-TV 0.969 0.940 0.875 0.955 3.723 0.975 0.876 0.936 0.975
Progressive Attention U-Net-KLTV 0.946 0.899 0.823 0.924 3.712 0.932 0.838 0.915 0.932

Pyramid Progressive Attention U-Net-XE 0.966 0.934 0.871 0.951 3.822 0.962 0.885 0.940 0.962
Pyramid Progressive Attention U-Net-Dice 0.976 0.953 0.896 0.964 3.648 0.971 0.918 0.957 0.971
Pyramid Progressive Attention U-Net-TV 0.969 0.940 0.875 0.955 3.807 0.978 0.870 0.934 0.978
Pyramid Progressive Attention U-Net-KLTV 0.967 0.936 0.868 0.951 3.472 0.939 0.932 0.963 0.939

also suggests that the model with KLTV loss is better generalized in multi-task learning.

While both TV and XETV losses tend to lose some accuracy because of additional

classification task, KLTV still achieves good accuracy, which is even comparable to fully

supervised segmentation models in Tables 4.17-4.20 and LF-segnet (Mittal et al., 2018).

Visualizations of the segmented lungs in different models (see Figure 4.20) also confirms

the superior performance of our APPAU-Net with KLTV loss compared to the TV loss.
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Table 4.21: Performance evaluation of the APPAU-Net model for semi-supervised multi-
tasking in different data settings.

Dataset Model
Classification Segmentation

Acc PR RE DS JS SSIM F1 HD SN SP PR RC

MCU
APPAU-Net-TV 0.571 0.690 0.290 0.956 0.916 0.815 0.814 4.514 0.800 0.988 0.953 0.800
APPAU-Net-XETV 0.514 0.620 0.280 0.929 0.868 0.788 0.778 4.554 0.903 0.856 0.684 0.903
APPAU-Net-KLTV 0.543 0.680 0.200 0.974 0.950 0.880 0.898 3.914 0.857 0.944 0.944 0.857

JSRT
APPAU-Net-TV 0.758 0.000 0.860 0.972 0.945 0.864 0.963 3.755 0.996 0.831 0.929 0.996
APPAU-Net-XETV 0.758 0.000 0.860 0.975 0.952 0.878 0.966 3.489 0.995 0.857 0.939 0.994
APPAU-Net-KLTV 0.758 0.000 0.860 0.976 0.953 0.885 0.966 3.351 0.975 0.904 0.958 0.975

CHN
APPAU-Net-TV 0.477 0.580 0.300 0.883 0.790 0.713 0.877 6.601 0.999 0.162 0.782 0.992
APPAU-Net-XETV 0.553 0.670 0.290 0.889 0.800 0.720 0.882 6.372 0.997 0.205 0.791 0.997
APPAU-Net-KLTV 0.508 0.530 0.490 0.921 0.853 0.746 0.910 4.368 0.992 0.434 0.841 0.992

Chest
APPAU-Net-TV 0.776 0.800 0.780 0.874 0.777 0.682 0.845 5.375 0.936 0.576 0.770 0.959
APPAU-Net-XETV 0.732 0.81 0.70 0.923 0.862 0.768 0.890 4.692 0.974 0.632 0.823 0.954
APPAU-Net-KLTV 0.750 0.770 0.750 0.926 0.863 0.780 0.903 4.669 0.979 0.645 0.838 0.953

4.6 Self-Supervised Semi-Supervised Multi-Task Learning

Two datasets—Chest and Spine—were used for evaluating the self-supervised semi-

supervised multi-task learning (S4MTL) model of Section 3.2.4. For each dataset, we

trained the model on its training set (labeled and unlabeled data), used its validation set

to determine the hyper-parameters and for model selection, and evaluated the trained

models on its test set. The class and segmentation label distributions are illustrated in

Figure 4.24, which shows the partitions of each dataset.

4.6.1 Implementation Details

Inputs: All the images were normalized and resized to 128 × 128 × 1 before feeding

them to the models.

Model Architecture: As the segmentation mask generator we used a U-Net like

encoder-decoder network with skip connections (Ronneberger et al., 2015b), and as

the class discriminator we used another convolutional network (Conv-Net) (Imran and

Terzopoulos, 2019b). We implemented the S4MTL algorithm in Tensorflow running on a

Tesla P40 GPU and a 64-bit Intel(R) Xeon(R) 440G CPU.
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Figure 4.24: Class label distributions across different data partitions for the Spine and
Chest datasets.

Baselines: As baselines, we used the segmentation mask generator (U-Net) and class

discriminator (Conv-Net) networks separately for single-task models both in supervised

and partially-supervised manners. Using the same backbone network, we also trained

a multitasking U-Net with a classification branch from its bottleneck layer (similarly

as Y-Net (Mehta et al., 2018)), namely U-MTL. In addition, we experimented with

another semi-supervised multitasking model without self-supervision and unsupervised

segmentation losses. We call this the semi-supervised multitask learning (S2MTL) model.

Training: Following our formulated problem, DL and DU are selected before training

the models, rather than just masking some data out during training. We constrained

all the semi-supervised models to having maximum 50% labeled data in order to hold

|DL| ≤ |DU |. The semi-supervised models (single-task or multitask) were trained on

varying proportions of labeled data: 5%, 10%, 20%, 30%, and 50%. For example, when

10% is selected, 10% of the training data were used with their corresponding class and
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segmentation labels, and 90% were used without any label information. We adapted the

training signal annealing in our model using the logarithmic schedule Xie et al. (2019)

with an adjustment for balancing between epochs and mini-batches. In our experiments,

the signal annealing threshold η(e,s) is set to 1− exp (− s∗e+1
E∗N ) ∗ (1− 1

n
) + 1

n
, where s is the

current step, e is the current epoch, E is total number of epochs, N is the training dataset

size, and n is the number of classes. In training, the labeled data were selected such

that every class has equal representation in the training data DL. In the mask generator

network, we used instance-normalization and ReLU activation. A dropout rate of 0.4 was

applied after every convolutional layer.

Hyper-parameters: We used the Adam optimizer with adaptive learning rates for G

and D. With initial learning rates 2e − 3 with momentum 0.9 for G and 1e − 4 with

momentum 0.6 for D. The learning rates were adapted with exponential decay scheduled

after every 2 epoch with decay rates of 0.9 and 0.5, respectively. Each model was trained

with a mini-batch size of 16.

Evaluation: For classification, along with the overall accuracy, we recorded the class-

wise F1 scores. Dice similarity (DS), average Hausdorff distance (HD), Jaccard index (JI),

structural similarity measure (SSIM), precision (Prec), and recall (Rec) scores were used

to evaluate the segmentation performances.

4.6.2 Classification Results

We validated our S4MTL model on two separate datasets and the performance evaluations

were compared against semi-supervised and fully-supervised models. Figure 4.27 shows

the balanced optimization of two losses clearly depicting the generalization of the model

for multitasking, even when the model was trained on 50% reduced labeled data. For

both the Spine and Chest datasets, our S4MTL model was found to be superior to all

the baseline models (Figure 4.26). Table 4.22 compares the classification performances

among all the models, and our model achieved better overall and class-wise accuracies for

100



U
-N

et
-5

%
U

-N
et

-1
0%

U
-N

et
-2

0%
U

-N
et

-3
0%

U
-N

et
-5

0%
U

-N
et

-1
00

%
U

-M
TL

-5
%

U
-M

TL
-1

0%
U

-M
TL

-2
0%

U
-M

TL
-3

0%
U

-M
TL

-5
0%

U
-M

TL
-1

00
%

S2 M
TL

-5
%

S2 M
TL

-1
0%

S2 M
TL

-2
0%

S2 M
TL

-3
0%

S2 M
TL

-5
0%

S4 M
TL

-5
%

S4 M
TL

-1
0%

S4 M
TL

-2
0%

S4 M
TL

-3
0%

S4 M
TL

-5
0%

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
D

ic
e 

Sc
or

es

Spine

U
-N

et
-5

%
U

-N
et

-1
0%

U
-N

et
-2

0%
U

-N
et

-3
0%

U
-N

et
-5

0%
U

-N
et

-1
00

%
U

-M
TL

-5
%

U
-M

TL
-1

0%
U

-M
TL

-2
0%

U
-M

TL
-3

0%
U

-M
TL

-5
0%

U
-M

TL
-1

00
%

S2 M
TL

-5
%

S2 M
TL

-1
0%

S2 M
TL

-2
0%

S2 M
TL

-3
0%

S2 M
TL

-5
0%

S4 M
TL

-5
%

S4 M
TL

-1
0%

S4 M
TL

-2
0%

S4 M
TL

-3
0%

S4 M
TL

-5
0%

0.0

0.2

0.4

0.6

0.8

1.0

D
ic

e 
Sc

or
es

Chest

Figure 4.25: Consistent improvement in segmentation performance (Dice scores) by our
S4MTL model over baseline semi-supervised and fully-supervised (U-Net, U-MTL, S2MTL)
single/multi-tasks models with varying proportions of labeled training data.
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Figure 4.26: Consistent improvement in classification accuracy by our S4MTL model over
baseline semi-supervised and fully-supervised (CNN, U-MTL, S2MTL) single/multi-task
models with varying proportions of labeled training data.

both datasets, even better than the fully-supervised single-task model.

4.6.3 Segmentation Results

The segmentation performance was evaluated both qualitatively and quantitatively. As

shown in Table 4.24 and 4.23, for all six performance measures, our S4MTL model

achieved the best scores compared to the semi-supervised, fully-supervised, single-task,

and multitask models. Note that the Chest Dataset is the combination of three smaller

datasets. The robustness of our S4MTL model is confirmed by its consistent performance
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Figure 4.27: Satisfactory balance between training and validation losses for classification
and segmentation in our S4MTL model when it is trained only on 50% labeled data (both
class and segmentation labels) from the training set

Table 4.22: Classification performance comparison of the S4MTL model against the
baseline models in different data settings with varying proportions of labeled data.

Type Model
Spine Chest

Accuracy F1 (Normal) F1 (Abnormal) Accuracy F1 (Normal) F1 (TB) F1 (Nodule)

Si
ng

le-
Tas

k

Conv-Net-100% 0.780 0.740 0.800 0.700 0.530 0.720 0.840
Conv-Net-50% 0.620 0.680 0.580 0.630 0.460 0.710 0.730
Conv-Net-30% 0.500 0.000 0.630 0.580 0.590 0.360 0.710
Conv-Net-20% 0.460 0.460 0.460 0.570 0.620 0.250 0.730
Conv-Net-10% 0.450 0.490 0.410 0.560 0.630 0.180 0.710
Conv-Net-5% 0.420 0.330 0.490 0.480 0.650 0.000 0.000

M
ul

tit
as

k

UMTL-100% 0.683 0.810 0.008 0.650 0.610 0.290 0.780
UMTL-50% 0.520 0.580 0.430 0.500 0.680 0.200 0.000
UMTL-30% 0.670 0.800 0.000 0.480 0.650 0.000 0.000
UMTL-20% 0.660 0.800 0.000 0.450 0.530 0.450 0.000
UMTL-10% 0.350 0.030 0.051 0.482 0.650 0.000 0.000
UMTL-5% 0.331 0.000 0.050 0.480 0.650 0.000 0.000

S2MTL-50% 0.670 0.800 0.000 0.650 0.610 0.290 0.780
S2MTL-30% 0.550 0.680 0.250 0.580 0.590 0.380 0.690
S2MTL-20% 0.500 0.000 0.630 0.500 0.570 0.410 0.490
S2MTL-10% 0.460 0.430 0.490 0.480 0.650 0.000 0.000
S2MTL-5% 0.420 0.330 0.500 0.390 0.470 0.350 0.280

S4MTL-50% 0.800 0.790 0.810 0.700 0.530 0.710 0.730
S4MTL-30% 0.740 0.810 0.700 0.650 0.780 0.310 0.400
S4MTL-20% 0.680 0.790 0.290 0.630 0.630 0.290 0.410
S4MTL-10% 0.670 0.800 0.000 0.620 0.620 0.300 0.840
S4MTL-5% 0.630 0.730 0.410 0.590 0.600 0.360 0.710
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Figure 4.28: Spine Dataset: Boundary visualization of a predicted vertebra mask showing
the superiority of our S4MTL model over the baseline models with varying proportions of
labeled data.

for different proportions of labeled data (Figure 4.25). Visualization of the segmented

vertebra and lung boundaries by different models in varying labeled data proportions

(Figure 4.28 and Figure 4.29) confirms the effectiveness of our model over competing

models. For a fair comparison of all the models, a common segmentation architecture

was used in the single-task for segmentation and in the multitask for segmentation mask

generator. Our S4MTL model consistently performs better than the semi-supervised and

fully-supervised single-task segmentation (U-Net) and multitask (U-MTL) models, given

the same number of labeled data during training (|DL|). The advantage really comes with

the knowledge gain from the larger proportion of unlabeled data and multitask learning,
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Figure 4.29: Chest Dataset: Boundary visualization of the predicted lung masks in a chest
X-Ray shows consistent improvement with our S4MTL model against the semi-supervised
and fully-supervised baselines with varying proportions of labeled data.

S4MTL’s forte. This clearly reveals the effectiveness of our model.

4.6.4 Statistical Analysis

To verify the significance of our model, we performed three different statistical tests, namely

one-way ANOVA, paired-t, and Wilcoxon signed-rank tests. All three tests confirmed that

our S4MTL model with 50% labeled data model shows significant improvement over all

the semi-supervised and fully-supervised baselines in the Chest Dataset (p-value < 0.05).

Moreover, for the Spine Dataset, our S4MTL model with 50% labeled data was found to
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Table 4.23: Lung segmentation performance comparison of the S4MTL model against
the baselines for semi-supervised multitasking in different data settings with varying
proportion of labeled chest X-ray image data.

Type Model DS JI SSIM HD Prec Rec

Si
ng

le-
Tas

k

U-Net-100% 0.922 0.856 0.816 4.524 0.909 0.936
U-Net-50% 0.892 0.806 0.761 5.382 0.846 0.945
U-Net-30% 0.834 0.715 0.654 6.584 0.723 0.986
U-Net-20% 0.815 0.688 0.636 5.979 0.758 0.882
U-Net-10% 0.800 0.667 0.599 7.111 0.682 0.969
U-Net-5% 0.788 0.650 0.583 7.419 0.654 0.991

M
ul

tit
as

k

U-MTL-100% 0.874 0.776 0.747 4.969 0.800 0.963
U-MTL-50% 0.888 0.799 0.756 4.700 0.822 0.965
U-MTL-30% 0.820 0.694 0.658 5.374 0.766 0.881
U-MTL-20% 0.829 0.708 0.654 6.483 0.719 0.979
U-MTL-10% 0.841 0.726 0.683 5.554 0.746 0.964
U-MTL-5% 0.820 0.695 0.644 5.648 0.748 0.908

S2MTL-50% 0.810 0.681 0.636 4.862 0.782 0.840
S2MTL-30% 0.572 0.401 0.465 5.416 0.824 0.438
S2MTL-20% 0.607 0.436 0.516 5.782 0.987 0.438
S2MTL-10% 0.558 0.387 0.487 5.827 0.998 0.387
S2MTL-5% 0.458 0.300 0.421 7.496 0.989 0.300

S4MTL-50% 0.946 0.898 0.864 3.432 0.964 0.939
S4MTL-30% 0.903 0.823 0.798 3.963 0.885 0.921
S4MTL-20% 0.895 0.810 0.784 4.119 0.878 0.912
S4MTL-10% 0.868 0.768 0.742 4.272 0.834 0.905
S4MTL-5% 0.845 0.732 0.703 4.619 0.811 0.883

be significantly different from all the baseline models except the fully-supervised U-Net

model. The Bland-Altman plots shown in Figure 4.30 also suggest good agreement between

ground truth and the prediction by our S4MTL models for both datasets. Moreover, we

performed a robustness analysis to compare the class-wise segmentation performance of

our S4MTL model. Figure 4.31 shows that there are no significant differences among

the class-wise segmentation performances (Dice scores). Furthermore, by performing

one-way ANOVA, independent sample t-test, and Pearson correlation, we confirmed that

our model is robust against different disease classes (normal vs abnormal in the Spine

Dataset and normal vs TB vs nodule in the Chest Dataset).
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Figure 4.30: Bland-Altman plots show good agreement between the number of ground
truth pixels and the different S4MTL models-predicted pixels for the test sets.
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Table 4.24: Vertebrae egmentation performance comparison of the S4MTL model against
the baselines for semi-supervised multitasking in different data settings with varying
proportion of labeled spine X-ray patch data.

Type Model DS JI SSIM HD Prec Rec

Si
ng

le-
Tas

k

U-Net-100% 0.931 0.872 0.0.74 4.335 0.954 0.911
U-Net-50% 0.919 0.851 0.857 4.569 0.949 0.893
U-Net-30% 0.910 0.835 0.847 4.836 0.946 0.877
U-Net-20% 0.903 0.824 0.839 5.022 0.935 0.873
U-Net-10% 0.874 0.776 0.801 5.276 0.923 0.830
U-Net-5% 0.702 0.541 0.685 6.909 0.957 0.554

M
ul

tit
as

k

U-MTL-100% 0.888 0.799 0.817 5.348 0.908 0.869
U-MTL-50% 0.890 0.802 0.827 5.429 0.936 0.849
U-MTL-30% 0.881 0.787 0.817 5.421 0.950 0.821
U-MTL-20% 0.862 0.758 0.792 5.733 0.902 0.826
U-MTL-10% 0.873 0.775 0.804 6.396 0.884 0.863
U-MTL-5% 0.856 0.333 0.584 7.018 0.999 0.333

S2MTL-50% 0.889 0.801 0.821 4.956 0.887 0.893
S2MTL-30% 0.752 0.603 0.719 6.032 0.997 0.603
S2MTL-20% 0.672 0.506 0.670 6.256 0.998 0.506
S2MTL-10% 0.640 0.471 0.654 6.772 0.998 0.471
S2MTL-5% 0.500 0.333 0.584 7.018 0.999 0.333

S4MTL-50% 0.934 0.876 0.875 3.762 0.947 0.921
S4MTL-30% 0.925 0.861 0.866 3.912 0.946 0.905
S4MTL-20% 0.921 0.853 0.860 4.162 0.942 0.900
S4MTL-10% 0.907 0.830 0.842 4.723 0.914 0.901
S4MTL-5% 0.890 0.802 0.821 4.835 0.887 0.893
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Figure 4.31: Class-wise boxplots showing the robustness of our S4MTL-50% model in
segmenting vertebrae and lungs from spinal and chest X-Rays.
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CHAPTER 5

Conclusions and Future Research Directions

With the advent of deep learning techniques, learning-based medical image analysis is

being vigorously explored. However, training deep neural networks in a fully supervised

manner poses challenges due to the limited availability of large labeled datasets, which are

difficult to obtain because of privacy issues, varying imaging configurations, disease types

and severity, expensive and laborious manual annotation for ground truth, etc. Moreover,

due to small sample sizes, learning algorithms can suffer from over-fitting, hindering

the generalization across different datasets with disparate distributions, and inducing

large domain shift. Confronting these challenges, we have developed and demonstrated a

number of deep learning-based solutions for medical image analysis ranging from fully-

supervised single-task to sparingly-supervised multi-task learning models. The latter

solutions limit supervision to a small portion of labeled training samples and leverage a

larger quantity of unlabeled samples, gaining additional knowledge using deep generative

modeling, adversarial learning, and multi-task learning.

First, we demonstrated fully automatic 3D lung lobe segmentation method, exploiting

progressive side-supervision in a dense V-Net (PDV-Net). Reliable and automatic lung lobe

segmentation is a challenging task, especially in the presence of pathologies and incomplete

fissures. We applied our PDV-Net to the automatic, fast, and reliable segmentation of lung

lobes from chest CT scans. We evaluated our method using three test datasets—84 cases

from LIDC, 154 cases from LTRC, and 55 cases from LOLA11. Our results demonstrated

that our model outperforms, or at worst performs comparably to, the state-of-the-art

while running at an average speed of 2 seconds per case, without requiring any prior

segmentation. Furthermore, we demonstrated the robustness of our method against

109



varying configurations of CT reconstruction, choice of CT imaging device vendor, and the

presence of lung pathologies. Including pathological and challenging cases in the training

set could further improve the segmentation performance, especially, in the case of large

domain shifts.

Second, we established a new state-of-the-art in fully automatic vertebrae segmentation

in spinal X-Ray images using the progressive U-Net (PU-Net). The accurate and reliable

segmentation of vertebrae is a prerequisite for the effective measurement of scoliosis. Our

fully-automated system for accurately assessing scoliosis from anterior-posterior spine

radiographs makes use of an end-to-end model that accurately and reliably segments

spinal vertebrae, outputting a vertebrae segmentation mask that enables the accurate

measurement of scoliosis through the calculation of the Cobb angle. Our pipeline promises

to be an effective tool for the clinical diagnosis of scoliosis as well as for decision support in

treatment planning. In future work, we envision incorporating the measurement of scoliosis

within the training phase such that our model can make more intelligent predictions.

Third, we introduced progressive adversarial semantic segmentation (PASS), a novel

semantic segmentation model for intelligently mitigating the domain shift problem caused

by small datasets. We evaluated PASS using 8 public datasets for the tasks of retinal

vessel segmentation from diabetic retinopathy images and lung segmentation from chest

X-ray images. Our experimental results demonstrated the effectiveness of PASS in both

in-domain and cross-dataset evaluations, even with smaller sample size and larger domain

shift. An interesting next step would be to verify the effectiveness of PASS in iterative

and active learning scenarios.

Fourth, we demonstrated the advantages of an ensemble of discriminators in the

adversarial learning of variational autoencoders and applied this idea to semi-supervised

classification from limited labeled data. Training our new multi-adversarial variational

autoencoder network (MAVEN) models on small, labeled datasets and leveraging a large

number of unlabeled training examples, we have shown superior performance relative

to prior GAN and VAE-GAN based classifiers, suggesting that our MAVEN models can

be very effective in concurrently generating high-quality realistic images and improving
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multiclass classification performance. Furthermore, unlike conventional GAN-based semi-

supervised classification, improvements in the classification of natural and medical images

do not compromise the quality of the generated images. However, it remains an open

problem to find the optimal number of discriminators that can perform consistently.

Moreover, through conditional generation, images of rarer medical conditions could be

augmented to obtain balanced training data, resulting in more effective classifier.

Fifth, we proposed and demonstrated the performance of a novel semi-supervised

multi-task learning model for combined classification and segmentation from limited

labeled chest X-ray images acquired in different settings. Experimental results showed our

adversarial pyramid progressive attention U-Net (APPAU-Net) model to be competitive

even against the single-task learning of fully-supervised models. Our future work will

include more extensive experimentation of our model with larger numbers of classes

and/or segmentation labels and larger quantities of unlabeled examples.

Sixth, incorporating a self-supervision branch, we introduced a novel self-supervised,

semi-supervised, multitask learning (S4MTL) model and validated it in combined med-

ical image classification and segmentation experiments with limited labeled data. The

effectiveness of our S4MTL model over semi-supervised and fully-supervised single-task

and multitask models was confirmed by our experimental results. Moreover, S4MTL

with 50% labeled data achieved better performance, with statistical significance, over all

other semi-supervised models. Our model may be utilized in general settings when data

available with and without labels have dissimilar distributions. A worthwhile next step

would be to experiment with more sophisticated medical imaging and computer vision

data at larger scale and in more challenging settings.

111



APPENDIX A

Datasets

The following datasests were used in the experiments, in order to validate the models and

algorithms presented in Chapter 3.

• LIDC: A subset of chest CT volumes (354 cases) from the LIDC dataset (Armato

et al., 2011) was selected for annotation. To ensure variation in the data, the CT

scans were selected such that both challenging and visible fissures are well-represented

in the dataset. The lobe segmentation ground truth masks were generated in a

semi-automatic fashion by multiple human annotators using the chest imaging

platform feature of 3D Slicer. To mitigate bias in the ground truth, the generated

masks were later refined and validated by an expert radiologist. The dataset was

split into 270 training and 84 test cases. 10% of the training set was utilized as the

validation set to select values for the hyper-parameters. The CT scans used in the

experiment have a variable number of slices with each CT volume containing 100 to

672 slices of size 512× 512 pixels. Figure A.1 shows the histograms of the number

of slices per volume, and of the voxel dimensions which vary between 0.49–0.98 mm,

0.49–0.98 mm, and 0.45–3.00 mm along the x, y, and z axes, respectively. Therefore,

the selected CT scans used for pulmonary lobe segmentation not only exhibit varying

shapes of fissures and lobes, but also show a variable number of slices and voxel

sizes.

• LTRC: 154 CT scans were selected from the LTRC database (Karwoski et al.,

2008). The LTRC dataset includes lobe masks for pathological cases that have

clear evidence of chronic obstructive pulmonary disease (COPD) or interstitial lung
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Figure A.1: Histograms (from left) of the number of slices per volume; voxel dimensions
along the x and y axes; and voxel dimensions along the z axis of lung CT scans in the
entire LIDC dataset.

disease (ILD), including emphysema and fibrosis. The LTRC cases allow us to

measure the robustness of our model against pathologies in the lungs.

• LOLA11: Lobe and Lung Analysis (LOLA11) challenge provides a data set of 55

chest CT scans with varying abnormalities (LOLA11, 2011). Any algorithm can

be evaluated on LOLA11 dataset upon submission of the results compared against

established reference standards of lung and lobe segmentations. The CT scans are

the representative of a variety of clinically common scanners and protocols. Based

on the performance of initial methods for lung/lobe segmentation, the scans for the

challenge were selected in a way so that there is a balance between easy and hard

scans. The maximum slice spacing present in the scans is 1.5mm, where most of

them are isotropic.

• APSeg: APSeg is a dataset of 100 high-resolution anterior-posterior spine X-

Ray images of children with evidence of scoliosis in various extents (Imran et al.,

2019c). The dataset includes expert-provided segmentation annotation of 18 relevant

vertebrae (cervical C7, thoracic T1–T12, lumbar L1–L5) in each of the X-rays. The

dataset is split into training (80), testing (15), and validation (5) sets.

• SVHN: The Street View House Numbers (SVHN) dataset (Netzer et al., 2011)

(Figure A.2). There are 73,257 digit images for training and 26,032 digit images

for testing. Out of two versions of the images, we used the version which has

MNIST-like 32× 32 pixel RGB color images centered around a single digit. Each
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image is labeled as belonging to one of 10 classes: digits 0–9.

• CIFAR-10: The CIFAR-10 dataset (Krizhevsky and Hinton, 2009) (Figure A.3).

It consists of 60,000 32× 32 pixel RGB color images in 10 classes. There are 50,000

training images and 10,000 test images. Each image is labeled as belonging to one

of 10 classes: plane, auto, bird, cat, deer, dog, frog, horse, ship, and truck.

• CXR: The anterior-posterior Chest X-Ray (CXR) dataset (Kermany et al., 2018)

(Figure A.4). The dataset contains 5,216 training and 624 test images. Each image is

labeled as belonging to one of 3 classes: normal, bacterial pneumonia (b-pneumonia),

and viral pneumonia (v-pneumonia).

• SLC: The skin lesion classification (SLC) dataset (Figure A.5). We employed 2,000

RGB skin images from the ISIC 2017 dermoscopy image dataset (Codella et al.,

2018); of which we used 1,600 for training and 400 for testing. Each image is labeled

as belonging to one of 2 classes: non-melanoma and melanoma.

• MCU: In the MCU dataset (Figure A.7a) (Shiraishi et al., 2000), there are 138

frontal X-Rays: 80 X-Rays are normal and 58 X-Rays with manifestations of

Tuberculosis. This dataset contains separate left and right lung ground truth masks

which are combined for binary segmentation of the lungs.

• CHN: CHN dataset has 662 frontal chest X-rays (Figure A.7b) (Shiraishi et al.,

2000). Of them 336 normal X-rays and 326 abnormal cases with manifestations of

TB, including pediatric X-rays. After carefully examining all the cases, we created

two versions: 1) CHN-V1—566 X-rays which include 287 normal and 279 with

abnormalities and 2) CHN-V2—527 X-rays based on good agreement with the

corresponding ground truth lung masks which include 248 normal and 279 abnormal

X-rays.

• JSRT: This database contains 247 chest X-rays (Figure A.7c) in which 154 images

contain pulmonary lung nodule and 93 images contain no lung nodules (Jaeger et al.,

2014). In addition to the lung masks (separated left-right), this dataset includes
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ground truth masks for heart and clavicles (separated left-right). Based on split, we

call two versions as JSRT-V1 and JSRT-V2.

• Chest: Combining the three publicly available chest X-Ray datasets (MCU, CHN-

V2, JSRT), a dataset of 912 chest X-ray images is created which we call the “Chest”

dataset (Imran and Terzopoulos, 2019b) (A.1). The dataset is split into three

sets—training (615), validation (69), and test (228). Along with lung segmentation,

the Chest dataset has 3-class annotations—normal, tuberculosis (TB), and nodule.

• Spine: We used a dataset of 100 very high resolution lateral spine X-ray images

(Wong and McGirt, 2013) and corresponding ground truth segmentation masks of

multi-class vertebrae annotations. Extending the individual vertebrae region from

each of the X-ray images, we extracted vertebra patches. Figure A.6 illustrates

the extraction of vertebra pathces from a lateral spine X-ray image. This patch

extraction results in a dataset of 994 patch images (Imran et al., 2020d) including

verterbra mask and osteoporotic class label for each of the vertebra pathces. This

is named “Spine” dataset. The dataset was split into three subsets: train (713),

validation (42), and test (139). We performed vertebra segmentation and abnormality

prediction on each vertebra patch (normal vs abnormal).

• ARIA: ARIA dataset (available in the public domain 1) contains 143 color fundus

images (Figure A.8a) of adults, collected at St Paul’s Eye Unit and the University

of Liverpool, United Kingdom. The dataset includes blood vessel masks created

by trained image analysis experts. Of them 61 images are healthy and 82 diseased

fundoscopic images A.2.

• CHASE: The CHASE dataset (publicly available at 2) contains 28 eye fundus

images (Figure A.8b) with a resolution of 1280 × 960. Two sets of ground-truth

vessel annotations are available in the dataset. The first is commonly used for

1https://sourceforge.net/projects/aria-vessels/

2https://blogs.kingston.ac.uk/retinal/chasedb1/
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Figure A.2: Example images of each class in the SVHN digit image dataset. Classes
L→R: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Figure A.3: Example images of each class in the CIFAR-10 image dataset. Classes L→R:
plane, auto, bird, cat, deer, dog, frog, horse, ship, truck.

training and testing, while the second set refers to human baseline.

• DRIVE: Digital Retinal Images for Vessel Extraction (DRIVE) is available in the

public domain 3. DRIVE includes 40 randomly selected images (Figure A.8c) (33

without and 7 with diabetic retinopathy signs) from a population of 400 subjects.

Each image is of 768× 584 pixels.

• HRF: The High-Resolution Fundus (HRF) database contains 15 images of healthy

patients, 15 images of patients with diabetic retinopathy and 15 images of glauco-

matous patients (Figure A.8d). Binary gold standard vessel segmentation images

generated by a group of experts working in the field of retinal image analysis and

clinicians from the cooperated ophthalmology clinics, are available for each image.

The HRF dataset is available at the public domain 4.

• STARE: STructured Analysis of the Retina (STARE) dataset is available in the

public domain 5 (Figure A.8e). It consists of 10 healthy and 10 diseased images

along with the corresponding vessel segmentation ground truth masks. The images

are 605× 700 pixels in resolution.

3http://www.isi.uu.nl/Research/Databases/DRIVE/

4https://www5.cs.fau.de/research/data/fundus-images/

5http://cecas.clemson.edu/~ahoover/stare/probing/
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(a) Normal (b) b-Pneumonia (c) v-Pneumonia

Figure A.4: Examples images of each class in the CXR dataset.

(a) Non-melanoma (b) Melanoma

Figure A.5: Example images of each class in the SLC datasets.

Table A.1: Split of the chest X-ray datasets for training, testing, and validation (for model
selections).

Dataset
#Chest X-rays Data splits

Abnormality Classes
Total Normal Abnormal Train Val Test

MCU 138 80 58 93 10 35 TB
CHN-V1 566 279 287 381 43 142 normal, TB
CHN-V2 527 248 279 355 40 132 normal, TB
JSRT-V1 247 93 154 166 19 62 normal, Nodule
JSRT-V2 247 93 154 111 13 123 normal, Nodule
Chest 912 421 491 615 69 228 normal, TB, Nodule
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Lateral spine X-Ray image

L5 L4 L3 L2 L1

T12 T11 T10 T9 T8

T7 T6 T5

Figure A.6: Individual vertebra patches along with their labels (vertebra indices) extracted
from the lateral X-Ray image. L: Lumbar vertebra, T: Thoracic vertebra. L5 is the
bottom most vertebra, then other vertebrae are shown in reverse order. In this X-Ray,
only L2 is labeled abnormal while the remaining vertebrae are normal.
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Table A.2: Split of fundoscopic image datasets used in our experiments.

Dataset
#Fundus images Data splits

Total Healthy Diseased Train Val Test

DRIVE 40 33 7 18 2 20
STARE 20 10 10 10 2 8
CHASE 28 20 8 17 5 6
ARIA 143 61 82 121 5 17
HRF 45 15 30 26 5 14

(a) MCU (b) CHN (c) JSRT

Figure A.7: Example images from three different chest X-ray image datasets used for
pulmonary segmentation.

(a) ARIA (b) CHASE (c) DRIVE (d) HRF (e) STARE

Figure A.8: Example images from five different diabetic retinopathy image datasets used
for vascular segmentation.
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