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This thesis advances multi-agent (MA) systems designed to emulate human-like perception.

It focuses on the use of first-person partial RGB visual perception alongside limited state

observations such as tools, inventory, and body status, to support MA cooperation in

a 3D, open-ended environment, specifically that in the game of Minecraft. Central

to this exploration are two novel contributions: The first introduces MA-Minecraft, a

comprehensive benchmark in the Minecraft environment that challenges agents with RGB

image and language inputs in dynamic interaction scenarios. The second presents a

novel control strategy, MA offline imitation learning via social Gradient Fields (MAGF),

which leverages the same pixel-based partial vision inputs for precise, low-level action

execution during MA interactions. Experimental results validate the efficacy of our

approach by demonstrating the ability of trained agents to effectively collaborate in

complex environments. Together, these contributions aim to enhance strategic decision-

making and operational precision in partial observation settings, pushing the boundaries

of how embodied agents perceive and interact in complex 3D environments.
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CHAPTER 1

Introduction

Recent advancements in artificial intelligence have paved the way for the development

of embodied agents capable of performing complex tasks in dynamic 3D environments.

Crucial to further advancement is the challenge of creating agents that can perceive and

interact with their surroundings in a human-like manner. This thesis focuses on exploring

human-like perception within Multi-Agent (MA) systems, particularly through bounded,

egocentric fields of view and limited state observations such as tools, inventory, and body

status.

While research in vision-language task-planning for autonomous agents has primarily

centered on navigation and object-based interactions, the collaborative potential of

multiple agents in an open-ended world to enhance task efficiency remains largely untapped.

Efforts to develop agents that can tackle a broad spectrum of tasks in intricate, embodied

MA environments are still limited.

One avenue of prior research aims to establish MA methodologies within 2D envi-

ronments solely using abstract vector inputs (Leibo et al., 2021a; Suarez et al., 2021;

Long et al., 2020, 2024); however, such inputs lack realism and rich information. Another

line of work focuses on developing agents across a diverse range of tasks in domains

encompassing both gaming and robotics (Wang et al., 2023b,a; Ahn et al., 2022; Huang

et al., 2022b,a); however, these studies address only single-agent scenarios. Considering the

intricate interplay and uncertainties that arise within interactions among multiple agents,

formulating multi-task agents within an MA setting is considerably more challenging and

complex.

A primary contribution of this thesis is the development of MA-Minecraft, a new
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benchmark built upon the Minecraft game, which provides a controlled yet challenging

setting for evaluating the capabilities of MA systems. MA-Minecraft not only introduces

tasks that require sophisticated interaction strategies among agents, but also includes

diverse object and background imagery, demanding a high level of generalization from

the agents.

Leveraging the MA-Minecraft dataset from the benchmark, which includes demon-

strations encompassing first-perspective RGB image and state observation for agents,

orchestrated by hand-designed planners, the thesis further investigates how State-Of-The-

Art (SOTA) Vision-Language Models (VLMs) and abstract high-level action frameworks

can process human-like percepts of complex 3D scenes and effectively direct agent behavior.

The exploration extends into a second study, in which we propose a novel Multi-Agent

control via Social Gradient Field (MAGF) approach, based on the same human-like

perception within MA systems, to develop autonomous agents capable of generalized

control and broad applicability, mimicking the flexible and dynamic learning abilities of

humans. Our MAGF method leverages social gradient fields to translate RGB partial

observations directly into discrete low-level 3D navigation commands for individual agents,

showcasing an advanced form of visual imitation learning and demonstrating the potential

for agents to achieve generalized control and broad applicability, much like humans.

1.1 Contributions

More specifically, this thesis makes the following contributions:

1. To facilitate research on multi-agent (MA) systems, we introduce MA-Minecraft,

a novel and challenging MA benchmark dataset based on the Minecraft game.

Instead of the abstract vector inputs commonly provided to agents in MA systems

research, MA-Minecraft agents receive RGB image and language inputs. Such

multi-modal inputs pose a higher level of difficulty, since agents must generalize

across diverse object and background imagery, different numbers of agents, a wide
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range of tasks, etc. Our planner-generated dataset includes various tasks, such

as building construction, ground clearing, and farming, with a total of 100,000

procedurally-generated demonstrations that feature 2 to 3 agents interacting with

over 30 objects across 10 different backgrounds. Given only the three-view graph of

the environment or target state, along with task descriptions and initial inventory

settings, the agents must efficiently collaborate to complete the assigned tasks. We

test the generalization abilities of several baseline Vision-Language Model (VLM)

multi-agent control strategies in centralized and decentralized settings.

2. Drawing inspiration from the efficacy of representing MAS environments through

social gradient fields, we propose a novel approach: Multi-Agent control via the

social Gradient Field representation (MAGF). Our method begins by gathering

low-level control demonstrations from planners in Minecraft, which constitutes

our offline dataset. Subsequently, we employ an encoder to translate pixels into

latent space, embedding the resultant output as a gradient field. Then, utilizing

a refined version of imitation learning, we determine the ultimate actions of the

agents. Experimental results validate the efficacy of our approach by demonstrating

the ability of trained agents to effectively collaborate in complex environments.

Comparative analyses against various baselines confirm the superiority of our method

across all the evaluated tasks.

1.2 Thesis Overview

The remainder of this thesis is organized as follows:

Chapter 2 surveys the relevant literature related to multi-agent reinforcement learn-

ing, embodied agents in multi-agents systems, open-ended environments, and imitation

learning.

Chapter 3 introduces our MA-Minecraft benchmark to evaluate agent abilities to

process visual RGB and language inputs for multi-agents cooperative tasks.
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Chapter 4 develops our MAGF method for solving low-level multi-agent navigation

control with partial RGB image observations.

Chapter 5 presents our conclusions and suggests avenues for future work.

4



CHAPTER 2

Related Work

2.1 Environments for Multi-Agent Reinforcement Learning

The recent success of Multi-Agent Reinforcement Learning (MARL) methods (Lowe et al.,

2020; Yu et al., 2021; Long et al., 2020) has garnered attention, as these methods explore

cooperation and competence behaviors among agents. These methodologies have been

developed and tested on prominent platforms. However, many of these platforms involve

2D environments (Leibo et al., 2021b; Suarez et al., 2021; Mordatch and Abbeel, 2017;

Vinyals et al., 2019) and rely solely on vector observations. This limited scope poses

challenges in terms of extending applicability to real-world scenarios.

2.2 Embodied Agents in Multi-Agent Systems

A cluster of works has taken shape within the multi-agent embodied setting, predominantly

within the AI2-THOR environment (Kolve et al., 2022). Jain et al. (2019) delved into

the communication dynamics that enhance collaboration between two agents. Tan et al.

(2020a) and Liu et al. (2022a) propounded the efficient exploration of environments

as a central task for agents. Meanwhile, Liu et al. (2022b) introduced a model that

dynamically decomposes tasks among different agents, enabling dynamic task allocation. It

is noteworthy, however, that the task propositions thus far have primarily revolved around

navigation, inherently tethered to the environment’s constraints. However, Minecraft is

a multidimensional, visually immersive realm characterized by procedurally generated

landscapes and extraordinarily versatile game mechanics. This supports an extensive
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spectrum of activities, fostering an environment ripe for intricate collaborations and the

emergence of competence.

2.3 Open-Ended Environments in Minecraft

In contrast to vision-based simulators primarily designed for single-agent scenarios that

lack the complexity required for advanced AI research (e.g., (James et al., 2020), (Jiang

et al., 2023)), or platforms like SMAC (Samvelyan et al., 2019) and various board game

environments (Claus and Boutilier, 1998) typically offer only state representations and

come with predefined task structures, Minecraft, facilitated by the Malmo platform

(Johnson et al., 2016), provides a visually immersive and dynamic environment conducive

to exploring intricate interactions among multiple agents, with a Gym-style API. This

endeavor paved the way for subsequent developments, such as Minerl (Guss et al., 2019),

which augmented the dataset and introduced a suite of benchmarking tasks. Despite

this potential, few researchers have fully exploited Minecraft’s capabilities for multi-agent

scenarios and diverse visual stimuli. While MineDojo (Fan et al., 2022) and VPT (Baker

et al., 2022) concentrate on single-agent tasks, leveraging YouTube videos for extensive

pre-training within Minecraft enhances its applicability to developing agents adept at

comprehending and autonomously navigating complex visual landscapes. Additionally,

Gong et al. (2023) employ a Large Language Model (LLM) as a planner to generate

high-level plans for multi-agent scenarios, albeit utilizing vector inputs in a centralized

manner. To our knowledge, our study represents the first attempt at offline reinforcement

learning in a multi-agent setting with visual inputs.

2.4 Imitation Learning

Imitation Learning offers an alternative to manually designing rewards for cultivating

desired behaviors. Various approaches exist for utilizing demonstrations, ranging from

Behavioral Cloning (Pomerleau, 1988), which focuses on directly replicating expert actions

6



within the agent’s training policy, to Inverse Reinforcement Learning (Ziebart et al., 2008),

which derives a reward function from demonstrations and subsequently trains a policy to

optimize it. Nonetheless, these methods lack an explicit model of higher representation,

leading to suboptimal performance in complex environments.
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CHAPTER 3

MA-Minecraft: A Benchmark for Embodied

Multi-Agent Systems

MA-Minecraft is tailored to MA embodied systems. It utilizes the acclaimed Minecraft

game as our experimental platform. Our focus is directed toward unraveling the intricate

dynamics of interactions among agents. Our framework encompasses the design of four

multi-modal tasks: building construction, ground clearing, farming, and object acquisition.

Within the cooperative tasks, each assignment necessitates consideration of fellow agents,

spanning factors such as their spatial positioning, inventory holdings, skill differentials,

and initial vitality. This nuanced assessment yields divergent role allocation and task

strategies within the planning phase. The collaborative actions encompass resource

sharing and joint pursuit, unfolding within the execution phase.

3.1 Features of MA-Minecraft

Our MA-Minecraft dataset encompasses fundamental skills and tasks, meticulously or-

chestrated by hand-designed planners. This planning approach concurrently serves as a

benchmark ceiling across all tasks. Moreover, we introduce two alternative baseline models,

both utilizing the provided dataset for training, thereby validating the efficacy of the

generated data. The first model, MA-GPT4-o, employs a Large Language Model (LLM)

as the planner, generating subgoals that guide an individual agent. The second model,

MA-LLAVA, comprehensively encodes input facets and subsequently fuses embeddings

through an attention mechanism, culminating in the prediction of ultimate actions. Our

experimental findings demonstrate that both baseline models achieve competence across

8



Benchmark RGB Language 3D Allocation Multi-Agents (De)centralized Tool Use Interaction Generalization

Alfred (Shridhar et al., 2020) ✓ ✓ Obs ✗ ✗ ✗ ✓ ✓ 100,000+
DialFRED (Gao et al., 2022) ✓ ✓ Obs ✓ ✗ ✗ ✓ ✓ 53,000+
MultiagentEQ (Tan et al., 2020b) ✓ ✓ Obs ✗ ✓ ✗ ✓ ✓ ✗

EmbodiedMA (Liu et al., 2022b) ✓ ✓ Obs ✓ ✓ ✓ ✗ ✗ ✗

Cordial Sync (Jain et al., 2020) ✓ ✓ Obs w/ Action ✓ ✓ ✓ ✗ ✓ ✗

MineLand (Yu et al., 2024) ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ 6,000+
MindAgent (Gong et al., 2023) ✗ ✓ Obs ✓ ✓ ✗ ✓ ✓ 100,000+
Creative Agents (Zhang et al., 2023) ✓ ✓ ✓ N/A ✗ N/A ✓ ✓ ✗

MineDojo (Fan et al., 2022) ✓ ✓ ✓ N/A ✗ N/A ✓ ✓ 1,000+
Overcooked-AI (Carroll et al., 2020) ✗ ✗ Obs ✓ ✓ N/A ✗ ✓ ✗

Watch&Help (Puig et al., 2021) ✗ ✗ Obs ✓ ✓ ✗ ✗ ✓ ✗

Too many cooks (Wang et al., 2020) ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✗

SQA3D (Ma et al., 2023) ✓ ✓ ✓ ✗ ✗ N/A ✗ ✗ 40,000+
OpenEQA (Majumdar et al., 2024) ✓ ✓ Obs ✗ ✗ N/A ✗ ✗ 2,000+
AlexaArena (Gao et al., 2023) ✓ ✓ Obs ✗ ✗ N/A ✓ ✓ ✗

MA-Minecraft ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 100,000+

Table 3.1: Comparison of MA-Minecraft with other benchmarks. MA-Minecraft features
RGB image and language inputs for multi-agents control with a large number of widely-
varied demonstrations in Minecraft. RGB: Real-time first-person perspective RGB images
are provided to agents and serve as observations. Language: Task goals are specified
by human language instruction. 3D: Task requires agents to have perception and be
able to interact with the 3D world (i.e., movement in 3D, objects interacted with have
3D relations). Note: “Obs” denotes only support of 3D observation, no movement or
action in 3D. Allocation: Multiple tasks must be dynamically allocated to multiple agents
to obtain maximum benefit. Agents must use visual perception to understand other
agents’ states and make decisions to increase efficiency. Multi-Agents: This denotes that
multiple agents can be present in a single experiment. (De)centralized: This denotes
that agents can be operated separately in both centralized and decentralized settings.
Tool Use: Completing tasks necessitates the use of specific tools by the agents, or using
tools results in different task efficiencies. Interaction: Agents must manipulate or engage
with different items or environmental elements or objects to achieve certain goals with
irreversible actions. Generalization: Standardized generalization across a diversity of
goals, objects, backgrounds, and inventories.

a subset of tasks.

Table 3.1 compares MA-Minecraft with other benchmarks. Existing benchmarks in MA

systems research are founded on state or voxel-based observation in a controlled, closed

environment. Actions and task types are also limited by the environments. MA-Minecraft

advances the state-of-the-art in multi-agent benchmarks by exploiting the dynamic and

open-ended Minecraft environment, offering:

1. first-person perspective high-quality RGB observations on top of the traditional

voxel-based and state-based observations,

2. the ability to benchmark on existing MA cooperation tasks and define custom tasks

with a variety of interactions,
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3. the ability to control multiple agents in a open world to perform open-ended 3D

tasks, in both centralized or decentralized settings,

4. the capacity to execute hundreds of actions individually for multiple agents that

expand all possible task spaces with high-level, abstract language input, and

5. the ability to provide expansive visual diversity in tools, blocks, entities, and

richly-detailed backgrounds.

3.1.1 Simulation Environment

MA-Minecraft utilizes Minecraft as its foundational environment, providing a complex,

open-world setting for multi-agent interaction. Each agent is individually controlled via

the Mineflayer interface, which provides high-level API functionalities for interaction

with the environment. This setup is integrated into the MA-Minecraft and enables Gym-

like interactions while supporting multiple agents. This allows for intricate command

executions via both pre-written code and natural language instructions, facilitated by

integration with prominent LLMs such as OpenAI GPT and LLaVA.

Figure 3.1 illustrates the MA-Minecraft architecture.

To cater to a variety of human users, our system supports interactive modalities

ranging from keyboard and mouse inputs to VR headset controls, enhancing the immersive

experience and dynamic interaction capabilities within the simulation environment.

3.1.2 Observation and Actions

MA-Minecraft captures a wide array of observational data to ensure agents have a

comprehensive understanding of their environment:

RGB images: It provides real-time, high-resolution (up to 8K) image streams from

first-person views for each agent and front, side, and top views of each object of interest.

Agent states: It provides detailed reporting on each agent’s location, orientation,

health status, inventory, and equipment.
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Figure 3.1: MA-Minecraft architecture

The action space in MA-Minecraft allows primitive motor skills such as “place” and

“break”. We provide over 12 actions that explore the full feature set of Minecraft, enabling

complex and diverse agent interactions.

3.1.3 Centralized and Decentralized Agents

We have implemented two different settings for the agents: centralized agents and

decentralized agents.

Centralized agents: These agents are given complete observational access to the

environment, including the first person view, action history, and inventory information of

all the agents. Based on this comprehensive data, the model generates the actions for all

agents simultaneously. This approach leverages the full scope of information available in

the environment to coordinate and optimize the actions of all agents collectively.

Decentralized agents: These agents do not receive information about other agents

except for the initial environment settings, which may include some inventory details

of other agents. The model generates actions solely for the individual agent based on

its limited view. This setting simulates a more realistic scenario where agents operate
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Figure 3.2: Building construction

independently with restricted information, focusing on their own observations and actions

without centralized coordination.

3.1.4 Task Design

MA-Minecraft introduces a variety of complex and interactive tasks that challenge the

agents’ capabilities in planning, coordination, and execution within a collaborative and

dynamic environment. Each task is designed to test different facets of MA interaction,

including communication strategies, role distribution, real-time decision-making, and

adaptability to changing environments. Tasks require capabilities in visual observation

understanding, agent status intercepting, action capability understanding, language

prompt understanding, continuous state understanding, and task action sequence planning.

Here, we detail the specific tasks included in the MA-Minecraft benchmark:

Building construction: This task (Figure 3.2) requires agents to collaboratively erect

a structure based on a provided three-view blueprint (front, side, and top). Each agent

possesses a unique inventory of building blocks necessary for the construction. The task

requires agents not only to understand their individual capabilities and inventories, but

also to plan their movements and actions in coordination with other agents to efficiently

construct the building on a designated 5× 5 foundation.

Ground clearing: This task (Figure 3.3) challenges agents to remove all blocks

12
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Figure 3.3: Ground clearing

from a specified 6× 6 area. Agents must employ appropriate tools to break the blocks,

which vary in durability, thereby requiring multiple interactions for complete removal.

The use of correct tools can dramatically reduce the time required for block removal

(up to 3× speedup). Agents must manage their tool assignments to optimize block-

breaking efficiency, so that the time steps needed for one task can be minimized. Strategic

coordination is essential in this task as agents need to dynamically decide which blocks

to target based on their current tools and help each other to minimize the overall time

taken to clear the area.

Farming This task (Figure 3.4) is designed to simulate agricultural activities, where

agents must sow and harvest crops. Agents are required to plant seeds on designated

farmland plots and observe plantings until the crops reach maturity. Each crop has

several growth stages from Level 0 (newly planted) to Level 7 (fully grown), and agents

must identify when crops are ready to be harvested. The challenge lies in dynamically

allocating tasks among agents based on their positions, available seeds, and the maturity

of different crops. Effective task distribution and coordinated actions ensure maximum

yield and efficiency. For example, some agents can sow while others are planning, and

they should stop when their total crop yield is satisfactory.

Cooking This task requires the cooking of a meal. Agents are initially placed on

separate islands, each containing different ingredients needed to prepare a meal. A central

stove, accessible to all agents, acts as the communal cooking and item exchange point.

13
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The agents must collect and prepare ingredients using appropriate tools, which might

be distributed among them initially or need to be exchanged midway through the task,

depending on the resources within their reach. Agents must effectively communicate and

strategically pass tools and ingredients to one another to assemble the required meal.

This task tests the agents’ ability to plan based on limited resources, cooperate subject to

spatial constraints, and execute complex sequences of actions involving resource gathering,

item management, and cooking processes. An example of this task could involve a series

of actions from handing over a sword to an agent that has access to a chicken, handing

over an axe to an agent that has access to a tree, and finally find and navigate to a stove

to cook the chicken meal.
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3.1.5 Diversity

The design of these tasks incorporates several layers of complexity to test and develop

robust multi-agent systems capable of operating in diverse and unpredictable environments

(Figure 3.5).

Object diversity: More than 30 objects are used for each task. Objects, such as a

fence, an anvil, or a stone block, have different shapes and different textures, such as pink

wool and dirty blocks. Farm crops will have different shapes in all 7 growth stages.

Inventory diversity: Each agent’s inventory might include essential items mixed

with non-essential ones, realistically simulating scenarios where agents must choose the

right tools or materials for specific tasks while managing inventory constraints.

Background diversity: More than 10 backgrounds are included for all tasks, includ-

ing village, mountain, forest, swamp, desert, etc.

Ground diversity: Tasks take place on grounds with diverse textures such as glass,

concrete, and quartz. Certain tasks may involve additional complexity such as farmland

intermixed with non-plantable blocks.

Goal diversity: Goals vary between tasks. For a place and construction task,

we introduce different block placement shapes; e.g., a 2 × 4 × 2 tower with top right

intentionally not occupied. For a farming task, the total target corp type and counts are

randomized. For the cooking task, the target cooked meal is randomized.

Agent count diversity: Agent counts vary from 2 agents to 4 agents, challenging

the flexibility and adaptability of the coordination and task execution algorithms.

3.2 MA-Minecraft Dataset

To create a rich learning environment and effective training dataset for the MA-Minecraft

tasks, systematic scenario design and data collection methods are employed:

Planner-based scenario design: Each task scenario is carefully crafted using ad-
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vanced planning algorithms that consider all possible interactions within the environment.

This includes optimal paths, resource distribution, and agent role assignments based on

capabilities and task requirements.

Trajectory generation: Using Mineflayer interfaces controlled by heuristic methods

such as the Hungarian Algorithm and dynamic programming, the planner orchestrates

the agents to execute the task, ensuring that actions are taken optimally. Each step’s

effectiveness is assessed to guarantee efficient task completion.

Real-time interaction and feedback: Agents receive immediate feedback on their

actions, which includes success, failure, and updates on environmental states. This

real-time data is crucial for adjusting strategies and learning from interactions.

We leverage our planner to generate a large dataset of expert trajectories for learning.

Our dataset includes 25K trajectories per task, resulting in 100K variants, and 90K

successful trajectories in total. We hold aside a subset of variants, and the split is further

shuffled and divided into Train / Validate / Test sets proportioned at 70% / 20% / 10%.

3.3 Experiments and Results

3.3.1 Baselines

The baseline methods consist of two main components: the GPT4-o method and the

LLaVA method.

GPT4-o: For the GPT4-o method, we employ a one-shot learning approach. The

prompt provided to the model includes a single successful demonstration of the task from

the training set. Based on this example, we then ask the GPT4-o model to generate the

actions for agents in response to new observations. This approach leverages the model’s

ability to generalize from a minimal amount of information.

LLaVA: We use the pretrained LLaVA-v1.6-Vicuna-7B model for our experiments.

Under a centralized setting, we fine-tune this model using two different methods for

feeding images. In the first method, we input four separate images into the model. We
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refer to this model as LLaVA-M. In the second method, we concatenate these images into

a single composite image before feeding it into the model and we refer to this model as

LLaVA-S. This allows us to compare the effectiveness of different image input strategies

on the model’s performance.

3.3.2 Evaluation Metrics

We evaluate the performance of the methods based on two key metrics: task success rate

and competence percentage.

Task success rate: The task success rate is determined by the ratio of the number of

completed tasks to the total number of tested tasks. This metric indicates the proportion

of test cases that the model can successfully complete from start to finish. A higher

success rate reflects the model’s ability to consistently achieve the desired outcomes in

various scenarios.

Competence percentage: The competence percentage is calculated by dividing

the accumulated rewards by the total number of tested tasks. This metric measures the

overall effectiveness of the agents in performing the tasks, considering partial successes

and the extent to which the tasks are completed. It provides a more granular view of the

model’s performance, highlighting how well the agents can handle different aspects of the

tasks even if they don’t fully complete them.

3.3.3 Evaluation Results

Due to limited computation resources, we trained the model only with the first 1/10 of

the training dataset. The task success rates (Table 3.2) and competence percentages

(Table 3.3) gleaned from our experiments provided significant insights into the performance

capabilities of the two baseline models, MA-GPT4-o and MA-LLaVA, across different

operational contexts.

The centralized settings generally yielded higher success rates and competence levels,

indicating the advantage of having comprehensive environmental data available for decision-
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Tasks Condition
Centralized Decentralized

LLaVA-M LLaVA-S GPT4-o LLaVA GPT4-o

Building

Seen 0.325 0.270 0.250 0.125 0.180
Goal 0.240 0.330 0.210 0.205 0.280
Object 0.155 0.180 0.165 0.140 0.080
Agents 0.135 0.120 0.075 0.090 0.065
Background 0.310 0.195 0.230 0.165 0.150

Clearing

Seen 0.350 0.260 0.245 0.180 0.150
Goal 0.195 0.310 0.305 0.170 0.100
Object 0.160 0.220 0.135 0.095 0.120
Agents 0.105 0.190 0.080 0.115 0.055
Background 0.225 0.200 0.175 0.150 0.125

Farming

Seen 0.195 0.285 0.260 0.150 0.170
Goal 0.340 0.325 0.290 0.195 0.180
Object 0.160 0.140 0.120 0.095 0.130
Agents 0.120 0.070 0.085 0.065 0.090
Background 0.210 0.300 0.270 0.220 0.155

Cooking

Seen 0.280 0.250 0.230 0.135 0.120
Goal 0.265 0.345 0.315 0.200 0.190
Object 0.140 0.165 0.155 0.110 0.100
Agents 0.130 0.085 0.095 0.070 0.055
Background 0.225 0.210 0.195 0.180 0.165

Table 3.2: Task success rates

making processes. The MA-LLaVA model, particularly the LLaVA-M variant, consistently

outperformed others in most tasks under centralized scenarios. This model’s ability to

separately process multi-modal inputs likely contributed to its enhanced performance by

allowing for finer granularity in perception and action planning.

Conversely, decentralized settings yielded a noticeable dip in performance metrics.

Both LLaVA and GPT4-o decentralized configurations faced challenges, particularly in

complex scenarios such as those requiring intricate coordination among agents or detailed

environmental interactions. The reduced information flow inherent to decentralized

settings evidently limited the models’ ability to formulate and execute effectively cohesive

strategies.

An interesting observation was the variance in model performance across different
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Tasks Condition
Centralized Decentralized

LLaVA-M LLaVA-S GPT4-o LLaVA GPT4-o

Building

Seen 0.393 0.218 0.575 0.175 0.361
Goal 0.546 0.234 0.433 0.190 0.320
Object 0.339 0.219 0.246 0.160 0.192
Agents 0.251 0.158 0.111 0.145 0.190
Background 0.516 0.162 0.352 0.125 0.280

Clearing

Seen 0.642 0.412 0.590 0.305 0.470
Goal 0.535 0.325 0.445 0.290 0.335
Object 0.379 0.240 0.295 0.225 0.215
Agents 0.288 0.175 0.140 0.160 0.120
Background 0.467 0.285 0.360 0.245 0.275

Farming

Seen 0.520 0.308 0.485 0.290 0.365
Goal 0.501 0.312 0.421 0.275 0.320
Object 0.358 0.225 0.280 0.210 0.200
Agents 0.270 0.160 0.191 0.150 0.200
Background 0.449 0.275 0.350 0.230 0.260

Cooking

Seen 0.500 0.300 0.470 0.280 0.355
Goal 0.489 0.305 0.410 0.265 0.310
Object 0.345 0.220 0.265 0.205 0.195
Agents 0.260 0.155 0.125 0.145 0.295
Background 0.435 0.270 0.340 0.225 0.255

Table 3.3: Competence percentages

conditions within tasks. For instance, tasks labeled under “Seen” generally showed

higher competence percentages, suggesting that the models were more adept at handling

familiar scenarios where the environmental variables were within the expected parameters.

However, under the “Agents” or “Background” conditions, where unpredictable elements

influenced task dynamics, model performance declined. This indicates a potential area

for improvement in enhancing model robustness and adaptability to unforeseen changes

or less-controlled environments.

The competence percentages, in particular, highlighted not just the ability of models

to complete tasks but also how effectively they could handle different task aspects. High

competence in the “Goal” condition across several tasks emphasized the models’ capabilities

in strategic thinking and goal-oriented processing. Meanwhile, lower competence in
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“Object” or “Agents” conditions pointed towards potential deficiencies in object recognition

or agent-specific interaction strategies.
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CHAPTER 4

MAGF: Multi-Agent Control via Social Gradient Fields

Our Multi-Agent offline visual reinforcement learning via social Gradient Field (MAGF)

method yields low-level agent controllers in a MA setting, particularly within complex

environments involving visual input. Selecting the Minecraft game as our testing en-

vironment, in this chapter we develop our method based on its rich game mechanics.

Initially, we build our own dataset for the cooperative navigation task using a hand-crafted

planner containing 45,000 demonstrations, which serves as our offline training dataset. We

employ the social gradient field for visual embedding, which has been shown to provide a

higher-level representation of the multi-agent environment. Comparing our methods with

other baseline approaches, we find that our approach outperforms them on the tested

tasks.

4.1 Technical Background

4.1.1 Learning Gradient Fields via Score-Matching

The score-based generative model aims to learn the gradient field of a log-data-density;

i.e., the score function. Given samples {xi}
N
i=1 from an unknown data distribution

{xi ∼ pdata(x)}, the goal is to learn a score function to approximate ∇
x
log pdata(x) via a

score network sθ(x) : R
|X | → R

|X |.

L(θ) =
1

2
Epdata

[
∥sθ(x)−∇x

log pdata(x)∥
2
2

]
. (4.1)
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During the test phase, a new sample is generated by Markov Chain Monte Carlo (MCMC)

sampling; e.g., Langevin Dynamics (LD), which is beyond our interest since we focus on

gradient field estimation.

However, the objective of score-matching in (Equation 4.1) is intractable, since pdata(x)

is unknown. The Denoising Score-Matching (DSM) (Vincent, 2011) proposes a tractable

objective by pre-specifying a noise distribution qσ(x̃|x), and training a score network to

denoise the perturbed data samples, where qσ(x̃|x) = N (x̃;x, σ2I) is a Gaussian kernel

with tractable gradient, in our case:

L(θ) = E x̃∼qσ(x̃|x),
x∼pdata(x)

[
∥sθ(x̃)−∇x̃

log qσ(x̃|x)∥
2
2

]

= E x̃∼qσ(x̃|x),
x∼pdata(x)

[∥∥∥∥sθ(x̃)−
1

σ2
(x− x̃)

∥∥∥∥
2

2

]
.

(4.2)

DSM guarantees that the optimal score network satisfies s∗θ(x) = ∇x
log pdata(x) for almost

all x.

In practice, we adopt an extension of DSM (Song et al., 2020) that estimates a time-

dependent score network sθ(x, t) : R
|X | × R

1 → R
|X | to denoise the perturbed data from

different noise levels simultaneously:

L(θ) = Et∼U(ϵ,T )

{
E x̃∼qσ(t)(x̃|x),

x∼pdata(x)

λ(t)

[∥∥∥∥sθ(x̃, t)−
1

σ2(t)
(x− x̃)

∥∥∥∥
2

2

]}
, (4.3)

where T , ϵ, λ(t) = σ2(t), σ(t) = σt
0, and σ0 are hyper-parameters. The optimal time-

dependent score network satisfies s
∗
θ(x, t) = ∇x

log qσ(t)(x), where

qσ(t)(x̃) =

∫
qσ(t)(x̃|x)pdata(x)dx (4.4)

is the perturbed data distribution.
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4.1.2 Image Tokenization With the CLIP Model

Learning direct control actions from raw RGB images via Reinforcement Learning (RL)

exceeds the traditional design capabilities of RL systems. This is primarily because

images contain vast amounts of abstract information unrelated to actionable controls.

Image-text CLIP models, such as those described by Radford et al. (2021), offer a solution

by tokenizing images into formats understandable by machines.

We utilize MineCLIP (Fan et al., 2022), a contrastive video-language model, which

correlates video snippets with natural language descriptions. MineCLIP is inherently

multi-task, trained on open-vocabulary and diverse English transcripts, thus aligning

closely with the multi-faceted nature of real-world tasks. The model architecture mirrors

that of CLIP4Clip (Luo et al., 2021), employing a similar dual-encoder setup: a text

encoder ϕG for embedding language goals and a video encoder ϕV for processing sequences

of 16 frames at 160× 256 resolution. Specifically, ϕG reutilizes the pretrained text encoder

from OpenAI’s CLIP, while ϕV is divided into a frame-wise image encoder ϕI and a

temporal aggregator ϕa. The aggregator condenses the image feature sequence into a

single video embedding. Unlike CLIP4Clip, MineCLIP enhances its feature representation

by adding two layers of residual CLIP Adapter (Gao et al., 2021) subsequent to ϕa and

fine-tuning only the last layers of ϕI and ϕG.

Our adaptation of MineCLIP omits its final layer, which traditionally computes the

CLIP reward based on the similarity between frame observations and skill descriptions.

We repurpose the backbone of MineCLIP to tokenize images within the Minecraft domain,

effectively bridging these visual inputs with the social gradient field for enhanced com-

prehension by the RL algorithm. This method not only streamlines the tokenization of

complex visual information but also tailors the learning process to the specific semantics

and dynamics of the environment, thus promising a more intuitive integration of visual

data into RL decision-making processes.
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4.2 Problem Definition

From a multi-agent dataset D(I, V, A) containing images, vectors of coordinates, and

actions of agents, we aim to develop a method to generate a decentralized policy π(I)

that performs tasks using only visual inputs.

The primary challenge arises from the pixel-based input, which, unlike vector inputs,

contains a vast array of information with pronounced dynamism. Therefore, acquiring a

large, high-quality dataset becomes imperative. It is crucial to sift through these data to

distill the most salient information from the visual inputs.

Another significant challenge emerges in the multi-agent and partial observation setting.

Agents must navigate their environment and interact with other agents, introducing a

plethora of environmental diversities. Given that this task operates under a first-person

view observation, agents can only perceive views within their limited, forward-looking

visual fields. However, in the realm of multi-agent reinforcement learning, the strategy

of centralized training and decentralized execution has proven critical for enhancing

performance. It would also be beneficial to consider this approach in behavior cloning for

multi-agent tasks. It remains a challenge to effectively utilize the fully observable data

from the dataset to boost policy performance in the decentralized setting.

4.3 Methods

In this chapter, we elucidate the structural framework of our approach. Our method

is detailed as Algorithm 1 and the entire pipeline is illustrated in Figure 4.1. The

methodology unfolds in three distinct phases. First, we generate a dataset Dgf for the

gradient field function from the original dataset D. This Dgf will later be used to train

the gf function, which is then utilized to construct the gradient field ground truth from

visual observations. Second, we train a visual input embedding network fgf that processes

the raw pixels and outputs the gf function. Finally, we apply fgf in imitation learning.

We will next delve into the specifics of each phase of our algorithm.
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Figure 4.1: Pipeline for multi-agent control via GF embeddings. We first embed the visual
inputs as Gradient Fields GF, which we then use as inputs for further behavior cloning.

4.3.1 Training the gf Functions

Inspired by the work of Long et al. (2024), we employ the GF as a superior representation of

visual input within a multi-agent context. The GF offers several advantages: It drastically

reduces the dimensionality of inputs and is goal-related, guiding agents at a higher level.

This addresses the challenge of high implicit input in vision tasks. Additionally, the GF

embedding fully utilizes global information, specifically relative coordinates, from the

dataset.

Algorithm 1: Imitation learning using SocialGF

1 Generate gf from datasets by applying (4.1);
2 for gfi in GF do

3 Training gfi representation from pixels for each type i via supervised learning;

// Keep the vision embedding network fixed, we do the imitation

learning with the gf embedding

4 for t = 1, . . . ,max-iterations do

5 OGF ← {gf0, gf1, . . . , gfn} ; // GFs Embedding

6 Do the imitation learning;
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We must first construct the example set for the training of the gf function from the

vector ground truth. We propose two kinds of gf: Environment gfE and Agents gfA. The

gfE will be used to capture the knowledge of the environmental constraints, and the gfA

will model the entities’ dynamics and relations.

4.3.1.1 Environment gf

This will be considered as the single agent gf since it is related only to the environment.

Vectors of other entities’ information will not be considered. It can be denoted as

gfE = ϕ(vi,i), where vi,i represents the self-coordinates of agent i. Every data point from

the dataset D can be treated as examples of legal vectors. We employ (4.2) in the training

of gfE.

4.3.1.2 Agent gf

This models the relations of different entities within the environment. gfA will lead

the agents toward task competence. To construct the example set, we extract entity

coordinates from instances where success flags are raised during demonstrations, thereby

creating our sets of successful examples. Employing score matching functions, per (4.4),

we build the GF functions ϕ based on the relative coordinates: gfA = ϕ(vi,j), where vi,j

represents the relative coordinates of Agent i. This serves as the foundation of our training

data for the GF embedding network.

After training gfE and gfA, the gf generated will be applied to the vector V of the

original dataset D(I, V, A) to obtain the ground truth GF = (gfE(V ), gfA(V )). We form

the (I,GF) pairs as the training dataset for the subsequent training of the GF embedding

network.

4.3.2 Training the Pixel Embedding Network

Subsequently, we train the functions fE
gf and fA

gf using the (I,GF) pairs from the previous

phase. This pixel embedding function takes in raw pixels and outputs the GF of the
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environment and agents, aiming to minimize the losses LE = L2(f
E
gf (x), gfE(V )) and

LA = L2(f
A
gf (x), gfA(V )), where x denotes the raw pixels. This network aims to extract

the gradient information from the partially observable pixels. It leverages the concept

of centralized training and decentralized operation. The gf extracted from the global

information guides the training of the pixel embedding network, specifically leading to

the target states.

For these two pixel embedding networks, we concatenate their outputs to form the

extracted information from the images. This high-level GF representation is then fed into

a final fully-connected neural network for action execution.

4.3.3 Training the MAGF

Finally, we integrate everything for imitation learning on the dataset D. The policy

network is defined as π(x) = hi(f
A
gf (x), f

E
gf (x)). Here, hi is a two-layer fully connected

network that inputs the concatenation of the GF embeddings and outputs the final action.

We minimize the loss L = L2(π(x), A) using imitation learning methods. This is an

end-to-end training process. The fA
gf and fE

gf functions trained in the previous phases are

used as model initialization. Their final parameters will be fixed as training progresses.

The MAGF training pipeline is illustrated in Figure 4.2.

4.4 Experiments and Results

Our experimental setup utilizes the MineRL environment, which interfaces with Minecraft

in a manner consistent with the OpenAI Gym framework. Each timestep within this

environment provides a first-person RGB image observation for each agent, which serves

as input to our policy. This setup then advances to the next timestep using the policy’s

output—low-level control actions that mimic real-world human interactions, including

gaze yaw and pitch changes, movements, and other actions. MineRL also enables the

customization of reward functions, calculated based on the environmental state to assess
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Figure 4.2: Pipeline for MAGF training

agent behavior. Notably, in our offline RL approach, the reward does not influence the

policy’s action output directly; rather, it serves solely as a performance evaluation metric.

4.4.1 Task Design

Our experimental setup encompasses three distinct cooperative multi-agent navigation

tasks within Minecraft environments: two-dimensional navigation, three-dimensional

navigation, and two-dimensional navigation with obstacles. Each task is designed to

challenge the agents in different aspects of spatial awareness, strategic planning, and

cooperative dynamics. We show samples of all three cooperative navigation tasks from

the datasets in Figures Figure 4.3, Figure 4.4, and Figure 4.5.

4.4.1.1 2D Navigation

We implement a 2D navigation-based task within a confined environment surrounded by

walls in Minecraft. Two to four agents spawn at the corners of the environment. The

objective centers around two to four landmarks randomly placed within the walled area,

which act as goals for the agents. Each agent’s task is twofold: 1) occupy a unique
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Figure 4.3: 2D Navigation task sample from the dataset

Figure 4.4: 3D Navigation task sample from the dataset

landmarks without sharing it with another agent, and 2) achieve this positioning with the

fewest possible steps. Therefore, all agents must cooperative according to their position

and their fellow agent’s position to find a optimal path and target. The reward for this

task is computed based on the number of landmarks occupied exclusively by only one

agent, with a maximum score of 4 in a scenario involving four agents.

Figure 4.5: 2D Navigation with obstacles task sample from the dataset
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4.4.1.2 3D Navigation

Building on the 2D navigation setup, the 3D navigation task introduces an additional

vertical dimension by placing landmarks on elevated platforms. These platforms are

accessible via multiple staircases or ladders, requiring agents to navigate both horizontally

and vertically. While landmarks are visible from ground level, reaching them necessitates

strategic vertical movement, thereby testing the agents’ abilities to negotiate three-

dimensional spaces and solve complex spatial puzzles. The task completion criterion

demands that an agent not only reach a platform but also precisely position itself on the

landmark.

4.4.1.3 2D Navigation with obstacles

This variation complicates the 2D navigation framework by integrating visual obstacles

into the environment. The layout mimics a maze with short walls that obstruct direct

lines of sight to the landmarks, effectively hiding them from the agents’ initial positions.

However, agents are able to see other agents over these obstructions, allowing for indirect

informational cues to influence their strategies. Agents are required to explore the

environment to locate landmarks or deduce their positions by observing the actions

of their peers, such as stopping movements near targets. This task emphasizes not

only physical navigation but also the importance of inferential reasoning and strategic

information gathering.

4.4.1.4 Generalization

To enhance the complexity and assess the robustness of the agents’ learning and adapt-

ability, we introduce generalizations that modify the task environment:

• Agent Counts are randomly chosen from 2 to 4 to participate.

• Initial Conditions including starting position and initial orientation are randomized

within a small area around the corners for each agent.

30



• Landmark Diversity involving different types of targets or landmarks (e.g., glowstone,

gold block, stone block) varying in visibility and contrast against the background.

The exact positions of landmarks within the environment are also randomized in

each trial.

• Ground and Wall Material varies from grass to sand to stone for the ground and

from wood to stone to brick for wall materials.

• Dynamic Obstacles introduces random non-player entities such as chickens and

sheep, adding additional obstacles or interactions. The number of these entities is

also varied.

• Environmental Conditions are set during different times of day—daylight or night.

Nighttime settings decrease visibility, altering the agents’ ability to detect and

navigate toward the landmarks.

4.4.2 Data Construction

Data are captured by recording each agent’s interactions in the Minecraft on MineRL,

with each agent’s frame rate set at approximately 24 frames per second. All RGB images

are captured at a resolution of 1,920 × 1,080. To generate a diverse and challenging

dataset, we employ a planner that is responsible for the following key tasks:

1. Scene Variation Generation: The planner initiates each episode by setting up

the environment with variations as discussed in the task design section, including

randomizing agent start positions and orientations, changing the types of landmarks

and ground textures, adjusting environmental conditions (day or night), and varying

the number and type of dynamic obstacles. These variations are integrated at the

world/environment initialization phase, which are decided by the planner at the

beginning of each session.

2. Optimized Path Planning/Target Decision: The planner utilizes a linear sum assign-

ment algorithm to distribute targets among agents optimally, aiming to minimize
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the total number of steps required for all agents to reach their respective targets.

3. Optimized Action Control: The planner employs voxel-based observations to deter-

mine each agent’s current and target positions within the 3D space. It incorporates

special awareness of the environment to navigate effectively towards the target.

Actions are designed to facilitate movement toward the target by combining forward,

backward, left, and right movements, along with quantized camera yaw adjustments.

The camera yaw is discretized into 10-degree increments to ensure smooth and

realistic turns without sudden changes.

4. Reward Calculation: Rewards are calculated by the planner based on general

environmental feedback, including the positions of entities, if there is a correct

occupation of each landmark by an agent within a specified range, calculated using

the Euclidean distance between the agent and the landmark.

The Dataset includes total of 45,000 offline demonstration variants for all three tasks.

Each demonstration contains 1) a JSON file with backgrounds/environment configuration,

and action, reward, voxel observations for each agent in every time step, and 2) a set of

RGB images from each agent’s first-person perspective in every corresponding time step.

4.4.3 Baselines

In our experiments, we compared the following approaches:

1. Vanilla Imitation Learning: This method uses an adaptive horizon prediction module

to learn goal-conditioned policies (Cai et al., 2023) on image-action pairs. Each

agent’s first-person view image is processed through the MineClip model to tokenize

it into image features, which are then utilized to produce corresponding low-level

controls for each agent.

2. Vector Representation Imitation learning: This method introduces a middle repre-

sentation layer to encode the relative coordinates from image features. Similar to
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vanilla imitation learning, where RGB pixels and image features encapsulate all the

information necessary for action decisions, this approach first transforms the image

features into a single vector. This vector represents the relative position from the

agent to all the surrounding entities, and derives corresponding low-level actions.

3. MAGF: This is our proposed method which uses the social gradient field as an

intermediate representation layer to better capture the multi-agent settings.

4.4.4 Evaluation Method

We evaluate our agent-learning approach on two combined dimensions: 1) task specified

rewards and 2) the total time (or total environment steps) to accomplish the goal, as

follows:

1. Rewards within Time Limit: This metric quantifies the success rate of task com-

pletion within a predefined time limit and task completion rate. It serves as an

indicator of an agent’s ability to efficiently execute tasks under temporal constraints.

2. Time Score: The time score is calculated by the completion time. It reflects the

temporal duration taken by the agent to accomplish a given task. This metric offers

insights into the efficiency of an agent’s decision-making and execution processes.

4.4.5 Results

We tested on all three cooperative tasks using 2 to 4 agents, and the number of landmarks

is the same as the agent. Each task has over 2,000 variants and during the training

contains at least one unseen element, such as block texture or dynamic obstacle. We

scaled the rewards within the time limit to [0,1], and time score from [0,100]. For each

environment, we trained three groups of policies using each method. The training lasted

for a total of 150 epochs. We then tested on 100 tracks per environment.

The results are shown in Table 4.1. From the table, we can see that our MAGF

dominates most of the scales. For adaptive ability, the MAGF reward drops as the agent
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Table 4.1: MAGF Performance

Group Tasks Ours (MAGF) Vector Representation Imitation Learning

2 Agents
2D 0.8854± 0.0587 0.5552± 0.1573 0.4897± 0.1166
3D 0.6714± 0.1121 0.1334± 0.0754 0.6821± 0.1598
2D w/ obstacles 0.7183± 0.0918 0.6008± 0.0249 0.6654± 0.0584

3 Agents
2D 0.7581± 0.0446 0.4417± 0.0547 0.3875± 0.0468
3D 0.5987± 0.0395 0.1319± 0.0954 0.5527± 0.1546
2D w/ obstacles 0.6865± 0.0636 0.7102± 0.1118 0.4623± 0.0875

4 Agents
2D 0.7953± 0.0408 0.3745± 0.115 0.2955± 0.0451
3D 0.6518± 0.0456 0.1521± 0.1085 0.4589± 0.1537
2D w/ obstacles 0.6916± 0.059 0.5259± 0.1333 0.4319± 0.0879

count scales, only with small variants. By comparison, the vector representation and

imitation learning rewards dropped sharply as they tended to consider agents as three

individuals, but failed to understand the cooperative strategy. In the 2-agent setting,

imitation learning slightly outperformed MAGF for the 3D task, but it has a higher

variance.

Utilizing the time score, we also computed cross match rewards within the time limit.

This evaluates how efficiently the task is done; higher scores indicate that the task can be

completed within a smaller number of time steps, which implies higher efficiency. The

results are shown in Figure 4.6. The blue bars indicate the MAGF time score. It once

again outperformed in most of the tasks. These results suggest that agents trained with

MAGF have adapted successfully in the vision-based 3D environment and that MAGF

is an effective representation of multi-agent collaboration information with only partial

visual observations.
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Figure 4.6: MAGF Time score results
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CHAPTER 5

Conclusions

5.1 Summary

The findings of this thesis have significantly advanced our understanding of multi-agent

dynamics in environments that simulate human-like perception. By incorporating a

diverse array of tasks, ranging from construction to farming, to cooking, coupled with

dynamic interactions among agents and objects, MA-Minecraft challenges the conventional

paradigms of multi-agent research and paves the way for new explorations in embodied

intelligence. The implementation of RGB image and language inputs as opposed to

traditional abstract vector inputs has enabled a more realistic simulation of human-like

perception and interaction. This setup has effectively demonstrated the necessity and

impact of high-level strategic planning and real-time decision-making in a controlled yet

challenging environment.

Our experimental results highlight the strengths and limitations of current Vision-

Language Models (VLMs) in managing complex and dynamic task environments. While

the centralized models exhibited robust performance across most tasks, reflecting their abil-

ity to leverage comprehensive environmental data for decision-making, the decentralized

models underscored the challenges faced when agents operate with limited information.

This dichotomy not only enriches our understanding of agent interaction dynamics but

also underscores the critical role of information accessibility in strategic multi-agent

environments.

Furthermore, the introduction of the MAGF method marks a substantial progression

in the field of visual imitation learning, demonstrating that direct mapping of RGB

36



visual inputs to agent actions can result in highly effective navigation and task execution

in multi-agent scenarios. This approach not only enhances the capability of agents to

perform in visually complex and unpredictable environments, but also solidifies the role

of social dynamics in the strategic planning and execution of tasks.

Overall, this thesis has contributed to the broader goal of developing intelligent agents

that can perform a wide array of tasks with efficiency and precision comparable to human

capabilities. The methodologies and insights yielded by this research provide a valuable

framework for future explorations into embodied intelligence and open new avenues for

the practical deployment of autonomous systems in real-world applications.

5.2 Future Work

The findings from this study underscore the crucial impact of information accessibility

on the effectiveness of multi-agent systems in complex task environments. Centralized

models benefit significantly from comprehensive data, facilitating better strategic planning

and execution. By contrast, the challenges observed in decentralized setups mimic real-

world scenarios where agents must often operate with incomplete knowledge, highlighting

the need for developing more sophisticated information synthesis and decision-making

mechanisms.

Future research should focus on enhancing the adaptability of decentralized models by

incorporating methods for dynamic information sharing that maintain the decentralized

nature of operations. Additionally, refining the models’ ability to process diverse and

unpredictable environmental inputs is crucial for improving task performance under varied

conditions. The impact of the scale of the dataset on model performance should also

be investigated to understand how data volume and variety affect learning outcomes.

Exploration of advanced models such as GPT-4V, and LLAMA2, LLAMA3, or fine-tuned

GPT-3.5 powered MA-LLAVA, could further our understanding of complex multi-agent

interactions. Extending the use of images from single snapshots to time-series data could

provide richer context and improve decision-making processes for each agent. Moreover,
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enhancing prompts with detailed information such as tool efficiency, specific task settings,

or advanced deduction logic like Chain-of-Thought(Wei et al., 2023) could refine the

models’ operational capabilities.

Future studies could also consider expanding the action space within the MAGF

framework to include a broader range of activities beyond navigation, such as fighting,

placing items, or using tools. This expansion would allow the exploration of more complex

task dynamics and interactions. Introducing more elaborate cooperative, competitive,

or mixed tasks could further challenge the current methodologies and encourage the

development of sophisticated agent strategies.

Looking forward, the MA-Minecraft benchmark and MAGF can serve as a foundational

platform for future research that aims to enhance the perceptual and cognitive faculties

of autonomous agents. Such a platform would provide an excellent testbed for evaluating

agent models. Potential research directions include refining the integration of sensory

modalities, improving the robustness and adaptability of agents in decentralized settings,

and exploring the implications of advanced agent cooperation strategies under varying

environmental complexities. Widespread adoption of the platform and further development

to broaden its application across various domains and environments promises to catalyze

significant advancements in the field of multi-agent systems that improve the abilities of

AI agents to navigate and manipulate complex, unpredictable environments. This could

lead to innovative applications of multi-agent systems in real-world scenarios, enhancing

the robustness and effectiveness of autonomous agents, ultimately enabling embodied

AI agents to perceive, think, and act in a manner akin to humans. Furthermore, such

research could be extended to facilitate human-robot collaboration, enabling seamless

interactions via natural language.
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