
UNIVERSITY OF CALIFORNIA

Los Angeles

Towards Intelligent Computational Tools for Virtual Cinematography

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Alan Ulfers Litteneker

2022

© Copyright by

Alan Ulfers Litteneker

2022

ABSTRACT OF THE DISSERTATION

Towards Intelligent Computational Tools for Virtual Cinematography

by

Alan Ulfers Litteneker

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2022

Professor Demetri Terzopoulos, Chair

Virtual cinematography is a fundamental problem spanning a wide range of computer

graphics applications. Software for animation, videogames, scientific visualization, and

other applications frequently require computational tools capable of automatically de-

termining how to control a camera to capture an image with desired properties. In

this thesis, we propose an expressive, controllable, and efficient methodology to virtual

cinematography automation that is compatible with both online and offline applications.

By identifying the minima of an unconstrained, continuous objective function matching

some desired compositional behaviors, such as those common in live action photography

or cinematography, a suitable camera pose or path can be automatically determined

using standard search algorithms. With several constraints on function form, multiple

objective functions can be combined into a single optimizable function in several ways,

which can be further extended to model the smoothness of the discovered camera path

with a deformable spline based on an active contour model.

These abstract mathematical techniques are supported by a novel domain-specific

programming language, complete with a suite of program analysis and transformation

tools capable of automatic differentiation, value range analysis, and program optimization

for programs representing run-time specified objective functions, all of which is modularly

integrated with Unreal Engine 4 for rendering and user input.

To make this system usable by mathematical non-experts, we explore two approaches.

ii

First, we provide a library of predefined objective functions corresponding to standard

photographic and cinematographic compositional rules, complete with recipes for how to

combine them to achieve common compositions. Second, we use NLP-derived machine

learning techniques on a novel dataset containing annotations on ∼ 1M frames from 60

feature films, to attempt to automatically learn objective functions corresponding to

real-world compositions.

Finally, these virtual cinematographic techniques are shown to be capable of computing

camera paths in either live or scripted scenes with practicable computational costs.

iii

The dissertation of Alan Ulfers Litteneker is approved.

Song-Chun Zhu

Jens Palsberg

Joseph M. Teran

Demetri Terzopoulos, Committee Chair

University of California, Los Angeles

2022

iv

For the people I love,

both near and far...

v

TABLE OF CONTENTS

1 Introduction . 1

1.1 Application Domains . 2

1.2 System Evaluation Criteria . 6

1.3 Approach Overview . 7

1.4 Thesis Structure . 8

2 Cinematography for Beginners . 10

2.1 What is a Camera? . 11

2.2 Modern Filmmaking Processes . 15

2.2.1 Scripted Filmmaking . 17

2.2.2 Unscripted Filmmaking . 19

2.3 Cinematography in Practice . 20

2.4 On Editing and Broader Semantics . 28

3 Related Work . 31

3.1 Taxonomy of Related Work . 33

3.1.1 Behavior Types . 35

3.1.1.1 Common Behavioral Specializations 38

3.1.1.2 Behavioral Abstraction and Style 40

3.1.1.3 Interpretation and Compromise 42

3.1.1.4 Behavioral Inputs and Outputs 45

3.1.2 Interface Paradigms . 49

3.1.2.1 Direct Interfaces . 50

3.1.2.2 Parametric Interfaces . 52

vi

3.1.2.3 Imperative Interfaces . 54

3.1.2.4 Declarative Interfaces 55

3.1.2.4.1 Constraint Satisfaction 56

3.1.2.4.2 Optimization 58

3.1.2.4.3 Constrained Optimization 59

3.1.2.5 Hybrid and Composite Interfaces 60

3.1.3 Algorithmic Strategies . 62

3.1.3.1 Occlusion and Collision Testing 64

3.1.3.2 Temporality . 66

3.1.3.3 Analytical Algorithms 67

3.1.3.4 Search Algorithms . 70

3.1.3.4.1 Constraint Satisfaction 72

3.1.3.4.2 Unconstrained Optimization 74

3.1.3.4.3 Constrained Optimization 76

3.2 Separate but Related Fields . 77

3.2.1 Robotics . 78

3.2.2 Pixel-Based Approaches . 79

3.2.2.1 Inverse Rendering . 80

3.2.2.2 Image Generation and Editing 82

3.2.3 Computational Editing . 83

3.2.4 Character Animation . 85

3.2.5 Automatic Layout Synthesis . 86

3.2.6 Computational Film Directing . 86

3.3 Systems Engineering . 87

3.4 Cinematographic Datasets . 89

vii

4 Mathematical Framework . 93

4.1 Objective Functions . 95

4.1.1 Hierarchical Constraint Penalties 96

4.2 Optimization Algorithms . 99

4.3 Temporal Smoothing . 102

4.4 Use Cases . 107

4.4.1 Scripted Scenarios . 107

4.4.2 Unscripted Scenarios . 108

5 Computational Tools Systems Engineering 110

5.1 Micro Language Specification . 114

5.2 Semantics . 117

5.3 Static Analysis . 120

5.3.1 Control Flow Analysis . 121

5.3.2 Value Range Analysis . 124

5.3.2.1 Flow Insensitive . 127

5.3.2.2 Flow Sensitive Analysis 131

5.3.3 Program Simplification and Caching 133

5.4 Automatic Differentiation . 140

5.4.1 Forward Accumulation . 144

5.4.2 Reverse Accumulation . 149

5.5 Limitations . 153

6 Cinematographic Data Collection . 155

6.1 Criteria . 156

6.2 Data Collection . 158

viii

6.2.1 Edit Detection and Frame Extraction 160

6.2.2 Frame Feature Detection . 162

6.2.2.1 Facial Detection . 163

6.2.2.2 2d Pose Estimation . 164

6.2.2.3 3D Pose Estimation . 166

6.2.3 Intra-Frame Feature Matching . 167

6.2.4 Inter-Frame Feature Matching . 170

6.3 Dataset at a Glance . 172

6.4 Limitations . 177

7 Manually Defined Cinematographic Objective Functions 179

7.1 Data Inspiration . 179

7.2 A Library of Objectives . 181

7.2.1 Frame Position . 182

7.2.2 Visibility . 183

7.2.2.1 Frame Bounds . 183

7.2.2.2 Occlusion and Collision 185

7.2.3 Shot Size . 186

7.2.4 Relative Angles . 187

7.2.5 Rule of Thirds . 187

7.2.6 Look Space . 189

7.2.7 180°rule . 189

7.2.8 Depth of Field . 189

7.3 Basic Cinematographic Recipes . 190

8 Machine Learning Defined Cinematographic Objective Functions . . 193

ix

8.1 Data Representation . 194

8.2 Modeling strategy and motivation . 195

8.3 PCA . 197

8.4 Frame Embedding . 198

8.5 Limitations . 203

9 Results . 206

9.1 Scenes . 207

9.2 Use Cases . 208

9.3 Manually defined objective functions . 211

9.4 Machine Learning defined objective functions 212

9.5 Speed . 214

10 Conclusion . 220

10.1 Contributions . 220

10.2 Future Work . 220

A Reverse Accumulating Autodiff Rules . 223

References . 225

x

LIST OF FIGURES

2.1 Illustration of camera motion directions . 12

2.2 Illustration of differing FOV and focus distances. 13

2.3 Illustration of a perspective camera view of a scene 14

2.4 Example of a shotlist and storyboards . 22

2.5 Examples of a close-up shot and a wide shot 23

2.6 Example of changing distance with identical shot sizes 23

2.7 Examples of vertical angles and profile angles 24

2.8 Example frames with and without adequate look space 25

2.9 Frames with too much and too little headroom 26

2.10 Diagram illustrating the effect of the line of axis 27

3.1 A diagram of the structure of vector-based virtual cinematography systems . 34

3.2 Diagram summarizing interface paradigms 50

3.3 Euler diagram of virtual cinematography algorithms 63

4.1 Plots of an example hierarchical penalty function 98

5.1 Graph of a program that represents the Rosenbrock function 117

6.1 Overview of the data collection process . 158

6.2 Example 2 fps frame sequence for a shot from Charade 162

6.3 Average shot length by year in the dataset 163

6.4 Visualization of an example of facial detection results 164

6.5 Visualization of an example of 2D pose estimation results 166

6.6 Visualization of an example of 3D pose estimation results 168

xi

6.7 Visualization of an example of intra-frame feature matching results 170

6.8 Example of successful of inter-frame merging results. 173

6.9 Example of less successful inter-frame merging results 174

6.10 Distribution of number of people detected in each frame 176

7.1 Histograms of centers of heads estimated from detected 2d person poses . . . 180

7.2 Histograms of head centers relative to estimated yaw 181

7.3 Contour plots of frame positioning functions fellipse and frectangle 183

7.4 Illustration of the two types of visibility consideration 184

7.5 Visibility function plot . 184

7.6 Plots of the rule of thirds function . 188

8.1 Plot of variance explained by PCA for collected data 198

8.2 Plot of the MDL loss function . 200

8.3 Visualization of the MDL frame embedding 202

9.1 Visualizations of camera paths for different use cases 209

9.2 Visualization of camera paths for varying smoothness parameters 211

9.3 Visualization of camera paths for different horizontal relative angles 212

9.4 Visualization of camera paths for different shot sizes 213

9.5 Visualization of camera paths for a scene with two people 214

9.6 Plots of objective function values for the recipe from Table 7.1 215

9.7 Plots of objective function values for an MDL learned objective function . . 216

9.8 Visualization of camera paths resulting from an MDL objective function . . 217

xii

LIST OF TABLES

3.1 Camera, Object, and Geometry Considerations for Each Behavioral Property 46

5.1 Standard Control Flow Graph Construction Rules 122

5.2 CFG construction rules for non-standard terms 123

5.3 Rules for Side Effect Static Analysis . 124

6.1 Time Estimates Required to Analyze a Single Film 160

6.2 Inventory of Films Analyzed . 175

6.3 Summary of Detections in the Dataset by Detector Type 177

7.1 Objective Corresponding to a Single-Person Cinematographic Composition . 190

7.2 Objective Corresponding to a Two-Person Cinematographic Composition . . 191

9.1 Summary of Average Computational Speed Across Different Use Cases . . . 217

xiii

ACKNOWLEDGMENTS

This work would not have been possible without the generous support of many people.

Firstly, I cannot express in strong enough terms my profound thanks to my academic

adviser, Professor Demetri Terzopoulos. He has spent countless hours over the last 8

years discussing research directions, editing papers, critiquing presentations, instructing,

encouraging, and debating with me, without which I would not have even entered the

PhD program, let alone completed this thesis. I feel sincerely lucky to have had the

opportunity to work under his honest and compassionate tutelage, and will always be

grateful for his sustained support.

Secondly, I would like to offer sincere thanks to my doctoral committee: Professor

Jens Palsberg, Professor Joseph Teran, and Professor Song-Chun Zhu. Their lively and

insightful comments not only helped to strengthen the focus and contents of my thesis,

but also steered my research in important directions I never would have considered on my

own.

Additionally, I would be remiss if I did not acknowledge my gratitude to the virtual

cinematography research community, upon whose excellent work this text builds. While I

have been interested in cinematography since adolescence, I was first exposed to virtual

cinematography as a serious field of research through the publications of Professor Marc

Christie, who has generously shared his time with me at conferences and workshops over

the years. As evidenced by the references section, this work also draws considerable

inspiration from that of Dr. Christophe Lino, Dr. Quentin Galvane, and Professor Patrick

Olivier, among many others. I doubt I would have even embarked upon this research, let

alone completed this text, were it not for their estimable contributions to the field.

While working on my PhD, I have been fortunate to collaborate on a number of intrigu-

ing research projects with brilliant people, including Professor Tomer Weiss, Dr. Masaki

Nakada, Dr. Noah Duncan, Dr. Tao Zhou, Professor Chenfanfu Jiang, and Professor

Lap-Fai Yu. These collaborations have exposed me to a variety of fascinating research

topics, providing windows into the many wonders of the wider world of computer science

xiv

research, and preventing me from falling too deep into a pit of monomaniacal myopia

around virtual cinematography. I am not only grateful to have had the opportunity to

work with such brilliant and dedicated researchers, but also proud of the work we did

together.

I have had the pleasure of being surrounded by a wonderful group of labmates during

my time at UCLA, including Dr. Ali Hatamizadeh, Dr. Abdullah-Al-Zubaer Imran, and

Dr. Garett Ridge, although I have had sadly few opportunities to spend time in the

lab since the Covid-19 prompted remote work policies. Before moving to the UCLA

Computer Science Department’s new building, our lab shared an office with Professor

Teran’s research group, including Dr. Ted Gast, Dr. Andre Pradhana, and Dr. Qi Guo.

The animated discussions and enthusiastic camaraderie of these delightful colleagues

always made spending time in the lab a warm and enjoyable experience, for which I am

grateful.

One of the most unexpectedly rewarding elements of my time as a graduate student has

been in teaching, for which I must thank my supervising instructors, Professor Miryung

Kim, Professor Todd Millstein, Dr. Alex Warth, Dr. Alan Kay, and Professor Paul Eggert,

as well as the many students that passed through my discussion sections. Even more

unexpectedly, I had the distinct pleasure of serving as the Teaching Assistant Consultant

(TAC), or Head TA, of the Computer Science Department, helping to train more than

250 graduate students to become teaching assistants over three years. My most heartfelt

thanks go to Professor Rich Korf not only for inviting me into the role of TAC, but also

for teaching me more about the fundamentals of teaching than I believed possible. I

am also grateful to the staff of the UCLA Center for the Advancement of Teaching for

their support, as well as to the many graduate students who Professor Korf and I were

responsible for training, from whom I learned at least as much as I taught.

I am also grateful to the dedicated staff of the computer science department graduate

student affairs office, including Joseph Brown and Steve Arbuckle, without whose patient

assistance I would not have been able to navigate to the completion of this degree.

xv

I would also like to thank my colleagues and mentors from before graduate school.

During my undergraduate education at Chapman University, I had the privilege of advice

and instruction from Professor Erik Linstead, Professor Michael Fahy, and Professor

Jurg Walther, among others, without which I almost certainly would not have made it

into graduate school. Thanks also to Rob Messer, Damon Tkoch, and the rest of the

team at Intellisurvey for inviting me to work on such interesting software development

problems with such skilled colleagues, as well as for their flexibility and understanding

when I unexpectedly informed them I was considering returning to school. Additionally, I

will always be grateful to the many brilliant and dedicated crew members with whom I

have worked on film shoots over the years, from whom I learned as much about practical

cinematography as any classroom or book could teach. A special thanks also goes to

Derek DeRoche, whose infectious enthusiasm for movies and storytelling first spurred me

into filmmaking 20 years ago.

Last, but far from least, I am immeasurably, inexpressibly grateful to my family: to

my parents, Randall and Rebecca Litteneker, for raising me with unconditional love and

tireless encouragement of my education, as well as to my beloved Heather for her enduring

love and patience through the unexpectedly long process of finishing this degree. None of

this would have been possible without their love and support, for which my gratitude can

only be surpassed by my love.

xvi

VITA

2018–2021 Teaching Assistant Consultant (Head TA)

University of California, Los Angeles Computer Science Department

Los Angeles, CA.

2016 M.S. in Computer Science

University of California, Los Angeles

Los Angeles, CA.

2016–2017 Graduate Student Researcher

University of California, Los Angeles Computer Science Department

Los Angeles, CA.

2015–2018 Teaching Assistant

University of California, Los Angeles Computer Science Department

Los Angeles, CA.

2013–2019 Software Developer

Intellisurvey, Inc.

Ladera Ranch, CA.

2013 Summer Instructor

Idyllwild Arts Academy

Idyllwild, CA.

2013 B.S. in Computer Science

Chapman University

Orange, CA.

2013 B.F.A. in Film Production

Emphasis in Cinematography

Chapman University

Orange, CA.

2010–2013 Cinematographer

Freelance

Los Angeles, CA.

xvii

PUBLICATIONS

“Fast and scalable position-based layout synthesis”, T. Weiss, A. Litteneker, N. Duncan,

M. Nakada, C. Jiang, L.-F. Yu, D. Terzopoulos, IEEE Transactions on Visualization and

Computer Graphics, 25(12), December 2019, 3231–3243. (Date of publication: August 21,

2018.)

“Position-based real-time simulation of large crowds,” T. Weiss, A. Litteneker, C. Jiang,

D. Terzopoulos, Computers & Graphics, 78, February 2019, 12–22. Special Section on

“Motion in Games 2017.” (Date of publication: October 31, 2018.)

“Virtual cinematography using optimization and temporal smoothing,” A. Litteneker,

C. Jiang, Proc. Tenth ACM SIGGRAPH International Conference on Motion in Games

(MIG 2017), Barcelona, Spain, November 2017, 10:1–8.

“Position-based multi-agent dynamics for real-time crowd simulation,” T. Weiss, A. Lit-

teneker, C. Jiang, D. Terzopoulos, Proc. Tenth ACM SIGGRAPH International Conference

on Motion in Games (MIG 2017), Barcelona, Spain, November 2017, 10:1–8.

MIG 2017 Best Paper Award

“Position-based multi-agent dynamics for real-time crowd simulation,” (poster paper)

T. Weiss, A. Litteneker, C. Jiang, D. Terzopoulos, Proc. ACM SIGGRAPH/Eurographics

Symposium on Computer Animation (SCA’17), Los Angeles, CA, July 2017, 27:1–2.

“Fast and scalable position-based layout synthesis”, T. Weiss, A. Litteneker, N. Duncan,

M. Nakada, C. Jiang, L.-F. Yu, D. Terzopoulos, arXiv:1809.10526, September 2018, 1–13.

“Position-based multi-agent dynamics for real-time crowd simulation,” T. Weiss, A. Lit-

teneker, C. Jiang, D. Terzopoulos, arXiv:1802.02673, February, 2018, 1–9.

xviii

CHAPTER 1

Introduction

The modern world is increasingly saturated with visual media. Feature length motion

pictures, broadcast and internet streaming television, photographs and videos on social

media, videogames, and more are enjoyed daily by audiences of various ages around the

world. The production of much of this media is an expensive and labor-intensive process.

The making of a Hollywood feature film or AAA1 videogame requires the services of

hundreds of artists and technicians over months if not years, at a cost of tens of millions

of dollars. Writing plots, designing sets, lighting, editing, acting, and more, all involve

significant human effort for even the smallest of projects.

Of particular interest is the task of camera control. The position, orientation, field of

view, depth of field, and miscellaneous other settings of a camera affect what elements in

a scene are visible and how a viewer will perceive them in the final image. In choosing

these settings, artists, designers, and technicians must balance a variety of logistical,

aesthetic, and communicative considerations. A change in camera settings can move a

movie audience to laughter or tears, decide the effectiveness of a marketing campaign, or

determine the fun a player may have playing a videogame.

Often, camera control takes many of its cues from compositional rules common in

photography and painting. The “rule of thirds”, for example, is held so commonly that

many smartphone camera applications provide on-screen guides outlining its use by default.

However, many other compositional rules are far more subjective, with practitioners

frequently disagreeing on the aesthetic and semantic value of various properties. Would

1The classification “AAA,” usually pronounced “Triple-A,” is somewhat informally used in the
videogame industry to refer to high-budget games released by major publishers, analogous to “blockbuster”
in the film industry.

1

an actor look more aesthetically pleasing from one side than another? How big should an

object appear in the composition? Should a particular object be visible within an image

or absent from it?

Motion picture cinematography introduces an entirely new level of complexity to

this problem. A viewer’s perception of the cinematographer’s work is affected not only

by the choice of camera settings at any single moment, but also by the relationship

between choices made at nearby moments of time. Not only is the desirability of many

compositional and aesthetic properties as subjective in cinematography as in photography

or painting, but the size of the space of possible camera settings is exponentially larger. As

a result, motion picture cinematography is a difficult and specialized task, often requiring

extensive manual labor from highly skilled human artists and technicians for each and

every shot.

Worse still, videogame players and eSports spectators increasingly expect spectacular

visuals, including coherent and evocative camera placement. Unlike traditional motion

pictures, there is rarely if ever an opportunity for a human cinematographer to react

to these interactive, real time graphics environments. Instead, video game designers

and programmers are frequently forced to choose efficiently achievable visual clarity over

aesthetic beauty or complex composition in their camera control.

Given all of this, it seems valuable to ask the following question: Is it possible to

construct a software system capable of automatically finding a pose, path, or sequence of

poses/paths of camera settings that will produce images with desired cinematographic

properties? Put another way, can we build an automatic virtual cinematographer?

1.1 Application Domains

In the physical world, camera users are a diverse group, from veteran professionals

operating bulky cameras on film sets, to videographers broadcasting footage of sporting

events, and school-children capturing their daily activities on camera-phones. An ideal

virtual cinematography system would provide efficient camera automation for an equally

2

diverse group of users in virtual spaces, including animators producing emotionally

evocative films, game designers specifying engaging camera views for players, scientists

visualizing abstruse patterns in 3D data, and enthusiastic laypeople capturing their

favorite gaming moments.

While the tools developed in this thesis partially overlap with physical camera control,

the focus of this work is on cinematography in virtual spaces, where the cameras, actors,

and environments exist purely within computer simulations. This is partially a simplifying

assumption, as many of the complications of robotic motion control, such as sensor noise

and motor delay, can be abstracted away by focusing solely on virtual spaces.2 However,

the automation of virtual cinematography remains a difficult problem, with a wide variety

of direct applications.3

One of the most appealing applications of virtual cinematography rests in videogames

and other interactive, real time graphics software. Whenever meaningful user input is

unpredictable, programmers and designers will invariably be unable to fully anticipate

the state of the game at any given moment. As such, if the images shown to a user are

to have certain desired properties, some type of automatic system that is online with

the execution of the main program loop must be utilized, selecting appropriate camera

settings for each frame as it is displayed.

Another group of applications follows the production of 3D animation for films and

television, such as those pioneered by Pixar Animation Studios. While the technology

and vocabulary may differ, computer animated filmmaking confronts many of the same

cinematographic questions as its live action counterpart: What settings should be chosen

for a camera to achieve a desired image in a particular scene? However, while live action

filmmakers must react in real time to variations in the behavior of their actors, computer

animators know exactly what actions their digital actors will take with mathematical

2See Section 3.2.1 for a discussion of related work in robotic motion control.

3Here, the term “virtual cinematography” is used to refer to cinematography; e.g., the control of lights
and cameras, in a virtual space. The term is also used in some computer graphics literature to refer
to real time (or near real time) performance capture, animation, and compositing for motion picture
production.

3

precision. As a result, much of computer animated filmmaking treats camera control as an

offline operation, with camera settings chosen long before any frames are displayed to an

audience. Moreover, 3D animation artists frequently design their camera paths iteratively,

tweaking camera settings numerous times in an effort to achieve the best result.

The requirements and goals of online and offline applications differ in several important

ways. Online system audiences generally expect minimal interruption of their playing or

viewing experience, and therefore require any camera control system to display an image

matching their desired properties in a fraction of a second. As the content in an online

system is to be displayed to a user only once, the decisions made by an online system

must be unerringly reliable. By contrast, offline systems need only be efficient and reliable

enough to provide useful assistance to an artist who may wish to iteratively modify the

camera settings numerous times before finalizing their choices.

Another useful distinction among applications concerns future knowledge. The asyn-

chronous nature of many offline applications provides full access to information about

past, current, and future events of the scene throughout the decision making process.

With undelayed online systems, the viewers’ requirement that frames be displayed with

a minimum of delay forces any online camera controller to decide where to place the

camera using only information available in the current and past scene states. While an

experienced artist or clever algorithm may be able to estimate high probability future

states, unequivocal future knowledge is categorically unobtainable. Conversely, videogame

spectators, as well as players watching replays, are frequently willing to experience a delay

of a few seconds between their display and the live scene state. In these scenarios, an

online virtual cinematographer can look ahead to future states within the delay interval,

utilizing this limited future knowledge as part of its decision making process.

These distinctions between online and offline applications are sometimes unclear. For

example, videogame designers must account for a wide array of possible player actions

when engineering interactive camera controllers, with complex reasoning about what the

player might expect to be shown in different situations. However, after the game is released,

the player should feel as though they are in full control of the events and camera views

4

on screen, hopefully incognizant of the designers’ heavily engineered automation running

behind the scenes. In applications such as these, the final camera behavior results from

a combination of both the camera designers’ offline decisions and the online interaction

of the player/end-user. Depending on implementation, such a camera controller might

represent a hybrid between offline and online models.

An important consideration of all these applications stems from the variability in users.

An animator seeking camera automation to speed up their work and a scientist in need of

help designing aesthetic data visualizations not only have different objectives, but each

user type also brings differing skills to the task. An animator or artist might have a unique

sense of aesthetics and experience with other camera control systems, but be lacking

in code-writing or mathematical analysis skills. Conversely, a software engineer might

be an experienced coder, but might have limited abilities in mathematical analysis. In

order to be able to service the needs of such a diverse user base, a general purpose virtual

cinematography system must carefully balance what users expect with its expectations

of the users. For example, a system that expects users to be proficient mathematicians

or software engineers would likely exclude much use by artists. Likewise, a system that

assumes users all have the same sense of aesthetics might service the needs of novices,

but fail to accommodate the individual needs of advanced users.

However, the considered applications of virtual cinematography are not boundless. For

the purposes of this thesis, virtual cinematography is primarily concerned with systems

capable of controlling cameras in smooth, continuous motions during uninterrupted

intervals of time. Beyond the boundaries of this definition lies the task of computational

editing, which attempts to automate the decision making of when and how to switch

between multiple camera views available during a given scene. Computational editing

is an expansive and challenging problem, with a myriad of prospective approaches as

diverse and complex as those of virtual cinematography itself. To limit the scope of this

work to a manageable boundary, this thesis will remain largely within the boundaries

of continuous virtual cinematography, only briefly touching on a few considerations of

editing such as the 180° rule.

5

1.2 System Evaluation Criteria

While the appeal of cinematographic automation is relatively intuitive, specific goals and

criteria for the evaluation of prospective systems are not so obvious.

Simple automation may accommodate some simple types of desired camera behavior,

but the full range of camera behaviors users may request is enormously diverse. Producing

even the simplest of cinematic compositions relies on a host of considerations, including

visibility, depth of field, angles between objects and the camera, image position, and

more. Worse still, the desirability of various cinematographic considerations is profoundly

subjective, as evidenced by the frequency of public disagreements between filmmakers

and critics of their work. As such, any singular system intended to serve a diverse group

of users must allow for a wide range of expressivity in desired camera characteristics.

Orthogonally, any automation system must be relatively efficient in order for a user

to consider it practically useful. Many online application domains, such as in videogames,

may require the camera control system to make its decisions within a fixed window of

time, such as in the fraction of a second before the next frame is to be displayed to the

user. Other domains, including many offline applications, impose a different sort of time

constraint: the system should provide a result for the user at a rate not significantly

slower than the user could accomplish unassisted, as any system that takes, for example,

an hour to do what a user could alone perform in a minute will not attract frequent usage.

Related to both expressivity and efficiency is controllability : A user must be able to

quickly and easily control the system such that it will produce desired camera behaviors.

Clearly, a user will not be able to satisfactorily use a system the desired camera behaviors

are outside the system’s available domain of expressivity. Likewise, as the control

manipulation required to achieve the user’s desired camera behavior becomes more

difficult and complex, the amount of user time required will almost certainly increase.

Finding objective means of measuring each of these properties is difficult. A single

system might be computationally efficient for one set of desirable camera behaviors

6

and inefficient for another. While one system may be able to support a wider range of

expressivity than another, the difference between their supported ranges of expressivity

may not contain anything desirable to frequent users. Worst of all, individual users of

varying backgrounds may disagree wildly over the controllability of a particular system,

and may change their opinions as their level of familiarity with the system changes.

1.3 Approach Overview

Together with the various intended application domains and evaluation criteria, the central

question of this thesis might be expressed as: How can a software system be engineered

to provide expressive, controllable, and efficient virtual cinematography automation for

online and offline applications, with and without future knowledge?

As discussed at length in Chapter 3, there have been a widely varying set of approaches

taken to this problem in previous research.

The approach taken here is to formulate the problem of virtual cinematography as

continuous optimization, with the user inputting their desired cinematographic properties

by specifying a corresponding objective function. Computed approximations of the local

optima of this optimization problem correspond to a camera pose or path matching the

user’s desired properties. Additionally, by carefully balancing the optimization strategies

used against the desired precision of the computation, the run time performance of such

an optimization system can be tuned to support different levels of efficiency for a variety

of application types. Temporal smoothness of the resulting camera paths can then be

ensured by regularizing the objective function with a smoothing functional derived from

active contour models.

By placing minimal restrictions on the optimization problems allowed as input,4 this

formulation is capable of a high degree of expressivity. However, one important restriction

is that objective functions are vector-based, meaning that their view of the virtual world

4Aside from some technical restrictions regarding the form of the expression discussed in Chapters 4
and 5.

7

is based upon the position and direction of significant points in the scene. This contrasts

with pixel-based formulations, which consider the rasterized form of the final image as the

basis for the computation.5

However, structuring virtual cinematography as an optimization problem implicitly

creates a controllability problem: Expressing a desired camera behavior as an objective

function requires the user to have mathematical modeling skills, which is an unreasonable

expectation to place on many prospective users. This work explores two approaches to

mitigating this problem.

1. A library of objective functions corresponding to aesthetic considerations common

in traditional cinematography is provided. By using additional predefined mathe-

matical tools to combine objective functions relevant to their desired compositional

properties, users with limited technical proficiency can specify complex desired

cinematographic behaviors.

2. Alternatively, several machine learning based interfaces, built using data collected

from theatrically released feature films, provide mappings from intuitive inputs

(such as user chosen frames matching desired compositions) to objective functions

compatible with the optimization based virtual cinematography system. While

these data-driven interfaces may be more intuitively controllable by novice users,

ensuring that this added controllability does not sacrifice system expressivity has

proven challenging.

1.4 Thesis Structure

Following this introduction of the virtual cinematography problem and its application

domains, the remainder of this document is organized as follows:

Chapter 2 provides a short introduction to cinematography and standard filmmaking

techniques, intended to be a brief primer for those lacking a background in filmmaking,

5A further discussion of these different approaches appears in Chapter 3.

8

such as typical computer scientists.

Chapter 3 discusses related work in virtual cinematography and other similar fields,

overviewing the varying control styles and algorithmic strategies that have previously

been used.

Chapter 4 introduces a mathematical framework for formulating and solving cine-

matography as unconstrained optimization problems.

Chapter 5 describes the systems engineering underlying the computational tools

we implement to support the mathematical framework described in Chapter 4. This

takes the form of a small programming language with a variety of program analysis and

transformation tools.

Chapter 6 describes a set of methodologies and procedures used to automatically

collect egocentric human subject cinematographic data from existing feature films, as well

as some preliminary characteristics of data collected.

Chapter 7 presents a library of predefined human authored objective functions, inspired

by traditional cinematography practices, as well as the data collected in Chapter 6.

Chapter 8 describes experiments in using machine learning to automatically learn

cinematographic objective functions from the data collected in Chapter 6.

Chapter 9 describes a variety of experiments in employing the developed tools for

different scenes, objective types, and applications.

Finally, Chapter 10 summarizes the key contributions of the thesis and discusses

promising topics for future work.

9

CHAPTER 2

Cinematography for Beginners

Cinematography is commonly defined as the art and craft of creating motion picture

imagery. Etymologically, the term is usually credited as coming from ancient Greek roots

meaning “to write with motion” (Brown, 2013, pg. xiv). While specific occupational and

logistical terminology used can vary, the individual responsible for the cinematography of

a film is often referred to as the cinematographer.6 In addition to coordinating with the

director and other key creatives, the cinematographer supervises a team of artists and

technicians who manage the cameras and lighting, either physical or virtual, to capture

or create the images that will appear on-screen.

Cinematography is a complicated and challenging art form, requiring a fine balance

between a myriad of aesthetic, communicative, and practical considerations. However,

before engaging in a deeper examination of some of these cinematographic considerations,

it is worthwhile to begin with a brief tour of some of the basics of motion picture

production.

6For live action filmmaking in the U.S., the cinematographer is commonly called the “director of
photography.” In the U.K. and parts of Europe, the responsibilities of live action cinematography were
historically split between a “director of photography,” who was in charge of the camera, and a “director
of lighting,” although this separation between roles has been gradually disappearing. Animation studios
have historically tasked multiple team members with contributing different specialties, including lighting,
lens selection, and color processing, to the cinematography of each shot. The last 25 years have seen some
animation studios begin crediting a single head cinematographer or director of photography for each feature
film, and in 2014 the American Society of Cinematographers admitted its first animation-specializing
cinematographer, Pixar’s longtime lighting supervisor Sharon Calahan.

10

2.1 What is a Camera?

Given that the focus of this thesis concerns controlling cameras, it seems pertinent to

briefly address a simple question: What is a camera? Simply stated, a camera is any device

capable of capturing images of an environment by sensing light. In physical environments,

this light sensing is accomplished by measuring the photons that strike a thin sheet of

light-sensitive chemicals or digital chips.7 In virtual environments, the transport of light

through the environment is simulated mathematically with measurements of the simulated

light passing through the virtual camera sensor to form the image. In either case, a

camera can be thought of as a tool for capturing an image of what a viewer would see if

they were standing in the camera’s place.

With scarce exception, camera sensors and the images they capture share similar

rectangular dimensions. The relationship between these dimensions is usually expressed as

a ratio of the width to the height, referred to as the aspect ratio. Digital images captured

by sensors are almost always raster images, made up of a rectangular matrix of small

square pixels of color/brightness data. The size of that matrix of pixels is commonly

referred to as the resolution of the image, and many cameras are capable of capturing

images with millions of pixels.

Like any other object, a camera has an orientation in 3D space. This rotation is usually

described by cinematographers in three components, with the left-right rotation of the

camera referred to as “pan,” up-down rotation as “tilt” or “pitch,” and rotation around

the forward axis as “roll.” While these names are slightly different, this pan-tilt-roll

rotation description is fundamentally equivalent to the Tait-Bryan angles (e.g., yaw, pitch,

roll) common in nautical and aeronautical engineering.

Also obviously, a camera has a position in 3D space. Cinematographers sometimes

categorize changes to this position based on their directionality relative to the current

7One might present a technically correct argument that light, or electromagnetic radiation, is really a
wave within a scalar field governed by quantum mechanics. However, representing light as photons not
only accurately models the overwhelming majority of light behavior with which cameras interact, but is
also much easier to compute than quantum waves.

11

Figure 2.1: Illustration of camera motion directions, with orientation on the left and
position on the right: (left) pan movement directions are represented by the green arrows,
tilt movement directions by the blue arrows, and roll movement directions by the red
arrows; (right) truck movement directions are represented by the blue arrows, dolly
movement directions by the red arrows, and crane movement directions by the green
arrows.

orientation of the camera, with movements that are left-right referred to as “truck”

movements, forward-back as “dolly” movements, and up-down referred to as “crane,” “jib,”

“boom,” or “pedestal” movements. The computer graphics community usually instead

refers to the “right” or “left” direction, the “up” direction, and the “forward” or “look”

direction of a camera.

In order for the light bouncing around the environment to form a coherent image on

the sensor, a lens system is placed between the scene and the sensor. Different camera

lenses can work in many different ways, from a simple pinhole to multi-element compound

optics, and are worthy of considerably deeper discussion than appropriate in this text. In

simple terms, most camera lenses can be understood as modified pinholes. Suppose there

is a rectangular cuboid box made of an opaque material with an infinitely small opening,

an ideal pinhole, on one side. As light moves in straight lines absent extreme conditions,8

8Like strong electromagnetic fields or a significant relativistic curvature of space-time, neither of which
are usually desirable on a movie set.

12

Figure 2.2: The green, blue, and red lines in the lower image visualize the region of the
scene visible to the camera with increasing FOV’s and decreasing focus distances.

all light that passes through the opening and hits a particular point on the opposite side

of the box must come from the same direction in the scene, resulting in the projection of

a clear image of the scene. However, while an infinitely small pinhole will allow no light

to pass through, making the aperture larger will cause the projected image to become

blurry, as points in the scene will now project to overlapping regions on the image plane.

Practical lens systems solve this problem by placing optics (e.g., shaped glass or mirrors)

around the aperture that ideally9 focus light from a point a set distance in front of the

camera on to a point on the sensor plane, regardless of aperture size.

This set distance at which points appear in focus is usually referred to as the focus

distance, and most lenses allow this focus distance to be adjusted. Objects not at this set

focus distance will appear blurry, with objects further from this set distance appearing

blurrier. The range of distances at which objects appear acceptably sharp is commonly

referred to as the depth of field of the lens. Depth of field is usually mathematically

computed using a metric called circle of confusion, which models the diameter of the

circle in the image to which a point in the scene would be projected.10

9In practice, imperfections in the lens as well as electromagnetic interactions with the environment
enforce a nontrivial limit, called the diffraction limit, on the achievable sharpness at a specific distance.

10For an ideal symmetric lens, the circle of confusion c = Af |S2−S1|
S2(S1−f) for an object at distance S2, where

S1 is the focus distance, A is the aperture diameter, and f is the focal length of the lens. While this
works perfectly for virtual lenses, most physical lenses are not symmetric and therefore require more

13

Figure 2.3: Illustration of a rectilinear perspective camera view of a scene. The general
layout of the scene is shown in the upper image, where the camera frustum is visualized
by the red lines. Two different frames from this same camera view are shown below, with
the left image demonstrating shallow depth of field (e.g., large aperture), and the right
image showing a deep depth of field (e.g., small aperture).

Like pinholes, most modern camera lenses are rectilinear, projecting straight features

in the environment as straight lines in the image. With a rectangular sensor, rectilinear

lenses allow for a frustum shaped region of 3D space to be observable in the 2D image.

When measured angularly relative to the apex, the size of this visible region is referred to

as field of view, commonly abbreviated to FOV, and can be measured either horizontally,

vertically, or diagonally relative to the camera’s orientation, with the aspect ratio allowing

conversion between any of these measurements. In optical terms, this FOV is controlled11

by a combination of the focal length of the lens system and the size of the sensor.12 A

complicated mathematics to model accurately.

11FOV= 2arctan d
2f , where d is the length of the diagonal of the sensor rectangle, and f is the focal

length of the lens.

12In physical cameras, the focal length of the lens is more commonly used. FOV is more common in
virtual cameras, especially when no sensor size is explicitly specified, although many feature rich software

14

change to this field of view is commonly referred to as “zoom.”

While most real and virtual cameras can carry a variety of other settings that affect

the final image,13 a camera can be considered to be fully defined for the purposes of this

text by the properties already specified, which can be summarized as follows:

• position in 3 dimensions,

• orientation in 3 dimensions,

• focal length (or FOV),

• focus distance,

• aperture size,

• and aspect ratio.

2.2 Modern Filmmaking Processes

More than a century of motion picture production has not only resulted in more complex

and diverse film content, but also increasingly complicated and varied filmmaking processes.

However, any motion picture production can generally be divided into three sequential

phases: pre-production, production, and post-production.

The production phase is the primary phase in which motion picture imagery is

captured or created, for example when there are cameras pointed at performers in a live

action production or animators giving their characters the illusion of life. Given the large

numbers of people and volumes of equipment commonly required, time in this production

phase is often extortionately expensive and highly restricted.

As a result, a huge amount of effort is spent preparing before production of a scene

begins, a period referred to as pre-production. Often, pre-production for a film runs

packages support both.

13Including sensitivity, resolution, frame rate, exposure time, brightness, contrast, color temperature,
and more.

15

longer than production itself, with every opportunity to save time or money in production

carefully weighed against their contributions to the communicative intent of the project

as a whole.

Even after pre-production and production have been completed, there is usually

significant work left to be done, whether it is extensive editing, music scoring, and visual

effects or merely tearing down sets and delivering digital files. This final phase is commonly

referred to as post-production.

While these three phases are relatively ubiquitous, the boundaries between these

phases are not always clear. For example, production may begin while many important

decisions associated with pre-production, such as who to hire or where to film, are yet to

be made. Similarly, the machinery of post-production often begins long before production

has finished, with editors and visual effects artists often commencing work on footage as

soon as it is available.

However, below the thin veneer of these three common phases lies an enormous

diversity in process between productions. While some of this variability in process

stems from cultural and institutional differences between groups of filmmakers, the most

significant differences stem from the form and format of the intended exhibition of the

resulting motion picture. The variations between the production of a feature film for

theatrical distribution, an episode of a television series, a live news broadcast, coverage

of a sporting event, a documentary, or almost any other type of motion picture can be

roughly categorized by three criteria:

(1) whether the events shown on screen are scripted or unscripted,

(2) whether the images are intended to be displayed live or recorded for playback to

each audience,

(3) and whether the actions portrayed are the result of capturing live performances,

often called live action, or the result of incremental animation.

16

2.2.1 Scripted Filmmaking

The pre-production of a scripted motion picture, whether a big-budget Hollywood film,

a television advertisement, a training video, or a YouTube short film, usually begins

with the writing of a script or screenplay containing high level textual descriptions of the

events and dialogue to be depicted in the film. This screenplay is the primary source for

specifying whether the resulting film is to tell a story, sell a product, raise awareness of

an issue, provide critical information in an accessible manner, or whatever the desired

communicative intent might be. With rare exceptions, screenplays do not describe any

specifics as to how these events should appear on-screen.

Before production can begin, the principal artists and technicians working on a project

must decide how to break down the screenplay into visual elements to be displayed on

screen. How should the sets, costumes, and props look? Where and when should the

actors move in each scene? Should certain colors be used or omitted to evoke certain

emotions or themes? What sorts of camera angles and lighting should be used to convey

the communicative intent of each scene? Worst of all, how should all of the creative

goals of the project be balanced with its budgetary and logistical constraints? This

pre-production decision making process is enormously complex and, at the macro level,

well beyond the scope of this paper.

However, once enough of these decisions are made, production will begin. For live

action productions, once sets are built, equipment is procured,14 and actors are rehearsed,

production consists of putting everyone together in the same space and turning on the

cameras. This live action process is inherently performative, with the real-time action and

reactions of actors, camera operators, and lighting technicians collaboratively contributing

to the resulting motion picture imagery.

The production phase of animation, whether 3d computer generated, 2d hand drawn,

14Tangentially, the full purchase price of a new cinema camera package, including with a full set of
interchangeable lenses and other support hardware (e.g., batteries, view-screens, recording media), can
easily exceed $100,000 in 2022 currency. With incredibly rare exception, productions prefer to rent
camera equipment for a few hundred dollars a day rather than buy.

17

stop-motion, or some hybrid, traditionally takes a different direction. Most animation

starts by creating a rough version of each scene in the film, often with a very low framerate,

specified at important moments called key frames, and crude drawings/models. This

rough version is incrementally improved, its framerate raised15 and its drawings/models

refined, until a desired final quality is reached.

However, some forms of animation can blur the line between iterative and performative

practices. For example, motion capture technology can allow character animation to

be specified through an actor’s performance in real-time, but often requires extensive

iterative modification after the fact to help convert a human actor’s motions to those

befitting the fantastical creature being portrayed.

Moving on to post-production, the goal is to take the footage created in production

and combine in a way that matches the communicative intent of the project. In recorded

productions, this usually means that recorded footage must be edited and colored, visual

effects rendered and composited, music and sound effects chosen and mixed, and more

before the motion picture can be shown in theaters, broadcast on television, or streamed

on the internet. Additionally, the fact that production is done offline from editing and the

other transformations of post-production means that multiple attempts, usually called

takes, of each shot can be made in production, with the best bits from each pieced together

in editing.

Unsurprisingly, live broadcast productions must achieve all of these same tasks in real

time, delicately walking a tightrope between what can be accomplished at a moment’s

notice and what best matches the creative vision of the filmmakers. Worse still, as the

production is broadcast live, there are no opportunities to redo anything in the event of

human or technical errors, often heavily incentivizing caution from those uncertain of the

limits of their capabilities. However, because the project is scripted, these live editors

and technicians can make reasonably informed guesses as to what the performers will do

from moment to moment.

15This process of creating frames in-between already animated frames is often called in-betweening in
hand drawn animation.

18

Note that, in this taxonomy, unscripted and scripted live broadcast incremental

animation is not a practicable form, as the iterative refinement part of the workflow is

not readily compatible with live broadcast.

2.2.2 Unscripted Filmmaking

While scripted productions begin with at least a basic understanding of what events

should appear on-screen, unscripted projects, such as documentaries, coverage of sporting

competitions, or talk shows, aim only to capture or portray events as they unfold, with

little to no knowledge of what those events might be. This is not to say that unscripted

films cannot begin without a communicative intent: broadcasters of a football match want

to show the drama unfolding between players on the field, documentarians may know

what answers they are hoping to record before starting an interview, and talk show hosts

often have sets of general conversational topics prearranged.

However, the lack of foreknowledge of on-screen events fundamentally limits the

pre-production priorities of unscripted filmmakers to merely creating a pool of available

equipment and procedures for capturing as much of whatever happens as possible. Instead,

much of the creative decision making surrounding how to achieve the communicative

intent is shifted to production and post-production, with camera operators reactively

capturing whatever imagery best matches the tone of the moment, and editors deciding

how to string that imagery together to achieve the communicative intent.

What about motion pictures stemming from videogames, for example broadcasts of

esports events? In this categorical breakdown, videogame visuals represent nothing more

than unscripted, live broadcast, live performance productions. The complication arises

from the fact that the artists and technicians responsible for real-time decision making

are algorithmic rather than human. And thus we return to the question raised at the

beginning of this work: can humans translate their skill at cinematography, editing, or

any other element of production into an algorithm?

19

2.3 Cinematography in Practice

An element critical across all modern filmmaking processes is cinematography. In scripted

and unscripted, live-action and animated motion pictures, the audience sees the drama,

dialogue, and data presented on screen quite literally through the lens of the camera.

Determining how to move the camera to properly convey the desired communicative

intent of each beat of every scene is therefore a vital but challenging task.

For the purposes of this work, we will assume that the key creatives of the project, such

as the director and cinematographer, have already decided what types of cinematographic

compositions best suit the desired communicative intent for each moment. These individ-

uals have certain images, motions, and compositions already in mind before meeting with

their crew.

However, cinematography is generally a collaborative endeavor. Live action cinema

cameras are large and unwieldy machines,16 commonly requiring hands-on management

from 2-4 technicians17 when recording. Cameras in animation, whether physical or virtual,

are often preliminarily set up by one artist,18 before having their settings repeatedly

refined by a sequence of subsequent animators and camera artists.19

Therefore, an important question is how complex cinematographic decisions are

communicated between crew members, so that what is captured by the cameras matches

the original cinematographic intent.

16For example, the Arri Alexa, a digital cinema camera currently popular among professional filmmakers,
together with a compatible lens, battery, and recording media, usually weighs 30-50 pounds (13.6-22.7
kg), and is 2-4 feet (0.6-1.2 m) in length (Goi, 2013). As a fun comparison, that is in roughly the same
size and weight category as a fully grown medium-sized dog, such as an Australian Shepherd.

17Such a camera team is commonly composed of a camera operator, who customarily controls the
orientation of the camera, and one or more camera assistants, normally responsible for the camera focus,
aperture, and zoom, among other logistics. Some camera movement apparatuses, such as camera dollies,
additionally require another crew member to precisely push the camera (and also sometimes the camera
team) around the stage on the apparatus, such as a dolly grip pushing a dolly.

18Usually referred to as a layout artist.

19In many 3D animation pipelines, camera artists are among the last to touch the camera settings,
following a long line of layout artists and character animators.

20

Frequently, filmmakers communicate their cinematographic intentions in the form

of storyboards and shot lists. Storyboards are illustrations or diagrams that visually

show the compositional arrangement of key actors and props in the scene. While the

technology and styles used vary, they can generally be read in a similar manner to a

cartoon or graphic novel, with consecutive panels describing either motion within a shot

or consecutive shots separated by edits. Shot lists provide similar information in the

form of sequential textual descriptions, often using abbreviations and other shorthands

for efficient communication.

Despite stylistic and terminological variations, methods such as storyboards and shot

lists commonly communicate similar cinematographic information.

• Perhaps the principal property in cinematography requiring specification is that

of visibility: what actors and props should be visible within the frame? Just as

important as determining what should be visible is determining what should be

hidden in the frame. In dialogue scenes, a common question is whether a frame of

one actor speaking to another actor should show both actors or only one. A frame

of an actor alone is often referred to as clean, while a frame showing part of the

back of the actor being spoken to is said to be dirty (Brown, 2013, p.21).

• Closely related to visibility is frame position: roughly where in the frame should

each visible object be? Frame position is often expressed in relative directional

terms, with objects being described as being described as being left, right, above, or

below other visible objects. For many scenes between two people, frame position is

closely related to the line of axis, with shots of each actor describing them as being

on the left side of the frame looking towards the camera’s right, or right looking left.

This directionality is often referred to as frame or screen direction (Brown, 2013,

p.81-82).

• The size of an actor or prop within the frame is commonly described as shot size.

The amount of space an object occupies in the frame generally reflects its importance

in the scene, a relationship commonly referred to as the Hitchcock Rule (Brown,

21

Synopsis: A trio of rodents, already established as notably unpleasant bullies, walk into
a forest. Buck, a large bunny and the story’s protagonist, watches the forest floor below
from a perch high in a tree. Upon seeing the rodents pass along a trail below, Buck
draws a bow and arrow. First seeming to aim the dangerous weapon at the rodents below,
Buck adjusts his aim high into the treetops before loosing the arrow. (After the events
shown here, the fired arrow is shown to cut a vine, releasing a swinging log that comically
whacks into one of the rodents.)

Storyboards:

Frames:

Shot List:

1. Extreme wide shot
(XWS) of the rodents
entering the forest by
approaching the cam-
era.

2. High angle over-the-
shoulder (OTS) of
Buck towards an
extreme wide shot
(XWS) of the rodents
walking below, as
Buck watches the
rodents from high in
a tree.

3. Wide shot (WS)
from ground level of
the rodents walking
through the forest,
seemingly unaware of
the threat above.

4. Profile close up (CU)
on Buck as he draws
back the bow aim-
ing downwards, seem-
ingly towards the ro-
dents below.

5. Medium shot (MS) on
rodents continuing to
walk through the for-
est, still unaware of
Buck.

6. Profile CU of Buck as
he swings the bow up-
wards before loosing
the arrow.

Figure 2.4: Synopsis, shotlist, storyboards, and corresponding frames from a scene in Big
Buck Bunny (2008).

22

Figure 2.5: Examples of a close-up shot (left) and a wide shot (right).

Figure 2.6: Examples of how varying camera distance can modify the appearance of the
same shot size.

2013, p.29). For human subjects, this is usually expressed in terms of how much

of a particular person is on-screen. For example, a view of a person’s entire body,

commonly called a wide or long shot (often abbreviated WS or LS), is frequently

used to establish the relative geometry of objects in a scene, while a view of only

their head and shoulders, commonly called a close-up shot (abbreviated CU), is

often used to show dialog (Bowen and Thompson, 2013, p. 8-11). As illustrated in

Figure 2.6, an actor can be depicted at the same shot size from a variety of distances

by modifying the camera field of view.

• The angle from which an audience is shown a particular object can dramatically

change the way that an object or character is viewed. This relative angle char-

acteristic can generally be divided into two categories, vertical and profile angles,

23

Figure 2.7: Examples of vertical angles (left) and profile angles (right).

examples of which are shown in Figure 2.7.

– Objects, and people especially, tend to appear more powerful, intimidating,

or ominous when viewed from below, and conversely more weak, frightened,

or small when viewed from above. This relative vertical angle is often

used to demonstrate the changing relationships between characters in a story,

making each relative rise or decline visually clear to the audience (Bowen and

Thompson, 2013, p. 34–39).

– The way in which people are perceived is strongly affected by the angle of view

relative to the direction in which they are looking, or profile angle. In general,

characters that are viewed directly from the front are felt to be more connected

to the viewer than characters viewed in profile, mimicking the way humans

tend to face directly towards things upon which they are focused (Bowen and

Thompson, 2013, p. 40–43).

However, storyboards and shot lists are often incomplete, relying upon the knowledge

and experience of those executing the shots to achieve comprehensible and aesthetically

pleasing results. Unlike the cinematographic properties already specified, these informal

rules are commonly held as being applicable for consideration for any frame without

explicit specification.

24

Figure 2.8: Example frames with (left) and without (right) adequate look space.

• For over a hundred years, a standard rule of thumb in photographic and cinemato-

graphic composition has been to place important objects near the third lines, both

vertical and horizontal, in the frame. The most important objects in the scene are

often framed nearest the intersections of these lines (Brown, 2013, p. 51). While

this rule of thirds is certainly popular, it is far from inviolable. The curious need

only leaf through a fashion magazine or randomly pause a feature film to discover

compelling images where important figures are not positioned along the third lines

of the frame. However, there appears to be little published consensus regarding

criteria for exactly when and how to break the rule of thirds.

• A common technique used to balance a shot is to give substantial space between

a character and the frame bound in the direction they are looking, a property

that has been given numerous names in the cinematographic literature, including

“look space”, “lead space”, “nose room”, “action room”, etc. When this space is

not provided, as is shown in Figure 2.8, viewers tend to perceive the character as

psychologically on edge or boxed in, a property that can sometimes be utilized to

interesting compositional effect (Brown, 2013, p. 52).

• In many circumstances, some parts of an object or actor should be inset some

amount from the edge of the frame. This is most commonly evident with human

heads, as too much room between the top of the head and the edge of the frame

causes the subject to appear small and insignificant, while too little causes the

subject to appear restricted and boxed in. This property is commonly referred to

25

Figure 2.9: On the left is a frame where the character has too much headroom, as
highlighted in blue. On the right is a frame where the character has too little headroom,
with the edge of the frame cutting through their hair.

as headroom or head room in traditional cinematography (Brown, 2013, p. 52).

• An obvious consideration worth mentioning is that, with almost no exceptions,

cinematographers and audiences alike expect the camera to not collide with any

objects in the scene. In live action cinematography, any collision can damage the

sensitive electronics and machinery of the expensive camera, as well as produce a

jarring jolt to the perceived motion.

Additionally, other properties become relevant when considering sequences of shots

separated by edits. While watching a sequence of shots intended to portray spatially

and chronologically continuous events, a viewer must be able to quickly determine how

characters and props from one shot correspond to those of a later shot. While many of

the broader considerations of continuity editing are outside the scope of this work, one is

vital.

Arguably the most significant and well studied continuity editing rule is the aforemen-

tioned line of axis, also called the 180°rule. In any scene between multiple actors or

objects of focus, the camera almost always stays on one side of a line20 drawn connecting

the groups, as illustrated in Figure 2.10. As long as the camera does not cross this line,

an actor that is to the left of another actor will remain on the left, while an actor on

the right will remain on the right. If the camera crosses this line, the relative horizontal

20It would be more geometrically accurate to call this 3d boundary a plane than a line, but every
source I have read continues to call it a “line,” probably for historical consistency.

26

Figure 2.10: A diagram illustrating the effect of the line of axis. The central dotted line
that passes through the two characters is the line of axis for this scene. All camera angles
on the left side of the line of axis show the characters on the same sides of the screen,
with the yellow figure on the left and the blue figure on the right. However, any camera
angle on the right side of the line of axis will show the characters reversed, with the yellow
figure on the right and the blue figure on the left.

positioning of objects in the frame will suddenly and jarringly invert, with actors often

appearing to switch places, something commonly called a jump cut. As a result, a key

question is often between whom the line of axis is between, and on which side the camera

should stay (Brown, 2013, p.80-85).

One of the features of these properties that I hope is clear is their immense irregularity.

Even the most sacrosanct of these rules are commonly held to be eminently violable, with

conditions for their allowable violation somewhere between subjective and inexplicable for

even the most accomplished of filmmakers. While the semantics of the various properties

outlined in the section above are useful shorthands for modern cinematographic expression,

cinematographers frequently disagree as to the relative importance and applicability of

rules such as these. For a general purpose virtual cinematography system to be useful

to even a small group of real users, some mechanism for the expression of individual

cinematographic preferences must be supported.

27

2.4 On Editing and Broader Semantics

It can be tempting to imagine, given the relative simplicity of the cinematographic rules

outlined above, that a similar set of rules could be specified for the semantics of sequences

of shots. Unfortunately, determining anything objective about the semantics of editing

represents an obscenely challenging task. While film-going audiences are often able to

agree on the meaning of a sequence of shots, they are rarely able to agree as to how

specific components contribute to the meaning of the whole.

A simple example of this can be found in the famous Kuleshov effect. In the 1920s,

filmmaker and film theorist Lev Kuleshov produced a set of three experimental short films.

Every film began and ended with the same close up shot of the expressionless face of a well

known actor of the era, Ivan Mozhukhin,21 but each film cut to a shot of a different scene

in the middle: a girl playing with a stuffed animal, a steaming bowl of soup, or a body in

a coffin. When Kuleshov exhibited any one of these films, audiences universally lauded

Mozhukhin’s performance regardless of which film they had seen, celebrating the subtle

joy with which he watched the playing girl, the pensive hunger with which he viewed the

soup, and the deep sorrow with which he viewed the coffin. Kuleshov concluded that these

profoundly different perceptions of the same expressionless face could only be explained

by the viewers naturally perceiving the meaning of each shot from a combination of the

shot itself and the shots that had been edited to surround it (Cook, 2004, p.118-120).

Despite considerable efforts from scientists and films scholars over the last century, the

source and fundamental nature of these editing effects are remarkably poorly understood.

Medical researchers conducting fMRI experiments only succeeded in statistically verifying

the existence of the Kuleshov effect in 2006, although the specific neurological phenomena

responsible remain largely unknown (Mobbs et al., 2006). A handful of authors, such as

21Sometimes spelled Mosjoukine or Mozzhukhin in English language texts. As an ally of several
prominent Tsarists, Mozhukhin fled Russia in response to the 1917 revolution, and was living in Paris
when Kuleshov’s experimental films were being made. Kuleshov supposedly used footage from one of
Mozhukhin’s earlier films, the prints for which had been abandoned during Mozhukhin’s flight to France.
Unfortunately, there are no known surviving copies of either Kuleshov’s shorts or many of Mozhukhin’s
films.

28

Arijon (1991) and Katz (1991), have attempted to pen practical guides on the selection

of sequences of shots to reach a specific semantic intent, though a close reading of their

works finds little consensus.

What limited agreement exists centers around continuity editing, a general strategy

of editing shots together so that they coherently appear to refer to continuous regions

of time and space. One rule specified in the last subsection, the 180°rule, has its roots

in continuity editing. However, rules such as these do not provide an opportunity to

communicate any message to the viewer, instead simply guarding against cuts that will

strain the perception of spatial continuity.

Beyond the boundary of continuity editing, the semantics of film editing remain

enduringly inscrutable. Just as a practiced speaker of English, Mandarin, or Hindi can

easily predict the various ways a fragment of speech can be interpreted, skilled filmmakers

seem to be able to intuitively identify the meanings an audience is likely to glean from an

edit or shot choice, and leverage this skill to select edits that best match their desired

communicative intent. What guides this ability, and whether it is something modellable

in a computer, is surprisingly difficult to analyze.

Early film scholars, such as Kuleshov, argued that the language of film could be

analyzed according to static formalisms, such as montage theory, though they themselves

were not particular consistent in following their own advice. Some film scholars, such as

Metz (1991), have attempted to linguistically formalize film through semiotics, although

the frameworks they propound are remarkably unwieldy for anything but abstract analysis.

Some more recent film scholars have theorized that the observed meaning of a film emerges

from some combination of the images/sounds exhibited and the psychological state of the

audience, which is in turn impacted by the simultaneous presence of the film’s content

within a multitude of cultural contexts. While facilitating many types of fascinating

analysis and argument, this psychoanalytical paradigm provides little additional insight

into how filmmakers make decisions.

Regardless of where the truth lies in this wild array of hypotheses, it seems as though

29

the language of film is neither static nor uniform. Feature films and music videos,

for example, frequently exploit divergent cinematography and editing styles, with each

style undergoing continuously dramatic evolution from year to year. Internet websites

and forums constantly feature contradictory opinions about how good the latest film

or television episode was, with much of that disagreement stemming from a lack of

consensus on exactly what meaning was contained in the work. As a result, attempts at

automatic edit comprehension or computational editing22 are fraught with difficulty, and

have therefore been resigned to the dark expanse of regions unexplored in this text.

22See Section 3.2.3.

30

CHAPTER 3

Related Work

Virtual cinematography is certainly not a new problem. From simulated spacecraft

to household robots, medical imaging to film production, and videogames to scientific

visualization, cameras have been and continue to be an integral part of many virtual and

physical systems that require or can benefit from automation.

As befitting a fundamental problem with wide-ranging implications, virtual cinematog-

raphy has been subject to diverse directions of research under a variety of names. As this

work is focused on camera control for cinematographic applications in virtual spaces, some

effort has been taken to use the term “virtual cinematography” consistently throughout

this document. However, similar problems have been referred to as virtual camera control

by Abdullah et al. (2011), virtual camera planning by Pickering (2002), and viewpoint

selection by Vázquezz et al. (2001), among a variety of other names. Much of this diversity

stems from the differences between the backgrounds of the researchers and their intended

applications for developed tools.

While visibility and illumination problems have long held interest in analytical mathe-

matics, the first work to explore camera control explicitly for 3D computer graphics23 was

Blinn (1988), introducing several vector-based algebraic control schemes now ubiquitous

in computer graphics, such as the LookAt matrix. Somewhat more recently, two surveys of

the field have been published, specifically Christie et al. (2005) and Christie et al. (2008),

and much of the terminology and organization of this chapter is built upon their excellent

work. Another good overview is Haigh-Hutchinson (2009), an equally comprehensive

23Specifically for what Blinn amusingly called his “space movies.” At the time, he was employed at the
Jet Propulsion Laboratory, where he created many pioneering renderings of spacecraft in flight.

31

but somewhat more practical overview of interactive camera control for videogames.24

While these surveys and practical overviews are well researched and thorough works, a

considerable volume of research has been published since their publications. Additionally,

none of these works provide a meaningful taxonomy that allows for widely differing works

to be meaningfully compared, instead enumerating different categories of applications

served and approaches taken with limited clear interrelationship.

As already mentioned,25, there are many different directions of research within just

the computer graphics community. Videogames, medical imaging, animation, scientific

visualization, and more prescribe distinct and sometimes contradictory demands on the

form and formulation of virtual cinematography systems. Some of the differences between

these applications were discussed in Chapter 1.1, including online/offline computation,

the degree of available future information, and variability of desired camera behaviors.

However, this assortment of approaches can be understood as different answers to a

single question: to achieve a desired image at one or more moments of time, how can

a computer decide where to place a camera based on the positions and orientations of

significant objects in a 3D virtual scene?

This way of posing the problem of virtual cinematography is relatively broad, admitting

a wide variety of different types of research under its umbrella of related work. However,

it does place three useful constraints on the body of work considered related:

1. the 3D motion (e.g., position in R3, rotation in SO(3), lens/sensor settings)26 of a

virtual camera is being controlled

24This book was primarily written by Mark Haigh-Hutchinson, a veteran video game developer who
specialized in camera control systems in the latter part of his career. Sadly, he unexpectedly passed
away in 2008, after which his unfinished manuscript was edited into the published book by several of
his former colleagues. To my knowledge, Haigh-Hutchinson (2009) is the only comprehensive book on
practical camera control systems to be published to date.

25Including in sections 1.1 and 1.3, as well as earlier this section.

26Note that any subset of these parameters satisfies this definition, as well as any alternative represen-
tation convertible to parameters like these, such as spherical positional coordinates.

32

2. within a wholly virtual (i.e., entirely modeled within a computer simulation) scene,27

3. and the computation of its control is vector-based (i.e., uses only the positions and

orientations of objects of interest in the scene).28

With these more precise criteria for related work specified, how should a reader

interested in virtual cinematography go about understanding the multiplicity of related

work?

3.1 Taxonomy of Related Work

The body of work directly related to the criteria outlined at the beginning of this chapter

is large both in volume and diversity of approaches. As many of these related works

introduce novel or conflicting terminology and priorities, understanding these works in a

single context can prove challenging.

Fundamentally, a virtual cinematography system is little more than a collection of

algorithms capable of automatically computing camera settings corresponding to a user’s

specified behavior. However, different systems can be capable of widely varying ranges of

behaviors for a variety of reasons. Disparate algorithms not only have different capabilities,

but different user interfaces can also expose different portions of those capabilities to users,

which diverse users may find more or less useful to their specific needs and preferences.

Following this basic conceit, virtual cinematography systems can be analyzed through

three criteria.

27While several robotic systems are mentioned in the following sections, such as Bonatti et al. (2021);
Huang et al. (2019a,b, 2021), these systems first consider cinematography in the virtual world constructed
from analyzing their sensor data, then use the virtual cinematography solution to compute what robotic
motions to compute. In this sense, the purely virtual portions of these systems still satisfy this requirement.

28Several approaches, such Olivier et al. (1999); Halper and Olivier (2000) that require algorithmic
analysis of rendered pixels are mentioned here, especially in the context of visibility computation. However,
these systems do not consider the material properties of the objects in the scene, instead using the
rendering pass as an accelerated form of geometry query functionally equivalent to raycasting. More
philosophically, computing with enough points on the surface of some geometry could easily approximate
the level of detail of rendering while satisfying this definition, as long as no material properties are
considered.

33

Figure 3.1: A high-level diagram of the structure of vector-based virtual cinematography
systems.

1. Behavior types: What camera behavior does the user want? What range of camera

behaviors can a virtual cinematography system produce?

2. Interface paradigms: How can a desired camera behavior be specified to a particular

system? What types of behaviors are expressible with a particular interface?

3. Algorithmic strategies: How does a system compute a camera parameterization

based on the specified behavior and available scene data? Does the user require more

speed, efficiency, or breadth of computable behaviors than a particular algorithm is

capable?

This behavior-interface-algorithm analysis strategy has several distinct advantages.

Individually inspecting the supported behaviors, interfaces, and algorithms of systems

dramatically increases the visibility of the similarities and differences between approaches.

34

Additionally, the types of behaviors, interfaces, and algorithms supported by each system

can be shown to be directly and intuitively related to their expressivity, controllability,

and efficiency.

Moreover, some types of systems can be understood as containing one or more sub-

systems, each with its own set of behaviors, interfaces, and algorithms. By examining

how higher-level desired camera behaviors are mapped into alternative behaviors solved

by sub-systems’ algorithms, these composite system approaches can be unpacked into

more easily understood conceptual constituent components.

3.1.1 Behavior Types

How does the user want the camera to behave? Depending on user preference and

application domain, any one of a vast array of desirable camera behaviors, spanning

aesthetic, geometric, and functional considerations, may be desirable.

While the multitude of camera behaviors is far too large to be enumerated in detail

here, many common camera behaviors share similar characteristics, and are analyzable

through several different lenses.

One of the most intuitive and powerful analytical strategies examines each camera

behavior as a combination of behavioral properties expected to be satisfied for the

user to accept a candidate camera setting. At a high level, singular behavioral properties

can be thought of as simple questions about the relationship between the camera, the

computational state, and the object(s) of interest in the scene, such as the following.

• Visibility: can the object be seen in the image produced by this camera?

• Size: does the object appear to be a certain size in the image?

• Distance: is the camera within a particular distance range from the object?

• Frame position: is the object within a particular region of the frame?

• Relative Angle: is the object being viewed from a particular angle, relative to some

35

special direction?

• Occlusion avoidance: is anything else in the scene blocking the line of sight from

the camera to the object?

• Collision avoidance: will the camera collide with anything in the environment as it

moves?

• Smoothness: is the motion of the camera smooth?

• Path following: are some of the camera’s settings following a specified path through

the scene?

• Computational speed: can the camera settings be computed within a predefined

window of real-world time?

While this list of simple behavioral properties is far from exhaustive, it is worth noting that

many properties are closely related, with some intuitively translatable into combinations

of others. For example, visibility can be thought of as a combination of frame position

and occlusion avoidance, collision avoidance can often29 be interpreted as a subtype of

occlusion avoidance, and size can be thought of as either a sibling of the relative angle

property, a subtype of distance in combination with a fixed field of view, or a pair of

frame position properties. At the extreme of these close relationships, any and all of the

properties above can be accomplished through a path following behavior, if the specified

path is somehow chosen to match another collection of desired behavioral properties.

Additionally, these behavioral properties can be combined in a myriad of different

ways, to which different systems supply differing support. Many systems, such as Blinn

(1988), Ware and Osborne (1990), Shoemake (1992), and Lino and Christie (2012), only

support fixed combinations of behavioral properties, allowing the user to modify some

limited parameters without modifying the relative importance of any of the supported

29Assuming, as many software systems do, that the camera is an infinitely small point, that the
unoccluded object is on the far side of collidable geometry from the camera, and that the collision
geometry is identical to the occlusion geometry.

36

behavior’s properties. However, a variety of systems have also been developed to support

arbitrary combinations of behavioral properties. Some systems, such as Gleicher and

Witkin (1992) and Christie et al. (2002), allow for dynamic sets of behavioral properties

to be joined with simple logical conjunctions, with the user expecting all properties to

be satisfied by the returned camera. Other systems, such as Ranon and Urli (2014) and

Bares et al. (1998a), allow for different behavioral properties to be given different relative

priorities, allowing for the system to automatically compromise if an ideal solution cannot

be computed. Other systems still, such as Lino (2015), allow for complex logical and

numerical combinations allowing for intricate balancing of behavioral properties.

A further distinction between virtual cinematography systems’ behavioral combinations

can be found in the number of objects over which the behavioral properties are permitted

to be modeled. Many simple systems, such as Blinn (1988); Ware and Osborne (1990);

Bares and Lester (1997); Zeleznik and Forsbergt (1999), are only capable of computing

camera parameters relative to a single object in the scene, with all considered behavioral

properties specified relative to that one object. While some other systems consider

specialized behaviors over a singularly static number of objects (e.g., two objects (Lino

and Christie, 2012)), other systems allow for behaviors to be specified over a variable

number of objects. However, even this variability in trackable objects is not uniformly

supported between different systems. Some systems allow for behaviors to be specified

relative to a number of objects within a particular range (e.g., 1-3 Elson and Riedl (2007)),

while other systems support any number of objects (Ranon and Urli, 2014; Lino, 2015).

Speaking broadly, some virtual cinematography systems are capable of large and

diverse categories of behaviors, while others only support a few specialized forms. An

intuitive metric for the expressivity of each virtual cinematography system might be

to measure the size of the set of producible behaviors, although the close relationship

between many groups of behaviors muddies the clarity of this notion somewhat. Should

the production of a behavior that guarantees both frame position and occlusion avoidance

count as a different from a behavior that guarantees visibility? How much does the

desired angle from which an object is viewed need to change to count as a separate

37

behavior? Worse still, different users may not be equally interested in the same regions of

behavioral expressivity, or disagree on where the boundaries between specific behaviors

might be, making any precise quantification of expressivity challenging. However, a

simple qualitative comparison between two systems can be expressed by asking whether

both systems are capable of producing camera instantiations that equivalently match a

particular behavior.

3.1.1.1 Common Behavioral Specializations

The specialization of a group of behavioral properties can sometimes provide a direct

practical benefit, allowing for greater efficiency in both communication from the user, as

explored in Section 3.1.2, and computational speed. Although the realm of specialized

behavioral properties explored in previous research is near boundless, the overwhelming

majority can be understood as straightforward combinations of the simple properties

above. Several specific combinations commonly appear in research literature and publicly

released software.

For example, one natural and popular behavior has a camera smoothly follow a

specified path through the scene, combining the smoothness and path following properties

listed above. A user might input the desired camera pose at several explicit moments

of time, and expect the virtual cinematography system to determine a path with some

smoothness quality, usually mathematically formulated as differential continuity, that hits

all those poses. Smooth path following behaviors are especially common in noninteractive

applications, such as offline animation, where designers can precisely choreograph camera

motion relative to the known motion of other objects in the scene long before display

begins.

Within interactive applications, a common camera behaviors attempts to keep a set

of objects visible at a set size in the frame, a category of behaviors sometimes referred

to as tracking or follow cameras. Depending on how many visible objects are followed,

their expected positions within the frame, and what camera properties are controlled, a

38

few specialized forms of tracking camera behaviors are popular enough to have adopted

unique terms.

One of the most ubiquitous tracking camera behaviors in interactive computer graphics

is the LookAt30 matrix behavior, which centers a given point in space within a camera’s

view by rotating the camera without modifying its position. Using the properties listed

above, LookAt can be understood as a combination of frame position, with the object

expected to stay centered on the screen, and path following, as the position of the camera

is expected to follow a path provided by some external controller.

Many video games and other real-time applications use similar but more sophisticated

camera behaviors, controlling the position, rotation, and sometimes field of view of the

camera to make a single interactively controlled character appear at a specific distance

and from a particular direction relative to the camera, a behavior commonly referred

to as third person view (Haigh-Hutchinson, 2009). Correspondingly, first person view

behaviors position the camera directly where a character in the game would be looking,

for example from the point of view of a pilot in a cockpit or a soldier on a battlefield.

The overwhelming majority of videogames in which the player controls a single character

at a time employs either a first person or third person view camera behavior, with the

parameters desired of the camera (e.g., distances, angles, and positions) specified by a

combination of player input and game state logic.31

A slightly more powerful extension of this idea places several objects at fixed positions

in the frame. One interesting example of this, that has appeared in several recent virtual

cinematography publications such as Jiang et al. (2020) and Jiang et al. (2021), allows for

two objects to be shown at specified positions in the frame and from particular angles.32

30Despite its ubiquity, the historical origins of the “LookAt” matrix are a bit mysterious. The first
published appearance I have been able to find appears in the pioneering Blinn (1988), where it is called
the “look-at” transformation. However, despite the lack of citations in the paper, Blinn’s writing calls it
a “traditional” technique, suggesting invention by an earlier party.

31Second person view, tracking the player’s avatar from the perspective of another independently
controlled character, is remarkably rare. I am currently aware of only one clear exemplar in a AAA game:
the penultimate level of dri (2011).

32Note that these two behavioral properties in combination additionally capture the relative size of

39

As the region of camera positions from which two points can be positioned within the

frame forms a torus, this is commonly referred to as a toric space behavior (Lino and

Christie, 2015).33 As users are often more interested in seeing one side of an object, like

an actor’s face or the front of a prop, much of that torus may be undesirable, requiring

angular constraints to fully describe the desirability of a particular camera placement. As

a result, this toric space behavior can be interpreted as a combination of multiple frame

position and relative angle behavior properties.

3.1.1.2 Behavioral Abstraction and Style

This behavioral model implicitly assumes that the user already knows, and is prepared to

precisely express, what behavior they want the virtual cinematography system to compute.

However, this assumption does not fit all application domains and behavioral models

equally well. For some users and application domains, the ability to abstract a complex

combination of behavioral properties in to a simpler, more efficiently expressible format

can be highly desirable.

Expressed in natural language terms, these behavioral abstractions are often of the

form ‘I want my camera to say X,’ ‘the camera should have Y style,’ or ‘I want the

camera to mimic this video clip.’ However, descriptions such as these can be profoundly

ambiguous, motivating a variety of different approaches to mapping such ambiguous

behavioral abstractions to concrete behavioral descriptions.

One simple form of behavioral abstraction mitigates the challenge of behavioral

expression by allowing the user to choose from a small set of predefined behaviors.

However, selecting a palette of predefined behaviors likely to be useful to a diverse body of

users is far from easy. One such approach, appearing in works such as Christianson et al.

(1996); He et al. (1996); Lino et al. (2010), and motivated by the work of film scholars

each object in the image, modeled as the angular size of each object as a sphere.

33Much of the mathematics of this method was first introduced in Lino and Christie (2012), although
the phrase “toric space” did not appear until Lino and Christie (2015).

40

such as Arijon (1991), provides a library of predefined motion types corresponding to

cinematographic idioms, including shot sizes and angles believed to be common. More

recently, works such as Huang et al. (2021), and Ashtari et al. (2020), have indirectly

presented the user with a handful of supported motion types, such as orbiting and following

a given target. Some systems, such as Elson and Riedl (2007), take this a step further

by asking the user to choose from a predefined library of keyframed camera motions,

specified in a reference frame relative to the actors.

Another common behavioral abstraction is cinematographic style. Sometimes, these

styles are assumed to be similarly finite and discrete, and are essentially interchangeable

with the works described in the previous paragraph. However, some other systems consider

style as a continuous space. For example, Jiang et al. (2020) and Jiang et al. (2021) map

stylistic parameters, corresponding to how to mix together different types of motion, into

concrete toric space behavioral properties. Additionally, these systems also support a

style-by-example abstraction paradigm, where style parameters can be extracted from a

video clip whose style the user wants to copy through automated computer vision analysis.

Across different domains, some users will come to the system undecided on what

camera behavior is desirable, and intend to interactively explore the range of supported

possibilities before coming to a final decision. While a particular camera behavior might

be implicitly expected by the user in each moment of use, users in these highly interactive

domains are commonly more conscious of how efficient and intuitive it is to make changes

between closely related camera behaviors. While several concrete behavioral interface

paradigms are discussed in Section 3.1.2, a number of abstract behavioral properties are

often used to improve the controllability of these interactive interfaces.

One common behavioral expectation for interactive systems is partial changeability,

where a specified portion of previously computed camera settings are left unchanged by

future input changes. A particularly common instance of this is keyframe animation

systems, in which the modification of a subset of keyframed camera parameters does not

result in or require modifications to any other keyframes, allowing animators to iteratively

improve the animation one moment at a time, such as explored in Jiang et al. (2021).

41

Some systems, such as Unity (2022), also support partial changeability of separable camera

settings, such as automatically computing camera rotation changes to support modified

behavioral properties while leaving the camera position unchanged.

3.1.1.3 Interpretation and Compromise

Suppose a user with a particular camera behavior in mind were to be presented with

some candidate camera settings: how might they respond? What does it mean for camera

settings to “match” a particular behavioral property? As with so many simple questions,

multiple perspectives dictate diverging answers.

For some users and applications, individual behavioral properties represent require-

ments that a camera must either completely satisfy or entirely violate. Whether satisfactory

camera instantiations are plentiful, singular, or nonexistent in a given scene, each candi-

date camera can be unambiguously evaluated as matching or not matching the behavioral

properties. In this rigid binary model, the goal of a virtual cinematography system is

to automatically identify a camera instantiation that matches the desired behavioral

properties.

For example, the LookAt controller of Blinn (1988), arguably the most ubiquitous

camera controller of all time, can be understood to compute a very rigid behavior. Given

the expressed camera position and target position, the goal of the system is to compute

a camera orientation that places the target exactly in the center of the camera’s field

of view. While some numerical error from floating point arithmetic may appear, if the

system were to return camera settings that placed the target a noticeable distance from

the center of the display then the user would find that their expected behavior is not

satisfied.

However, such rigid interpretations can lead to a problem: what does the user expect

to happen if no satisfactory camera instantiation can be automatically identified? This

situation can easily and unanticipatedly arise if the user’s behavioral requirements conflict

with each other or the environment, a problem sometimes referred to as over-constrained

42

specification. For example, a user might request that two objects be simultaneously

visible in frame, a combination that may be impossible if the surrounding environment

blocks the critical lines of sight. As another example, a user might desire a character be

viewed from a particular angle and distance that would put the camera into collision with

the environment. Worse still, the computation of camera settings matching a complex

combination of behaviors might require more computational time than is allowable, such

as during competitive video game play.

One approach to this sort of problem, employed in Christie et al. (2002) and Louarn

et al. (2018) among others, is to simply report failure when detected, and request additional

input from the user before computation is allowed to continue. For some user types and

application domains, this rigidity may be desirable. For example, a user constructing

offline scientific visualizations might find a candidate camera unacceptable if it fails to

meet an exact set of standards, and welcome the opportunity to reevaluate what camera

properties are necessary. Alternatively, offline animators making iterative modifications

to character motions or environmental geometry might eagerly embrace the automatic

reporting of any changes that would render their desired camera movement infeasible.

However, reliably detecting if complex behaviors like visibility are truly infeasible, rather

than simply difficult to compute, usually presents an immense computational challenge,

as explored in Section 3.1.3.

Instead, many rigid systems solve this problem by automatically allowing some

behavioral properties to be violated in order to completely satisfy others. For example, a

virtual cinematography system struggling to find camera settings that make two objects

visible in frame might choose to return a view in which only one object is fully visible,

as Bares et al. (1998a) can. As another example, an algorithm might choose to diverge

from the desired distance from which an object is viewed to show the object from a more

important desired direction, if environmental collisions or occlusions render the ideal

camera position infeasible, as Bares et al. (2000a) may. A strategy common in real-time

graphics applications, such as in Lino (2015), is to return whatever camera settings can

be computed in the time allowed, even if only some of the desired behavioral properties

43

are satisfied, in order to have something to show on screen when required.

Fundamentally, approaches such as these attempt to automatically compromise

between conflicting camera desires. Of course, a wide variety of compromise strategies

are possible, ranging from maximizing the total number of properties satisfied as Burelli

et al. (2008) does, to hierarchically relaxing lower priority requirements in deference to

those of a higher priority as in Bares et al. (1998a).

Alternatively, some users and applications, such as Olivier et al. (1999), and Ranon

and Urli (2014), expect support for a radically different behavioral interpretation style:

by allowing for the expression of desired behavioral properties as measurably satisfiable

preferences, a virtual cinematography system can instead be expected to compute camera

settings that maximize the total amount of behavioral satisfaction, or equivalently minimize

the total behavioral violation. While a measurably superior solution might be preferable,

the user expecting their camera to exhibit some behavioral property in this style would

be willing to accept any camera instantiation regardless of quality, if they are confident

that no better possibility is available.

For example, rather than expecting a view of an object from a particular angle, the

user might expect the camera to show an object from as close to a particular angle as

possible, with small deviations from the desired angle preferable to large ones. Instead of

computing a camera instantiation that fully satisfies a set of rigid behavioral requirements

in a narrow computational time period, a common approach is to attempt to compute as

good a camera as possible in the time available, as Ranon and Urli (2014) demonstrates.

Another property commonly modeled this way is smoothness, with the camera expected to

follow as smooth a path as possible while respecting a variety of other desired behavioral

properties, such as in Lino and Christie (2015). However, balancing smoothness with

other properties is a common source of difficulty in virtual cinematography, with some

systems instead opting to discontinuously move the camera if continuing smooth motion

is found to be unacceptably difficult (Giors, 2004; Galvane et al., 2013).

Nonetheless, sometimes the best available compromise solutions can produce un-

44

desirable results. For example, a camera expected to show as much of two objects

simultaneously in frame might compromise by showing little to none of either, if the

corresponding camera settings are the best found by the system. Depending upon the

application, undesirable compromises such as these can produce serious consequences,

from a videogame player losing a tournament match, to a medical professional missing

evidence vital in the diagnosis of a patient’s illness.

As a result, differing interpretations of how and when compromise from rigidity

should be allowed represent a significant factor driving discrepant approaches to virtual

cinematography. As computer scientists, most virtual cinematography researchers are

accustomed, and often required, to think in terms of decidable formalisms that are

commonly better suited to some behavioral interpretations than others, such as constraint

satisfaction to more rigid interpretations, and optimization to more compromissory

interpretations, among others. As such, the choice of behavioral interpretation is directly

linked to the choice of formalism and, because disparate formalisms motivate divergent

interface designs as well as algorithmic strategies, the general approach taken to virtual

cinematography system design.

3.1.1.4 Behavioral Inputs and Outputs

Humans tend to think about and describe camera behaviors in terms relatable to natural

language, for example “point at this object,” “show me the front of this character,” or

“smoothly follow this path.” Unfortunately, human descriptions such as these are often

too imprecise or subjective to be expressible in a manner understandable or computable

by a computer.

However, virtual cinematography systems are generally structured around more com-

putationally concrete notions of behavior. In abstractly mechanical terms, each virtual

cinematography software module can be thought of as taking inputs from the user and the

scene, and outputting camera setting outputs following some computational procedure.

The goal of every user is to efficiently find some configuration of inputs to a virtual

45

C
am

P
os
.

C
am

R
ot
.

C
am

L
en
s

O
b
j
P
os
.

O
b
j
R
ot
.

E
n
v
ir
on

m
en
t

Visibility Y Y ? Y ? Y
Size Y Y Y Y ?
Distance Y Y
Central frame position Y Y Y
Frame position Y Y ? Y
Relative Angle Y Y Y
Occlusion avoidance Y Y Y
Collision avoidance Y Y
Smoothness Y Y ?
Path following ? ? ?
Computational speed

Table 3.1: Summary of which camera settings, object properties, and other environment
geometry must be considered for each behavioral property in isolation. Cells with a
‘Y’ indicate that the column’s setting must be considered for computation of the row’s
behavior, while an empty cell indicates that the setting is never required for that behavior.
Cells containing ‘?’ vary depending upon exactly what form the behavioral property
takes. For example, computations concerning the frame position behavioral property will
require cognizance of the camera lens settings if the desired position is not the center of
the frame.

cinematography system that produces camera settings matching their desired behavior.

While the form of the data input and output may vary between specific interfaces

and algorithms, the abstract content required to be considered represents a central

characteristic of many types of behaviors.34 The separation of that data between input

and output in different virtual cinematography systems directly affects the manner in

which behaviors can be compared, interacted with, and combined.

For example, consider two virtual cinematography system approaches, both from

Blinn (1988), that attempt to position an object with a known position in the center of

the camera’s field of view. Abstractly, any system capable of automatically reasoning

34Different authors have suggested different ways of categorizing requisite data. For example, Christie
et al. (2005) described a division between “on-camera” data, relating to the position and orientation of
the camera, and “on-screen” data, relating to the properties of a visible object in the frame.

46

about the frame positioning of a particular must consider, at minimum, the position and

orientation of the camera as well as the position of the object of interest in the scene.

1. One common and simple approach is the LookAt matrix, which centers the object

in the frame by setting the orientation of the camera located at a given position. In

terms of the behavioral property types described earlier, LookAt can be understood

as a combination of frame positioning and positional path following behavioral prop-

erties. The LookAt matrix behavior can be interpreted as requiring, at minimum,35

the position of the camera and the position of the object of interest as input, as no

specific reasoning about the behavior can be accomplished without these properties.

As output, the LookAt matrix behavior specifies rotational control for the camera

that, if used with the given camera position, will situate the object of interest in

the center of the frame. So, the inputs of LookAt must contain camera position and

object position, and the output must contain camera rotation.

2. An equally valid, though less common, approach would be to position the camera

with a given orientation so that the object is visible at a given distance in the center

of the frame. In terms of the behavioral property types listed earlier in this chapter,

this rotational approach might be understood as a combination of frame positioning,

distance, and relative angle behavioral properties. In this behavioral approach, the

inputs must contain the camera orientation, object position, and a distance from

which to view the object, while the output must contain the camera position.

While both approaches can clearly accomplish the same frame positioning behavioral

property, in which the object is centered in the camera’s view, formalizing a comparison

of the other behavioral properties in these differing approaches is less obvious. Examining

the inputs and outputs of each approach provides a tidy answer to this problem: between

inputs and outputs, both approaches consider the position and orientation of the camera as

35Usually, LookAt requires an additional directional input corresponding to the desired up direction
which, together with the other inputs, fully specifies rotation in SO(3). However, this technicality is
safely ignorable for this abstract consideration.

47

well as the position of the object of interest, directly matching the minimum requirements

for the frame positioning behavior. However, while LookAt takes camera position as input

and outputs a camera orientation, the latter rotational approach takes orientation and

distance as input to determine a camera position as output. Note that in both approaches

to this behavior, all camera parameters other than position and orientation, such as lens

settings like field of view or focus distance, can be freely modified without violating any

of the stated behavioral properties, and are correspondingly absent from the inputs and

outputs. Additionally, a keen reader might note the inputs to each system can be easily

mathematically converted to the form of the other: this is no accident, as the underlying

behavioral properties of both systems require cognizance of the same data, interpreted as

corresponding to singular satisfactory camera solutions, regardless of the form the data

takes.

However, a critical difference emerges when considering the ease with which these two

systemic approaches might be combined with additional behavioral computations. For

example, suppose the user wanted to directly specify a positional path for the camera to

follow while keeping the object centered in the frame. Combining this with LookAt, which

accepts a camera position as input, is considerably easier with LookAt than with the

rotational approach. Alternatively, if the user wanted to view the object from a particular

angle, perhaps to show one side of the object over another, incorporating this relative

angle behavioral property would be substantially easier with a system already configured

to take orientation as an input. This is fundamental to the combinational capabilities of

systems like CineMachine, which use the separability of the desired behavioral properties

to sequence algorithms capable of matching simple behavioral styles.

Analyzing the data captured in these inputs and outputs can also reveal what types of

behavioral changes a particular system is capable of automating. For example, consider

a camera that has its position and orientation directly specified by a user to point at

an object of interest with a known position. Obviously, the camera is, by construction,

matching a behavior of “position the object in the center of the screen,” provided the

object is always in the expected position. In this approach, the inputs and outputs to

48

the virtual cinematography software module contains the position and orientation of

the camera, but does not contain the position of the object. As a result, if the object’s

position is modified or in any way unpredictable, the resulting camera instantiation may

no longer place the object in the center of the frame, violating the behavior. A system

of this type can be described as incapable of automating the desired frame positioning

behavior in the presence of variable object position.

3.1.2 Interface Paradigms

How should a user specify what they want the camera to do? While this question seems

simple, the existence of any singular answer is remarkably ambiguous.

As already stated, users generally want to efficiently find a set or sequence of inputs

for the system’s interface that will cause the system to produce a camera instantiation

matching their desired camera behavior. Additionally, each system may be capable of

automatically producing a diverse multitude of distinct camera behaviors, few of which

may correspond to the user’s desired camera behavior. Providing an interface that allows

for the efficient specification of a desired behavior while allowing as many behaviors as

possible to be expressed, presents a daunting challenge, prompting a variety of approaches.

A common trend among many interface approaches is that supporting the expression

of a greater amount or variety of camera behaviors often requires the user to provide

more input data. As humans (and machines) generally take more time to input more

data, increasing an interface’s domain of expressible behaviors tends to come at the cost

of reducing the efficiency with which it can be used. As a result, a quick at-a-glance

comparison between interfaces can be made by considering a plot along two axes: the first

corresponds to the number of automatable behaviors that are expressible in this interface

(expressivity), while the second corresponds to the amount of information the user has to

input to specify a specific camera behavior (verbosity). While the ease with which an

interface can be controlled by a user (controllability) represents a complex mixture of

objective and subjective considerations, systems that require less input do tend to be

49

Figure 3.2: Diagram summarizing interface paradigms.

more controllable.

While a wide variety of virtual cinematography interfaces have been proposed in

related research, this work identifies four categories of interface paradigms, referred to as

direct, parametric, imperative, and declarative interfaces, which are discussed in

detail in the following sections. These categories are meant to be neither exclusive nor

exhaustive, but instead represent common interface modalities, with many different virtual

cinematography systems exhibiting characteristics of multiple modalities. Additionally,

the expressivity-verbosity plot can be roughly divided into quadrants corresponding to

these common interface paradigms, into which virtual cinematography systems utilizing

these paradigms tend to fall.

3.1.2.1 Direct Interfaces

Whether turning a crank on the side of a wooden box or inputting constants into a matrix

in software, controlling a camera in the earliest days of filmmaking and computer graphics

was an exceptionally manual endeavor. In some domains, modern camera systems remain

reliant upon direct sources of input for the majority of their control. With these direct

control interfaces, a signal from a human operator or camera-incognizant data source

50

directly maps to camera system control inputs.

Computer animators and live action filmmakers frequently utilize direct control

paradigms, with human artists and technicians directly piloting a virtual camera. Most

modern 3D animation software, such as Maya, Cinema 4D, and Blender, by default require

an animator to animate the camera in the same manner they would animate any other

object in the scene, by directly specifying keyframed poses that may be interpolated

between. For skilled offline animators, the directness of these interfaces can allow efficient

expression of what may be highly complex behaviors. Additionally, by allowing a virtual

camera to be directly puppeteered with a physical controller, such as in Ware and

Osborne (1990) or other motion tracked controllers, users already skilled in live-action

cinematography or other tasks can intuitively transfer their abilities to virtual cameras

without having to learn any additional tools. However, if the primary objects of interest

in the frame are significantly moved after the camera settings are input, a user will be

required to manually modify the keyframes to achieve comparable behavioral properties.

Several videogame genres also commonly use direct control interfaces when the user

needs and can be expected to have maximal control over the camera. Many flight

simulators and vehicle racing games, for example, show the world from the pilot’s point

of view, with the camera effectively controlled by a combination of user vehicle input

and software physics feedback. While such camera control is partially automated, the

responsible software is not endeavoring to achieve any specific camera behavior, instead

deriving camera parameters from algorithms designed for driving, flying, or some other

camera incognizant process (Haigh-Hutchinson, 2009).

In the language of Section 3.1.1, direct interfaces are essentially only capable of

expressing a single type of behavior: path following. Absent additional computational

machinery to find a path matching other behavioral properties, direct interfaces represent

the absolute minimum of expressivity over automatable behaviors. However, as already

highlighted, direct interfaces can be highly desirable in applications where automatable

expressivity is not required.

51

3.1.2.2 Parametric Interfaces

While frequently superficially dissimilar, a wide variety of virtual cinematography systems

feature interfaces that share a common approach to user expression of camera behaviors:

the user is presented with a fixed number of input parameters that are directly mappable to

camera behaviors the virtual cinematography system is capable of automating. Regardless

of how the input parameters are presented to the user, from manually modifiable text to

interactively draggable image overlays, this document refers to this general strategy as the

parametric interface paradigm. Broadly speaking, parametric interfaces provide a concise

and controllable means of expressing a comparatively small family of related camera

behaviors, on the assumption that the expressible behaviors will be valuable enough to

the user to warrant specialized control.

Many of the earliest automated camera control systems support parametric interfaces,

including the primary methods included in the pioneering virtual cinematography work,

Blinn (1988). For example, the LookAt, described in depth in sections 3.1.1 and 3.1.3.3,

can be understood as a parametric interface, where the inputs include camera position in

R3, target location in R3, and an up direction in R3, for a total of 9 scalar inputs. While

this LookAt interface maps to a single behavior, in which the camera position follows

a path and a target object is centered in the frame, Blinn’s paper describes a set of

extensions to LookAt that allow for the position and eye target position to be replaced by

other inputs representations transferable to LookAt, such as specifying a frame position

for the target other than the center of the frame, and specifying a camera rotation but no

position, among others. Despite their differences from LookAt, each of these alternative

interface modes takes a fixed number of inputs, and all map to a small, closely related set

of behaviors. For example, none of these interfaces are capable of expressing a camera

behavior with more than one object in the frame, or a behavior that prevents occlusions

blocking the visibility of target objects.

Another parametric interface is the toric space, described behaviorally in section 3.1.1,

which allows for two objects to be shown at specified 2d positions in the frame and from

52

particular angles, controlled with an interface with at least 4 scalar input parameters.36

The originating paper of toric space control, Lino and Christie (2015), included several

concrete user interfaces designed specifically to map to the positions of the two objects as

well as the desired angles. While these toric space interfaces are undeniably valuable for

scenes in which two humanoid characters were to be shown interacting on screen, any

desirable camera behavior concerning a different number of objects/characters (e.g., 1 or

3+) is not representable with a toric space interface. Additionally, the expression of a

behavior containing only a subset of the expressible parameters, for example a behavior

in which the frame position of each object is specified, but relative angles are completely

absent, is similarly poorly supported.

While most of the interfaces explored already provide a mapping from the user’s inputs

directly to behavioral parameters, other interfaces offer more abstracted parameterizations,

as explored in behavioral terms in section 3.1.1.2. For example, Jiang et al. (2020)

introduced a mixture-of-experts methodology to virtual cinematography, offering the

user the option of mixing between several different specialized types of motion (e.g.,

track from the side, track while orbiting, dolly in/out) modeled as a recurrent neural

network and based on an underlying toric space camera representation. By allowing

the mixture parameters to be specified either manually or through the selection of an

exemplar video clip, which is analyzed with computer vision to compute stylistically

corresponding mixture parameters, their system allows for the efficient expression of

subtly complex combinations of behaviors. However, because their method is based upon

the toric space, it is limited to tracking exactly two subjects, with scenes containing more

than two subjects only possible given additional explicit instructions as to when to switch

between what pairs of subjects.

More examples of stylistic abstracted parametric interfaces? There are lots of drone

36The formulation in Lino and Christie (2015) requires FOV and an Euler triple for rotation relative
to the axis between the two characters, for a total of 4 scalar parameters. However, the Euler rotation is
derivable from frame position parameters given a known FOV. As a result, some alternative interface
modes in their system supported different numbers or types of parameters corresponding to desired frame
position, different rotation representations, or field of view, but each interface mode supports a fixed
number of parameters directly mappable to the 4 standard parameters.

53

papers, what about pure virtual?

3.1.2.3 Imperative Interfaces

Imperative interfaces, sometimes alternatively referred to as procedural or forward control

interfaces, are a common method for achieving almost complete automation: a user

specifies desired camera behavior by providing a machine executable procedure to compute

camera inputs. Because a user can adjust the computational efficiency of their camera

system by tuning the system parameters or specifying a different procedure, imperative

camera control interfaces are a popular choice for domains requiring high levels of efficiency,

such as videogames and other real time graphics.

Most game engines, such as Epic Games (2022); Unity (2021), provide functionality

facilitating user specification of imperative instructions, capable of camera control, as

either plain text source code in a standard imperative programming language (e.g., C++,

Python, C#) or through a visual scripting interface representing a standard programming

language (e.g., Unreal Engine’s Blueprints). Also arguably within the realm of imperative

control, some game engines allow for camera control to be modeled with a user specified

finite state machine (FSM). Several research systems have also been developed utilizing

FSM architectures, such as in He et al. (1996); Burtnyk et al. (2002).

Modern AAA videogames regularly use incredibly sophisticated imperatively specified

cameras, requiring scores of programmers and artists to implement and precisely tune the

cameras to efficiently achieve desirable results. Grand Theft Auto V (2015) and Red Dead

Redemption II (2018), to give two relatively recent examples, each credited 11 or more

camera programmers or artists as part of their development (GTA, 2015; RDR, 2018).37

Additionally, many of the details of these game camera systems are treated as proprietary,

37It should be noted that there is presently no widely accepted credits standardization in the videogame
industry, either in terms of who should be credited or what titles should accompany various roles within
development. As a result, it is likely that the total size of the team responsible for designing/engineering
the camera systems in these games and many others is larger than credited (Moss, 2018).

54

with limited public discussion of any specifics.38

This begs a question: how does a user go about deriving a machine executable procedure

matching their desired characteristics? Unless the characteristics in which the user is

interested are very simple, specifying a matching procedure from scratch may be difficult

for expert users and impossible for novices. A handful of systems, such as CINEMA

introduced by Drucker and Galyean (1992), have attempted to provide collections of

easily composable imperative primitives, although determining what composition is best

suited to a desired behavior apparently proved troublesome to their users. A few game

development textbooks and guides (e.g., Rogers (2014, p.131-161) and Haigh-Hutchinson

(2009)) provide libraries of existing imperative algorithms for commonly in-demand types

of camera behaviors. However, inconsistent labeling between sources can make locating an

existing procedure that matches a specific camera behavior just as challenging as writing

a procedure from scratch.

As a result, imperative interfaces feature an unsurpassed level of expressivity over

automatable camera behaviors, but at a high cost to any camera designer hoping to

specify a novel behavior type.

3.1.2.4 Declarative Interfaces

Declarative, sometimes called inverse, control systems provide what is arguably a more

intuitive usage paradigm: a user specifies desired camera behavior by specifying what

properties the resulting camera pose or path should have, leaving it entirely to the system

to automatically identify a matching camera instantiation. Because declarative interfaces

allow the user to specify arbitrary types and/or combinations of behavioral properties

without having to explicitly provide instructions on how to compute a solution, declarative

interfaces tend to offer a high degree of expressivity despite requiring a low amount of

input verbosity.

38A notable exception to this rule is Giors (2004), which described the fundamentals of exactly how and
why the camera system for Full Spectrum Warrior, a real-time-tactics shooter developed by Pandemic
Studios, was developed.

55

However, a key question, intrinsically tied to the behavioral interpretation methodology

discussed in section 3.1.1.3, must be asked of all declarative control paradigms: what

specific form do the user’s desired camera properties take? In formal mathematical terms,

there are essentially three approaches to declaratively specifying a behavior: constraint

satisfaction, unconstrained optimization, and constrained optimization, each of which is

discussed in detail below.

While each of these formalisms have unique advantages and drawbacks, the funda-

mentally mathematical nature of these formalisms presents a controllability problem

for users unable to express their desired behavioral properties in formal mathematical

terms. To mitigate this issue, many systems instead support wrapping the underlying

mathematical formalism in a more intuitive form, usually by allowing the user to mix

predefined, parameterized behavioral properties with logical or numerical connection

operators.

Unfortunately, there has been relatively little adoption of any extensibly abstracted

declarative interfaces for virtual cinematography, resulting in most researchers introducing

entirely new interfaces with each new system.

3.1.2.4.1 Constraint Satisfaction

In constraint satisfaction formulations, the desired camera properties are expressed as a

set of constraints, each of which is either satisfied or violated by a particular possible

camera instantiation. The goal of a constraint satisfaction based virtual cinematography

system is to automatically identify a camera instantiation that satisfies all expressed

constraints, if any such solutions exist.

Constraint satisfaction problems for virtual cinematography are usually expressed

with scalar equality or inequality relations, for example

x such that c1(x) ≥ 0, . . . , cn(x) ≥ 0.

This differs from other forms of constraint satisfaction problems common throughout

56

traditional computer science, such as in artificial intelligence, that are usually expressed

in the languages of first order logic and set theory.

Constraint satisfaction based declarative interfaces have been explored in a variety of

sources. The Intent-Based Illustration System (IBIS), introduced by Seligmann and Feiner

(1991), allowed the user to express their desired behavior as a prioritized conjunction of

desired compositional properties (e.g., this object must be visible with the highest priority,

this other object should be recognizable with a lower priority) through a text-based

domain specific language. ConstraintCam (Bares and Lester, 1999) and its siblings (Bares

et al., 1998b, 2000b) presented the user with a visual interface allowing for predefined

constraint types (e.g., object size, relative angle, etc.) to be dragged-and-dropped on

to the screen to form a conjunction of constraints.39 The Image Descriptor Language

(IDL), a text based domain specific language, allows for the expression of cinematographic

behaviors (e.g., object size, visibility, etc.) in arbitrary logical combinations (i.e., mixture

of conjunctions and disjunctions) Pickering and Olivier (2003); Pickering (2002). While its

explored applications extend well beyond the boundaries of virtual cinematography, the

text-based Cognitive Modeling Language (CML) has been shown to support expression of

camera control as a constraint satisfaction based planning problem, with the user allowed

to specify arbitrarily complex logic about what camera control types were allowed and

what states were required to be achieved (Funge et al., 1999).

An important feature of constraint satisfaction problems is that all satisfactory in-

stantiations are treated as being equally acceptable, with all unsatisfactory instantiations

usually being equally unacceptable. A consequence of this feature is that, if no solution

satisfying all constraints can be automatically found, a constraint satisfaction algorithm

may return null (i.e., no valid camera settings available). This leads to the problem

discussed in Section 3.1.1.3: what should happen if no fully satisfactory solution can be

found?

Some approaches, such as Christie et al. (2002) and Christie and Normand (2005),

39While ConstraintCam could do many types of behaviors, it was limited, only capable of modeling
behaviors with two or fewer on screen objects.

57

simply return that no satisfactory solution was found during a thorough40 search, and

expect the user to provide a set of modified constraints before continuing computation.

In the realm of compromise interpretations, IBIS and ConstraintCam both support the

specification of relative priorities of constraints, with lower priority constraints interpreted

as being more violable than higher priority constraints (Seligmann and Feiner, 1991; Feiner

and Seligmann, 1992; Bares et al., 1998a; Bares and Lester, 1999). IDL implicitly assumes

that, in the event no fully satisfactory camera instantiation can be found, whatever

instantiation satisfies the most constraints is most acceptable (Pickering and Olivier,

2003).

3.1.2.4.2 Optimization

The goal of an optimization based system is to automatically identify the best available

instantiation of camera settings, with the user specifying a real valued objective function

capable of evaluating the quality of each candidate camera instantiation. Note that

maximizing an objective function for which higher valued outputs represent superior

quality, is isomorphic with minimizing an objective function for which lower valued outputs

represent superior quality, by simple additive inversion (i.e., the multiplication of the

objective function by −1). Unconstrained optimization problems with objective function

f(x) are commonly mathematically denoted as

arg minxf(x).

Unlike constraint satisfaction, unconstrained optimization treats all available solutions

as acceptable, but endeavors to find a camera instantiation for which the objective function

returns of as unsurpassable quality. As a result, an optimization algorithm will always

return a non-null solution, even if all of the considered possibilities are of a relatively poor

quality.41 However, when the allowed computational time is limited, such as in real time

40Both systems use search algorithms that are slightly incomplete in practice. See Section 3.1.3.4.1.

41Ignoring the ever-annoying possibility of software errors producing NaN’s for objective function

58

applications, the ability to accept the best computed camera solution allows for iterative

algorithms to return a valid solution at any time.

A variety of systems have been developed that present the user with an unconstrained

optimization based interface. The CamPlan system, introduced in Olivier et al. (1999),

allows the user to specify a set of behavioral properties, chosen from a library of predefined

objective functions, with the unweighted sum being optimized. Some systems, such as

Burelli et al. (2008) and Litteneker and Terzopoulos (2017), additionally support weighting

of individual properties to affect their relative desirability to the user. More complex

behavioral property combination strategies in unconstrained optimization are relatively

rare, but a notable example can be seen in Lino (2015), which proposed that simple

mathematical functions (e.g., min, max, product) could be used to form arbitrarily

complex combinations of predefined objective functions.

3.1.2.4.3 Constrained Optimization

Constraint satisfaction and optimization can also be combined into the form of constrained

optimization, where the goal is to find the best solution that also satisfies all constraints,

usually denoted as

arg minxf(x) such that c1(x) ≥ 0, . . . , cn(x) ≥ 0.

While the ability to express both objective and constraint preferences provides a

powerful boost of expressivity, general purpose algorithms for constrained optimization

problems are far more difficult to implement, as explored in Section 3.1.3.4.3.

As a result, the full range of expressive possibilities of constrained optimization based

declarative interfaces have been less widely explored. For example, Drucker and Zeltzer

(1994), with the goal of automatically personalizing virtual museum tours, provides users

the ability to select a set of constraints from a predefined list for the system to satisfy,

values.

59

as well as some controls over the parameters of an entirely predefined objective function.

The Declarative Camera Control Language (DCCL) allows for desired behaviors to be

specified as heuristics, in a Lisp-like domain specific language, corresponding to the quality

of a transition between specialized camera controllers corresponding to cinematographic

idioms, with the system expected to choose optimal transitions that do not violate

predefined42 continuity preserving constraints (Christianson et al., 1996). One highly

influential constrained optimization system is Through-the-Lens Camera Control, which

allows users to input both objective and constraint functions as functional expression

graphs, although the form of constraints allowed is limited (Gleicher and Witkin, 1992).

3.1.2.5 Hybrid and Composite Interfaces

As previously mentioned, these direct, imperative, parametric, and declarative interface

paradigms are intended to be neither exclusive nor exhaustive: a wide variety of virtual

cinematography interface styles have been explored in related work, many of which can

be interpreted as utilizing features of more than one of the paradigms listed here.

Many of these paradigmatic boundary crossers sprout from domains where users

interactively explore 3D space in real-time. To give one prominent example, Ware

and Osborne (1990) explored several different virtual cinematography interfaces that

analytically mapped the 3D translational and rotational movements of a physical controller

into direct camera inputs. These mappings were modeled around control metaphors

through which the user is able to understand the relationship between the interface inputs

and the camera motion by relating directly to familiar forms of locomotion. For example,

the “eyeball-in-hand” metaphor provides a direct input to the camera, with the user’s

3D motions of the controller interpreted exactly as though they were holding the camera

in their hand. A less direct, more parametric example is the “scene-in-hand” metaphor,

which interprets user 3d controller motion as moving the entirety of the surrounding scene

around a motionless camera. This “scene-in-hand” metaphor has proven influential across

42Their system theoretically supports extensible constraint specification, but the text suggests no scene
or behavior specific constraint modifications were introduced throughout their experiments.

60

a range of interfaces for 3D scene exploration, with interfaces like Arcball (Shoemake,

1992) to work with 2D controllers such as a computer mouse.

Some interface styles, including the overwhelming majority of parametric interfaces,

can be understood as providing a mapping from an intuitively controllable parametric

space on to a subset of inputs presented by another type of interface. For example,

the inputs to LookAt interface directly correspond to input parameters of an algorithm

specifiable with an imperative interface, detailed in Section 3.1.3.3. Similarly, the toric

space interface maps to specific factors of an optimization problem specifiable on a

declarative interface. The style based mixture of experts systems explored by Jiang et al.

(2020) takes this mapping a step further, by mapping user specified cinematographic

style inputs to inputs for a machine learning derived imperative algorithm, which in

turn outputs parameters that are mapped to the toric space parametric interface. More

abstractly, all systems, regardless of interface type, can be understood to map from some

user presented input space, through zero or more intermediary interface types, and finally

to a direct interface of camera settings.

Some systems also offer the user with more than one type of interface. While relative

rare in academic virtual cinematography projects, these composite, context-specific inter-

faces are common in software with wide application domains. One particularly prominent

example, having achieved wider adoption among professional virtual cinematographers

than its peers in recent years, is CineMachine, a virtual cinematography system packaged

with the Unity game engine,43 and intended to provide valuable camera control function-

ality in both online and offline applications. CineMachine achieves this by providing a

variety of different interface styles corresponding to specialized camera control modules,

such as algorithms designed to keep a character in a portion of the screen from a fixed

distance. While several of these interfaces are essentially parametric, many modifiable

either visually or textually, some of CineMachine’s functionality is only accessible through

43CineMachine began as a start-up before being acquired by Unity Technologies in 2017. The
CineMachine start-up was founded by Adam Myhill, a veteran game developer who joined Unity after
the acquisition. Another major engineering contributor, sharing in several of the CineMachine patents, is
Gregory Labute.

61

the specification of imperative extensions, principally to a module called the CineMachine

“Brain” that is responsible for automatically switching between cameras, as C# source

code (Unity, 2022).

3.1.3 Algorithmic Strategies

Algorithmic strategies for virtual cinematography are as diverse as the behaviors and

interfaces they are designed to support. Some of the key differences between these

algorithms were introduced in Section 1.1, including computational efficiency (e.g., real-

time, offline), whether computation is online or offline with the display, and the amount

of future knowledge the algorithm is provided. Additionally, the taxonomy of interfaces

presented in the last chapter presents a valuable lens through which algorithmic approaches

can be filtered.

• Direct interfaces: As direct interfaces represent the lack of meaningful automation,

there are rarely meaningful algorithms employed for such interfaces.

• Parametric interfaces: As discussed in Section 3.1.2.5, parametric interfaces almost

always map to another type of interface, usually specifying parts of inputs to

imperative or declarative interfaces.

• Imperative interfaces: By definition, imperative interfaces require the user to specify

machine executable instructions to produce camera settings matching their desired

behavior. As a result, the algorithms packaged with the virtual cinematography

system are often completely separated from the algorithms required for camera

setting computation.

• Declarative interfaces: By shifting the responsibility for determining how to compute

camera settings matching the user’s desired behaviors from the user to the system,

declarative interfaces place enormous demands on virtual cinematography system’s

algorithms. As a result, virtual cinematography research has explored a wide

range of algorithms for constraint satisfaction, unconstrained optimization, and

62

Figure 3.3: Euler diagram of virtual cinematography algorithms across different domains.

constrained optimization.

Consequently, this analysis can limit its focus to algorithms that stem from the use of

imperative and declarative interfaces.

This work roughly categorizes algorithms for virtual cinematography into two groups.

Analytical algorithms compute camera settings by following a fixed procedure, the result

of which is guaranteed to be a solution matching the specified camera behavior. Search

algorithms, by contrast, consider a volume of possible camera settings, and attempt to

identify at least one solution that matches the specified camera behavior.

While a user could imperatively specify a search algorithm, most desired behaviors

input with imperative interfaces are accomplished by specifying an analytical algorithm.

Similarly, while some declarative behaviors can be solved by analytical algorithms, most

declaratively specified virtual cinematography behaviors are only solvable with search

algorithms.

63

3.1.3.1 Occlusion and Collision Testing

A challenge common to all algorithm types is that computing occlusion and collision

cognizant camera instantiations is often difficult and expensive. As the camera’s view

can be occluded by, or its body collided with, any object in the environment, thorough

occlusion or collision computation must consider all of the geometry in the scene, regardless

of the level of complexity of the specified camera behavior. While collision testing

is regularly computed with standard algorithms for computing intersections between

geometric volumes, several different forms of occlusion testing algorithms have been

explored in related virtual cinematography works.44

• Ray-casting algorithms, used widely throughout computer graphics including for

Ray-tracing rendering techniques, identify one or more intersections with scene

geometry along a line segment between a candidate camera position and a single

target point. While a single ray-cast test is computationally inexpensive, many

ray-cast calls, with a high cumulative computational cost, are sometimes required

to determine the degree to which a particular voluminous object is occluded, or to

locate a camera viewpoint in a search region with an unoccluded view of a target.

• Depth-buffering algorithms render the whole scene from a specific viewpoint to a

raster pixel buffer, with each pixel identifying the nearest object in a particular

direction as well as its distance. As a result, a single depth-buffering test executed

from the viewpoint of a candidate camera can identify the degree to which a complex

object of interest is occluded (Olivier et al., 1999). Alternatively, depth buffering

from the viewpoint of an object can also be used to test whether candidate camera

positions in a search region provide an unoccluded view (Burg et al., 2020). However,

while hardware parallelization can significantly reduce computational costs, a single

depth-buffering test is regularly more expensive than a small or moderate number

of ray-casts.

44Christie et al. (2008) separated algorithmic approaches to occlusion as being either “reactive” or
“deliberative,” although the specific distinction between these classes was not thoroughly explained.

64

• Some systems instead attempt to directly compute what regions of the scene provide

an unoccluded view of target objects, compiling the results into a data structure

referred to as an aspect graph that can be queried with unparalleled efficiency

(Plantinga and Dyer, 1990). However, accurately computing the aspect graph data

structure in continuous space can be very expensive, potentially scaling to Θ(n9)

in the number of geometry primitives in the scene. Additionally, the aspect graph

only remains valid if all occluding objects in the scene remain relatively static: if

anything moves in a way that would change the topology of the aspect graph, the

graph must be recomputed.

These methods vary in their applicability to different behavioral interpretations and scenes.

Ray-casting algorithms cannot automatically identify whether any regions of the scene

will have a fully unoccluded view of some target, but can trivially identify whether moving

the camera a small distance in any direction will remove any occlusions, which is valuable

for evaluating the optimality of any compromise solutions. Depth-buffering algorithms

can approximately determine whether any regions of the scene provide unoccluded views,

providing a useful mechanism for testing whether any rigid solutions exist, but have a much

higher computational cost associated with determining whether any better solutions can be

found in the neighborhood of the current candidate. While aspect graph tools are equally

well suited to reasoning about both rigid and compromise behavioral interpretations, the

cost of computation and the inability to move scene geometry severely limits applications

compatible with aspect graphs.

Additionally, each method carries a wildly varying implementation cost. Virtual

cinematography systems utilizing geometric collision testing or ray-casting occlusion

testing tools are commonly implemented by borrowing geometry querying functionality

from preexisting software, such as off-the-shelf game or physics engines, such as Epic

Games (2022); Unity (2021), the vectorized operations or space partitioning data structures

of which can significantly accelerate computation for complex scenes.45 Similarly, depth-

45The techniques and algorithms necessary for efficient geometry querying are well outside the scope

65

buffering functionality is often achieved by integrating with existing real-time rendering

technology, such as Kessenich et al. (2016). However, most researchers hoping to utilize

aspect graph based queries seem to begin their implementations from scratch, possibly

because there are fewer publicly available software packages directly suited to the task.

3.1.3.2 Temporality

Another distinguishing property between algorithmic strategies, both analytical and

search based, rests in their approaches to camera settings across time, referred to here

as temporality. Some applications only call for a camera pose for a single instant of

time for each computation, while others require multiple camera poses corresponding to

distinct keyframes, and others still require analytically defined curves to be output. There

are three broad categories of algorithmic temporality common in related work.

• Many simple virtual cinematography systems, such as Blinn (1988); Pickering and

Olivier (2003), compute camera parameters at each instant of time separately, with

multiple instantaneous computations at distinct instants of time combinable into

a camera path.

• Some other systems, such as Jiang et al. (2020); Huang et al. (2021), operate

sequentially, with each computation producing camera settings for the current

instant of time using inputs from the present and past states of the scene.

• Some further systems, such as Galvane et al. (2015a), output entire camera path(s)

for a whole time period as the result of a single computation.

Each of these temporality approaches has potential advantages and drawbacks. Instanta-

neous algorithms can operate equally well regardless of keyframe count or density, but

can face difficulty reasoning about behavioral properties like smoothness that require

of this text. An excellent overview of the mathematics of 3d intersection algorithms can be found in
Schneider and Eberly (2002, ch.11), while many of the more efficient algorithms and data structures
common in real-time software are detailed in Akenine-Möller et al. (2018, ch.22).

66

cognizance of other instants of time. Sequential algorithms are better suited to reasoning

about smoothness, and are equally effective on paths of any length, but may face difficulty

if keyframe density shifts, or if the user desires to manually edit part of the output path

while expecting proceeding sections of the path unchanged. Path generating algorithms

are often capable of reasoning about the most temporally complex behaviors, including

smoothness, but often suffer from higher computational cost.

As with other categorical distinctions, these temporality categories are not exclusive,

with many systems’ algorithms employing multiple temporality strategies. For example,

some systems output instantaneous or sequential camera settings for each keyframe in a

long sequence, then post-process the path to enforce a desired level of smoothness before

outputting the entire path (Jiang et al., 2020). A technique sometimes used with online

sequential systems is to compute one or more paths into the near future, but only output

the path’s keyframe for the present instant of time, potentially unlocking for limited

smoothness cognizance as well as occlusion/collision prediction in a sequential model

(Funge et al., 1999).

3.1.3.3 Analytical Algorithms

There are many different types of analytical algorithms utilized in virtual cinematography.

Many early systems, such as Chen et al. (1988); Mackinlay et al. (1990), follow simple

vector algebra operations to compute a solution that solves a given mathematical equation.

LookAt from Blinn (1988), for example, takes as input a camera position c, a target

position t to be centered in the camera’s view, and an up direction u, all as column

vectors in a homogeneous right-handed coordinate system. The LookAt behavior can then

be expressed by first computing orthonormal bases f = ĉ− t, r = û× f , and u′ = f̂ × r,

which can be used in matrix

M =

I3×3 −c

0⊺ 1

r u′ f 0

0 0 0 1

 .

67

This camera transform can be used to transform any point p from world space to camera

space as Mp, with Mt =
(
0 0 −|t− c| 1

)⊺
.

Other works have proposed different types of manually specified analytical algorithms,

including finite state machines (He et al., 1996; Tomlinson et al., 2000; Burtnyk et al.,

2002; Christie et al., 2002; Christie and Languénou, 2003), PID algorithms (Giors, 2004),

and physics based algorithms (Turner et al., 1991). Some systems, such as Galvane et al.

(2013); Unity (2022), analytically compute multiple camera paths simultaneously, choosing

when and to what camera to switch based on separate logic. A variety of further manual

analytical algorithm approaches are described in Haigh-Hutchinson (2009).

The rise of machine learning in recent years has prompted several analytical virtual

cinematography algorithms specified with exemplar data. Some systems, such as those

described in Chen and Carr (2015); Chen et al. (2016), attempt to learn a mapping from

scene information and desired camera behavior directly to camera parameters by watching

annotated video. Others, such as Jiang et al. (2020); Jovane et al. (2020); Bonatti et al.

(2021); Jiang et al. (2021), have built systems designed to learn weights or parameters

mapping to other imperative or declarative interfaces, such as toric space or motion style

type.

Somewhere in between manually defined and machine learning algorithms are systems

that attempt to match a user’s desired camera behavior by automatically selecting a

camera instantiation from a database. Cambot, for example, selects motions from ∼ 50

predefined options based on the desired on-screen content specified with a domain specific

language (Elson and Riedl, 2007). Some systems take this idea even further, facilitating

the sequential combination of several different automatically selected predefined motions

into a single smooth camera path (Sanokho et al., 2014). Database selection methods such

as these can blur the line between analytical and search algorithms, at least as defined

in this document. Under the hood, these database selection systems can be understood

as seeking to identify an optimal camera instantiation, as described by a constrained

optimization behavioral description, from a discrete domain with some type of, often

exhaustive, search algorithm. However, all nontrivial database selection systems I have

68

encountered require their search algorithms to be combined with considerable analytical

computation to achieve acceptable results.

There are some explicitly declarative problems that can be completely or partially

solved by analytical algorithms. For example, the toric space interface of Lino and

Christie (2012) can be understood as reducible to a declarative problem specifying

that two points a and b are expected to be separated by angle α from the camera’s

viewpoint, which is commonly analytically reduced to a surface of positional solutions

on a torus centered on a+b
2
, with an axis of revolution of â− b, a tube radius of R =

|a−b|
2 sin(α)

, and a distance from the center of the torus to the center of the tube R =

rcos(α). This torus can then be sampled parametrically with angular parameters θ and

ϕ
(
(R + r cos(θ)) cos(ϕ) (R + r cos(θ)) sin(ϕ) r sin(θ)

)⊺
before being multiplied by a

rotation matrix that aligns the model space z-axis with â− b, or combined with further

geometric analysis to arrive at an even more efficient form. Some systems, such as Espiau

et al. (1993); Marchand and Hager (1998); Marchand and Courty (2000); Courty and

Marchand (2001); Marchand and Courty (2002) as well as a range of further works in the

visual servoing field of robotics, present the user with a functionally declarative interface

through which object points in 3d space can be constrained to particular regions in the

image, and utilize a style of analytical iterative differential linear algebra algorithm for

camera setting computation.46

Occlusion and collision avoidance are frequent areas of difficulty for analytical algo-

rithms, with the direct computation of optimal camera paths that balance occlusion/-

collision with other behavioral properties generally considered intractable for all but the

simplest of scenes. Some analytical algorithms simply do not allow for occlusion or collision

to be input as desired camera behavioral properties (Blinn, 1988). Among analytical

algorithms capable of occlusion/collision cognizance, several divergent approaches to com-

46While these iterative numerical algorithms are similar to many of the optimization algorithms
categorized as “Search” in this work, they are not general purpose: these numerical algorithms work for
a very specific style of declarative constraint satisfaction problems, but cannot be applied to any other
form of constraint satisfaction or optimization problem. It may be contentious, but I would argue that
this prompts classification as analytical by the definition used here. Christie et al. (2008) classified these
as a wholly different type of algorithm, which they termed “reactive.”

69

promise have been explored. Some systems, such as Giors (2004) and Epic Games (2022,

Default Third Person Camera), first compute an occlusion/collision incognizant camera

instantiation, then use one or more raycasts to identify a nearby47 unoccluded solution to

what has already been computed. Alternatively, some systems, such as Seligmann and

Feiner (1991); Feiner and Seligmann (1992); André et al. (1993), include whether to fade,

cutaway, or omit occluding/colliding elements in the scene as part of the same pipeline

that computes camera settings.

Regardless of the form of analytical algorithm chosen, the majority of analytical

algorithms support a low number of virtual cinematography behaviors. While some

analytical algorithms are capable of modifying or reprioritizing the behavioral properties

to a limited extent, no analytical algorithm has yet been presented that is reliably capable

of achieving arbitrary camera behaviors.

3.1.3.4 Search Algorithms

As discussed in Section 3.1.2.4, declarative interfaces require the user to specify how to

test the quality of a particular candidate camera instantiation, but not a means to find

one. The standard solution to solving declarative problems, whether they be constraint

satisfaction, unconstrained optimization, or constrained optimization, is to utilize a search

algorithm, which attempts to compute an acceptable camera instantiation by considering

a range of possibilities.

Search algorithms take many forms, varying not only by what types of declarative

problems are supported, but also by their computational speed and efficiency. One of

the most critical criteria in comparing search algorithms is the size and structure of the

space of solutions within which they are designed to search, with a stark division between

discrete and continuous search domains.

47Getting more precise than ‘nearby’ reveals another set of differences between approaches. While Epic
Games (2022) uses the intersection point of a single raycast to determine a ‘nearby’ unoccluded position,
Giors (2004) can use a multiple raycasts along the prospective camera’s left-right axis to identify subtle
positional shifts that would maximize visibility, and further approaches exist.

70

Discrete domains represent a discontinuous set of possible camera settings. For

example, a discrete domain might consider only moving the camera to one of the corners

of a grid, but not between those corners. Most discrete domains in virtual cinematography

are also functionally finite. If the size of such a discretely finite domain is small enough,

it may be possible to exhaustively consider every possible solution, and pick the most

optimal and/or satisfactory candidate. While a few published systems, such as Bares

et al. (2000b); Vázquezz et al. (2001); Andujar et al. (2004), utilize such exhaustive search

algorithms, most systems consider domains that are far too large to be exhaustively

searched in a practical timescale.

Continuous domains represent camera settings that can vary continuously within some

bounded or unbounded domain. For example, a continuous camera domain could allow a

camera to move to any position within a large cube surrounding the scene geometry. As

there are an infinite number48 of possible choices in such a continuous space, exhaustively

considering every candidate is impossible.

Large discrete domains and continuous domains therefore require search algorithms

capable of automatically discerning which possibilities to devote computational consider-

ation and which to skip. While these algorithms vary considerably between constraint

satisfaction, unconstrained optimization, and constrained optimization, a common theme

among all inexhaustive algorithms is that approaching absolute reliability commonly

comes at the cost of enormous computational expense. Instead, a tradeoff is frequently

struck between best meeting the user’s specified declarative virtual cinematographic

behavior, and the computing resources available before camera settings are needed by

the user. As a result, inexhaustive search algorithms can be imprecise, incomplete, and

unpredictable to differing degrees, but are the only currently known algorithms capable

of supporting arbitrary camera behaviors.

48Or, if represented with floating point numbers, a number of genuinely astronomical scale. Current
estimates place the number of stars in the observable universe at roughly ∼ 1023, and the number of
atoms at ∼ 1082, while a 64 bit floating point number has ∼ 1019 possible values. A search with only
two 64-bit numbers has more possible values to consider than there are stars in the sky, while a search
with five 64-bit numbers has more possibilities than there are atoms in the universe.

71

Few, if any, of these search algorithms are unique to virtual cinematography, with many

commonly used in other areas of computer science or applied mathematics. Optimization

algorithms such as gradient descent and simulated annealing are common across not only

computer science, but also economics, chemistry, and physics, among many other fields

(Solomon, 2015). The constraint projection approach to constraint satisfaction problems

is at the core of the physics simulation method known as Position Based Dynamics (PBD)

(Weiss et al., 2018, 2017). Graph search methods such as A* have been widely popular

throughout computer science for more than 50 years (Russell et al., 2010, p.109-111).

This abundance of already available algorithms has meant few virtual cinematography

researchers need to develop new algorithms for declarative behavior specifications.

3.1.3.4.1 Constraint Satisfaction

Algorithms used for solving constraint satisfaction problems are often classified as to

whether they are complete, sometimes called systematic, where a complete algorithm is

guaranteed to find a satisfactory solution if one exists. A critical corollary of this is that

a complete algorithm asserting the absence of satisfactory solutions provides indisputable

proof that no satisfactory solution exists. The set or volume of solutions that satisfy

all constraints is commonly referred to as the feasible region, with any unsatisfiable

constraint satisfaction problem having an empty feasible region.

Within discrete domains, complete search algorithms such as A*49 and other graph

search algorithms popular in AI literature have been also been used for virtual cinematog-

raphy (Funge et al., 1999; Oskam et al., 2009). If the constraint functions are convex,

some systems, such as Halper et al. (2001), utilize a constraint projection algorithmic

strategy, which iteratively projects candidate solutions on to the nearest point of any

violated constraints until all constraints are satisfied, and is guaranteed to converge to a

satisfactory solution if one exists.

49A* is effective with some flavors of constraint satisfaction and constrained optimization. See section
3.1.3.4.3 for more details.

72

Another complete family of algorithms, capable of operating in either continuous or

discrete domains, works by taking the geometric intersections of the feasible regions of

individual constraints, and is referred to in this text as feasible region intersection

algorithms. Feasible region intersection algorithms are complete, as the intersection of

any satisfiable set of constraints must be nonempty. With relatively simple (e.g., spheres

or convex polyhedra with low face counts) feasible region geometry and small numbers

of constraints, these feasible region intersection methods can be efficient enough to run

in real time (Lino et al., 2010, 2011, 2013). However, employing similar algorithms for

more complex geometry and larger sets of constraints is usually only tractable in offline

computational applications (Louarn et al., 2020). However, a key prerequisite of all of

these algorithms is the ability to efficiently compute the feasible region geometry of each

individual constraint.

When these geometries cannot be easily computed from the constraint functions

provided, alternative algorithms must be utilized. One such technique, utilized by

Jardillier and Languénou (1998); Christie et al. (2002); Christie and Languénou (2003),

identifies feasible regions by evaluating constraints across continuous intervals50 of the

search domain with tri-valued logical comparisons (i.e., outputs true, false, or could be

true or false). Intervals which evaluate to true are fully satisfactory, and false are fully

unsatisfactory, but intervals that may be true or false are subdivided into increasingly

smaller segments to identify a geometric approximation of the feasible region. However, a

limitation of this method is that greater numbers of subdivisions are needed as the feasible

region grow smaller and more finely segmented, with the limit at an infinite number of

subdivisions needed to identify a singular satisfactory solution in a non-singular domain.

While this method is therefore incomplete, varying the depth of allowable subdivisions

provides a mechanism for actively controlling the balance between completeness and

efficiency.

50Note that this requires interval arithmetic evaluation of constraint functions, using similar rules to
those described in Section 5.3.2 for simple closed form expressions. However, because these systems
generally do not allow for constraint functions to have side effects or branching, they do not require the
complex value range analysis tools proposed here.

73

Unfortunately, complete search algorithms are generally intractable for large sets of

nonlinear, non-convex constraints (Russell et al., 2010, p.205-207). While a variety of

incomplete, predominantly stochastic, constraint satisfaction search algorithms exist, I

am not aware of any that have been applied to virtual cinematography thus far.

3.1.3.4.2 Unconstrained Optimization

Desirable unconstrained optimization solutions are traditionally classified as globally

or locally optimal. While global optima must be at least as good as all elements in the

entire, potentially infinite, search domain, local optima need only be at least as good as

their immediate neighbors.51 However, the ability to compute global optima often has less

to do with the choice of algorithm than the properties of the objective function provided.

Absent strong analytical guarantees about the objective function, such as linearity or

convexity, determining whether a discovered local optimum is also a global optimum is

effectively impossible (Solomon, 2015, p.166).

As few meaningful objective functions for virtual cinematography are linear or convex,

even the most advanced optimization algorithms are frequently only able to guarantee

local optimality for their returned results, although some algorithms may return global

optimally results with nontrivial probability.

Perhaps the most ubiquitous optimization algorithm guaranteeing local optimality is

gradient descent, which operates by iteratively translating a candidate solution in the

direction that the objective function gradient identifies as ‘downhill’ until convergence.52

As gradient descent requires many computations of the gradient, a key prerequisite is

that the first order derivatives of the objective function must be efficiently computable,

which often means that the objective function must be differentiable. A variety of further

gradient based optimization algorithms have been employed to attempt to reduce the

51An input x is formally locally optimal minimum for a continuous function f : Rd → R if and only if
|∇f(x)| = 0 and ∇2f(x) is a positive definite matrix, indicating that the curvature of f at x is positive
in all directions. Within a discrete search space, local optimality is usually defined in relation to some
explicitly defined neighborhood for each element of the space.

52Pseudocode for gradient descent is given in Algorithm 1 in Section 4.2.

74

number of computations required or otherwise improve computational efficiency, from

Newton’s method style algorithms which attempts to use the curvature (e.g., Hessian

matrix) of the objective function to identify a more direct path to follow to reach the

local optimum (Bonatti et al., 2020a,b), to Broyden–Fletcher–Goldfarb–Shanno (BFGS)

style algorithms that attempt similar accelerations with curvature values estimated from

analyzing changes to the gradient over multiple iterations (Yoo et al., 2021).

Some virtual cinematography systems employ algorithmic strategies that behave

similarly to iterative gradient based optimization, but are not explicitly expressed as

optimization problems. A family of potential field techniques, popular in robotics,

operate by moving the camera in the direction of the gradient of a scalar field repre-

senting the desirability of camera poses throughout the scene (Xiao and Hubbold, 1998;

Beckhaus, 2002). Others provide steering behaviors, borrowing from methods popular for

flocking/crowd simulation, that directly define, for every possible pose in the scene, what

direction the camera should move in this iteration (Galvane et al., 2013).

Alternatively, a variety of algorithms have been explored that have a practical probabil-

ity of producing globally optimal results, but guarantee neither local nor global optimality.

Such approaches are commonly referred to as stochastic search algorithms, as they

commonly involve randomly sampling a probability distribution in which more probable

choices correspond to more optimal solutions. For example, systems such as Olivier

et al. (1999); Halper and Olivier (2000) utilize genetic algorithms, which use evolution

inspired operations to iteratively improve the optimality of a population of candidate

camera instantiations with selectional and combinational operations inspired by biological

evolution. A stochastic algorithm particularly prevalent in more recent search based

virtual cinematography systems, including Burelli et al. (2008); Burelli (2012); Abdullah

et al. (2011), models optimization with motion rules inspired by social psychology over a

population of candidate solutions, commonly referred to as particles, and is known as

Particle Swarm Optimization (PSO).53

53Pseudocode for one type of PSO is given in Algorithm 4 in Section 4.2.

75

However, because stochastic algorithms are probabilistic, the probability of an objec-

tionably suboptimal solution being produced may be unacceptably high. This probability

can be tied to a number of factors, with larger populations and more algorithmic itera-

tions often correlating with higher probabilities of success but slower performance. A key

feature of many stochastic algorithms, including both genetic algorithms and PSO, is that

they do not require derivative information, and can operate effectively with little to no

information about the objective function being optimized. However, some systems utilize

objective function information to increase the probability of success within a narrow

computational time-frame. For example, Ranon and Urli (2014); Lino (2015) found

significant performance improvements could be achieved by initializing PSO particles to

optimize separate behavioral properties, as the interactions between particles allows for

the best elements of each particle to be efficiently combined.

As mentioned in Section 3.1.2.4.2, a valuable property of all unconstrained optimization

problems is that all solutions, even profoundly suboptimal ones, are valid. As a result,

the intermediate results of all iterative search algorithms for unconstrained optimization

can be used as camera settings regardless of whether the algorithm has converged or

terminated, leading some researchers to term these as “anytime” algorithms.

3.1.3.4.3 Constrained Optimization

As mentioned in Section 3.1.2.4.3, constrained optimization problems generally combine

the difficulties of constraint satisfaction and unconstrained optimization. Completeness,

global/local optimality, and efficiency must be carefully balanced to achieve acceptable

results on a practicable timescale.

One of the most common specialized forms of constrained optimization for virtual

cinematography is commonly referred to as a path or motion planning problem, in

which an optimal path is sought that will take the camera from an initial state to a

target state using only allowed transitions between intermediary states (Funge et al., 1999;

Oskam et al., 2009). Optimality for each path is evaluated relative to a sum of the cost

76

of the transitions between subsequent states in the path, a property often referred to as

distance.

When the state space is discrete, these motion planning problems are reducible

to efficient graph search algorithms like A*, which can search large graphs by using

a heuristically estimated54 distance from a candidate next state to the target state,

minimizing the number of states that must be considered. While such methods are

guaranteed to be complete, the optimality and efficiency of the returned result is highly

dependent upon the specific algorithm and heuristic chosen.55 While algorithms for motion

planning problems in continuous domains, such as rapidly expanding trees, have been

developed in other fields, none have been employed specifically for virtual cinematography

to my knowledge.

Inexhaustive search algorithms for more general forms of constrained optimization are

relatively rare in virtual cinematography, with most systems utilizing some flavor of active

set or interior point search algorithm. Such algorithms can be understood as variants of

gradient based optimization that are combined with constraint projection to constrain

search candidates at or beyond the constraint boundaries to the feasible region (Drucker,

1994; Drucker and Zeltzer, 1995; Huang et al., 2016; Bonatti et al., 2020a,b).

3.2 Separate but Related Fields

While attempting to understand the various approaches to virtual cinematography defined

in the preceding pages, it can be valuable to understand what vector-based virtual

cinematography is not. There are several bodies of related literature that clearly fail to

meet one or more of the criteria for comparable systems listed at the beginning of the

chapter, yet share significant strategies and techniques with immediately related work.

54Usually denoted as a function h : n→ R, where n is a state or graph node.

55A* is guaranteed to find an optimal path if h(n) does not overestimate the distance from n to the
target. However, if h(n) is constant for all n then A* essentially reduces to breadth-first-search, with
exponential space complexity.

77

Researchers hoping to comprehensively understand virtual cinematography systems

should at least have a passing familiarity with these separate-but-related problems,

including an understanding of how these problems abut or overlap with vector-based

virtual cinematography.

3.2.1 Robotics

The control of cameras in physical robotic systems represents an enormous body of

research, and introduces a host of additional challenges (Chen and Carr, 2014).

Specific applications range from consumer electronics, such as controlling PTZ56 or

flying cameras to autonomously capture sporting events (Chen et al., 2016; Bucker et al.,

2021), to surgical robots attempting to minimize the potential for patient injury while

assisting human medical professionals (Hong et al., 1997; Chiou et al., 1998). Camera

controllers in domains such as these play a more complicated and potentially dangerous

game, using noisy sensor data to drive delayed actuators in the hope of achieving the

desired imagery without inadvertently damaging the robot or anything in its environment.

At a high level, researchers in this field often, but not always, subdivide this challenging

robotic camera control problem into three stages.

1. Sensor data is analyzed to understand the spatial relationship between the camera(s)

and objects of interest in the scene. Where is the camera relative to the actors and

environment?57 Where are the obstacles to avoid? How are all of these objects

moving relative to each other?

2. Next, the system must decide how to move the camera from where it currently is to

a position that will provide the desired imagery using the robot’s actuators without

56A standard type of robotic camera where motors allow the camera to pan vertically, tilt horizontally,
and zoom in/out. This pan-tilt-zoom system is commonly abbreviated to PTZ.

57The problem of determining a robot’s location from sensor data is commonly referred to as localization,
and permeates a wide variety of robotics and computer vision literature. The task of Simultaneously
Localizing the robot And Mapping its environment is also closely related, and is usually abbreviated as
SLAM. For the acronym obsessed, SLAM using only Visual sensors, such as cameras, is a task often
abbreviated as VSLAM.

78

damaging anything. This is often expressed as a potential field or motion planning

problem, which are discussed in sections 3.1.3.4.2 and 3.1.3.4.3 respectively. While

the precise problem specifications and algorithms employed may diverge, this stage

is fundamentally compatible with the virtual camera control problem central to this

text.

3. Finally, the system determines what signals to send to the actuators (e.g., motors) as

time progress, following the most recently computed motion plan. This is generally

a dynamic decision making process that continuously incorporates sensor feedback

to stably progress along the desired motion path, which is usually analogous to a

closed loop control problem.

However, some robotic camera control systems have been built that utilize different

processes. For example, several software systems designed for visual servoing tasks, where

the motion of a robot is computed from visual sensor data, attempt to directly move from

image features directly to motor inputs, which is sometimes referred to as visual servoing

(Espiau et al., 1993; Marchand and Hager, 1998; Courty and Marchand, 2001).

3.2.2 Pixel-Based Approaches

As briefly mentioned in Section 1.3, there have been several pixel-based approaches to

virtual cinematography.

Humans have been taking photographs and making motion pictures for many decades,

and computer vision researchers have explored a myriad of techniques to identify aesthetic

or communicative semantics in existing images. While this general strategy has found

considerable success in image understanding, editing, and generation technology, using

these types of tools to control how a camera moves through 3D space has so far born less

fruit.

79

3.2.2.1 Inverse Rendering

Inverse rendering58 asks a similar question to that of vector-based virtual cinematography:

how should a computer choose a set of parameters, including scene geometric, lighting, and

material settings as well as camera parameters, that will produce an image (or sequence of

images) with desired pixel-based properties? In a sense, inverse rendering can be thought

of as a super-problem of vector-based virtual cinematography: the control system can not

only move the camera but also manipulate objects, materials, and lights in the scene, as

well as evaluate the suitability of resulting images using the contents of their rasterized

pixels.

There have been at least two excellent surveys on inverse rendering, Patow and Pueyo

(2003) and Kato et al. (2020). In contemporary research,59 inverse rendering problems

are commonly expressed as optimization problems, with the desirability of a given frame

computed by evaluating an objective function that takes rendered pixel data as input. This

produces a problem form with an almost unbelievable level of expressivity, theoretically

capable of everything from camera control to automatic lighting, and even 3D mesh

reconstruction from a sketch (Poulin et al., 1997; Loubet et al., 2019).

While this is a much more powerful form of the problem, it is also far more difficult

to solve in practice. Using almost any rendering method,60 computational rasterization is

generally discontinuous with respect to many scene parameters. With limited samples,

58Some recent authors, such as Kato et al. (2020), use the terms “inverse rendering” and “differentiable
rendering” almost synonymously. I find this overloading needlessly confusing, so this document treats
these as separate tasks with separate terms.

59The field has undergone considerable evolution in the years between these two surveys. One clear
difference between these two surveys is that the later Kato et al. (2020) interprets everything as an
optimization problem, while the earlier Patow and Pueyo (2003) lists many active (at the time) research
areas that solve for parameters directly.

60Including ray/path tracing, fragment-based z-buffering, and neural rendering techniques.

80

continuous modifications to geometry,61 lighting,62 or material63 properties can potentially

produce discontinuous changes to individual pixels. As a result, optimization with

pixel-based algorithms is profoundly challenging.

Up until a few years ago, there were two basic approaches to surmounting this chal-

lenge: either restrict the domain of allowed input to analytically solvable optimization

problems, or use some flavor of search algorithm to numerically approximate an optimum.

Unfortunately, suitable restrictions make the former hard to generalize, while the latter

often carries a high computational cost. Many of the most efficient numerical optimization

algorithms (e.g., gradient descent and its many variations) are reliant upon an approxima-

tion of the objective function gradient, which can be extraordinarily expensive to compute

numerically (e.g., as finite differences) if the cost of rendering a single image is non-trivial.

While there have recently been significant advances in differentiable rendering64,

computing derivatives for gradient based optimization strategies remains significantly

cheaper and more popular for vector-based optimization problems than it is for their

pixel-based counterparts. However, differentiable rendering is currently undergoing a

period of remarkable research progress (Li et al., 2018; Jakob et al., 2022), and the

incorporation of this new generation of tools may shortly reduce the cost of pixel-based

inverse rendering to a level practicable for commercial applications.

61As parts of geometry move, what pixels are occupied by this object obviously change. When the
edge of an object intersects a pixel, the degree of overlap between the object and the pixel is almost
always computed as an average of finite samples in the pixel, which produces discontinuous function
behavior when the object’s edge moves across a set of samples.

62While lighting intensity and color are generally continuous, the location or geometry of the light
source are inherently discontinuous properties when shadows are considered.

63While most material properties, like color, are continuous and well-behaved, any material property
that can modify the direction that light may travel after interacting with this material, such as roughness,
may also produce discontinuities with global illumination.

64“Differentiable rendering” is itself an overloaded term in computer graphics. It is used here to
refer to any rasterization process that can compute derivatives of pixel values relative to changes in
geometry/material parameters. The same phrase is sometimes alternatively used to refer to multi-output
rendering processes that are intended to be composited together as a post-processing step, for example
by taking the weighted sum or difference of multiple layers.

81

3.2.2.2 Image Generation and Editing

One of the most popular areas of research in the computer vision community recently has

revolved around machine learning techniques for the automatic generation and editing of

images. Broadly speaking, the goal of these approaches is to output a grid of pixels that

is as difficult as possible to distinguish from others in a given training dataset.

The presently dominant image generation strategy is to use a Generative Adversarial

Network, commonly abbreviated to GAN, a machine learning architecture composed

of generator and discriminator models. For image generation, the goal is to train the

generator model to transform some input, often Gaussian noise, into an output image that

the discriminator model cannot distinguish from images in the training dataset. With

careful balancing of the generator and discriminator training regimes (Goodfellow et al.,

2017, p.690-693), the resulting GAN can generate believable images, as well as any other

type of data that can be fit into a static vector, including everything from furniture to

aircraft voxel geometry (Li et al., 2017). However, research in this field is ongoing, with

novel approaches producing unprecedented results constantly being published.

There is a greater diversity of strategies for image editing, with some divergence arising

from the types of edits allowed. Common image recoloring tasks, for example, allow for

properties, such as saturation and contrast, of the color distribution over the entire image

to be modified to improve the aesthetic quality of the image (Koyama et al., 2017).

Additionally, some applications blur the boundary between image generation and

editing. For example, some tools attempt to remove an undesirable element in the image

and fill the resulting gap with believable content (inpainting) (Setlur et al., 2005), or

make the image appear as though different light sources were present (relighting) (Sun

et al., 2019). On the extreme end of this spectrum, novel-view synthesis tasks attempt to

output an image from a novel viewpoint in a scene captured in one or more input images

(Shuai et al., 2022).

82

It is worth clearly noting65 that these sorts of image generation or editing tasks cannot

be considered synonymous or generally interchangeable with the virtual cinematography

problem formulation used in this work. With limited exceptions, the goal of image

generation and editing tasks is to produce an image with desired properties, not to move

or instantiate a camera within a scene.

One such exception lies in cropping tasks, in which a contiguous (e.g., rectangle or

trapezoid corresponding to a homography) subset of pixel data is automatically selected

and extracted into an output image with desired properties. For example, a user might

want to remove an aesthetically unappealing element from their composition (Fang et al.,

2014), or change the framing to shift the compositional emphasis towards an area of

importance (Setlur et al., 2005). While the specific algorithms may vary, cropping tasks

such as these can be interpreted as attempts to control the rotation and zoom settings of a

stationary camera (Ronfard and de Verdière, 2022). A few groups have even implemented

systems designed to provide smooth cropping control to attempt to mimic the behavior of

a human camera operator (Chen and Carr, 2015; Gaddam et al., 2015), with some even

going as far as to market their systems commercially (Technologies, 2022).

3.2.3 Computational Editing

A close sibling field of virtual cinematography is computational editing, for which an

excellent66 survey can be found in Ronfard (2012). Instead of attempting to select

parameters for a camera, computational editing problems attempt to identify when and to

what alternate view to discontinuously cut to achieve some desired communicative intent.

In some scenarios, this can be understood as virtual cinematography across a discrete

domain, with a single camera chosen from among several available to be shown at each

moment. However, a critical difference is that computational editing software usually has

65If for no other reason than to attempt to prevent ML specializing computer vision researchers from
asking why I would choose not to solve all of my virtual cinematography problems with a GAN.

66Albeit slightly out of date. Neither virtual cinematography nor computational editing had a new
survey paper in at least a decade.

83

no influence over the camera views between which it is editing, instead deciding how to

edit after the camera recording has completed.

Many early computational editing systems utilized either procedural, where a particular

camera was to be used if some boolean condition was met (He et al., 1996), or logically

declarative, where a sequence of shots that fully satisfies a set of binary rules is desired

(Sack and Davis, 1994), approaches. However, neither of these approaches has proven

particularly successful, as the former often requires an onerous amount of imperative

input from the user, while the latter frequently provides too many satisfactory solutions

to the user.

More recent approaches have expressed computational editing as what can be under-

stood to be a combinatoric optimization problem, with each possible sequence of frames

having a score for which the optimum is desired. In many systems, these scores are defined

relative to idiomatically derived editing patterns or rules, such as to avoid jump cuts, to

preserve screen directionality, and to show the most important characters at significant

moments (Christie et al., 2012). Others have attempted to use machine learning (or

data science) to have the computational editing software automatically construct editing

patterns from existing edited videos (Merabti et al., 2015).

Solving the resulting optimization problem can be nontrivial, as the number of possible

continuity preserving edits between M cameras across N edit points (e.g., moments when

an edit can be made, or frames) is MN . However, if the objective function is specified

sequentially, with the choice of each edit point only influencing the score relative to the

segments immediate before and after it, then the problem can be dramatically simplified

into a form resembling a Hidden Markov model, solvable by dynamic programming

(Galvane et al., 2015b) or the Viterbi algorithm (Leake et al., 2017).

Part of what makes computational editing so difficult is that the semantics of editing

are poorly understood, as discussed in 2.4. There are often many valid ways to edit

footage into a cohesive final film, with different editors and viewers frequently disagreeing

about the quality and meaning of each edit (Lino et al., 2014).

84

As a result, few systems have proven capable of autonomously and reliably producing

edits rated highly by diverse viewers. Instead, several systems attempt to provide partial

editing automation to a human user, with a popular approach providing the editor with

an automatically generated assortment of editing decisions alongside their traditionally

familiar manual tools (Chen et al., 2013; Wu et al., 2018).

3.2.4 Character Animation

An enormous amount of research in computer graphics has been devoted to improving

the efficiency, automation, and expressiveness of 3D character animation, as applied to

everything from familiar human figures to the most alien creatures imaginable. Camera

control and character animation are often treated as distinct tasks in practical computer

animation and videogame development.67

However, some groups have attempted to build systems that bridge the gap between

character animation and virtual cinematography, which can be appealing as both aspects

of the animation are intrinsically related to the communicative content of the resulting

images.

Some works, such as Elson and Riedl (2007), have attempted to simultaneously provide

automatic control for both character animation and camera settings based on scripted

narrative events to be displayed. Others, such as Chaudhuri et al. (2007), have developed

controls that allow for efficient manipulation of character motion from the camera’s

viewpoint(s). Alternatively, some interactive systems internally represent the camera as

a non-player-character (NPC) controlled by similar AI to other NPCs with which the

player is interacting (Galvane et al., 2013), or as a directly linked component of another

character in the scene. For example, the default third-person camera in Epic Games

(2022) is created as a component of the tracked character, and connected by simulated

springs.

67See Section 2.2 for a brief overview of why this is the case.

85

3.2.5 Automatic Layout Synthesis

Another significant sibling area of research concerns automatic layout synthesis, which

generally seeks to automatically place one or more objects in a scene so that the final

arrangement has some desired property. If one or more cameras are considered as objects

to be placed, this problem can be interpreted as a super-problem of virtual cinematography,

with both cameras and objects in the scene automatically controlled.

A number of early researchers in declarative computer graphics were motivated by

automating the creation of technical illustrations, requiring the automatic selection and

layout of specific components on complicated devices to be computed relative to user

specified communicative rules (Seligmann and Feiner, 1991; Feiner and Seligmann, 1992;

André et al., 1993; Butz, 1997). However, these early works were limited to relatively

narrow types and configurations of communicative rules, requiring a high computational

cost relative to the content produced.

While more recent works have dramatically improved the expressiveness (Yu et al.,

2011) and computational efficiency (Weiss et al., 2018) of automatic layout synthesis

systems, few have been developed that explicitly incorporate rules for camera control as

part of the larger layout problem.

A notable exception is the work of Louarn et al. (2018, 2020), which uses the ability to

control both camera and scene elements to automatically produce scenes that will produce

desired cinematographic compositions. However, this massive increase in cinematographic

expressiveness comes at a high computational cost, with complex scenes requiring over an

hour of computation.

3.2.6 Computational Film Directing

Perhaps the most ambitious separate but related area to virtual cinematography, at least

that I have encountered, lies in the realms of computational film direction. Many of the

other areas covered in this chapter so far are directly analogous to skilled disciplines

86

common in modern filmmaking, such as cinematography, editing, and character animation.

For the majority of film productions, artists and craftspeople skilled in these disciplines

must work in concert to make the intended story into a real film, with the entire enterprise

taking its direction from the aptly named “director.”

In an ideal world, computational film directors could produce complete, novel films

wholly autonomously, and tailor each production to the viewers’ individual preferences.

However, as described in previous sections, the various disciplines that a computational

film director must consider are each individually difficult, with any attempt at simultaneous

control over the whole representing an incredibly ambitious task.

While many of the necessary components of a computational film director have already

been discussed, several critically important consideration have not. Firstly, how should

a story script be chosen? Secondly, how should a computational film director choose

what camera behavior, character animation, scene layout, etc. to evocatively convey each

moment of a scripted story? As with many other problems in this chapter, these are

difficult problems to answer objectively, with many directions in which answers may be

sought.

The idea of computational film directors is certainly not new, but it has only quite

recently begun to be thought of as achievable, with Ronfard (2021) having published

what is, to my knowledge, the first survey on the field.

3.3 Systems Engineering

It is worth briefly touching on the history of systems engineering in virtual cinematography.

As detailed in Chapter 5, the software implementation of this work primarily takes the

form of a novel programming language packaged with program transformation and static

analysis tools. It is worth briefly discussing how this approach relates to the systems

engineering of other virtual cinematography systems.

Unfortunately, virtual cinematography research has historically suffered from a lack of

87

replicability, with relatively few papers releasing complete code for their implementations.68

While some publications concern proprietary or privileged technology worth protecting,

publishing code for even the least private of projects is not common practice. Separately,

some researchers, such as Ranon and Urli (2014), helpfully publish a link to their code

that has become invalid in the years after publication.69 While publishing complete code

has become somewhat more common in recent years (e.g., (Jiang et al., 2021)), doing so

remains far from standard practice.

As a result, the practical engineering details of individual virtual cinematography

systems are often unclear. However, reading the published prose descriptions of systems

can reveal some common general engineering strategies.

Some systems implement singular behaviors with specialized, monolithic, and inex-

tensible code that can only accomplish that singular behavior (Blinn, 1988). Some other

systems utilize modular imperative implementations that are extensible by specifying more

imperative code (Drucker and Galyean, 1992), with similar extensibility supported by

finite state machine implementations (He et al., 1996). Some systems exploiting parameter

separability or blending to combine several imperative control algorithms, which can be

modified or added to by modifying the underlying source code (Unity, 2022).

In the realm of declarative virtual cinematography, Some declarative systems utilize

the search functionality of preexisting computational systems like MATLAB (Huang

et al., 2016), trading ease of development for dependency on the vagaries of a monolithic

software system and potentially limited extensibility. Other declarative systems, such as

Ranon and Urli (2014), have implemented new search functionality in modular software

architectures that allow for new constraint/objective types to be added by modifying the

underlying code base.

While effective, a drawback common to all declarative virtual cinematography systems

68A problem shared with many other areas of computer graphics (Bonneel et al., 2020), as well as a
tragically high number of other fields of computer science.

69Ranon has since released an updated version of this codebase that can, at the time of writing, be
accessed by the following URL: https://github.com/robertoranon/Unity-ViewpointComputation.

88

https://github.com/robertoranon/Unity-ViewpointComputation

is that specifications of how to compute the value of an objective/constraint function

are defined separately from how to compute derivative or range (e.g., interval) values

necessary for some search techniques. This strongly differs from the methodology of my

system, which incorporates automatic differentiation and range analysis techniques to

automate these processes. To my knowledge, the work that comes closest to my approach

is Gleicher (1994), which uses a graph representation of functional (i.e., side-effect free)

expressions to allow for the automation of some differential linear algebra operations,

including derivative calculation.

The specific algorithms and techniques my system uses to accomplish these tools are

detailed in Section 5, which includes some brief discussions of the history of these works

throughout computer science. However, to my knowledge, none of the specific techniques

described in that section have previously been utilized for virtual cinematography.

3.4 Cinematographic Datasets

As discussed in Section 6, one of the contributions of this work is a novel dataset for

vector-based virtual cinematography, constructed through automated analysis of feature

films. While the idea of attempting to learn filmmaking through the analysis of films is

hardly new, the construction of a dataset with sufficient size and granularity for generative

filmmaking tasks is not straightforward. As collecting more data is expensive, researchers

generally do not include more data in each dataset than is needed for their intended task,

but exactly what is needed can vary dramatically depending upon the specific task.

As this text is primarily focused on vector-based virtual cinematography tasks, the

primary data of interest pertains to the continuous motion of the camera and on-screen

characters, specifically their position, orientation, and size in the frame, as observed in

feature films. Unfortunately, few if any publicly available datasets have captured these

properties at scale to date.

While film studios have used private records for financial and logistical purposes

practically since their inception, the earliest work utilizing statistical analysis with

89

respect to creative decision making was that of film scholar Barry Salt70 (Salt, 1974),

which spawned the long-running Cinemetrics film analysis project (Cin, 2022). Another

prominent researcher with a similar approach is James E. Cutting, who has attempted

to use film data to inform psychological research. While the available datasets contain

human authored editing data (e.g., when each shot begins and ends) for tens of thousands

of feature films, the few annotations regarding the contents of each shot (e.g., shot size,

angle, etc.) are too coarse and small in number for vector-based virtual cinematography

(Salt, 2006, 2009; Cutting et al., 2010, 2011).

A variety of further analytical filmmaking tasks have been inspired by natural language

processing (NLP) concepts, including question answering (Lei et al., 2018, 2019; Tapaswi

et al., 2015), summarization (Bain et al., 2020; Sun et al., 2022; Rohrbach et al., 2015),

and scene segmentation (Rao et al., 2020b),71 among others (Vicol et al., 2018; Gu et al.,

2017). Broadly speaking, such tasks can be understood as seeking to teach computers to

comprehend film story semantics using some combination of pixel data and annotations,

including person bounding boxes, object/action labels, and written dialogue. While the

publicly released datasets for these tasks are large in scale, with some such as Movienet

(Huang et al., 2020) covering thousands of hours of films, and contain slightly more granular

annotations, none I have examined contain data directly translatable to vector-based

virtual cinematography.

By far and away, the dataset that comes closest to serving the needs of vector-based

virtual cinematography is the Film Annotation dataset of Wu et al. (2017), which contains

precise, manually supplied, annotations of the position, orientation, sizes of identified

characters on screen. Unfortunately, most shots have only one frame of annotation, as

the dataset contains only ∼ 1.2K annotated frames from ∼ 1K shots, which does not

70Salt has an unusual resume. Before beginning his work in film scholarship, he was a professional
ballet dancer, computer programmer, and lighting cameraman, as well as completed a PhD in theoretical
physics.

71Scene segmentation does not directly correspond to any common NLP task, but is often considered
analogous to text segmentation: the division of a long sequence of symbols/frames into disparate,
meaningful units, such as words, sentences, shots, scenes, etc.

90

significantly help characterize how the camera moves over time. While some datasets,

such as MovieShots (Rao et al., 2020a), contain coarse annotations for more frames and

shots, only Film Annotation includes continuous vector-based data.

Unfortunately, a frustratingly common practice among machine learning based virtual

cinematography researchers, such as Jiang et al. (2020); Courant et al. (2021); Chen et al.

(2013); Chen and Carr (2015); Chen et al. (2016), is to not publish their datasets. I

can only speculate as to why this has come to be, but a common sticking point in the

computer vision community revolves around legality, a topic about which I am admittedly

inexpert.72 To put it very briefly, most legal systems assign a notion of intellectual

property ownership (e.g., copyright) to films similar to other creative works, such as books

or music. Many types of use of a film, including copying, showing to an audience, selling

merchandise based on the film, etc., require explicit advance permission of the owner of

the film’s intellectual property, usually the organization that produced the film. While

home viewing of a legally owned copy of a film, as well as some types of use for scholarship

and noncommercial research, is commonly considered to be legal, sharing digital copies of

films between researchers without explicit permission from the films’ owners is commonly

viewed as comparable in illegality to piracy.

Some researchers, such as Galvane et al. (2015b) and Phillipson et al. (2022), have

attempted to circumvent this limitation by only sharing data on films they have produced

themselves, thereby allowing the researchers to assign whatever rules on copying/sharing

they wish. However, the production of even the smallest scale film is still an expensive

endeavor, significantly limiting the scope of capturable data. Another method for cir-

cumventing this issue is to instead publish annotations only on legally accessible film

clips, such as trailers and scene excerpts published during films’ marketing campaign,

theoretically allowing researchers to legally share annotations for films their colleagues

can legally access (Bain et al., 2020). However, a limitation of this approach is that the

domain of the dataset only consists of clips selected by each film’s marketing team, which

72To be absolutely clear, I am not a lawyer. Nothing in this entire document constitutes legal advice.

91

carries a significant risk of unwanted bias in the data. Additionally, the accessibility of

the film clips is likely outside the control of the researchers involved, with the potential

to disassociate the annotations from viewable video without warning. As a final fallback,

some datasets simply publish annotations without providing any access to the underlying

video.

Regardless of the source, data collection, or dissemination methods chosen, gaining

access to a cinematographic dataset is a far cry from putting the dataset to practical

use. Machine learning and data science for virtual cinematography have historically been

relatively rare, with the most common methodology being to attempt to learn a simple

parametric interface, usually mapped to one or more simple imperative procedures, that

directly produces camera parameters. I am aware of no published work that has attempted

to automatically learn any kind of declarative interface for virtual cinematography from

data.

92

CHAPTER 4

Mathematical Framework

How should a user input their desired cinematographic preferences, and how should a

system automatically identify a matching camera instantiation? While different researchers

have employed a variety of system paradigms in answering these questions,73 the approach

I have pursued is to formulate the problem as a continuous unconstrained optimization

problem, where the objective function is specified to have minima where the user’s

desired cinematographic behaviors are best satisfied. In this paradigm, a suitable camera

instantiation can be formalized as

arg minxf(x)

given a user specified f : Rd 7→ R and a continuous domain to search within that is a

subset of Rd. To simplify notation, various functions are denoted as f(x) throughout this

document, despite potentially requiring different numbers and types of arguments.

Given that the intended target audience of the system include cinematographers, game

designers, and other craftspeople whose skills may not extend to high-level mathematics,

any usable system should provide an interface that abstracts away the most technically

challenging or complex elements of the underlying optimization problem, instead accepting

expressions of desired behaviors in terms with which the user is more familiar. However,

deciding what mathematical tools the system should support requires careful consideration

of some of the types of abstraction a user might desire:

• Set of behaviors: A user might desire a camera instantiation matching any number

73As discussed at length in 3.

93

of desired shot behaviors. For example, they might want a particular actor to be

visible in the image, to have a particular size, and to be viewed from a particular

angle. If each behavior is modeled as an independent objective function, how can

they be combined to form a single objective function?

• Hierarchical behavior preference: A user might feel that some behaviors are vital

while others are merely optional. Perhaps the user feels that the actor must be

visible in the image, even if it means that they will have a different size or be

viewed from a different angle. How can these hierarchies of behavior preference be

expressed as an unconstrained optimization problem?

• Variable precision: Depending on application domain, the quality of optimum a

user might find satisfactory may vary wildly. For domains such as video games, a

user may want whatever optimum the system has found after a given time period.

In domains such as offline animation, a user might want to see rough results quickly

but better results when available, with the system stopping the search only after

finding a result that meets or exceeds a specified threshold of quality. Are there

types of objective functions or optimization algorithms that are better suited to

these differing approaches to precision?

• Alternate use cases: A user may wish to use the same virtual cinematography

system for different applications, with variations including whether the system has

any knowledge of future knowledge while computing for each moment of time, and

how much time is allowed before the computation is required to complete. How

compatible are different objective functions and optimization algorithms with such

a diversity of applications?

What kinds of mathematical tools are needed to support such abstractions?

94

4.1 Objective Functions

To find a camera pose, the system must be able to evaluate how well a particular camera

pose matches the user’s desired shot behaviors. As we are using an optimization based

approach, this is done with an objective function f : RN 7→ R representing the user’s

desired shot behaviors, with the desired camera instantiation within arg minxf(x).

Within this work, any objective f(x) is assumed to be an instantaneous74 function,

for which x represents the state of the camera at a single instant of time. Evaluating the

objective function over an entire camera path requires the parameterization of x over

time to x(t), which can be evaluated as
∫
f(x(t))dt over some time interval. To simplify

computation, the system operates in discrete time, with the camera specified by some

set of keyframes at times T = t1, . . . , tn allowing the objective function for a path to be

evaluated as
∑

t∈T f(x(t)).

However, as mentioned at the beginning of this chapter, users often want more than

one behavior to be satisfied, with each behavior independently modeled as a separate

objective function f1, . . . , fn. One simple and popular method for combining multiple shot

objectives into a single objective function is as a weighted sum of the these independent

objective functions,

f(x) =
n∑

k=1

αkfk(x).

Not only does this method allow the influence of each objective to be tuned by adjusting

the values of α, but it also critically allows for compromises between shot objectives for

which the minima do not precisely intersect.

74As opposed to a sequential or whole-path function. See Section 3.1.3.2 for a discussion of differing
temporalities in related work.

95

4.1.1 Hierarchical Constraint Penalties

As discussed in Section 3.1.2.4.3, sometimes a user may want to specify their desired

camera behaviors as

arg minx f(x)

s.t. c1(x) ≤ 0

...

cn(x) ≤ 0.

Aside from personal paradigmatic preference, a user may wish to use this constrained

optimization format to explicitly express a partial ordering over their desired cinemato-

graphic behaviors, with higher priority preferences appearing in ci(x) and lower priority

preferences appearing in f(x). This provides an alternate method of controlling compro-

mise behavior when all desired behaviors are not mutually achievable in a given scene,

allowing a user to specify, for example, that one actor’s visibility in the frame is critical

while another’s is simply optional.

However, without unreasonably strong guarantees on the behaviors of the constraints

or objective function, such as linearity or convexity, implementing a system capable of

solving a constrained optimization problem is fraught with difficulty. For example, what

should the system do if the feasible regions of the constraints do not intersect? Will the

user expect the system to exhaustively prove the unsatisfiability of the problem before

reporting an error, or will the user be satisfied by a set of prospective minimums which

satisfy as many of the constraints as possible? Any attempt at answering these questions

requires assumptions about the nature of the application in which the system is being

used, as well as the user’s ability to understand relatively sophisticated mathematical

tools.

An appealing alternative is to transform the constrained optimization problem into

96

an unconstrained optimization problem for which any global minima must satisfy as

many constraints as possible. Such techniques are commonly referred to as penalty

methods,75 with the usual form adding some penalty g(x) to the objective function, so

that f(x) + g(x) is minimized if and only if as many of c1(x), . . . , cn(x) as possible are

satisfied. A traditional choice for a penalty function g(x) = k
∑n

i=1 max(0, ci(x))
2 for

some tuned weight k.76 While effective, this traditional approach fails to support any

specification of relative preference between constraints, preventing any control over the

how to compromise between constraints that are not mutually satisfiable.

To combat this problem, this work introduces a novel hierarchical penalty method

formulation, which allows for a constrained optimization problem to be reduced to an

unconstrained optimization problem with an added penalty corresponding to a partial

ordering of constraint priority.

To construct this hierarchical penalty method, first take the case of a constrained opti-

mization problem with an objective function f(x) and constraints c1(x) ≤ 0, . . . , cn(x) ≤ 0,

all of equal priority. Critically, if

∃a, b such that ∀x ∈ D,−∞ < a ≤ f(x) ≤ b <∞

within some search domain D ⊆ Rd, then the penalty function

g(x) = (b− a+ ϵ)
n∑

i=1

h (kici(x)) ,

where k1, . . . , kn are scalar weights, and h(x) = 1
1+e−x , a standard logistic function.77

With this penalty function, it must be that g(x) > f(x) if any of the constraints are

substantially unsatisfied at x, guaranteeing that any optimization search will always prefer

75Some sources, such as Solomon (2015), refer to this idea as a “barrier” method rather than a “penalty”
method, although both terms are somewhat overloaded throughout literature.

76Many penalty method optimization algorithms increase the value of k with each search iteration to
force g(x) to dominate any residual in f(x).

77It is useful to note that dh
dx = x′ex

(1+ex)2 = x′h(x)(1− h(x)).

97

Figure 4.1: Example of a function with constraints, and a corresponding hierarchical
penalty derived unconstrained version. On the left is a colored plot of an example objective
function, the values of which are colored according to the color bar legend, with two
constraints denoted with diagonal hatching. On the right is a colored plot with contours
to show the result of combining the objective function with hierarchical penalty functions
formed by the constraints.

solutions with fewer substantially unsatisfied constraints.

However, the constraints c1(x), . . . , cn(x) are so far considered of equal priority. Sup-

pose that there is an additional set of constraints, b1(x) ≤ 0, . . . , bm(x) ≤ 0, that are to be

considered as higher priority than c1(x), . . . , cn(x). This can be simply accomplished using

the tools already specified by considering f(x) + g(x), expressed over c1(x), . . . , cn(x), to

be an unconstrained objective function subject to constraints b1(x), . . . , bm(x). By noting

that,

∀x ∈ D, a ≤ f(x) + g(x) ≤ n(b− a+ ϵ),

a new penalty g′(x) over b1(x), . . . , bm(x) of the same form can be written with new

factors a′ = a and b′ = n(b− a+ ϵ).

This recursive stacking of constraints allows for any hierarchical preference of con-

straints to be reduced to an unconstrained optimization problem, allowing for any

unconstrained optimization algorithm to be used. However, this hierarchical penalty

method is not without complications.

Arguably the most significant complication is that any underlying objective function

must have a finite range that is known. Given that part of the goal of this work is

98

to develop systems capable of being used by a variety of different users, it is highly

undesirable to require users to manually specify the range of their objective function

through pencil-and-paper calculations or trial-and-error. Instead, the system developed

includes functionality to automatically estimate the range of expressions, as described in

Section 5.3.2. It is useful to note that the range bounds do not have to be particularly

tight, although excessively large values can lead to numerical precision issues. However,

some care with objective function specification to ensure that the actual range of the

function is finite, with one useful technique for theoretically infinite functions being to

clamp the function within a large but finite range.

An additional, but arguably less significant, complication is that the penalty functions

can cause the boundary of the constraint to soften. As candidate solutions continuously

move from the inside to the outside of each constraint’s feasible region, the value of

the penalty continuously increases, which may result in an optimum near a constraint

boundary being considered slightly less preferable, or a candidate solution slightly outside

the constraint boundary being considered slightly more preferable. The degree of softness

of each constraint’s penalty can be adjusted by tuning the values of k1, . . . , kn. This

softness is acceptable for the virtual cinematography applications considered in this work,

as none of the constraints considered are highly sensitive to candidate solutions precisely

respecting the feasible region boundary.

4.2 Optimization Algorithms

There are a myriad of techniques for computing an optimum for a continuous optimization

problem. If the objective function is of one of several simple forms, such as linear

or quadratic, then it may be possible to analytically solve the optimization problem

analytically. However, many if not most of the optimization problems presented here have

no such guarantees. Most are nonlinear, others non-convex, and others still inexpressible

as closed form functions (see Section 7.2.2.2).

In cases such as these, a numerical optimization algorithm is best suited, although

99

Algorithm 1: Gradient Descent

Given:
x0: Initial function input
γ: Learning rate constant
N : Maximum number of iterations

1 while ||∇f(xi)|| ≥ ϵ and i < N do
2 xi+1 ← xi − γ∇f(xi)
3 i← i+ 1

choosing a specific algorithm can be challenging.

If the given objective function is relatively smooth and convex, a simple gradient

descent (GD) algorithm can be used to find a relatively precise approximation of the

optimum, as is outlined in Algorithm 1. However, if the objective function is non-convex,

this method is susceptible to becoming stuck in local minima. Additionally, selecting an

appropriate value for γ can be tricky. Too small a value will waste valuable computation

time, while too large a value can cause severe oscillations if the magnitude of the gradient

changes quickly. An additional consideration is that gradient descent requires the gradient

of the function to be calculated for each iteration, which may be computationally costly

for complicated objectives functions.

One option to mitigate gradient descent’s sensitivity to γ and reliance on repeated

gradient computations is to instead use a backtracking line search (BLS) algorithm, as

outlined in Algorithm 2. By searching along a single gradient direction for a better

candidate at each iteration, the algorithm can take larger steps without needing more

gradient computations. However, the backtracking line search algorithm may only provide

a small computational speed boost over gradient descent, as the algorithm may request an

excessive number of function evaluations without careful tuning of its hyperparameters.

Additionally, as it is fundamentally gradient based, backtracking line search is prone to

becoming stuck at local minima.

Stochastic algorithms such as simulated annealing (SA) provide a potential solution to

the problem of local minima. There are a number of different formulations of the general

simulated annealing algorithm, but we used the version outlined in Algorithm 3 in our

100

Algorithm 2: Backtracking Line Search

Given:
x0: Initial function input
γ0: Initial Learning Rate
α: Expected improvement of the function relative to the gradient
β: Rate of change to learning rate on improvement failure
N : Maximum number of gradient updating iterations
Ns: Maximum numer of backtracking iterations

1 i← 0
2 while ||∇f(xi)|| > ϵ and i < N do
3 j ← 0
4 γ ← γ0
5 while f(xi + γ∇f(xi)) > f(xi) + α||∇f(xi)||2 and j < Ns do
6 γ ← βγ
7 j ← j + 1

8 xi+1 ← xi − γ∇f(xi)
9 i← i+ 1

experiments. While simulated annealing is far less sensitive to local minima, the solutions

it produces are far less precise than those found by gradient based methods if the global

minima is found.

Another stochastic algorithm popular in virtual cinematography research is particle

swarm optimization (PSO), with the specific version used in our experiments outlined

in Algorithm 4. While more complex and computationally expensive than simulated

annealing, PSO seems to compute solutions in the neighborhood of global optima with

higher probability than simulated annealing.

While I have also experimented with simplex (Nelder-Mead) methods, I have so far

been disappointed by their performance. It might be to do with varying sensitivities over

different variable types (e.g., position vs. rotation), or with the inherently modular nature

of rotation variables, or some other hyperparameter tuning.

Generally speaking, the approach taken in the experiments has been to begin with a

stochastic algorithm to roughly identify the neighborhood of the global optimum, then

improve the precision of the result with a gradient based algorithm initialized. Additionally,

101

Algorithm 3: Simulated Annealing

Given:
x0: Initial function input
T0: Initial temperature
C: Cooling rate where 0 < C < 1
R(a, b): Uniformly distributed random function where a ≤ R(a, b) ≤ b

1 i← 0
2 while Ti > 1 do
3 xi+1 ← xi +R(−Ti+1, Ti+1)
4 Ti+1 ← Ti(1− C)

5 if exp
(

f(xi)−f(xi+1)
Ti

)
≥ R(0, 1) then

6 xi+1 ← xi

7 i← i+ 1

when attempting to compute the next keyframe in a series, the search can be initialized to

begin in the neighborhood of the previous keyframe’s optimum. Both of these approaches

are forms of warm start optimization.

A key feature of all of these algorithms is that each can be tuned to run in any

amount of computational time, with a tradeoff between higher precision results and faster

completion. This flexibility allows these same algorithms to be used for both online and

offline applications.

4.3 Temporal Smoothing

Simple temporal summation over an instantaneous objective function as
∑

f(x(t)) com-

pletely fails to model the inertia and momentum viewers expect from real world cameras.

Generally speaking, any camera path that is not smooth tends to be perceived as unnerv-

ingly artificial and mechanical. This issue can be addressed by extending our given model

with a smoothing penalty based on an active contour model (Kass et al., 1988). In this

augmented model, the system attempts to minimize the energy functional

E(x(t)) = Eint(x(t)) + Eext(x(t)) (4.1)

102

Algorithm 4: Particle Swarm Optimization

Given:
x0: Initial function input
np: Number of particles
ng: Number of generations
ca: Individuality coefficient
cb: Sociality coefficient
R(c): R→ Rd Uniformly distributed random vector function where
−c ≤ R(c)i ≤ c∀i ∈ [1, d]

1 foreach i ∈ 1, ..., np do
2 vi ← R(something)
3 xi ← x0 +R(something)
4 pi ← x0

5 if f(xi) < f(g) then
6 g← xi

7 while t < ng do
8 foreach i ∈ 1, ..., np do
9 vi ← ωvi +R(ca)⊙ (pi − xi) +R(cb)⊙ (g − xi)

10 xi ← xi + vi

11 if f(xi) < f(pi) then
12 pi ← xi

13 if f(xi) < f(g) then
14 g← xi

15 t← t+ 1

16 return g

comprising an internal energy

Eint(x(t)) =
1

2

(
α|ẋ(t)|2 + β|ẍ(t)|2

)
(4.2)

and an external energy

Eext(x(t)) = f(x(t)), (4.3)

where α and β are given constants, and the overstruck dots denote differentiation with

respect to time t.

Including the smoothness of the path in the evaluation model comes with a beneficial

side effect. If no satisfactory solution exists for a portion of the optimal solution for

103

Eext(x(t)), the internal energy of the active contour model allows for the camera path to

smoothly interpolate between the known better solutions at neighboring times. Addition-

ally, the ability of this method to consider the changing value of the objective function

while smoothing allows for the preservation of higher priority camera behaviors while

compromising lower priority behaviors, a property not shared by methods that smooth

output paths as a blind post-processing step after optimization.

Determining suitable values for α and β generally requires experimental parameter

tuning.78 If either is set too high, the resultant camera path may violate the desired

objectives, while too low a setting may fail to alleviate the undesirable artificiality.

Furthermore, there is no requirement that the same constants are desirable for all

variables. For example, a user who wishes their camera to rotate rather than move may

set a higher α or β for camera position variables than for rotation variables.

Unfortunately, simple attempts at numerically solving the active contour model can be

hideously inefficient, especially for large values of α and β. If derivatives of the equation

above are naively computed, it may take O(n2) iterations of gradient descent, where

n is the number of keyframes, for an impulse to traverse from one end of the chain of

keyframes to the other.

Instead, the standard method of computation is to reformulate the problem using

the Euler-Lagrange equation, where any minimum of the original equation 4.1 is also a

solution to

αẍ(t)− β ˙̇ ˙̇x(t)−∇Eext(x(t)) = 0. (4.4)

Solving this numerically generally requires that the considered path is discretized to a

sequence of n keyframes. Notationally, we can assume that x(i) = Xi,∗, meaning that

Xi,j corresponds to the jth component of the ith keyframe. Put another way, X is a n

by m matrix, where each row corresponds to all input variables of a particular keyframe,

while each column of X corresponds to all keyframes of a particular input variable. For

notational brevity, Xi is used to denote Xi,∗ in the below.

78Experimentally, it was found that α = 0.01, β = 0.2, and c(t) = 1 produced decent simulation results.

104

Additionally, the keyframe sequence is not assumed to be uniformly distributed across

time, with the time interval between pairs of consecutive keyframes varying throughout

the sequence. This can be captured by supposing that the sequence of keyframes is

associated with a corresponding sequence of time states t, with keyframe i corresponding

to time ti and ti−1 < ti < ti+1.

In this format, the temporal derivatives of x(t) can be expressed in finite form as

ẋ(t) = Ẋi =
Xi+1 −Xi

ti+1 − ti
, (4.5)

ẍ(t) = Ẍi =
Xi+1 −Xi

ti+1 − ti
− Xi −Xi−1

ti − ti−1

, (4.6)

˙̇ ˙̇x(t) = ˙̇ ˙̇Xi =
Ẍi+1 − Ẍi

ti+1 − ti
− Ẍi − Ẍi−1

ti − ti−1

. (4.7)

From these finite forms, equation 4.4 can be rewritten as

MX −∇
n∑

t=1

Eext(X∗,t) = 0, where M = A(αL− βL2)B. (4.8)

Here, L is an (n+ 2)× (n+ 2) matrix corresponding to a padded Laplacian operator,

directly following equation 4.6, as

L =



0 0 0 0 ... 0 0 0
1

t2−t1
− 2

t2−t1
1

t2−t1
0 ... 0 0 0

0 1
t2−t1

−
(

1
t3−t2

+ 1
t2−t1

)
1

t3−t2
... 0 0 0

0 0 1
t3−t2

−
(

1
t4−t3

+ 1
t3−t2

)
... 0 0 0

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

0 0 0 0 ... −
(

1
tn−tn−1

+ 1
tn−1−tn−2

)
1

tn−tn−1
0

0 0 0 0 ... 1
tn−tn−1

− 2
tn−tn−1

1
tn−tn−1

0 0 0 0 ... 0 0 0



, (4.9)

while A is an n× (n+ 2) matrix, which can be interpreted as eliminating the padding,

A =

 1 1 0 0 ... 0 0 0
0 0 1 0 ... 0 0 0
0 0 0 1 ... 0 0 0
...
...
...
...
. . .

...
...
...

0 0 0 0 ... 1 0 0
0 0 0 0 ... 0 1 1

 . (4.10)

However, there are multiple options as to the (n+ 2)× n padding matrix B, which

differ based on the intended partial differential equation boundary condition. If the user

105

intends the desired path to begin and end with the camera stationary before accelerating,

with X0 = X1 and Xn = Xn+1 corresponding to a classic Neumann differential equation

boundary condition, a value of

B =


1 0 0 ... 0 0
1 0 0 ... 0 0
0 1 0 ... 0 0
0 0 1 ... 0 0
...
...
...
. . .

...
...

0 0 0 ... 1 0
0 0 0 ... 0 1
0 0 0 ... 0 1

 (4.11)

should be chosen. However, if the user intends the desired path to begin and end with

the camera already moving at a constant velocity, with Ẋ0 = Ẋ1 and Ẋn − 1 = Ẋn, this

padding matrix can be encoded correspondingly as

B =


2 −1 0 ... 0 0
1 0 0 ... 0 0
0 1 0 ... 0 0
0 0 1 ... 0 0
...

...
...
. . .

...
...

0 0 0 ... 1 0
0 0 0 ... 0 1
0 0 0 ... −1 2

 . (4.12)

An iterative numerical solver generally following the structure of gradient descent can

be derived from this form of the problem. Given an estimate X i, a lower energy estimate

X i+1 = (I − γM)−1

(
X i − γ∇

n∑
t=1

Eext(X
i
t)

)
(4.13)

for some search step size γ. This implicit solving formulation allows for much larger

step sizes than any explicit solver would, even with high values of α and β. To reach

a stable equilibrium representing a solution to the underlying problem, this iteration

should continue until |X i+1 −X i| < ϵ. Note that the matrix inversion required by this

formulation can be performed as an LU decomposition, which is relatively computationally

expensive. As a result, changing the value of γ between optimization iterations, as would

be desirable for a backtracking line search algorithm, is usually not practical.

As an alternative, an explicit solver could compute increasingly accurate estimates as

X i+1 = X i − γ

(
MX i +∇

n∑
t=1

Eext(X
i
∗,t)

)
. (4.14)

106

However, this requires more iterations and a lower choice of γ to reach a stable equilibrium,

generally carrying a higher computational cost.

However, some care must be taken for search variables representing modulo domains,

such as Euler angle rotation representations. In these cases, consecutive keyframes must

be normalized to ensure the direction and magnitude of differences is sensible, such that

X0
i,k ← X0

i,k−1 + (X0
i,k−1 −X0

i,k) mod ni for component specific mod bases n, before the

active contour model gradient descent can begin. Specifically, this modulo behavior needs

to correspond to rounding division, where the remainder r = a mod n such that a = nq+r

for q = round
(
a
n

)
.

4.4 Use Cases

While there are many different ways of utilizing the cinematographic tools outlined above,

the system supports two primary categories of use cases, which are labeled as scripted

and unscripted scenarios.

4.4.1 Scripted Scenarios

In a scripted scenario, the system attempts to find a satisfactory camera path for a

preplanned scene before any part of it is to be displayed to the viewer. As this is an offline

operation, the system can take as much time as is necessary to find a satisfactory solution.

Furthermore, complete knowledge of all past, current, and future states of the scene are

available at every instant of time. This is analogous to the traditional preproduction

workflow of a live action or animated film.

Scripted scenarios can be solved in a straightforward manner by the optimization

strategy described in Section 4.2. The general strategy I have followed is to first optimize

each frame individually, using SA or PSO followed by GD or BLS to refine the results.

If smoothing is desired, this is followed by smoothing with the implicit gradient descent

formulation described in Section 4.3.

107

4.4.2 Unscripted Scenarios

In an unscripted scenario, the goal of the system is to find a camera pose for the current

instant in time given complete knowledge of the current and past states of the scene,

but without any direct knowledge of the future. This is an online operation during the

playback of the scene; therefore, the system must be able to find a satisfactory solution in

real time given the viewer’s desired frame rate. This is analogous to the shooting of an

unscripted documentary or news material, or to video game camera control. Of course,

unscripted scenarios can also be simulated by playing scripted motions back in real-time.

Without smoothing by an active contour model, the first frame camera pose is set

either by the user or by running SA or PSO, then GD or BLS is run every frame starting

from the values of the previous frame, a technique commonly referred to as warm start.

Unscripted scenarios with smoothing are significantly trickier, since in order for the

active contour model to work effectively, the system must know something of the unknown

future. As our current system is lacking contextual or behavioral data, as employed by

(Halper et al., 2001) to form predictions more precisely, the prediction scheme currently

supported is a Taylor series approximation where, for future keyframes t1, . . . , tn,

x(tj) ≈
n∑

k=0

1

k!
(tj − t0)

k d
kx(t0)

dtk
, (4.15)

where dkx(t)/dtk is the kth-order derivative of x(t). To alleviate instability stemming

from discrete time steps, the system calculates the necessary derivatives as local averages

dkx(t)

dtk
≈ 1

M∆t

M∑
i=0

dk−1x(t−∆ti)

dtk−1
− dk−1x(t−∆t(i+ 1))

dtk−1
, (4.16)

where ∆t = ti − ti+1. Of course, this is a tradeoff as too large a value of M can create an

undesirable sense of variable inertia. Values of M = 10 and ∆t = 0.1 sec were used.

Once these predictions are made, the same types of optimization techniques can be

used to find a suitable camera path through the predicted period, and the first future

108

keyframe x(t1) can be output as the next camera state.

109

CHAPTER 5

Computational Tools Systems Engineering

Thus far, this document has focused solely on the abstract mathematical concepts

involved with declarative virtual cinematography in offline and online domains. Of course,

experimenting with these concepts in practice requires a concrete software system with

particular requirements.

At a high level, an idealized imagining of system operation would only require the

user to specify an objective function and leave it to the system’s tools to compute the

optimum. However, many of the optimization techniques mentioned in the previous

sections require computational and analytical capabilities that go beyond simple function

evaluation: gradient descent requires that the derivatives of the objective function be

calculated, while hierarchical penalties requires knowledge of the range of functions, to

give two examples.

Requiring the user to manually supply instructions for each of these computation

types would dramatically increase the amount of user effort required to use the system.

Worse still, a user hoping to iteratively experiment with different objective functions in

such a manually instructed system would have to correctly change the instructions for

each type of computation, where any typo or incongruity in one set of instructions can

cause incredibly difficult to debug behavior.

Instead, a more user friendly and efficient model would include automated functionality

to derive these instructions for these different computation types given only the original

objective function, with these derivations ideally occurring rapidly at runtime to allow for

the rapid prototyping of objective functions.

Supporting both offline and online applications brings another set of system engineering

110

challenges. These derived operations must not only be automatic, but also efficient enough

to be run in between frame updates. Additionally, the system must be able to be integrated

into a real time graphics system, interacting with whatever geometric query and control

infrastructure is foundational to the underlying system.

These requirements can be more tidily summarized as follows:

1. Support for the evaluation of arbitrary objective functions, including black box

expressions incorporating knowledge of the broader state of the scene (e.g., raycasts,

collision tests).79

2. Support for static computation of the range of an objective function, sometimes

called value range analysis, in support of the hierarchical constraints described in

Section 4.1.1.

3. Support for the automatic evaluation of function gradients, often called automatic

differentiation, for gradient based optimization methods.80

4. Runtime scriptability for rapid prototyping of different objective functions.

5. Ability to be easily integrated into the loop of a real time graphics system (e.g.,

Unreal Engine 4 game engine), running based on scenes that are either live (online)

or based on recorded data (offline).

When I first began this project in 2015, I spent a considerable amount of time and

energy searching for an existing software system that met all of these requirements.

While a fully featured computer algebra system (CAS), such as in MATLAB or

SageMath, could easily satisfy requirements 2, 4, and 3, satisfying requirements 1 and

5 proved remarkably elusive. My attempts to integrate black box expressions such as

raycasts in the form of networking between the CAS and main graphics systems seemed

to introduce significant latency issues. Despite my best efforts, I could only get the CAS

79This is necessary for visibility and collision objectives. See Section 7.2.2.2.

80Such as gradient descent. See Section 4.2.

111

to return consistent results of a controllable quality or achieve real time interactivity

within a graphics loop, but not both in the same attempt.81

While any embedded implementation of an interpreted programming, such as Python,

JavaScript, or Lua, language would certainly be able to support requirement 4 as well

as 1, and might be able to support requirement 5, the other requirements are a bit

trickier. While there are a variety of publicly available automatic differentiation packages

that might partially satisfy requirement 3, all that I examined were relatively limited,

requiring objective functions to be specified using a narrower set of operations than

required to implement my desired functions. Worse still, I could find no existing libraries

that supported automatic value range analysis for either Python, JavaScript, or Lua,

making requirement 2 impossible using existing tools.82

A third alternative considered was to use scripts written in a compiled language, such

as Java or C++, for which existing automatic differentiation and value range analysis are

more commonly available. However, supporting runtime scriptability, requirement 4, is

difficult with these compiled languages, requiring some type of just in time compilation

and/or dynamic loading, and made even more difficult by requiring support for black box

functions that incorporate information from the running real time graphics system. As

a result, I estimated that the cost of integration using compiled languages would be far

greater than incrementally developing a bespoke system, and with a far greater lead time

before even the simplest of results could be seen.83

81Whether this is an inherent incompatibility or simply the result of my own inability is unclear.
MATLAB is certainly capable of real time performance on its own, and even has an official package
featuring plugins for network-like interfacing with game engines. However, the application domains of
these real time packages and interfaces are incredibly narrow, whereas the type of optimization based
computation I was attempting is far more generic. Perhaps this would be worth revisiting if a more
restricted form of computation was desired in the future.

82The reader might ask why I didn’t instead focus my efforts on developing these missing tools, given
the lack of any other inherent issue with this approach. At the time, I estimated that the cost of
development of these tools for an existing language such as Python would be greater than creating a
bespoke system. As the project progressed and the true magnitude of my chosen approach became clear,
my confidence in this early estimate has shrunk considerably.

83Just as before, my estimate has probably been proven false over the ensuing development period.

112

As a result of the apparent fruitlessness of this search, I made the fateful84 decision to

build my own system, largely from scratch.85

At a high level, the core of the resulting system operates like a small, imperative,

statically-typed programming language. The basic operation cycle can be summarized as

follows: a program corresponding to instructions to evaluate a desired objective function is

specified by the user, the program is then analyzed and transformed to support alternate

computation types as needed to support the type of optimization desired, then the final

resulting program is interpreted within a real time graphics environment.

The first version of this system, written to implement the concepts described in

(Litteneker and Terzopoulos, 2017), featured ∼ 6.5K lines of hastily written, inflexible

C++ code. In the years since, this codebase has adapted and expanded into ∼ 20K

lines of modular C++ and Lua code, integrated into an Unreal Engine 4 (Epic Games,

2022) project. The codebase is itself integrated with several further open source libraries,

including the following.

• Runtime scriptability is achieved through an integration with Lua (Ierusalimschy,

2006), which is bound to the C++ object-oriented API using sol2 (ThePhD, 2018).

• Eigen (Guennebaud et al., 2010) is integrated to support hardware accelerated

operations on vectors, matrices, and quaternions.

• While many optimization algorithms are my own implementations in C++, several

come from a header-only integration with the optimlib library (O’Hara, 2020).

While the specifics of this codebase are inexorably mixed with the idiosyncrasies of

C++, in particular making heavy use86 of template metaprogramming, as well as those

84As well as (arguably) incredibly foolhardy.

85Internally, the system library is referred to as AUL. I wish I could say it stands for something novel,
like “Advanced Utility Language” or “Alan’s Unusual Library,” but it actually just stands for my first,
middle, and last initials. Instead of exercising in what feels like a strange act of vanity by filling this
chapter with references to my own name, I have instead chosen to simply refer to it as the “system”
throughout this document.

86Some might call it abuse.

113

of the other integrated libraries, many of the algorithms and data structures employed to

support the requirements outlined above are easily generalizable to a far simpler language

model, which is described in detail below. While the full system is a fiercer and less

tidy beast, the micro-language discussed here is more than sufficient to facilitate concise

discussion of the automatic differentiation, value range analysis, expression simplification,

and black box function integration tools at the heart of the full system.

5.1 Micro Language Specification

For the purposes of illustration, we examine a small, imperative programming language

designed to primarily operate over scalars (n).87 However, in order to fully support the

transformations and analyses to be discussed later, we also need stacks of numbers (ℓ) as

well as stacks of statements (r). Formally, these data types can be denoted as follows:

n ::= <real number literal >

ℓ ::= () | (n, ℓ)

r ::= [] | [s, r]

v ::= n | ℓ

Programs in this language can be expressed following the grammar below. In addition

to categories of variables (x), statements (s), and expressions (e), the language also

supports black-box functions accepting a single numeric argument (f). While a formal

definition for these is omitted, f functions can be assumed to correspond to the address

of some external, side-effect free function.

x ::= <variable identifier >

f ::= <black box function accepting a single numeric argument >

s ::= skip | s ; s | x = e | e

| while e < e do s | break

87While this has no bearing on the rest of this discussion, it is interesting to note that this micro-language
is Turing complete.

114

| if e < e then s else s

| pushv(e, x) | popv(x)

| pushr(s, x) | execr(s, x)

e ::= n | x | s : e

| e + e | e - e | e * e | e / e | en

| peekv(e) | f (e)

t ::= v | s | e

While many of the above terms, such as assignment, sequence statements, and

arithmetic expressions, likely appear familiar to even a novice coder, there are a few

unusual features deserving of brief comment. Both if and while statements are supported,

but both are limited to inequality conditions, purely for simplicity.88 break statements

are supported, allowing for The : operator, called the sequence expression, allows for any

expression to be preceded by a statement with side effects.

The pushv, popv, and peekv terms facilitate the manipulation and accessing of stacks

of numbers to a variable in memory. Specifically, pushv and popv allow for a single

number to be pushed or popped from the top of a stack, while peekv allows for the

topmost value in the stack to be accessed. While an empty stack of numbers can be

assigned to a variable, the only way of manipulating and accessing values stored in that

stack are through pushv, popv, and peekv, each of which is capable of modifying only

one value at a time.89

Perhaps the most unusual are the pushr and execr terms, which operate over stacks

of statements, and are invaluable in supporting certain forms of automatic differentiation

in 5.4.2. To give a brief overview of the intended usage of these terms, execr(s,x) first

initializes x to correspond to an empty stack of statements in the program memory,

executes some statement s, then executes whatever statements have been pushed to x by

88General boolean conditions and expressions are supported in the full system, but detailing all of
the additional terms and semantics would cause this already lengthy section to grow longer and more
complex.

89This is not a strict requirement of the tools and techniques used here

115

pushr statements during the execution of s.

There are a few additional properties of the semantics of this language that are useful

to note.

Firstly, expressions can have side effects. For example, the expression x=x+5: x*x

not only depends upon the incoming value of x but also modifies the outgoing value of x.

Secondly, the order of evaluation for all executable programs is well defined, including

over arithmetic expressions. The program x=2: (x=x*x: x)*(x=x*3: x) should have

a resulting value of 48, and should have a side effect that the value of x be 12 after

execution.

Thirdly, stacks of statements, values of r, can only be manipulated by execr and

pushr statements. The types of side effects these allow are also limited, restricted to the

initialization of an empty stack in memory or the pushing of a single statement onto an

existing stack in memory. Stacks of statements in memory cannot be modified in any

other way, including by swapping or duplicating through assignment to another variable.

While the full system supports a simple strict-type checker90, programs in the language

will be assumed to be well-formed. Formal rules for such a system have been omitted

here in the interest of brevity, but can be easily derived in a similar manner as Pierce and

Benjamin (2002).91

Finally, a program in the language described above can be modeled as a directed

acyclic graph (DAG). The semantics of this language can further be read as the foundation

for a graph walking interpreter, with the execution of each term depending only on the

incoming program state and this term’s immediate children, which is how the current

interpreter for this language is currently implemented.

90This type checker naturally arises from C++ polymorphism over term types, as expression types are
valid.

91One of the reasons this would become so long is their technique requires small-step semantics, which
would roughly double the number of semantic judgements required.

116

e1 + e2 1

e2 2 e1 ∗ e2 3

e1 − e2 4

b 5 e2 6

a 7

e1 − e2 9

y 10 e2 11

x 12

e1 e2

e1 e2

e1

e2

e1 e2

Figure 5.1: Graph of a program that represents the Rosenbrock function.

As an example, consider the Rosenbrock function,

f(x, y) = (a− x)2 + b(y − x2)2 (5.1)

which has a global minimum at x = a and y = a2 and is commonly used for testing

optimization systems (Rosenbrock, 1960). A program in the micro-language for evaluating

the Rosenbrock function can be represented in the graph pictured in Figure 5.1.

5.2 Semantics

Borrowing the imperative big step style from (Kirchner and Sinot, 2007) (which is, in

turn, adapted from (Pierce and Benjamin, 2002) among others), we can define a set of

formal rules for this simple language’s operational semantics below.

These semantics are expressed as judgments over operations of the form ⟨t1, σ1⟩
w�

⟨t2, σ2⟩, where σ corresponds to the state of the program memory at each big-step of

execution. The value of variable x in σ is denoted as σ[x], while a modification of the

117

value of x in σ to value v is denoted as σ{x 7→ v}.92

Specifically, step operations for statements follow a restricted form of

⟨s, σ1⟩
w�

s
⟨s ∈ {skip, break}, σ2⟩, with skip and break serving as signals for loop control

flow. As expressions can step to any value, their operations have a slightly different form

of ⟨e, σ1⟩
w�

e
⟨v, σ2⟩. Step operations over statements and expressions are disambiguated

by their subscripts.

The operational judgments for “familiar” statements can be written as follows:

⟨skip, σ⟩
w�

s
⟨skip, σ⟩ ⟨break, σ⟩

w�
s
⟨break, σ⟩

⟨e, σ⟩
w�

e
⟨v, σ′⟩

⟨x:=e, σ⟩
w�

s
⟨skip, σ‘{x 7→ v}⟩

⟨e, σ⟩
w�

e
⟨v, σ′⟩

⟨e, σ⟩
w�

s
⟨skip, σ‘⟩

⟨s1, σ⟩
w�

s
⟨t, σ′⟩ t ̸= skip

⟨s1;s2, σ⟩
w�

s
⟨t, σ′⟩

⟨s1, σ⟩
w�

s
⟨skip, σ′⟩ ⟨s2, σ′⟩

w�
s
⟨t, σ′′⟩

⟨s1;s2, σ⟩
w�

s
⟨t, σ′′⟩

⟨e1, σ⟩
w�

e
⟨n1, σ

′⟩ ⟨e2, σ′⟩
w�

e
⟨n2, σ

′′⟩

n1 < n2 ⟨s, σ′′⟩
w�

s
⟨break, σ′′′⟩

⟨while e1 < e2 do s, σ⟩
w�

s
⟨skip, σ′′′⟩

⟨e1, σ⟩
w�

e
⟨n1, σ

′⟩ ⟨e2, σ′⟩
w�

e
⟨n2, σ

′′⟩ n1 < n2

⟨s, σ′′⟩
w�

s
⟨skip, σ′′′⟩ ⟨while e1 < e2 do s, σ′′⟩

w�
s
⟨skip, σ′′′⟩

⟨while e1 < e2 do s, σ⟩
w�

s
⟨skip, σ′′′⟩

⟨e1, σ⟩
w�

e
⟨n1, σ

′⟩ ⟨e2, σ′⟩
w�

e
⟨n2, σ

′′⟩ n1 ≥ n2

⟨while e1 < e2 do s, σ⟩
w�

s
⟨skip, σ′′⟩

92For any readers unfamiliar with the style of judgments used here, the premise below the line
is guaranteed to be true if all premises above the line are true. For example, the judgment

premise1 premise2

conclusion
could be read that if both premises are true, the conclusion must also be true.

118

⟨e1, σ⟩
w�

e
⟨n1, σ

′⟩ ⟨e2, σ′⟩
w�

e
⟨n2, σ

′′⟩

n1 < n2 ⟨s1, σ′′⟩
w�

s
⟨t, σ′′′⟩

⟨if e1 < e2 then s1 else s2, σ⟩
w�

s
⟨t, σ′′′⟩

⟨e1, σ⟩
w�

e
⟨n1, σ

′⟩ ⟨e2, σ′⟩
w�

e
⟨n2, σ

′′⟩

n1 ≥ n2 ⟨s2, σ′′⟩
w�

s
⟨t, σ′′′⟩

⟨if e1 < e2 then s1 else s2, σ⟩
w�

s
⟨t, σ′′′⟩

⟨e, σ⟩
w�

e
⟨n, σ′⟩ ℓ = σ′[x]

⟨pushv(e, x), σ⟩
w�

s
⟨skip, σ′{x 7→ (n, ℓ)}⟩

(n, ℓ) = σ[x]

⟨popv(x), σ⟩
w�

s
⟨skip, σ′{x 7→ ℓ}⟩

Expressions can be written similarly, as below. Note that the similar binary arithmetic

terms of +, -, *, and / are unified under a single category of op, with their associated

mathematical operation written as [[op]], in the interest of brevity.

⟨n, σ⟩
w�

e
⟨n, σ⟩ ⟨ℓ, σ⟩

w�
e
⟨ℓ, σ⟩

v = σ[x]

⟨x, σ⟩
w�

e
⟨v, σ⟩

(n, ℓ) = σ[x]

⟨peekv(x), σ⟩
w�

e
⟨n, σ⟩

⟨e, σ⟩
w�

e
⟨n1, σ‘⟩ n2 = f(n1)

⟨f(e), σ⟩
w�

e
⟨n2, σ‘⟩

⟨e1, σ⟩
w�

e
⟨n1, σ

′⟩ ⟨e2, σ′⟩
w�

e
⟨n2, σ

′′⟩ n3 = n1[[op]]n2

⟨e1 op e2, σ⟩
w�

e
⟨n3, σ

′′⟩

⟨e, σ⟩
w�

e
⟨n2, σ

′⟩ n3 = nn1
2

⟨en1 , σ⟩
w�

e
⟨n3, σ

′⟩

⟨s, σ⟩
w�

e
⟨skip, σ′⟩ ⟨e, σ′⟩

w�
e
⟨v, σ′′⟩

⟨s:e, σ⟩
w�

e
⟨v, σ′′⟩

It should be noted that, as a result of the notational style used here, break statements

with no while statement ancestors separating them from a sequence expression cause

119

undefined behavior. In other words, the program x=5;while x<10 do x=(break:x)+1

would not be executable using these specific semantics. Fortunately, this is trivial to

check before attempting execution by constructing a control flow graph as described in

Section 5.3.1, and checking whether the break statement has any successors.

The remaining terms deal with accessing and manipulating stacks of statements. To

give a brief overview of the intended usage of these terms, execr(s,x) first initializes

x to correspond to an empty stack of statements in the program memory, executes

some statement s, then executes whatever statements have been pushed to x by pushr

statements during the execution of s. Operational semantics corresponding to these terms

can be formalized as follows:

r = σ[x]

⟨pushr(s, x), σ⟩
w�

s
⟨skip, σ{x 7→[s, r]}⟩

⟨s, σ{x 7→[]}⟩
w�

s
⟨skip, σ′⟩ r = σ′[x] ⟨r, σ′⟩

w�
s
⟨skip, σ′′⟩

⟨execr(s, x), σ⟩
w�

s
⟨skip, σ′′⟩

⟨s, σ⟩
w�

s
⟨skip, σ′⟩ ⟨r, σ′⟩

w�
s
⟨skip, σ′′⟩

⟨[s, r], σ⟩
w�

s
⟨skip, σ′′⟩ ⟨[], σ⟩

w�
s
⟨skip, σ⟩

5.3 Static Analysis

Supporting value range analysis, one of the original requirements for the system, as well

as a few other performance related program queries, requires a set of powerful static

analysis tools. At a high level, these tools can be understood as answering one or more

of the following questions without evaluating any of the original program:

• Control Flow Analysis: In what order can terms in this language be evaluated?

• Value Range Analysis: What values can a variable or expression evaluate to under

a set of assumptions about incoming variable values?

120

• Program Optimization: Are there any terms in the existing program that can be

replaced with more efficient but semantically identical terms?

Techniques for answering these questions are far from unprecedented. Various forms of

control flow analysis and compiler optimization have been used in a variety of applications

since at least the 1970s, while value range analysis has been a semi-regular components of

some compilers since the 1990s (Aho et al., 2006).

Despite this precedence, developing efficient implementations of these tools for a

language with features as unusual as thus micro-language is a nontrivial task.

5.3.1 Control Flow Analysis

Analyzing the order of evaluation of terms in this micro-language takes the form of

constructing a control flow graph (CFG), where a directed edge between two nodes

indicates that the execution of the tail node may immediately precede the execution of

the head node. While traditional CFGs are constructed with nodes corresponding to

atomic program nodes, supporting the relatively complex variety in operational semantics

for the different types of terms in this micro-language requires something slightly more

complex.

Instead, each term corresponds to a pair of nodes in the CFG, with the start and

end nodes respectively corresponding to the beginning and completion of evaluation of a

given term. In this formulation, local control flow edges are formed by edges from parents’

start nodes to childrens’ start nodes, between childrens’ start and end nodes, and from

childrens’ end nodes to parents’ end nodes.

Formally, the control flow graph, G = (V,E), has the same vertices regardless of term

types or structure, with

V = {p|p ∈ {t :: start, t :: end}, t ∈ program terms}.

Denoting that a control flow graph contains an edge from a tail node a to a head node b

121

Term Constraints

skip | n | ℓ | t | x | popv(x) E ⊆ start → end

s1 ; s2

E ⊆ start → s1::start
E ⊆ s1::end → s2::start
E ⊆ s2::end → end

while e1 < e2 do s

E ⊆ start → e1::start
E ⊆ e1::end → e2::start
E ⊆ e2::end → s::start
E ⊆ s::end → e1::start
E ⊆ e2::end → end

if e1 < e2 then s1 else s2

E ⊆ start → e1::start
E ⊆ e1::end → e2::start
E ⊆ e2::end → s1::start
E ⊆ e2::end → s2::start
E ⊆ s1::end → end
E ⊆ s2::end → end

s : e
E ⊆ start → s::start
E ⊆ s::end → e::start
E ⊆ e::end → end

e1 op e2

E ⊆ start → e1::start
E ⊆ e1::end → e2::start
E ⊆ e2::end → end

en | x := e | pushv(e, x) | peekv(e) E ⊆ start → e::start
E ⊆ e::end → end

break

E ⊆ start → { frontier of while ancestors

accessible using only

if and sequence terms }

Table 5.1: Standard Control Flow Graph Construction Rules

can be written as E ⊆ a→ b.

Following this notation, the local CFG edges for the “familiar” term types can be

shown in table 5.1.

However, this leaves execr and pushr, which instead executes statements that have

been individually pushed onto a statement stack in memory. As the order of execution

of these stack pushed statements itself depends on the order of their being pushed,

constructing CFG edges over these terms is instead an exercise in querying or transforming

the structure of the existing control flow graph.

122

One concise way of expressing this operation is to define a helper function

ϕ(G, n, x, bool), which returns the frontier of pushr terms pushing to x that are reachable

from node n by traversing edges in G forward if the last argument is false or backward

if true. Using this function, the edges for pushr and execr terms can be expressed

following the rules in table 5.2.

Term Constraints

pushr(s, x)
E ⊆ start→ end
∀t ∈ ϕ(G, start, x, false).E ⊆ s :: end→ t::start

execr(s, x)
E ⊆ start → s::start
∀t ∈ ϕ(s::end, x, false).E ⊆ s::end → t::start
∀t ∈ ϕ(s::start, x, true).E ⊆ t::end→ end

Table 5.2: CFG construction rules for non-standard terms.

An important feature of these constraints is that they are recursive: what edges

should appear in the graph depends on what edges are already in the graph. As a result,

constructing a graph that satisfies all of these constraints is somewhat nontrivial.

The solution I employed was a fixed point algorithm, where the constraints were

iteratively applied until an iteration found no additional edges to be necessary. While

this theoretically might require O(|V |2) iterations to reach the fixed point, all programs

used in experimentation for this paper required no more than three iterations: the first

iteration added the constant edges for the “familiar” terms, the second added the edges

for execr/pushr terms, and the third iteration found no additional edges to add.

However, each iteration of this algorithm may be as expensive as O(|V |2), as computing

ϕ may be O(|V |). This can be accelerated considerably by instead querying a contracted

form of G, where an edge n1 → n2 can be contracted iff neither n1 nor n2 corresponds to

a execr/pushr term. Running this contraction once at the beginning of each iteration

requires only O(|E|), while ϕ function queries over this contracted graph operate in

constant time. Therefore, the cumulative computation and memory complexity of this

control flow graph construction is generally linear in the number of terms in the program.

One final note, each CFG node p is annotated with what variables are referenced,

123

refs(p), and mutated, muts(p), at that node. This is useful for clarifying and disam-

biguating between the effects between different phases of execution of each term.

Term References Mutations
x refs(end) = {x}
x = e muts(end) = {x}
pushv(x, e) refs(start) = {x} muts(end) = {x}
popv(x) refs(start) = {x} muts(end) = {x}

Table 5.3: Rules for Side Effect Static Analysis

Together with the CFG, these refs andmuts annotations provide sufficient information

for a form of data dependency analysis. A CFG node pa may directly depend upon the

side effects of CFG node pb if every path from pb to pa spanning {p1, . . . , pn} satisfies

refs(pa) ∩ muts(pb) ∩
⋃n

i=1muts(pi) ̸= ∅. For notational simplicity, this dependency

query is denoted as dep(pa, pb).

Additionally, these refs and muts annotations can be trivially extended to terms,

with refs(t) = refs(t :: start) ∪ refs(t :: end) ∪
⋃

t′∈children(t) refs(t
′) and muts(t) =

muts(t :: start)∪muts(t :: end)∪
⋃

t′∈children(t) muts(t′). While this loses some of the fine

granularity of the CFG annotations, having the ability to generalize these annotations to

terms allows for term level analysis that can be useful in later analyses.

5.3.2 Value Range Analysis

The form of value range analysis used here computes the possible ranges of expressions

and variables as real numeric intervals.93 Possible interval values include both those of

the form [a, b] for any a, b ∈ R such that a ≤ b94, as well as ∅, which is necessary for the

tracking of intermediate results.

Arithmetic operations and exponentiation corresponding to the types of expressions

93Why intervals? For many programs, there are an infinite, or at least astronomical, number of possible
values, far too many to tractably enumerate let alone store. Intervals provide an encapsulation that is
efficient to both store and manipulate using operations derived from interval arithmetic. Additionally,
the stated use case of this analysis, the hierarchical constraints described in Section 4.1.1, require nothing
more than intervals.

94This can be read that any element of {x ∈ R|a ≤ x ≤ b} is possible.

124

included in this language have corresponding operations over intervals, as outlined below.

Each of these interval arithmetic operations produces a single interval output which

contains all possible results of applying the corresponding mathematical operation to any

combination of singular real number values within the ranges of the interval operands.95.

−[a, b] =[−b,−a]

[a1, b1] + [a2, b2] =[a1 + a2, b1 + b2]

[a1, b1]− [a2, b2] =[a1 − b2, b1 − a1]

[a1, b1] · [a2, b2] =[min(a1a2, a1b2, b1a2, b1b2),max(a1a2, a1b2, b1a2, b1b2)]

[a1, b1]

[a2, b2]
=



[a1, b1] · [1b2 ,
1
a2
] if 0 /∈ [a2, b2]

[a1, b1] · [1b2 ,∞] if a2 = 0, b2 > 0

[a1, b1] · [−∞, 1
a2
] if a2 < 0, b2 = 0

[−∞,∞] if a2 < 0 < b2

∅ if a2 = b2 = 0

[a, b]n =


[0,max(an, bn)] if n%2 = 0, a ≤ 0 ≥ b

[min(an, bn),max(an, bn)] otherwise

If at least one of the operands of any of the interval arithmetic operations described above

is ∅, the result is ∅.

−∅ = [a, b] op ∅ = ∅ op [a, b] = ∅n = ∅

Additionally, the hull of two intervals, sometimes referred to as the least upper bound,

95While reasoning about intervals began in antiquity, this style of interval arithmetic was invented in
the 20th century. While some of its principals were first introduced by Young (1931) and others in the
1930s, modern interval analysis largely stems from the work of mathematician Ramon E. Moore, and his
highly influential Moore (1966).

125

can be simply defined as

[a1, b1] ∪ [a2, b2] = [min(a1, a2),max(b1, b2)],

[a, b] ∪ ∅ = ∅ ∪ [a, b] = [a, b],

∅ ∪ ∅ = ∅.

Using these properties and operations, an inequality constraint between two interval

variables can be defined. Some interval x contains interval y, written as x ⊆ y, if and

only if x ∪ y = x.

Note that arithmetic operations over intervals follow the same commutativity, asso-

ciativity, and distributivity properties as their real valued counterparts. One subtle but

significant technical point is that ±∞ · 0 = 0 in interval operations, as ±∞ values refer

to the limit of a range of finite values rather than any truly infinite value.

Analyzing a program using interval based value range analysis can be expressed as a

data flow analysis problem. In this form, the values of interval variables corresponding

to the ranges of expressions and variables are allowed to flow through constraints corre-

sponding to local program behavior. By iteratively expanding the interval variables until

all constraints are satisfied, the resulting ranges should be no larger than necessary to

capture all possible values. This approach is also a fixpoint algorithm, of a similar form

to that used in control flow graph construction in the previous section.96

It is important to note that, while all possible values must be contained within the

computed ranges for the analysis to be valid, the computed ranges may contain values that

are not strictly possible. Some of this redundancy is the unavoidable result of a lack of

cognizance within the interval arithmetic operations of any dependency between operands.

96This dataflow-fixpoint based approach for analyzing programs was invented by Gary Kildall as part
of his 1972 PhD dissertation, and is sometimes referred to as the Kildall method. The domain of his
work was primarily over discrete lattices of values, rather than intervals or control flow graphs, but the
general approach is fundamentally similar. Kildall was a computer scientist and entrepreneur who made
substantial technical contributions to compilers, operating systems, media hardware, and more in the
early days of personal computers before his sudden death at the age of 52 (Markoff, 1994).

126

For example, if x is assumed to have a range of [−1, 1] then applying the arithmetic rules

above to the expression x ∗ x would produce a range of [−1, 1], ignoring the fact that

both factors are guaranteed to have the same sign. While a slightly more sophisticated

analysis might produce the true range of this simple example, only marginally more

complex expressions can suffer from dependency problems running from computationally

expensive to undecidable. Worse still, some interval arithmetic functions, such as division,

can produce infinite ranges depending on operand value.97

Two different forms of value range analysis are supported, separated by their cognizance

of the order of evaluation of terms, a property known as flow sensitivity.

5.3.2.1 Flow Insensitive

In a flow insensitive analysis, the order of evaluation of terms is ignored. While this can

significantly reduce the precision of the resulting intervals for programs heavily utilizing

side effects, the analysis itself is simpler to implement, faster to compute, and far less

memory intensive.

A flow insensitive analysis problem operates over two sets of intervals. The first

corresponds to the potential ranges of each variable in the program, denoted vars[x] for

each variable x in the program. The second corresponds to the potential result range

of each expression, and is denoted res[e] for each expression e in the program. Note

that these intervals capture both numbers, n, as well as lists of numbers, ℓ, as interval

ranges. Stacks of statements, r, are not captured in this analysis, but their behavior

should already be fully captured in the control flow graph. The problem of flow insensitive

value range analysis can then be expressed as interval inequality constraints over values

in these two sets of variables.

The constraints over vars[x] are very simple. As this analysis does not incorporate any

97Division in particular is sometimes written as resulting in a pair of intervals if the divisor crosses zero.
This is more precise, but any expression tree containing n levels of nested divisions would then produce
2n output intervals, which can quickly become computationally intractable. While the single interval
result used here is less precise, its constant memory and computational footprint maintains tractability
across the sort of large and sophisticated expressions for which this software system is intended.

127

order of evaluation information into the analysis, the only terms that need be considered

are those that can introduce another value to a scalar or numeric stack variable. Namely,

these terms are assignment, x=e, and pushing a number onto a stack, pushv(x, e). Each

appearance of these terms can correspond to an inclusion of the following constraint, with

x and e corresponding to the relevant children of each type of term.

vars[x] ⊆ res[e]

The constraints for res[e] can likewise be simply expressed using the rules for interval

arithmetic outlined in the previous section.

res[[]] ⊆∅

res[n] ⊆[n, n]

res[x] ⊆vars[x]

res[s : e] ⊆res[e]

res[peekv(x)] ⊆vars[x]

res[e1 op e2] ⊆res[e1] op res[e2]

res[en] ⊆res[e]n

res[f(e)] ⊆[−∞,∞]

With vars[x] and res[e] initialized to ∅ for all appropriate x, e, the goal is to find the

minimum ranges for each variable that satisfy all constraints corresponding to terms in

the program. A theoretically sound way to compute this is to increase the size of the left

hand side interval variable of each constraint until it contains or is equal to the interval

value of the right hand side, and repeat this process until all constraints are satisfied, a

state known as the fixed-point.

However, a simple implementation of this may probe intractable depending on the

128

type of program. As the expansion of these ranges is iterative and the maximum size of

each range is infinite, it is possible that an infinite number of finite expansions may be

necessary to reach the fixed-point. Reducing this infinite number of iterations can be

accomplished by widening ranges to infinity if they appear to be incrementally expanding

across long periods of iterations. For example, consider the program x=0; while x <

f(x) do x = x + 1. Each iterative application of the constraints may expand the range

of x by 1 but the fixed-point of the algorithm has the range of x as [0,∞]. If the range of

x at iterations i and i +∆, for some sufficiently large ∆, appears to be increasing, we

can proactively widen the range of x to [0,∞] to force a fixed-point for x. While this

carries some risk of unnecessarily expanding ranges further than necessary if ∆ is chosen

unluckily, widening is the only reliable method of preventing infinite (or astronomical if

implemented with floating point numbers) runtime before reaching the fixed-point.98

A valuable property to note of is that each of these constraints is local, depending

only on the ranges corresponding to child terms and local variable references/mutations.

As a result, we do not need to consider all constraints at every iteration, as only those

constraints that depend on recently modified ranges will produce any new range expansions.

This can be easily supported by keeping a queue of constraints to apply, and adding

absent constraints to this queue if they depend on ranges modified by the constraint

currently being applied. This approach is sometimes called a work-list, and can provide

a considerable runtime speedup, as much as 100x in my experience (Aho et al., 2006).

However, even with widening and the work-list approach, the runtime required to

reach a fixed-point is nontrivial. A program with N terms can clearly have no more than

N variables, the var and res range variables for which are related by no more than N

constraints as each term in the program may correspond to no more than one constraint.

Therefore, it must be the case that the first possible range variable requiring widening

must be discoverable after O(N) steps, as to suppose otherwise would require that some

interval variable be expanded more than once without requiring widening. If, in the worst

98The general technique of widening was first introduced for static analysis over discrete lattice domains
in (Cousot and Cousot, 1977).

129

Algorithm 5: Value Range Analysis

Given:
X: Set of interval variables x1, . . . , xm representing domain
C: Inequality constraints c1, . . . , cn where ci is xci ⊆ eci
q: Number of iterations between widening considerations

1 j ←− 0
2 Y ←− X
3 W←− C as a stack
4 while workList is not empty do
5 c←− popped front element of W
6 v ←− ec
7 if xc ̸⊆ v then
8 xc ←− xc ∪ v
9 foreach cj ∈ C that references xc do

10 if cj /∈W then
11 push cj on to back of W

12 j ←− j + 1
13 if j%q = 0 then
14 foreach xi ∈ X do
15 if Yi ̸= ∅ and Yi ̸⊆ xi then
16 xi ←− [−∞,∞]
17 foreach cj ∈ C that references xi do
18 if cj /∈W then
19 push cj on to back of W

20 Y ←− X

case, widening must be used for all variables in the program, with the number of variables

having an upper bound of N and widening considered every N iterations, then the upper

bound on the runtime of this analysis must be O(N2).

Nevertheless, some programs require a much lower runtime for analysis. Programs

containing few terms with side effects, such as the Rosenbrock function described in

equation 5.1, or those with few loops in the constraint variables, such as programs written

in static single assignment form, can have flow insensitive value range analysis complete

in as little as O(N). In practice, most programs I have experimented with tend to be

closer to O(N) than O(N2), but the runtime clearly varies based on specific program

130

structure and form.

5.3.2.2 Flow Sensitive Analysis

Contrastingly, a flow sensitive analysis fully considers the order of evaluation of terms,

specifically over the control flow graph in my formulation. As the converse to the previous

subsection, flow sensitive analysis is much more precise than flow insensitive, especially in

the context of programs with more complex dependency graphs, but comes at the cost of

much higher computational cost.

As each control flow graph node can correspond to a change in the environment state,

each node p has a corresponding set of input and output ranges for all variables x, denoted

as in[p, x] and out[p, x] respectively. Just as with flow insensitive analysis, the interval

corresponding to the result of each expression e is denoted as res[e].

With in[p, x], out[p, x], and res[e] initialized to ∅ for all appropriate p, x, e, the problem

of value range analysis becomes a problem of finding the minimum ranges that satisfy

constraints of the following forms. Note that many of the res constraints are the same as

those already listed for flow insensitive analysis, with only those for variable reference and

peekv requiring redefinition. Each term corresponds to exactly one in and out constraint,

while each expression additionally corresponds to one res constraint.

131

in[p, x] ⊆
⋃

q∈prev(p) out[q, x]

out[x1 = e :: end, x2] ⊆


res[e] ifx1 = x2

in[x1 = e :: start, x2] ifx1 ̸= x2

out[pushv(x1, e) :: end, x2] ⊆


in[pushv(x1, e) :: start, x2] ∪ res[e] ifx1 = x2

in[pushv(x1, e) :: start, x2] ifx1 ̸= x2

out[p, x] ⊆ in[p, x] for all other p, x

res[x] ⊆ in[x :: start, x]

res[peekv(x)] ⊆ in[peekv(x) :: start, x]
...

...
...

One subtle but important property of the in and out constraints outlined above is that

they relate sets of interval variables together. As a program with N terms has an upper

bound of N variables, the full constraint problem will have O(N2) variables connected by

O(N2) constraints between individual variables.

Even with the widening and work-list accelerations described in the previous section,

I was experimentally finding that solving this required an intractable amount of memory.

This can be significantly improved by noting that the majority of the constraints, especially

between in and out ranges, are likely to simply copy ranges from another node. This is

especially true with programs that have linear control flow graphs with few side effects,

such as the Rosenbrock function discussed earlier. In cases such as these, considerable

savings can be made by using a linked flyweight design pattern (Gamma et al., 1995),

where each range can either be unique or linked to the value of another range. This both

reduces the number of stored values, shrinking the memory footprint, and lowers the

number of values that must be checked with each constraint application, speeding up the

execution of the analysis.

Following the same logic described in the previous section, flow sensitive value range

analysis has a runtime complexity with an upper bound of O(N4) and a lower bound of

132

O(N2), with significant variations between those two stemming from different program

structures and forms. Even in the most charitable case, evaluating flow sensitive value

range analysis is at least as expensive as its flow insensitive counterpart, with a possibility

of a much higher cost depending on program structure.

5.3.3 Program Simplification and Caching

One of the greatest practical uses of the analysis forms already outlined lies in finding

opportunities to remove redundancies in a given program. Program simplification, alter-

natively called program optimization, is a common technique among compilers, and often

represents one of the most expensive computations performed as part of the compilation

process. While the micro-language specified here is interpreted rather than compiled,

providing automatic tools for program simplification is vital to providing even remotely

efficient automatic differentiation, as well as more broadly accelerating the performance

of human input programs.

The program simplification analysis described here is, like many of the previously

described forms of analysis, implemented as a fixed-point algorithm, with local simplifica-

tion rules repeatedly applied when their conditions allow until no more simplifications

can be found. This analysis is subdivided into several phases, separated by the types of

analysis results required to evaluate each phase:

A Using only the program graph, there are several easily detectable program simpli-

fications, including the following:

A1 Removal of skip statements from sequence and pushr statements:

• skip;s→ s

• s; skip→ s

• skip :e→ e

• pushr(skip, x)→ skip

133

A2 Removal of redundant assignments in which no reference to the assigned

variable appears in the program: (x = e)→ skip if ∀t.x /∈ refs(t)

A3 Removal of redundant pushv/popv without a corresponding peekv or other

reference to the stack variable:

pushv/popv(x, e)→ skip if ∀t.t /∈ {pushv, popv}, x /∈ refs(t)

A4 Removal of side effect free statements: s→ skip if muts(s) = ∅

An important property of these rules to note is that, while each rule is local, the

application of a rule can make other rules subsequently applicable. For example,

the program x=2: 2 can be simplified first to skip: 2 by rule A2, and then to 2

by rule A1.

Additionally, as each of these rules can be computed in constant time, assuming

{t|x ∈ refs(t)} is precomputed, a single iteration of this phase of simplification

analysis can be computed in O(N), where N is the number of terms in the program.

As the application of each rule can reduce the size of the program by 1, no more

than N iterations can be performed before reaching a fixed-point. As a result,

running this phase of analysis to a fixed-point has a theoretical runtime complexity

of O(N2). However, as not every term type has an associated simplification rule to

consider, the actual computation time required is highly dependent on the program

structure. Empirically, this phase is the fastest of the phases described here.

B Utilizing flow insensitive value range analysis results, a variety of expression

related simplifications are available, including the following:

B1 Constant expression simplification: e→ n if res[e] = [n, n] and muts(e) = ∅

B2 Addition identity simplification: (e1+e2)→ e1 if res[e2] = [0, 0] andmuts(e2) =

∅, (e1 + e2)→ e2 if res[e1] = [0, 0] and muts(e1) = ∅

B3 Subtraction identity simplification: (e1 − e2) → e1 if res[e2] = [0, 0] and

muts(e1) = ∅

134

B4 Multiplication identity simplification: (e1 ∗ e2) → e1 if res[e2] = [1, 1] and

muts(e2) = ∅, (e1 ∗ e2)→ e2 if res[e1] = [1, 1] and muts(e1) = ∅

B5 Division identity simplification: (e1/e2)→ e1 if res[e2] = [1, 1] and muts(e2) =

∅

While a single iteration of these rules on a program with N terms is certainly

executable in O(N), their dependence on first evaluating flow insensitive value

range analysis adds an additional computational overhead of somewhere between

O(N) and O(N2). Therefore, a single iteration of this phase of simplification is

theoretically at least as slow as phase A, and empirically tends to be a fair bit

slower.

Rules in this phase can make rules in this phase and the previous phase subsequently

applicable. For example, the program x = 2 : x can be simplified to x = 2 : 2 by

rule B1, then to 2 by the steps outlined in the previous section. Can any of the

rules in this phase make rules in this same phase subsequently applicable? I suspect

not, but I’m not 100% sure.

C By analyzing the control flow graph for the entire program, a more precise form

of redundant assignment removal rule can be established.

The rule specified in A2 misses redundant assignments where subsequent assignments

shadow the result to any variable references that follow. For example, the simple

program x = 1; x = 2 : x clearly has a redundant assignment, x = 1, that would not

be simplifiable under the rules previously outlined. We can intuitively imagine a new

rule that tests whether a given assignment has any references it could affect, which

can be formally defined as (x = e) → skip if ∄p ∈ G.x ∈ refs(p), p is reachable

from (x = e) :: end by traversing only CFG nodes q where x /∈ muts(q).

While this rule is far more powerful than A2, evaluating this condition requires a

full depth first search of the CFG, which may have a runtime complexity of O(N).

As a result, applying this phase to a program with many assignments may be O(N2)

135

for a single iteration.99 Unlike previous phases, this theoretical runtime analysis

seems to better match the observed performance characteristics, and is certainly

slower than any of the previous phases.

In addition, rules in this phase can produce simplifications that can make rules in this

phase and preceding phases applicable. For example, the program x = 1; x = 2 : x

is simplifiable to skip;x = 2 : x by rule C, then to x = 2 : x by rule A1, to x = 2 : 2

by rule B1, to skip : 2 by rule A2, and finally to 2 by C.

D Finally, utilizing flow sensitive value range analysis can provide the most

powerful simplification rules of all, including the following:

D1 Redundant sequential assignments simplification: (x = e)→ e if in[x = e, x] =

out[x = e, x] and out[x = e, x] = [a, a]. While this rule is valuable, a useful

property to note is that it is only applicable in programs where subsequent

assignments are to the same singular value (e.g., x = 1;x = 1) but not to

programs where subsequent assignments are relative to the value of some

unknown value (e.g., x = f(1);x = f(1)).

D2 Removal of constant value stack terms:

• pushv(e, x)→ e if out[pushv(e, x), x] = [a, a]

• popv(x)→ skip if out[popv(e, x), x] = [a, a]

• peekv(x)→ a if out[peekv(x), x] = [a, a]

Note that all of these must trigger for the program to remain semantically

unchanged, as any dangling pushv or popv terms may cause the stack variable

to grow or shrink more than it did in the original program, potentially leading

to undefined behavior.

99I actually prototyped definition-use (DU) and use-definition (UD) chain analyses to try to speed this
up. While it can provide a speed up in programs with relatively few variables relative to the number
of assignments, most of the programs I have experimented with are on the other side of that ratio.
Unfortunately, this means that UD/DU analyses provide little to no runtime savings, yet can cost a great
deal of memory. Perhaps some method of piecemeal UD/DU analysis would provide a reliable speedup,
but I have not explored this. Perhaps if the program could be first subdivided into relatively independent
regions in a more efficient way, then each region could be analyzed independently.

136

D3 All of the rules for flow insensitive value range analysis (B) are equally applicable

in this phase. The additional precision flow sensitivity provides allows for

programs such as x = 1;x = x+ x : x to be simplified.

Continuing the trend, this phase is more computationally expensive than any of

the other phases, as the prerequisite flow sensitive value range analysis requires

somewhere between O(N2) and O(N4) depending on program structure.

Just as before, rules in this phase can make rules in this phase and the previous

phase subsequently applicable. For example, the program x = 1; x = x+ x : x can

be simplified to x = 1; x = 2 : x by utilizing a flow sensitive version of B1, then to 2

by the steps outlined in the previous section.

Structuring all of these phases into a single efficient simplification algorithm is some-

what unintuitive.

As already noted, the goal of this fixed-point algorithm is to repeatedly run the phases of

local simplification rules until no further simplifications can be found. However, each phase

has a different computational cost, with higher phases carrying a higher computational

cost than any lower phase. Additionally, each simplification phase is capable of making

lower level simplification phases applicable, and many simplification phases also allow

subsequent applications of the same phase to produce further simplifications.

Of separate note is the order of evaluation of simplifications. Many of the simplification

rules described require there to be strict alignment between the preprocessing computation

and the evaluation of the condition. For example, the program x = 3 : y ∗ (x − 2) has

several applicable simplifications in phase D, of which we can consider two: (x− 2)→ (1)

by the phase D equivalent of rule B1, and y ∗ (x− 2)→ y by the phase D equivalent of

rule B3. If (x− 2)→ (1) was evaluated and applied first, any attempt at evaluating the

latter rule requires res[1] which was not part of the original value range analysis and

would not be defined. As a result, all applicable simplifications for a particular phase

must be computed and cached before any program transformations are performed.

137

However, caching these simplifications requires some care. As these transformations

are local to each term, and many simplifications reduce to something derived from a

child term, simplifications must be applied to parents before children for all to apply.

For example, 0 + (0 + x) has two simplifications available from rule B2 or its equivalent

in phase D: 0 + (0 + x) → (0 + x) and (0 + x) → (x). If 0 + (0 + x) → (0 + x) was

performed before (0 + x) → (x), the latter would be effectively undone by the former:

0+(0+x)→ 0+(x)→ (0+x), rather than the more efficient 0+(0+x)→ 0+(0+x)→ (x),

and another iteration of the phase would be required to reach the fixed-point

A simplification algorithm following all of these desired properties can be formulated

as algorithm 6.

138

Algorithm 6: Program Simplification

1 function SimplifyPhase(phase):

2 Run whatever precomputation is necessary for this phase

3 S ←− emptystack

4 foreach t ∈ program in topological order do

5 push applicable simplifications for t in phase to back of S

6 foreach s ∈ S from front to back do

7 apply s

8 return True if S is non-empty, False if S is empty

9 changed = True

10 while changed do

11 while changed do

12 while changed do

13 while changed do

14 changed = SimplifyPhase(A)

15 changed = SimplifyPhase(B)

16 changed = SimplifyPhase(C)

17 changed = SimplifyPhase(D)

Finally, the entire program can be further accelerated by performing common subex-

pression elimination style caching. As there is no guarantee that the program would

conform to static single assignment form, techniques such as value numbering are not

available. Instead, the problem is solved by considering pairs of syntactically (i.e., graphi-

cally) equivalent terms, and testing whether every path through the control flow graph

between the considered terms lack mutations to any variables referenced by the considered

terms. The computation associated with this analysis is expensive, in many cases more so

than another of the previous phases in simplification, and that cost is greater for larger

programs. However, it does not require iteration to reach a fixed point: one iteration is

139

enough. As a result, common subexpression elimination is computed only after all other

simplification is completed, and the program has reached some minimal size.

5.4 Automatic Differentiation

Broadly speaking, automatic differentiation, abbreviated hereafter to autodiff, is the

problem of automatically computing derivatives, over specific input variables for a given

expression program. While autodiff may be relatively simple in theory, finding an efficient

and precise computational approach represents a thoroughly nontrivial task in practice,

as many implementers have learned.100

Consider an abstract mathematical expression f : R→ R of the form

f(x) = f1(f2(f3(. . . fn−1(x) . . .))).

While there are a variety of ways of implementing an evaluation procedure for this function

practically, all reasonable implementations must evaluate fi+1, . . . , fn−1 before evaluating

fi.

Derivatives for this function could be estimated numerically, for example by finite

differences as df
dx

= f(x)−f(x+∆)
∆

for some chosen ∆. In some rare cases, such as with black

box functions in the micro-language, a numerical differentiation method may be the only

100Autodiff has a long but murky history. Alonzo Church was probably the first to reference the abstract
notion of automatic differentiation of computer programs, but he stopped well short of anything like
a concrete autodiff formulation (Church, 1941). There are some accounts, such as (Graham, 2009),
describing a lecture John McCarthy gave in 1959 where he wrote code on a black-board for automatic
differentiation of LISP programs, but all of these accounts are from long after the event and McCarthy
never seems to have published this work. The individual with the earliest independently confirmable
claim to inventing/discovering autodiff of which I am aware is Robert Edwin Wengert, whose short (only
2 pages) paper introduced simple but practical formulations of both forward and reverse accumulation
for Fortran programs (Wengert, 1964). However, most modern historical accountings of machine learning,
where autodiff is most studied at present, usually cite Linnainmaa (1970), Rumelhart et al. (1986), or
Le Cun and Fogelman-Soulié (1987) as originating modern back-propagation, the specialized form of
reverse accumulation autodiff currently ubiquitous in GPU parallelized machine learning. I have so far
been unable to find a citation chain from these back-propagation papers back to the work of Wengert or
those that followed him, suggesting that autodiff might have been independently discovered/invented at
least twice.

140

viable method of differentiation. However, this numerical approach is both inefficient,

as the function must be evaluated multiple times for each derivative computation, and

imprecise, as poor choices of ∆ can cause the estimation to ignore small function features

or introduce floating point precision errors.

Alternatively, we could consider symbolic differentiation, the task of analytically

finding a separate expression representing the derivative of the given function relative

to each of its input variables, mirroring the pen-and-paper technique typically taught in

university or secondary school calculus courses. To address a common misconception, it is

worth clarifying that autodiff is not equivalent to symbolic differentiation. While symbolic

differentiation is supported by many computer algebra systems (e.g., Mathematica and

Maple) and can be a valuable analytical tool in some domains (e.g., mathematical research

and education), it faces two challenges for use in the efficient computation of derivatives.

Firstly, as the expression for each partial derivative is separate, the size of the program

needed to evaluate a full gradient may be exponential in the size of the original function

program. Secondly, the function for which derivatives are desired, with whatever complex

control flow and side-effect behavior are included in its source language, must first be

transformed into a single closed-form mathematical expression, possibly requiring a new

form that is exponential in the size of that of the original, before symbolic differentiation

can be applied. As is explored in the following subsections, autodiff does not inherently

suffer from either of these problems.

Autodiff instead exploits the structure of the considered function, and repeatedly

applies local differentiation rules to each nested function. By combining these rules with

the standard calculus chain rule, the derivative of f(x) can clearly be written as

df

dx
=

df1
df2

df2
df3

. . .
dfn−1

dx
.

As long as each local differentiation rule is precise, this method should carry higher

precision than a numerical method and greater memory efficiency than symbolic differ-

entiation. The challenge of implementation is then to find an efficient set of operations

141

that can compute this derivative chain.

There are, generally speaking, two different approaches to this challenge, separated by

their assumed associativity order of chain rule applications.101 While the example f given

is over real numbers, all domains used in the full system, including vectors, matrices,

and quaternions, all support both left and right associativity of chain rule applications,

although great care must be taken to not violate the order of underlying non-associative

or non-commutative operations.

What is commonly referred to as forward accumulation autodiff approaches the

problem by associatively grouping these derivative computations in the same order the

functions to which they apply would be computed to evaluate the original function. This

can be represented by a right-associative order of chain rule applications, where

df

dx
=

((((
df1
df2

)
df2
df3

)
. . .

)
dfn−1

dx

)

means that each local derivative can be simply rewritten as

dfi
dx

=
dfi
dfi+1

dfi+1

dx
.

Conversely, reverse accumulation autodiff approaches the problem by assuming

that these operations are left-associative, where

df

dx
=

(
df1
df2

(
df2
df3

(
. . .

(
dfn−1

dx

))))

can similarly be interpreted as leading to

df

dfi
=

df

dfi−1

dfi−1

dfi
.

101Hybrid associativity options are also possible, but are much more complicated and rarely implemented.
Previous researchers have shown that such hybrid approaches can be superior in terms of computational
and memory efficiency, but finding an optimal hybrid approach is provably NP-complete (Naumann,
2011).

142

Note that this fundamentally reverses the order of operation of each computation. While

fi+1 must be evaluated before fi in the original function, df
dfi+1

can only be evaluated after

df
dfi

in reverse accumulation autodiff.

While forward and reverse accumulation might seem similar, a key difference emerges

when considering computing multiple partial derivatives for functions with more than one

input and/or output. Assuming the differentiation operations have the same types as the

original functions, computing the gradient of f : Rm → Rn with forward accumulation

would require m passes, while doing so with reverse accumulation would require n passes.

Given that the mathematical tools explored in Section 4 operated over functions with

numerous inputs but only one output, one might surmise that this would mean that reverse

accumulation would always be faster. However, a single pass of reverse accumulation is

usually more expensive than a single pass of forward accumulation, though the difference

in computational cost is heavily dependent on the type of function being differentiated. As

a result, forward accumulation can be faster than reverse accumulation for scalar valued

functions with relatively few inputs, with the tipping point varying based on program

type and structure.

An additional important distinction between autodiff approaches rests in the what

form the local differentiation operations take. Many autodiff systems specify an alternative

set of interpretive semantics with which derivatives of a program can be evaluated, the

most common form being some form of operator overloading. This contrasts strongly with

transformative autodiff, which aims to transform the program representing the original

expression into another program which can evaluate the derivatives using the standard

operational semantics of the language.

While the interpretive autodiff method is often simpler to implement, it suffers from

two significant disadvantages. Firstly, none of the static analysis tools specified over

the original semantics would operate over these alternative autodiff semantics, severely

limiting the efficiency and usability of the resulting differentiation computation. Secondly,

these semantics would not facilitate the computation of higher level derivatives, such as a

Hessian matrix desirable for some optimization algorithms like Newton’s method.

143

Transformative autodiff solves both of these problems. By expressing the differentiation

in the same language and with the same semantics as that of the original program, all of

the previously described static analysis tools can operate over this new differentiation

program in the same way they would over any other program. Even better, as long as

the transformations used produce differentiable programs, transformative autodiff can be

recursively applied to compute partial derivatives of any higher order desired.

For these reasons, transformative autodiff is the method used in the current version of

the system.102 Specifically, both forward and reverse accumulation implementations in the

current system utilize purely local transformations, defined in terms of a given term, its

immediate children, and the result of recursively applying the same local transformations

to those children.

Moving from the abstract to the concrete, what does locally transformative autodiff

look like in this micro-language?

5.4.1 Forward Accumulation

Consider an expression e in this micro-language with scalar independent input variables

x1, . . . , xm. The goal of transformative forward accumulation autodiff is to find some

δf : t −→ t, the output of which can evaluate to the derivative of e relative to any single

input variable xi.
103

Additionally, this delta transformation function should preserve the type and order of

operations of the original term in the output derivative program. For example, if e is a

scalar expression that would evaluate child t1 before child t2, then δf(e) must also be a

scalar expression that evaluates δf (t1) before δf (t2).

Controlling which variable to compute the derivative over is accomplished by modifying

102The first version of my system on which Litteneker and Terzopoulos (2017) was based used interpretive
forward accumulation autodiff and was, unsurprisingly, substantially slower than the current version for
several use cases.

103The subscript f for δf is used to notationally distinguish the forward accumulation form, δf , from
the reverse accumulation form, δr.

144

the values assigned to a new set of variables x′
1, . . . , x

′
m, which respectively represent the

derivative of variables x1, . . . , xm. To obtain the derivative of e relative to xi, one would

assign x′
i = 1 and x′

j = 0 for all j ̸= i, repeating the process with different choices of i to

compute the partial derivatives for many variables.

Formalizing this δf function for side effect free expressions in this micro-language

follows directly from the standard differentiation rules one might find in any introductory

calculus textbook (e.g., (Larson and Edwards, 2009)), and are remarkably straightforward.

For conciseness, this notation assumes that all references to a variable with the same

identifier x will map under different applications of δf (x) to the same x′, regardless of the

number of applications or variations in program graph structure.

δf (n) =0

δf (()) =()

δf (x) =x′

δf (e1 + e2) =δf (e1) + δf (e2)

δf (e1 − e2) =δf (e1)− δf (e2)

δf (e1 · e2) =e1 · δf (e2) + δf (e1) · e2

δf

(
e1
e2

)
=
e1 · δf (e2)− δf (e1) · e2

e22

δf (e
n) =n · en−1 · δf (e)

δf (peekv(x)) =peekv(x
′)

δf (f(e)) =
f(e+ δf (e))− f(e)

δf (e)

Note that in the case of black box functions there is no other choice but to use

numerical differentiation, given the lack of any knowledge as to the body of the function.

The particular formulation described above is one simple finite difference method, but

may result in numerically instable or undefined values in the cases where the derivative of

145

its input argument, delta(e), has a value near zero. One possible solution to this problem

is to simply assume δf (f(e)) = 0 if δf (e) < ϵ.

Extending this family of δf (t) rules to control flow statements and sequence expressions

is similarly straightforward. The foundational intuition underlying these rules is that the

order of evaluation of the differentiation calculation should be equivalent to that of the

original program. As a result, any control flow statement s should map to another control

flow statement δf (s) that would execute a differentiated version of the same branches as

the original s.

δf (s : e) =δf (s) : δf (e)

δf (skip) =skip

δf (s1 ; s2) =(δf (s1) ; δf (s2))

δf (while e1 < e2 do s) =while e1 < e2 do δf (s)

δf (if e1 < e2 then s1 else s2) =if e1 < e2 then δf (s1) else δf (s2)

Note that these rules for if and while statement have two noteworthy issues requiring

care. Firstly, side effects that occur during the evaluation of conditions are not factored

into the autodiff computation under this formalization. While this is admittedly a bug, I

have found it to be satisfactory to simply automatically check whether conditions have

side effects and, if detected, display a warning message to alert the user to the issue.

Secondly, this autodiff implementation makes no attempt to model any effect changing

inputs to the condition expression might have. For example, consider if y < 0 then

x=x2 else x=1 : x. Clearly, changing the input value of y can have a significant effect

on the value of the expression as a whole, but that effect is difficult to analyze at best

and discontinuous (i.e., leading to an undefined derivative) at worst. Fortunately, none of

the programs I have experimented with so far depend upon a solution to this problem.

However, including terms with explicit side effects adds an additional level of complexity.

If the evaluation of a term t modifies the value of variable x, then δf(t) must modify

146

both x and x′ so that the subsequent evaluation of other terms referencing these variables

observe an accurate value of both the variable and its derivative corresponding to the

original execution of t, with the modification of the derivative variable coming sequentially

before the modification of the original variable.

For example, consider the expression e := (y = x− 1); (y = y2 − 1) : y. Clearly, the

side effects of each assignment term modifying y are integral to the accurate evaluation of

subsequent terms referencing y. However, many expressions that reference y transform into

derivative expressions that reference both y and y′. If an assignment y = ea has a reference

to y in ea, as the middle assignment in e does, then any accurate computation of δf (ea)

should utilize the value of y before the original assignment was executed, which means

that δf(y = ea) :− (y′ = δf(ea); y = ea). Following this rule, as well as those described

above, it follows that δf(e) :− (y′ = x′ − 0; y = x − 1); (y′ = 2yy′ − 0; y = y2 − 1) : y′.

This same idea can be extended to list mutations, leading to the last transformation rules

for forward accumulation autodiff below.

δf (x = e) =(x′ = δf (e) ; x = e)

δf (pushv(x, e)) =(pushv(x′, δf (e)) ; pushv(x, e))

δf (popv(x)) =(popv(x′) ; popv(x))

Note that executing forward accumulation derivative programs created with these

rules carries a risk of erroneous side effect duplication, causing incorrect results. In

general, this occurs when a term produces side effects that are consumed by something

outside the current term.104 For example, consider computing the derivative of the

expression (y = y + x) : y for both x and y with forward accumulation. Two executions

of δf((y = y + 1) : y) are needed to evaluate both derivatives, causing the value of y to

be incremented twice. To consider an even worse example, δf(((y = y + 1) : y) ∗ ((y =

104Had I chosen a functional paradigm model, this would not be an issue.

147

y + 1) : y)) := ((y′ = y′ + 0); (y = y + 1) : y′) ∗ ((y = y + 1) : y) + ((y = y + 1) :

y) ∗ ((y′ = y′ + 0); (y = y + 1) : y′), incrementing y four times and producing an incorrect

derivative. Admittedly, this is another bug of the current formulation, but one that can

be automatically detected by checking, for each CFG node pa generated by the forward

accumulation autodiff transformations, whether ∃pb outside the derivative program such

that dep(pb, pa) using the dependency query described in Section 5.3.1, and throwing a

warning to the user if detected.105

Given all of these transformation rules and tools, how efficient is this formulation of

forward accumulation? In terms of memory, the necessity of creating a set of derivative

variables x′
1, . . . , x

′
m means that the memory complexity of evaluating derivative programs

in this formulation is O(m), the same as the original program. However, this ignores the

fact that the derivative program must be stored in memory to be evaluated, meaning that

the full memory complexity is dependent on the size of the derivative program produced

by the transformations.

Many of the local transformations, such as those for addition and control flow state-

ments, produce derivative programs that are O(n) in the original program size. However,

some others, such as those for multiplication or assignment, can cause the derivative

program to be O(n2) in the original program size. This can be improved significantly

by exploiting the feature that programs in this language are DAGs, rather than trees,

allowing a single term that must appear in the derivative program more than once to

be reused rather than duplicated. With this reusing trick, the derivative program is

guaranteed to be O(n).

However, nowhere is this derivative program size more likely to explode if carelessly

implemented than when the derivative of more than one variable is desired. Given an

expression e composed of n terms and variables x1, . . . , xm, the forward accumulation

autodiff formulation described here will produce a derivative program δf(e) with O(n)

terms and requiring O(m) new variables. However, how should this δf(e) be used to

105This is another case where UD/DU chains, as described in footnote 99, can provide a valuable
speedup.

148

compute the gradient for all m variables?

The default option, mentioned at the beginning of the section, is to execute a single

copy of δf (e) m times following different assignments to x′
1, . . . , x

′
m.

106 While this ensures

that the gradient derivative program is only O(n) in size relative to the original program,

it comes with a significant caveat: the flow sensitive simplification strategies described

in Section 5.3.3 would be effectively useless, placing an undesirable lower limit on the

runtime of the resulting program.

Instead, the system could create m copies of δf (e), one for each partial derivative in the

gradient, with each preceded by the appropriate assignments to x′
1, . . . , x

′
m to select the

relevant derivative. Running flow sensitive simplification on this would essentially emulate

symbolic differentiation, and potentially provide a runtime speedup when evaluating the

derivatives. However, this will prove prohibitively expensive for large programs. Not

only will the program require O(mn) size, but also the flow sensitive analysis required for

simplification may require between quadratic and quartic time in the size of the program

analyzed, potentially pushing the computational cost associated with merely forming the

derivative program to the terrifying O(m4n4) computational complexity. However, this

option is still attractive in application domains with relatively small input programs, an

opportunity for long computation time during program creation, and a high priority for

efficiency when executing derivative programs.

5.4.2 Reverse Accumulation

The goal of transformative reverse accumulation autodiff is to find some δr : e −→ s,

which can evaluate the derivatives of e relative to all input variables x1, . . . , xm of e.107

Unfortunately, affecting this in practice presents a complicated and confusing problem.

While this goal might seem syntactically similar to that of forward accumulation, the

106Note that this again exploits the DAG structure of the micro-language, and this was actually my
principal impetus for choosing a DAG structure over a tree.

107The subscript r for δr is used to notationally distinguish the reverse accumulation form, δr, from the
forward accumulation form, δf .

149

distinction between attempting to compute a single scalar derivative and a full gradient

as part of a singular program manipulation requires a fundamentally distinct approach.

A useful metaphor for understanding this difference is in the direction of information flow.

Forward accumulation can be broadly understood as seeding the values of descendant

variables corresponding to input derivatives in a differentiated expression, then allowing

their seeded values to flow up the program graph in the direction of standard evaluation

rules to calculate the derivative. However, in reverse accumulation, the goal is to find

a transformation that will allow for the derivative of the expression to be seeded, the

value of which can somehow flow opposite to the direction of standard evaluation and

into variables corresponding to input derivatives.

The receptacles for this derivative data in reverse accumulating autodiff are partial

derivative variables commonly referred to as adjoints, with each expression e and variable

x having adjoint variables e and x respectively.108 Here, the goal is to find some δr

such that evaluating δr(e) will result in x being equal to δe
δx
. At the beginning of the

computation, the adjoint for the top level expression is seeded so that e = 1, then adjoint

variables ei for subexpressions ei are updated based upon their parent terms so that

ei =
δe
δei

.

However, effecting the flow of data between adjoint variables is complicated by the

possibility of branching and side effects in expressions,109 as this effectively requires the

order of evaluation to be reversed. To accomplish this, a set of stack (i.e., first-in first-out

list) data structures are employed that allow for reverse autodiff data to be accessed in

the reverse order with which it was saved, a strategy commonly referred to as a “tape or

108I have personally always found the commonly accepted “adjoint” name to be somewhat confusing.
For real functions with linear derivatives, the reverse accumulating derivatives can be expressed as the
adjoint, or transpose, of the forward accumulating derivatives written as a matrix. While this concept
fits far less tidily for nonlinear functions, the name adjoint is commonly used in all contexts.

109One might ask whether this problem would be simpler if the micro-language was functional, and
lacked side effects or imperative-style branching. Unfortunately, I can confidently state that locally
transformative reverse autodiff is impossible for functional languages, as transforming a variable usage
would require knowledge of other, possibly recursive, variable references. However, either non-local or
interpretive reverse autodiff for functional languages may be possible. The only transformative autodiff
project for a functional language of which I am aware is Kmett (2022), which uses “benign” side effects
to manipulate their tapes.

150

“Wengert list” for its commonly attributed inventor, Robert Edwin Wengert (Wengert,

1964). In this micro-language, these tapes are used to store both numbers, manipulated

with pushv and popv operations, and statements, manipulated with pushr and execr

operations, with each category serving a similar but distinct purpose. As evaluating

derivatives often requires expression values and expressions can have side effects, the

values of each intermediate expression and variable assignment must be saved with each

evaluation for potential use later, necessitating stacks of numbers. Additionally, branching

with if and while statements can produce sequences of operations that are difficult or

impossible to directly reverse, a task easily solved by allowing for stacks of operations to

be constructed and evaluated dynamically.

Putting these ideas together into a single set of formal rules is surprisingly complicated,

with the full listing of the relevant rules appearing in Appendix A. However, the general

strategy for reverse autodiff for an expression e can be summarized as follows.

1. Begin by initializing an empty statement stack xrd. Additionally, empty numeric

stacks xei and x′
j are initialized as empty for each subexpression ei and variable xj.

2. Evaluate a version of the original expression e, where each descendant term has

been transformed, that has the following properties.

• The evaluation of each expression ei, other than trivial expressions like variable

references and number constants, performs the following sequence of operations.

(a) An operation is pushed to xrd that will pop an element from xei , a stack

variable for recording the values of the expression, and zero out the

subexpression’s adjoint variable ei.

(b) The expression is evaluated, and its value is pushed on to xei .

(c) A second operation is pushed to xrd that increases adjoint variables ej for

each child expression ej by ei
δei
δej

. To give two examples,

– the expression e1 + e2 will produce e1+ = e ; e2+ = e,

151

– and the expression e1 · e2 will produce e1+ = e · peekv(xe2) ; e2+ =

peekv(xe1) · e.

(d) The top value of xei is peeked and returned without further modifying the

stack.

• Each statement with side effects must push an operation onto xrd such that the

program will return to the state present before the statement was evaluated.

As all side effects in the micro-language are effected by mutating the value of

a variable, this reversibility is generally accomplished by pushing and popping

values from a stack x′ for each variable x.

• All other terms evaluate normally.

3. Seed e = 1.

4. Evaluate all statements in xrd in the reverse order in which they were added.

Following the execution of a program following this strategy,110 each variable adjoint

x = δe
δx

for every input variable x, with no significant caveats or holes in coverage.

Perhaps the most significant advantage of reverse autodiff is that a single execution

can calculate all derivatives with O(1) iterations, as opposed to the O(m) iterations

required for m variables with forward autodiff. Additionally, a reverse autodiff program

following this strategy has linear size relative to the original size and linear complexity

relative to the original complexity for a full gradient, albeit with relatively high constant.

However, a significant disadvantage is that the memory complexity is linear with respect

to the runtime complexity of the original program. While this issue would prevent the

differentiation of long-running expressions, none of the experiments run so far have run

into this issue.111

110To reiterate, the full details are found in Appendix A. Not only are the full rules remarkably
complicated, this chapter is already annoyingly long.

111Common strategies for overcoming this problem, such as rematerialization and checkpointing, instead
store only enough intermediary values to reconstruct the remaining necessary values, although I have not
attempted to implement any such strategy in the system.

152

While reverse autodiff is considerably faster at computing the derivatives relative to

many input variables than forward autodiff, derivatives for fewer variables can sometimes

be more efficiently computed with forward autodiff. The reverse autodiff transformation

requires a considerably greater number of terms and variables, which not only carries

a larger computational and memory footprint, but also raises the cost of simplifying

any irrelevant portions of the program using the techniques discussed in Section 5.3.3,

than forward autodiff. However, precisely characterizing the conditions with which one

technique will be more efficient than the other is challenging. For most of the experiments

run with my system, reverse autodiff and forward autodiff seem to be roughly comparable

in performance with ∼ 5 input variables, although different objective functions can cause

some variability. As all but a few of the experiments run necessitated optimization over 5

or more variables, reverse accumulating autodiff was much more heavily utilized in my

research than forward accumulating autodiff.

5.5 Limitations

As previously mentioned, the full software system has a number of additional features not

included in this described micro-language, including linear algebra types, trigonometric

operations, I/O functionality with UE4 as well as the file system, and more sophisticated

memory management, among other features. However, there are a host of features that

both this micro-language and the full system lack, including pointer/reference types,

dynamically sized arrays, and functions capable of recursion. While I am aware of

nothing intrinsically incompatible between these missing features and the tools outlined

here, I have not yet found the need to implement features such as these to support my

experiments.

Probably the greatest area for improvement in the current system is in execution speed.

Compared to other language systems (e.g., C++, Java, or even Python), the tree-walking

interpreter currently used to execute programs is markedly slow, though there are several

different approaches that could be taken to improve this. The system could replace the

153

tree-walking interpreter with a bytecode interpreter, requiring less computation/memory

overhead for each operation, as well as allowing more of the program to be store in CPU

memory. Alternatively, the system could incorporate new translation functionality to take

a micro-language program and output corresponding source code in another language (e.g.,

C++ or Python), allowing for both faster execution with the other language’s execution

tools and the potential for interoperability. While each of these approaches are enticing,

I have not committed any significant effort towards either, as I have found the current

speed to be sufficient for the experiments run so far.

However, I would argue the single greatest limitation of the computational systems

approach described here rests in the scale of its implementation complexity. While the

algorithms, formulas, and judgments interspersed through this section work perfectly well,

implementing a system such as this from anything close to scratch represents a significant

undertaking. At virtually every phase of development of this project, I dramatically

underestimated the magnitude of the engineering tasks that lay ahead, many of which

remain challenging even with the roadmap of development this section provides. While I

have learned a great deal during my implementation efforts, I do not believe I can, in

good conscience, recommend attempting this same route to others. Instead, those wishing

to construct a system capable of replicating the experiments in this work would likely

find far greater return for their time/energy investment by taking one of the alternative

routes suggested beginning on page 111.

154

CHAPTER 6

Cinematographic Data Collection

One of the goals of my research has been to develop a dataset, with features collected from

theatrically released feature films, that is suitable for machine learning or data science

tasks in vector-based virtual cinematography. However, this is not a straightforward

prospect.

An average feature film is 90-120 minutes112 at 24-30 frames per second. These

∼ 130 − 200 thousand frames, each of which contains thousands or millions of pixels,

capture a wide diversity of visual material and communicative intent. Images of different

actors wearing various costumes in changing poses, captured under varying lighting

conditions in disparate types of environments, are used by filmmakers to provoke thought,

tears, laughter, and fear in their audiences. As discussed at length in previous sections,

each and every film represents an enormity of creative decision making over months of

collaborative effort between skilled artists and technicians.

Of course, an audience that was uninvolved in the film’s production can see few if

any of these decisions directly, instead being only capable of observing the aggregate of

a multitude of decisions as visible in the finished film. Considering only one frame, one

shot, or one film individually is unlikely to provide enough context to allow for any of

these complex decisions to be automatically untangled. By instead considering a large

corpus of films, features common among a variety of films, as well as aberrations from

common patterns, can be automatically identified.

However, too much data can be problematic. Given the limitations of present technol-

112While 90-120 minutes is a standard definition of feature film runtime, the dataset does contain several
films that are either shorter or longer than this range, as summarized in Table 6.2.

155

ogy, a single film contains far too much information to attempt to capture or process all

at once. While some combination of computer vision and human annotators could be

used to label and describe every element of every frame, doing so could easily exhaust the

budget of even a large corporation, let alone a small group of university researchers. To

limit the scope of work required to a practicable level, some careful consideration of what

criteria the collected data should meet is required.

6.1 Criteria

As a focus for these criteria, it is useful to subtly refine the goal of this dataset as being to

facilitate the analysis of vector-based, person-centric cinematographic composition. From

this, it seems reasonable to assert that the data collected should answer the following

questions:

1. How many people are in each frame?

2. Where are the people in each frame?

3. How large are the people in each frame relative to the frame size?

4. What direction are different parts (e.g., heads, torsos, etc.) of the people facing

relative to the camera?

5. How far away are the people from the camera, relative to the other people in the

frame?

6. How do all of the above properties change over time for each person in each shot?

Note that, while comparatively complete with respect to the motion of people in

the shot, many significant categories of features that could be collected may be omitted

as irrelevant to these criteria, including object recognition, action labeling, material

reconstruction, and audio analysis, among many others. One feature that is noticeably

absent from relevance to these criteria concerns the world-space motion of the camera: a

156

dataset that meets these criteria cannot discriminate between the motion of the camera

relative to stationary actors, and the motion of the actors relative to a stationary camera.

While I initially intended to include global camera motion in the dataset, my experiments

in automatically collecting this data at scale were not successful, as discussed in Section 6.4.

However, two important decisions are left unanswered by these criteria: what films

should be analyzed, and on what time scale should data points be collected?

While there was no particularly cogent criteria used in the selection of films, other

than a general tendency to pick movies I enjoy and to which I have access, I did try to

include representatives of a variety of different genres, styles, and eras, as well as include

some films commonly cited in rankings of the best of all time. The dataset contains

13 of AFI’s 100 years...100 movies ranking (American Film Institute, 1998), and 11 of

BFI’s top 100 as published in Sight and Sound (American Film Institute, 2012). However,

there were some categories that were avoided on purely practical grounds. As the goal of

this dataset is to collect and utilize person-centric data, the films selected should have

clear and recognizable humans in frame. For this reason, I purposefully avoided some

titles in animation, fantasy, and science fiction genres, as I found many of the computer

vision detectors used in the analysis struggled with non-humanoid and non-photorealistic

characters.

Choosing a sample rate for analysis requires even more careful consideration. Analyzing

large volumes of frames can quickly grow computationally intractable, forcing a choice

of what frames to sample. Given that sequential frames are recorded and played back

quickly enough to trick the viewer’s brain into perceiving them as fluid motion, many of

the available frames will be extraordinarily similar. After some consideration, I decided

to balance these considerations by analyzing 2 frames for every second of original footage,

or one frame every 0.5 seconds.113 This data sampling rate keeps the total analysis time

near the runtime of the original film, given analysis times listed in table 6.1, allowing for

more films to be included in the dataset.

113Standard film is recorded and played back at ∼ 24 FPS, while television and digital video is usually
in the 24-30 FPS range. Sampling at 2 FPS therefore samples 1 frame in every 12-15.

157

Figure 6.1: Overview of the data collection process.

All told, 60 feature films released over ∼ 80 years, comprising ∼ 1 million frames

across ∼ 88K shots, were analyzed. A high level summary of the films analyzed can be

seen in Table 6.2, later in this section.

6.2 Data Collection

The data collection process, illustrated in Figure 6.1, can be broadly broken down into

three phases:

1. Edits are detected in the full film, and frames are extracted from each continuous

shot at 2 FPS.

2. Various features are independently annotated in each frame by a variety of computer

158

vision detectors, which are then merged together to form a set of data points

referencing each detected person in the frame:

(a) Faces are detected, including facial recognition descriptors.

(b) Two-dimensional human poses are detected, including estimates of head orien-

tation.

(c) Three-dimensional human poses are detected, including estimates of body

orientation and relative distance from the camera.

(d) The results of these frame feature detectors are merged.

3. Data from all frames in each shot is merged, so that individual people can be tracked

over time in the shot.

For the most part, this data collection process relies heavily upon existing computer

vision tools, rather than attempting to build bespoke tools from scratch, and is described in

detail in the proceeding subsections. The process as a whole is relatively computationally

expensive, although this cost varies significantly depending on the type and content of

the film.

One of the most significant speed differences is that high resolution imagery is sub-

stantially more expensive than lower resolution imagery. While high definition video114

allows for higher precision analysis, it takes almost twice as long to analyze an HD video

than an SD video with the same number of frames.

A much subtler speed variation is that frames containing more people are compu-

tationally more expensive to analyze. While some of this increased cost is intuitively

linear in the number of detected people, some phases computations are super-linear in the

114Annoyingly, the term “high definition” (HD) video is used by different communities to refer to
imagery with more than 480/576/720/1080 rows of pixels, frame rates higher than 50/60 FPS, color
spaces with more than 8 bits of depth per channel, or some combination of these qualifiers. I use it here
to mean imagery with at least 720 rows of pixels, while standard definition (SD) video has only 480 rows
of pixels. Both HD and SD are assumed to play at 24-30 FPS, and no assumptions concerning color
depth are made.

159

Phase Subphase
SD HD

Speed Time Speed Time

Edit
Detection

24 FPS analysis 771.0 3:44 123.5 23:19
2 FPS export 126.0 2:06 22.4 11:47
Total 45.3 5:50 7.5 35:06

Face 25.7 10:16 15.2 17:22

2d Pose
Detection 19.9 13:16 20 13:12
Post Processing 75.0 3:31 48.2 5:29
Total 15.7 16:47 14.1 18:41

3d Pose 35.3 7:29 21.4 12:20
Frame Merg-
ing

10.0 26:24 7.45 35:26

Shot Merging
Shots/second 8.4 2:18 8.4 2:18
Total 115.1 2:18 115.1 2:18

Total 3.8 69:04 2.2 121:13

Table 6.1: Time estimates required to analyze a single film. This analysis makes several
assumptions for simplicity, largely based upon the distribution of data observed in the
dataset. The hypothetical film analyzed is assumed to be exactly 120 minutes in length
at 24 FPS, for a total of 172,800 total frames. Of those, an average of 2.2 frames per
second are assumed to require extraction, following the sampling strategy described in
Section 6.2.1, leading to a total of 15,840 frames for analysis. Additionally, The film is
assumed to have an average shot length of 13.7 frames per shot, leading to a total of
1,156 shots. Except where otherwise noted, speeds listed are in frames per second, while
times are formatted in (minutes):(seconds).

number of people detected per frame or between pairs of frames. As a result, attempting

to predict the cost of analyzing a single film can be deceptively difficult.

However, a reasonable set of estimates for the time required to analyze a single film

is summarized in table 6.1. The cumulative rate across the dataset was 1.2-4.5 frames

analyzed per second, requiring ∼ 120 hours of total computing time.115

6.2.1 Edit Detection and Frame Extraction

The first step in collecting data from a film is edit detection in an edited video file. While

edit detection is a well researched problem, many of the best heuristics and algorithms

115This number omits the repeated analyses of a few films while the data collection process was being
developed.

160

are held as proprietary, and are therefore unavailable.

I began my efforts in edit detection with version 0.5.2 of PySceneDetect, an open

source edit detection application written in Python (Castellano, 2020). PySceneDetect es-

sentially operates by comparing a subset of pixels in consecutive frames in Hue-Saturation-

Luminance (HSL) color space, and triggering a cut detection when the average difference

in HSL values between frames raises above a static threshold. While the default cut

detection works for many cases, I found its standard method to be somewhat finicky and

unreliable for automating edit detection across the diverse films intended to make up the

dataset.

To remedy this, I experimented with a variety of different edit detection methods

on the dataset released as part of DeepSBD (Hassanien et al., 2017), which includes

sequences of frames with ∼ 80K hard cuts. In particular, I experimented with delta-

thresholding, SVMs, and simple neural networks. For simplicity and speed, I chose

the delta-thresholding method, where a cut detection is triggered whenever the average

difference between consecutive frames rises at least 20 HSL units higher than the average

differences measured over the last 10 frames. This succeeds in correctly detecting more

than 99.9% of cuts from DeepSBD’s dataset. Note that this method will not detect

gradual transitions, such as fades or wipes.

Approximately 7 of the 60 films analyzed were monochrome. Taking differences in

HSL space with monochrome pixels is problematic, as any tiny errors in compression or

encoding of the video file may emit false cut detections as the HSL jumps significantly

from the previous average. To address this, edit detection for monochrome films was

performed with only the luminance channel of the HSL color difference.

Once cuts are detected, the frames to be analyzed are extracted from the video and

saved to disk. As previously mentioned, I chose to analyze 2 frames from every second of

original video. Specifically, the first frame of every shot is always extracted, followed by

further frames in the shot at 0.5 second intervals. Additionally, if more than 0.25 seconds

are left in the shot after the final frame following this pattern, the last frame in the shot

161

Figure 6.2: An example 2 fps frame sequence for a shot from Charade.

is extracted as well.

This strategy was chosen to provide as uniform a representation of each shot as

possible, regardless of where on the clock the shot begins or ends, and an example of

frames extracted from a single shot can be seen in Figure 6.2. It is worth noting that this

strategy results in an average true sampling rate of ∼ 2.2 frames per second, slightly in

excess of the intended rate.

Even with only the data from this stage, a meaningful pattern emerges. There is a

clear correlation between the average length of a shot in a film and the year in which

the film was released: films released more recently have tended to have a shorter average

shot length (ASL) than films released in the past, as demonstrated in Figure 6.3. The

trendline from this roughly aligns with that of other authors, such as (Cutting et al.,

2011), suggesting that the edit detection phase of analysis is broadly accurate.

6.2.2 Frame Feature Detection

To detect the desired people related features for each frame, I use a mixture of existing

and novel detectors.

There are a variety of issues that can make feature detection with traditional computer

162

Figure 6.3: Average shot length by year in the dataset.

vision tools difficult for feature films. The images contain frequently occluded views

of actors, often out of focus or with poor contrast against the background, in dynamic

scenes, and with unknown lens/sensor calibrations (i.e., camera intrinsic matrix). Different

detectors deal with different elements of these challenges in different ways, exposing unique

strengths and weaknesses in different contexts.

These detectors used here have been selected to detect different parts and features

of human persons in frame, with the goal of leveraging relative strengths against others’

weaknesses to produce an aggregate that is more reliable and precise than any would be

individually.

6.2.2.1 Facial Detection

To detect images of faces in frames in the dataset, I used the python version of Dlib’s

CNN face detector (King, 2009), which outputs a list of rectangles in image space that the

detector believes contain faces. This detector often fails to detect faces if they are smaller

163

Figure 6.4: Visualization of an example of facial detection results. In this example
frame from Charade, the detected faces are drawn with yellow rectangles, with estimated
orientation drawn as a set of axes and detected facial markers drawn with yellow dots.

than 80x80 pixels, so all frames were upscaled to at least 1 megapixel before detection.

Each detected face in the frame is further analyzed using Dlib’s 5 keypoint facial

landmark detector, Dlib’s face recognition ResNet, and a face orientation estimator called

Hopenet (Ruiz et al., 2018).

Dlib’s face detector is quite good, rarely triggering on sections of the image that are

not faces, but it is not without limitations. As the name implies, it is designed to detect

faces. If a person in the frame is near profile, facing away from the camera, or has part of

their face occluded or in darkness, the detector is less likely to trigger.

For more general person detection, this face detector can be thought of as having high

precision but low recall.

6.2.2.2 2d Pose Estimation

OpenPose is a 2d pose estimation application developed by researchers at CMU (Cao

et al., 2019; Simon et al., 2017; Cao et al., 2017; Wei et al., 2016). It detects individual

persons in the frame, outputting the image space positions of all detected joint positions

from a set of 25 detectable joints for each person detected.

164

I ran OpenPose on each frame in the dataset. Each detected person in each frame is

then further analyzed by a simple feed forward neural network I trained to estimate the

size of the person’s head in image space, where training data was from the HollywoodHeads

dataset (Marin-Jimenez et al., 2011).

This pose head size estimation serves two purposes. Firstly, it provides a basis for

comparison with any detected faces as described in 6.2.3. Secondly, it allows for head

pose to be estimated without relying on facial detection. However, Hopenet does not

particularly work here, as it was designed for estimating orientation of faces and, as such,

its valid range of motion only shifts ∼ 90°in yaw.

Non-frontal head or gaze orientation estimation seems to be in a state of relative

infancy. The first significant work I was able to find was Gaze360 from MIT, published

and released in 2019 (Kellnhofer et al., 2019). Using their dataset and a modified version

of their code, I was able to train a model following their Pinball Static methodology that

seemed to behave well with extracted film frames.

While OpenPose is generally a fast and robust detector, it too is not without limitations.

Its false positive rate for detection is relatively high, triggering on almost anything person

shaped, including stick figures and Japanese characters.116 Separately, people standing

close together can confuse the detector. OpenPose is a bottom-up detector, which first

identifies areas of the image likely to contain specific parts of individual people, then

groups these parts together into plausible groups forming a connected skeleton. As such,

two people standing close together can cause parts to blur together or be assigned to the

wrong person.

For general person detection, OpenPose can be thought of as having lower precision

but higher recall than the face detector.

116One frame in the credits of Seven Samurai containing more than a hundred Japanese characters
caused OpenPose to crash. OpenPose perceived many of the characters as people and therefore concluded
more than 99 people were in the frame, which was greater than its maximum buffer size.

165

Figure 6.5: Visualization of an example of 2D pose estimation results. The frame visualizes
the result of running 2D pose estimation on a frame from Charade, in which two characters
are standing on a rooftop. Each detected skeleton has the right-hand-side joints of the
body colored in green, with the left-hand-side joints colored in red, and central joints
(e.g., spine) colored dark blue. Additionally, the estimated head rectangle is drawn in
light blue, and the estimated head orientation is drawn as a set of colored axes.

6.2.2.3 3D Pose Estimation

All of the detectors listed so far are essentially 2d. They say nothing about the relative

depths or distances between characters, or about the orientation of any part of the body

other than the head/face. The most direct way of remedying this would be to utilize a 3d

human pose estimator.

While 2D human pose estimation is relatively established, with many functional and

well documented systems readily available, monocular RGB 3d human pose estimation

appears to still be in its infancy. I tried a number of detectors, including XNect (Mehta

et al., 2020), LCRNet (Rogez et al., 2017), and a python project called Lightweight

Human Pose Estimation 3d (abbreviated hereafter as LHPE3d) (Osokin and Ageeva,

2020), which is based on (Osokin, 2019). While XNect was very good with full body shots

of people, any frame where only part of an actor appeared, either through occlusion or

cropping, caused the detector to fail to trigger, a suboptimal feature for collecting data on

a variety of shot sizes. LCRNet was better at detecting only partial views of humans, but

166

it is based around a temporal model designed for real time video streams, and therefore

tends to struggle when given frames corresponding to 0.5 second intervals. LHPE3d was

the only model I experimented with that succeeded in providing estimates for full and

partial views of actors over frames at only 2fps.

I ran all frames in the dataset through LHPE3d, and did some comparatively minimal

post-processing to extract Euler angles rotations corresponding to the orientation of the

head, shoulders, and pelvis of each detected person. It should be noted that LHPE3d

outputs both 3d joint position estimations for each detected person, as well as 2d pose

estimates of a similar form to that of OpenPose, but across a different skeletal architecture.

While LHPE3d is an excellent piece of software that exceeded all of my requirements,

it is not without limitations. Just like OpenPose, LHPE3d is a bottom-up detector, and

suffers from some of the same issues when characters stand close together described in

the previous section. Additionally, LHPE3d requires a certain number of 2d joints to be

detected for its 3d estimator to have any hope of success. If LHPE3d detects only 1 or 2

joints in 2d for a person, it will not attempt to estimate a full 3d skeleton.

It is also worth briefly noting that LHPE3D computes skeletons purely based on

cropped portions of the image, then purely translates each skeleton to be merged in to

the broader scene. This likely results in somewhat inaccurate rotations between actors or

the camera, although it is unclear how much this could be improved without an accurate

estimate of the camera intrinsics. However, I have not yet performed any deep analysis

into this question.

6.2.3 Intra-Frame Feature Matching

The three detectors described in the previous section operate completely independently of

one another. To arrive at a final set of person-centric features for each frame, the results

of these independent detectors must be merged. For each person detected by a given

detector, the analysis must determine which, if any, persons from the other detectors

match.

167

Figure 6.6: Visualization of an example of 3D pose estimation results. The frame on the
left shows the results of the 2D joint estimation data from the LHPE3D detector, with
green lines corresponding to the right sides of bodies and the red lines corresponding to
left sides. The plot on the right shows 3D skeleton estimates, with identical colors. Note
that the 3D skeleton includes estimates of joint positions that are not visible in the 2D
frame. Both visualizations also show orientation estimates of each actor as a set of axes
at the head, shoulders, and pelvis.

Abstractly, this intra-frame matching forms a weighted set cover optimization problem,

where the detected results constitute the elements that must be covered and the valid

combinations of detector features representing persons from the sets. Unfortunately, find-

ing a globally optimal solution to this problem is NP-hard, and proved too computational

expensive for usage on all frames. Instead, I used a greedy approximation algorithm,

which is described in algorithm 7. This algorithm operates in O(ndlog(nd)) for a frame

where n people were detected by each of d detectors.

However, this algorithm requires a heuristic to evaluate each possible combination of

feature results. The heuristic I used took the sum of the following sub-heuristics, each of

which considered a pair of detector results.

• Comparing the face with either the 2d or 3d poses is accomplished by considering

the bounding box of the face, and the image positions of the pose neck and nose

positions. Given a face box with center c and diagonal d, as well as pose neck

position n and nose position p, the extent to which this face and pose match is

168

expressed by

max

(
0, 0.5− ||c− p||

||d||

)
+max

(
0, 0.5− ||c+ 0.5ydy − n||

||d||

)
. (6.1)

This same expression can be applied identically to compare detected faces with both

2d and 3d poses.

• Comparing the 2d pose and 3d pose is computed by simply taking the average

distance between corresponding points detected by each detector. Specifically, both

detectors can output an image space position of each person’s nose, neck, pelvis,

left shoulder, right shoulder, left hip, and right hip. If each of these N valid

corresponding pairs of points is put into a set of tuples P , then this average distance

can be simply expressed as

1

N(1 +
∑

(pi,pj)∈P ||pi − pj||)
. (6.2)

In addition, this heuristic needs some rejection criteria. As already noted, the

different detectors are likely to detect different numbers of people and, even if each detector

detects the same number of people, there is no guarantee that the detected people will be

the same in all detectors. If the analysis can determine that a combination is likely to be

invalid, then the function should return −1, and the combination will not be considered

to be returned by algorithm 7. The simplest rejection criteria I found to be effective was

simply comparing the intersection of the various head and keypoint bounding boxes of

the detectors. If the 2d pose head bounding box did not intersect the face bounding box,

or the bounding box of the 3d pose skeleton keypoints did not intersect with the 2d pose

skeleton keypoint bounding boxes, the combination was rejected.117

117The reader might be wondering about the possibility of rejecting a match between the face detector
and the LHPE3D detector alone. I found this to be unnecessary as, when a face was detected, either 2d
or 3d pose detectors would fire in the same area with extremely high probability. See table 6.3.

169

Figure 6.7: Visualization of an example of intra-frame feature matching results. The frame
on the right shows the result of intra-frame feature merging with each white rectangle
corresponding to a single detected person containing the 2d pose, 3d pose, and facial
detection data detected as visualized in the three images on the left.

Algorithm 7: Greedy Detector Feature Matching

Given:
f(x): Heuristic function for scoring a possible match
S1, ..., SN : Each Si corresponds to the set of features detected by detector i

1 A← [(s1, ..., sN)|si ∈ (Si ∪ {null})∀i ≤ N]
2 R← {}
3 foreach a ∈ A in descending order by f(a) do
4 if f(a) ≥ 0 and no element of a is already represented in R and

a contains at least one element that is not null then
5 R← R ∪ {a}

6 return R

6.2.4 Inter-Frame Feature Matching

Lastly, in order to capture the motion of people as a shot progresses, the data from

consecutive frames in the same shot must be merged.

This inter-frame problem has many similarities to the intra-frame matching problem

in the previous section. We have sets of people in consecutive frames, and the goal is to

identify which detected people in some frame correspond to which detected people, if any,

in the succeeding frame. This can be formalized as exactly the same sort of weighted set

170

cover problem, and I utilized the same method, algorithm 7, to solve it.

Of course, using this algorithm requires the definition of another heuristic to score

each prospective match. This heuristic simply sums similarity scores between alike feature

types between frames, as follows:

• If considering a match where both frames contain a detected face, the 128d facial

recognition vector provides an excellent means of comparison. The documentation

of the model states that any two faces whose Euclidean distance is less than 0.6

should correspond to images of the same person. With fa and fb corresponding to

the facial recognition vector of the two frames being considered, I found

0.6

ϵ+ ||fa − fb||
(6.3)

modeled matching with reasonable accuracy. Note that this does not reject matches

where ||fa − fb|| ≥ 0.6, as I found that a single actor could break this limit with

certain actions, such as the donning or removal of a hat or glasses.

• If considering a match where both frames contain a 2d or 3d pose, motivating a

heuristic is difficult. At 2fps, an actor’s motion in image space can vary tremendously

from frame to frame. An actor that is unlikely to move more than 10% of the way

across the frame in 0.5 seconds may cross from one side of the screen to the other

in a close up. Furthermore, an actor detected in one frame can be missing in the

next, either because they have left the camera’s field of view or been temporarily

occluded by another object in the scene.

Absent a better idea, I chose instead to take inspiration from a manual examination

of a few shots in the dataset, and observed that actors tended to remain the same

size in the frame during even the largest and most sudden of motions. I modeled

this behavior as
1

N

∑
l∈L

min(la, lb)

max(la, lb)
, (6.4)

where L is the set of N 2d skeleton edge lengths which are detected in both frames.

171

This same heuristic is applied to both the 2d poses detected by OpenPose, as well

as the 2d data output by the 3d pose detector LHPE3d.

• In the event that the no alike-feature detector is available (e.g., the person in the

preceding frame only contains a face, and the person in the succeeding frame only

contains a 2d pose), I fall back to simply computing the intersection-over-union,

or Jaccard index, of the bounding box containing all of the detected features for

each person, area(A∩B)
area(A∪B)

where A and B are the bounding boxes for the preceding and

succeeding frames, respectively.

While this heuristic is satisfactory for many of the shots I have manually examined,

such as the shot demonstrated in Figure 6.8, it is far from perfect, failing most frequently

when actors become occluded or make large, sudden motions. The probability of such

a failure seems to increase as the composition becomes tighter, with an actor’s abrupt

twitch in an extreme-close-up potentially triggering their detection as a new character.

Additionally, any scenario in which a character is not detected for one or more frames

before being detected again will trigger their being detected as two different people.

6.3 Dataset at a Glance

The dataset captures information from over 1M frames, comprising an estimated ∼ 88K

shots, from 60 feature films released between 1939 and 2019. A full inventory of all films

analyzed, as well as some basic statistics of the data collected from each film, is listed in

Table 6.2.

However, because the dataset is person-centric, different frames have different amounts

of detected data. Only ∼ 871K frames, or 86.8%, contain any detected people at all,

although the rate of detection varies significantly between films. Much of this variation

is likely the result of some films focusing more on non-human subjects than others. For

example, only 74% of the dinosaur heavy Jurassic Park ’s frames contain people,118, while

118According to (Effron and Gowen, 2018), on screen dinosaurs appear in only ∼ 15 of the film’s ∼ 127

172

Figure 6.8: Example of successful of inter-frame merging results. The frames are all from
a shot in the film Charade. Each rectangle in each frame corresponds to the bounds of a
tracked person, with the color of each person’s rectangle remaining consistent across all
frames. To help visualize the motion of each actor, each frame also shows the path that the
center of that person’s rectangle has taken over the last 5 frames with a correspondingly
colored line. Note that in this shot, the tracking correctly tracks the four people in the
shot throughout the scene.

173

Figure 6.9: Example of less successful inter-frame merging results. This figure follows
the same format as Figure 6.8, with different colors corresponding to the detection of
different people across the frames. However, the visualized shot from Charade has several
noticeable merging failures, with the character in the bathtub being detected as three
different people over the course of the shot after occlusions for one or more frames.

174

Title Year Director Duration Shots Frames
Frmes

w/
People

Total
People

A Funny Thing Happened
On The Way To The Forum

1966 Richard Lester 1:37:12 1,346 13,063 12,390 44,871

Airplane! 1980
Zucker, Abrahams and

Zucker
1:27:42 720 11,276 9,781 32,967

Argo 2012 Ben Affleck 2:00:23 2,040 16,554 13,600 36,267
Bourne Identity 2002 Doug Liman 1:58:18 1,683 15,935 12,185 21,914
Casablanca 1942 Michael Curtiz 1:42:38 726 13,070 12,520 45,361
Casino Royale 2006 Martin Campbell 2:24:11 2,380 19,790 16,451 56,341
Charade 1963 Stanley Donen 1:53:36 1,205 14,879 13,801 36,634
Citizen Kane 1941 Orson Welles 1:59:23 459 14,786 13,255 48,817
Die Hard 1988 John McTiernan 2:12:08 1,857 17,758 14,605 34,335
Goldfinger 1964 Guy Hamilton 1:50:01 1,493 14,746 11,905 30,568
Gone With The Wind 1939 Victor Fleming 3:53:08 1,120 29,129 25,635 66,696
Gosford Park 2001 Robert Altman 2:17:01 1,017 17,471 16,220 46,043
Hero 2002 Zhang Yimou 1:39:09 1,602 13,546 10,690 27,324
Hot Fuzz 2007 Edgar Wright 2:00:53 3,356 17,976 15,032 34,298

Indiana Jones and
the Last Crusade

1989 Steven Spielberg 2:06:53 1,462 16,738 13,851 43,275

Inside Man 2006 Spike Lee 2:08:37 1,633 17,119 14,709 44,429

Iron Man 2008 Jon Favreau 2:06:01 1,929 17,136 13,478 35,159
Jurassic Park 1993 Steven Spielberg 2:06:28 1,184 16,395 12,214 28,756
Knives Out 2019 Rian Johnson 2:10:06 1,841 17,513 15,584 33,619
Lawrence of Arabia 1962 David Lean 3:47:00 1,377 28,650 24,638 117,502
Lethal Weapon 1987 Richard Donner 1:49:33 1,352 14,544 12,162 26,137
Life of Brian 1979 Terry Jones 1:33:45 845 12,138 11,063 43,803
Midnight Run 1988 Martin Brest 2:06:19 1,585 16,816 15,305 45,177
Midnight Special 2016 Jeff Nichols 1:51:57 1,463 14,935 11,714 26,453
North By Northwest 1959 Alfred Hitchcock 2:16:25 1,298 17,702 16,133 56,884
Ocean’s 11 2001 Steven Soderbergh 1:56:34 1,136 15,154 13,137 46,839

Pirates Of The Caribbean
The Curse Of The Black Pearl

2003 Gore Verbinski 2:23:12 2,583 19,842 15,874 39,194

Police Story 1985 Jackie Chan 1:40:28 1,860 13,993 12,943 38,243

Psycho 1960 Alfred Hitchcock 1:48:59 888 13,982 12,079 22,469
Raiders Of The Lost Ark 1981 Steven Spielberg 1:55:19 1,427 15,322 13,063 52,223
Rear Window 1954 Alfred Hitchcock 1:52:33 800 14,330 13,087 23,022
Seven Samurai 1954 Akira Kurosawa 3:21:46 1,306 25,451 23,458 99,787
Shanghai Noon 2000 Tom Dey 1:50:26 1,867 15,168 13,117 30,489
Shawshak Redemption 1994 Frank Darabont 2:22:33 1,121 18,277 15,758 56,641
Sherlock Holmes 2009 Guy Ritchie 2:08:25 2,728 18,242 15,282 43,606
Singin In The Rain 1952 Stanley Donen 1:42:46 333 12,672 12,254 49,921
Snatch 2000 Guy Ritchie 1:42:43 1,336 13,714 12,061 32,791
Snowpiercer 2013 Bong Joon-ho 2:06:12 1,221 16,386 12,522 33,874
The Fugitive 1993 Andrew Davis 2:10:16 1,976 17,684 15,043 39,730
The Godfather 1972 Francis Ford Coppola 2:57:09 1,182 22,454 20,311 72,453
The Godfather Part 2 1974 Francis Ford Coppola 3:22:06 1,343 25,618 23,875 108,839
The Grand Budapest Hotel 2014 Wes Anderson 1:39:56 1,098 13,116 10,871 32,137
The Green Mile 1999 Frank Darabont 3:08:38 2,436 25,142 21,434 43,308
The Hunt For Red October 1990 John McTiernan 2:15:08 1,156 17,397 14,230 31,855
The Incredibles 2004 Brad Bird 1:55:25 2,153 16,046 11,366 19,135
The Last Emperor 1987 Bernardo Bertolucci 3:38:36 1,458 27,732 24,817 91,715

The Lord Of The Rings
The Fellowship Of The Ring

2001 Peter Jackson 2:58:25 2,940 20,033 14,457 24,417

The Man from Nowhere 2010 Lee Jeong-beom 1:59:19 2,276 16,656 13,135 26,589

The Man From Uncle 2015 Guy Ritchie 1:56:30 2,362 16,417 13,223 26,847
The Matrix 1999 The Wachowskis 2:16:18 2,215 18,622 14,639 26,954
The Nice Guys 2016 Shane Black 1:55:57 2,156 16,127 14,291 32,397
The Princess Bride 1987 Rob Reiner 1:38:11 1,402 10,824 9,712 20,610
The Wizard of Oz 1939 Victor Fleming 1:41:48 659 12,888 11,511 42,570
Throne Of Blood 1957 Akira Kurosawa 1:49:40 514 13,660 11,758 30,936
V For Vendetta 2005 James McTeigue 2:08:34 2,295 18,268 14,819 28,331
Vertigo 1958 Alfred Hitchcock 2:12:31 1,093 16,559 14,733 29,861
What’s Up, Doc? 1972 Peter Bogdanovich 1:33:50 819 12,099 10,902 44,781
Yojimbo 1961 Akira Kurosawa 1:50:50 505 13,769 12,813 49,388
Young Frankenstein 1974 Mel Brooks 1:45:38 616 13,318 11,829 39,196
Zodiac 2007 David Fincher 2:37:40 1,824 20,781 18,049 43,259

Totals 127:45:57 88,711 1,004,345 871,374 2,538,037

Averages 2:07:46 1,479 16,739 14,285 41,607

Table 6.2: Inventory of Films Analyzed

175

Figure 6.10: Distribution of number of people detected in each frame. The vertical “Total
People” axis corresponds to the total number of detected people in each frame. The
horizontal “Listed People” axis corresponds to the number of people that would be listed
in a frame vector, with data after inter-frame feature matching, with components for 10
or fewer people.

Casablanca has 96% of its frames containing people. Only ∼ 6.3K of the ∼ 88K shots,

∼ 7%, of the total shots did not contain any detected people in any frames.

Diving slightly deeper into this distribution, non-empty frames have differing numbers

of detected people, as visualized in Figure 6.10. The number of detected people ranges

from an obvious minimum of 0 to a maximum of 128,119, with a mode and median of 1

detected person representing 34% of all frames. However, 97% of frames have 10 or fewer

minutes. In other words, Jurassic Park is ∼ 12% dinosaurs. Interestingly, assuming the dinosaurs and
humans appear in non-overlapping sets of frames, people frames and dinosaur frames would total to
∼ 86%, close to the average of all films.

119While surprising, this appears to be relatively accurate, and corresponds to a wide shot of a busy
room in shot 2321 of Sherlock Holmes.

176

Face 2d Pose 3d Pose People Percent
✓ ✓ ✓ 794207 31.3%
✓ ✓ 6741 0.3%
✓ ✓ 5050 0.2%
✓ 4807 0.2%

✓ ✓ 1219134 48.0%
✓ 289355 11.4%

✓ 218743 8.6%

Table 6.3: Summary of Detections in the Dataset by Detector Type

people.

Furthermore, different detected people have varying sets of matched information

detected, as broken down in the following table. While only 32% of the ∼ 2.5M detected

people have detected faces, 91% have matching 2d poses and 88% of people have 3d

poses. The 2d and 3d pose detectors co-occur for 79% of detected people, which suggests

a relatively high level of agreement between those detectors.

6.4 Limitations

While the dataset met all of my requirements, it is far from perfect. As already noted,

there are a number of different limitations and common failure cases in the intra and

inter frame matching operations, as well as the other detectors and estimators used.

The most significant limitation of this dataset is that it is egocentric: it is impossible to

differentiate between motion of the actors and motion of the camera. I attempted a variety

of commercial and open-source software120 to track the motion of the camera independent

of any actor motion at either 2 FPS or the higher native framerate, without success.

Unfortunately, the uncalibrated, dynamic, and out of focus nature of the backgrounds in

the majority of the shots in this dataset make them incredibly poor candidates for existing

matchmove, 3d reconstruction, or VSLAM automation software solutions. While a skilled

human VFX technician might be able to achieve satisfactory results by manually tuning

120Including SynthEyes, PFtrack, 3dEqualizer, Adobe After Effects, Blender, and MeshRoom.

177

software parameters for each shot, even spending an average of a single minute per shot

would require ∼ 1, 479 hours of human labor for the ∼ 88K shots in the dataset. Perhaps

a middle ground where something like optical flow was used as the basis for a coarse

estimation of the camera motion type (e.g., pan and/or dolly) might make a beneficial

addition to the dataset, but I have not attempted to incorporate any such features so far.

Additionally, this dataset lacks an enormous amount of non-human data present in

the video, including scene layout, costumes, lighting, audio, and more. However, none of

these features are relevant for the purposes of either analytical or generative vector-based

virtual cinematography.

I also ran several failed experiments attempting to better utilize the extracted facial

recognition data. The most interesting, at least to me, was an effort to count the number

of actors in a film by clustering faces with the facial recognition data.121 The Dlib

documentation asserts that any two faces whose facial descriptors have a Euclidean

distance less than 0.6 should represent the same face. However, when I tried running an

OPTICS clustering algorithm on the points with 0.6 as the EPS across the ∼ 10K faces

detected in a single film, the algorithm collapsed all the faces into a single cluster. The

only conjectural explanation I could reach is that the number of faces was so large, and

under such a widely varying number of viewpoints, lighting conditions, facial expressions,

etc. that the probability of overlap approaches 1. Reducing the EPS to 0.3-0.4 can vary

the number of detected clusters to a more reasonable number in the tens or hundreds, but

doing so frequently separated detections of the same actor’s face into different clusters.

Perhaps some flavor of random sample consensus between faces in different shots might

produce better results, but I have not attempted this.

121I briefly held an ambition to use such data to automatically generate diagrams of actor interactions
over the course of a film, somewhat like the work of Padia et al. (2019) and the XKCD artwork that
inspired their work.

178

CHAPTER 7

Manually Defined Cinematographic Objective

Functions

While any valid objective function can be input by the user, the system supports common

cinematic and photographic compositional aesthetics by providing a predefined set of

novel objective functions. These mimic the types of shot descriptions commonly used

on “shot lists”122 in the preproduction of a film by live action directors and cinematogra-

phers. Additionally, several recipes are provided with which common cinematographic

compositions can be easily achieved as a combination of these objectives.

7.1 Data Inspiration

Even before attempting any complicated data science or machine learning, there are some

interesting observations that can be made using simple manual data analysis.

We can ask whether there are any significant correlations that might expose either

biases in the detectors or evidence of cinematographic patterns. Figure 7.1 shows how

various properties of the head rectangles estimated from 2d pose information for each

detected person, where all positions are in a normalized display coordinate system.

As visible from this diagram, persons can be detected anywhere in the frame, with

head centers possible anywhere inside the bounds of the frame. However, heads are most

concentrated in a roughly rectangular region where −0.6 ≤ x ≤ 0.6 and 0 ≤ y ≤ 0.6. A

very close examination of this region in the center-x/center-y plot shows an interesting

122See Section 2.3.

179

Figure 7.1: Histograms of centers of heads estimated from detected 2d person poses. The
plot on the left shows heads detected with the 2D pose detector, and the right plot shows
heads detected with the face detector.

double holed pattern. The left and right bars of this pattern center at x ≈ ±0.33,

which supports the existence of a horizontal rule of thirds as a cinematographic rule

for positioning heads. However, the top and bottom bars of this pattern center around

y ≈ 0.15 and y ≈ 0.5, suggesting that the vertical rule of thirds does not match the

behavior modeled in 7.2.5.

Additionally, a limitation of the nature of the analysis can be observed in the center-

x/width and height/center-y plots: large heads can only be detected when there is

sufficient separation from the edge of the frame. Furthermore, the width and heights of

heads are highly linearly correlated, having a Pearson correlation coefficient of 0.93.

There is also a noticeable amount of correlation between the center of heads and

the estimated yaw, although the Pearson correlation coefficient is at a low 0.18. While

this correlation could be interpreted as supporting look space in the dataset, a stronger

interpretation is that characters on the left side of the frame are more likely to be looking

right, and characters on the right side are more likely to be looking left.

180

Figure 7.2: Histograms of head centers relative to estimated yaw. The plot on the left
shows heads detected with the 2D pose detector, and the right plot shows heads detected
with the face detector.

7.2 A Library of Objectives

While the components of this system that are integrated with Unreal Engine rely on its

particular coordinate system (left-handed, z-up, centimeter unit scale, etc.), the functions

listed here are written to be as generic as possible. As several rules require the projection

of a point onto the image plane, the function Π(R3) → R2 is used to denote such a

projection from world space to screen space, where any point p that will appear in frame

will have |v| ≤ 1, ∀v ∈ Π(p). Note that this projection function must have knowledge of

the current camera parameters (e.g., position, orientation, field of view, etc.), which are

not explicitly listed as arguments for many functions.

All of the functions described below are point-based, meaning that all details of the

scene are collected in the form of observing the position, orientation, etc., of specific points

connected to objects of interest in the scene. This requires that complex elements in the

scene be represented by multiple points. This point-based model varies from the explicit

geometric models of (Bares et al., 2000a; Jardillier and Languénou, 1998), where each

camera pose is evaluated based on observations of geometric primitives approximating

181

complex objects, as well as from the rendering-based methods of (Burelli et al., 2008;

Abdullah et al., 2011), where each camera pose is evaluated by analyzing a full rendering

of the scene from that pose.

7.2.1 Frame Position

One of the simplest features a user might want to control is the position that an object

should have in the image. To support a wider range of specifications, several objective

functions are predefined for different types of desired frame position behavior.

At the simplest level, a user might simply want some world space point p to be as

close as possible to some desired image space point a, which can be simply modeled as

fpoint(p, a) = ||p− a||2.

However, this point model is overly simplistic for many applications. Frequently, users

simply desire that a particular point be positioned within some region on screen, where

any position within that region is equally desirable. Here are two predefined objective

functions for modeling either an elliptical,

fellipse(p, a,d) = max(dxdy
∑

i∈{x,y}

(
Π(p)i − ai

di
)2 − 1, 0),

or rectangular,

frectangle(p, a,d) =
∑

i∈{x,y}

max(abs(Π(p)i − ai)− di)
2,

desirable frame region with center position a and half-size dimensions d. Both are plotted

in Figure 7.3.

182

Figure 7.3: Contour plots of frame positioning functions fellipse (left) and frectangle (right).

7.2.2 Visibility

An object the user desires to be visible must appear on-screen, but this apparently

simple behavior requires two different types of objectives, denoted frame bounds and

occlusion/collision, both of which must be satisfied for an object to be visible.

7.2.2.1 Frame Bounds

The frame bounds rule is simply that any point that the user desires to be visible must

appear inside the bounds of the frame. Modeling this is fairly simple using projective

geometry.

Given world space point p and constants xlow < xhigh, where −xlow = xhigh = 1

ensures a point is simply in frame and 0 < (|xlow|, xhigh) < 1 will produce headroom, the

frame-bounds rule can be evaluated as

f(p) =
∑

x∈Π(p)

g(x), (7.1)

183

Figure 7.4: Illustration of the two types of visibility consideration. In the left image, if
the frame is cropped to be within the bounds of the blue rectangle, the character will be
beyond the frame bounds and therefore not visible. In the right image, the camera’s view
of the character is mostly occluded by the chair and the character is therefore not visible.
The character is only visible if they are within the bounds of the frame and not occluded.

−1 −0.5 0 0.5 1
0

2

4

6
·10−2

x

f
(x
)

Figure 7.5: Visibility function plot.

where

g(x) =


(x− xlow)

2 x < xlow;

0 xlow ≤ x ≤ xhigh;

(x− xhigh)
2 x > xhigh.

(7.2)

184

7.2.2.2 Occlusion and Collision

The occlusion rule is simply that there must be an unoccluded line of sight from the

camera to an object that the user desires to be visible. A common distinction is made

between clean shots where all of an object is unoccluded and dirty shots where only part

of an object is unoccluded.

Similarly, the collision rule simply states that the camera must not collide with scene

elements. Just as it is generally undesirable for real world cameras to pass through walls

and actors, users of virtual cameras generally expect their cameras not to pass through

apparently solid virtual matter.

Unfortunately, building suitable objective functions for occlusion and collision is much

more complicated. Unlike all of the other functions described, these objectives represent

an observation about the geometry of the scene as a whole and therefore cannot be

defined in the same concise analytic style used elsewhere. Furthermore, there will be

a discontinuity in any direct observation of visibility at the boundary of occlusion and

collision. To address these issues, the system provides an n-dimensional linear interpolator

that, given camera position c and point position p, can be expressed as

f(c) = g3(c), (7.3)

where

gi(c) =
cai − ci
cbi − cai

gi−1(c
b) +

1− cai + ci
cbi − cai

gi−1(c
a). (7.4)

Here, ca and cb are the closest sample locations on axis i such that cai ≤ ci and cbi ≥ ci

and caj = cbj = cj, ∀j ̸= i, and

g0(c) = B(c,p), (7.5)

where

B(c,p) =


1 if the path from c to p is occluded;

0 if the path from c to p is not occluded.

(7.6)

185

As this function is not analytically differentiable, differentiation is computed numerically

as df(x)
dx
≈ f(x+∆x)−f(x)

∆x
with ∆x = 1 cm.

To improve smoothness, the system supports the convolution of the samples of the

interpolator by a Gaussian kernel, which can be expressed mathematically as changing

g0(c) to

g0(c) =
1√
2πσ2

h3(c). (7.7)

Here,

hi(c) =

K/2∑
j=−K/2

e−
(j∆i)

2

2σ2 hi−1(c+j∆iUi), (7.8)

where ∆ is the set of convolution step sizes, U is the set of bases for c, and h0(c) = B(c,p).

Values K = 7, σ = 1, and ∆ = 25 cm are used. Of course, the convolution requires more

samples than its unconvolved counterpart, decreasing efficiency.

Note that in all uses, B(c,p) is sampled in a uniform grid with steps that are specified

at function construction. Samples in the current search neighborhood can be fetched on

demand, then cached in a hashmap for efficient retrieval in later computations. This

approach differs from (Drucker and Zeltzer, 1995) in that it requires no preprocessing of

the scene geometry, does not require the occluding or colliding geometry to remain static,

and can scale to scenes of any size, given a utility for sampling B(c,p) that is equally

efficient in scenes of any size.

7.2.3 Shot Size

Modeling shot size is a bit tricky. While there are several different ways of evaluating

this rule using projective geometry, most tend to suffer from severe instability given even

moderately suboptimal inputs. For example, the function f(a,b) = (1−|Π(a)y−Π(b)y|)2,

where the subscript denotes the y component of the vector, is highly unstable.

Given object points a and b, camera position c, and angle θ, the most stable objective

186

function we have found is

f(a,b, c, θ) =

(
θ − arccos

(
(a− c) · (b− c)

||a− c|| ||b− c||

))2

. (7.9)

As described above, the object points a and b are chosen to be the edges of the object

to be in frame (e.g., top of head and mid-chest for a close-up shot). For most purposes,

the value of θ can be chosen to be the camera’s vertical field of view. However, when

headroom is desirable for the same points (see Section 7.2.2.1), this must be decreased

slightly so as to avoid unnecessary objective conflict.

7.2.4 Relative Angles

Modeling relative angles is relatively simple using spherical geometry. Given object point

p, camera position c, unit object up direction u, and desired angle θ relative to unit

object look direction d, the objective function for vertical angle is

f(p, c,u, θ) =

(
θ − arccos

(
p− c

||p− c||
· u
))2

, (7.10)

while the profile angle function is

f(p, c,u,d, θ) =

(
θ − arccos

(
p− u((p− c) · u)− c

||p− u((p− c) · u)− c||
· d
))2

. (7.11)

7.2.5 Rule of Thirds

Attempting to formulate a function that intuitively models the rule of thirds is a bit

tricky. Clearly, a function f : R← R with minimums at ±1/3 is desired, but many such

functions exist.

One simple formulation can be expressed as g(x) = x4

x4
0
− 2x2

x2
0
+ 1. This has the desired

±1/3 minimums with x0 = 1/3, but penalizes inputs for which |x| ≤ x0 much more lightly

than those for which |x| > x0. Because of the exponential nature of this asymmetric

penalization, this formulation tends to be tricky to balance with other desirable properties.

187

-1 −2
3
−1

3
0 1

3
2
3

1

1

1.2

1.4

1.6

1.8

x

f
(x
)

Figure 7.6: A 1D (left) and 2D (right) plot of the rule of thirds function.

To combat this, we defined a “flatter” formulation. Given a point p in world space as

well as constants 0 ≤ x0 ≤ 1 and 0 < a ≤ 1, this objective is modeled as

f(p) =
∑

x∈Π(p)

(x+ b)2

(x+ b)2 + a
+

(x− b)2

(x− b)2 + a
(7.12)

where

b =

√√√√2 (x2
0 − a) +

√
4 (x2

0 − a)
2
+ 12 (x2

0 + a)
2

6
. (7.13)

To use the standard third lines, x0 should be set to 1/3. Selecting a value for a is a bit

trickier, as too high a setting causes the function to affect only points in the immediate

vicinity on-screen, while too low a setting can cause the penalty for |x| < x0 to decrease

significantly. It was found experimentally that a = 0.07 produced satisfactory results.

This formulation has an issue in that it penalizes points far from x0 equally as

limx→±∞ g(x) = 2− h(x0). In some applications, this “flatness” is desirable; for example,

if there is an object that is not required in a shot, but that should be placed on the third

lines when it is in frame.

188

7.2.6 Look Space

Given object point p, unit object look direction d, camera position c, and unit camera

right direction cR, the look space objective can be evaluated using the visibility frame

bounds objective function fvis(p) from Section 7.2.2.1, as

f(p) = fvis

(
Π(p) +

Π(p+ d)− Π(p)

||Π(p+ cR)− Π(p)||

)
. (7.14)

7.2.7 180°rule

The 180°rule, sometimes called the line or plane of axis rule, can be modeled as a simple

geometric function. Given camera position c, unit up direction u, and two points a,b,

the objective function

f(a,b, c,u) = max(0, ((b− a)× (c− a)) · u)2. (7.15)

Assuming we are operating in a left handed coordinate space, this will specify that the

camera should be on the left side of the plane of action, although swapping the order of a

and b allows either side of the plane to be specified.

7.2.8 Depth of Field

Focal length f , as measured in the same units as world space. Lens f-number n, which is

the ratio of the focal length to the entrance pupil diameter. Focus distance s. Given all

of this, the depth of field can be modeled by calculating the circle of confusion for camera

space point p as

c(p, s, f, n) =
|||p|| − s|

s

f 2

n(s− f)
. (7.16)

A satisfactory objective function for depth of field can then be described with the

same visibility frame bounds objective function fvis(p) from Section 7.2.2.1 as f(p =

fvis(c(p)−m), where m is the desired circle of confusion size.

189

Type Eqn. Weight Input Parameters

Rule of Thirds (7.12) 0.5 Image space character head position

Relative Angle - Vertical (7.10) 200
Head position, Global up direction, De-
sired angle

Relative Angle - Profile (7.11) 300
Head Location, Head Forward, Desired
Angle

Shot Size (7.9) 750
Top and Bottom Character positions,
Camera FOV offset

Visibility - Frame Bounds (7.1) 10
Image space character top and bottom
positions, Frame bounds offset (e.g.,
0.1)

Visibility - Occlusion (7.3) 700 Character position, σ (defaults to 1)

Look Space (7.14) 5
Character head position, Character
head forward direction, Frame bounds
offset (e.g., 0.3)

Table 7.1: Recipe for Objective Function Corresponding to a Cinematographic Composi-
tion With a Single Person

7.3 Basic Cinematographic Recipes

If the objective functions described in the previous section are ingredients, what kinds of

recipes can be used to prepare an objective matching a combination of desired cinematic

properties?

One of the most stable and most versatile cinematographic recipe I have found

corresponds to any composition containing a single character viewed from a particular

angle, represented by a simple weighted sum of the following objectives, and is summarized

in Table 7.1. Shot size can be controlled by specifying what points on the character should

be near the top and bottom of the frame.

Note that in any weighted sum, the scale of the weights is less important than the

ratios between pairs of weights. If, hypothetically, all the weights were to be scaled by

a factor of 100, the relative optimality of inputs would remain invariant, although the

rate of convergence and numerical stability of different optimization algorithms might

change. However, modifying the ratio between weights can dramatically affect what

inputs are locally or globally optimal, thereby affecting the relative importance of different

190

Type Eqn. Weight Input Parameters

Relative Angle - Vertical (7.10) 200
Position of midpoint between charac-
ter heads, Global up direction, Desired
angle

Relative Angle - Profile (7.11) 200
Position of midpoint between charac-
ters, Direction of axis between charac-
ters, Desired Angle

Shot Size (7.9) 750
Positions of both characters’ heads,
Camera FOV offset

Visibility - Frame Bounds (7.1) 10
Image space top and bottom posi-
tions for both characters’ heads, Frame
bounds offset (e.g., 0.05)

Visibility - Occlusion (7.3) 700
Both character head positions, σ (de-
faults to 1)

Table 7.2: Recipe for Objective Function Corresponding to a Two-Person Cinematographic
Composition with Controls Analogous to the Toric Space

cinematographic properties in the final composition. The weights listed in the table above

seem to be both numerically stable123 and produce a relatively smooth objective function.

One notable pattern in the weights listed above is that objectives that compute values

in image space tend to require much lower weights than those operating purely in world

space. This is a consequence of the increased sensitivity image space objectives place on

rotational parameters over positional parameters. While the effect of camera translation

on the image space position of an object (e.g., rule of thirds, frame bounds visibility, look

space) varies with the object’s distance, rotating the camera even a small amount will

significantly shift the image space position of an object at any distance.

As another example, Table 7.2 contains a recipe I have found to be roughly analogous

to the toric space controls, which is specifically useful for scenes with two on screen actors,

developed by Galvane et al. (2015a); Lino and Christie (2015).124 In this recipe, the same

objectives for shot size and relative angles can be easily adapted to map from a single

actor to modeling compositional properties between a pair of actors.

123Implemented with double precision floating point numbers.

124See sections 3.1.1.1 and 3.1.2.2 for further discussions of toric space.

191

One of the exceptionally nice features of this recipe style is its modularity. If a user

does not like having some predefined objective, they can replace it with another objective,

such as one of the frame position functions, or remove it entirely. If they feel something

is missing, like depth of field or the 180°objectives, they can simply and easily add to the

recipe.

192

CHAPTER 8

Machine Learning Defined Cinematographic

Objective Functions

With so many films being made every year, why do we need to adapt and invent such

sophisticated and delicate mathematical machinery to capture desirable cinematographic

properties? Is it possible to construct a camera control system that learns how to make

cinematographic decisions by merely watching existing movies? This dream of data-driven

virtual cinematography is incredibly enticing, but far from easy.

As discussed in chapters 3, 2, and 6, motion pictures represent a challenging medium.

Each moment of the film is the result of a multitude of creative and technical decisions,

from what events are portrayed to how the actors play their roles, as well as how to move

the camera to best capture the emotional and informative intent of the scene, among many

others. However, rather than being directly presented with details on the motivation and

decision making process for each of these tasks, what is presented to us are sequences of

images, with varying numbers of people in diverse compositions to communicate changing

messages over time.

As a result, it can be unclear how to interpret this unannotated data to control a

camera in an existing scene. For example, consider the case of a user wanting to copy a

composition from a film clip with multiple moving actors to a target camera in another

virtual scene. If the actors’ motions in the clip precisely match the motions in the target

scene, we can consider directly transferring the camera motion. However, if there is any

significant motion mismatch, perhaps the actors have different sizes or are facing different

directions, the virtual cinematography system will be forced to automatically compromise

193

between competing observed camera behaviors. Are the positions of the actors in the

frame more or less important than their relative angles? Are look space or head room

more important for one actor than another? How important are the sizes of the actors

relative to the other properties? Worse still, these and similar questions grow even more

complicated when considering a model capable of reasoning about a variable number of

subjects within the composition.

Faced with such challenges, how can a general purpose strategy to learning virtual

cinematography from data be formed?

8.1 Data Representation

As explored in the Section 6, I now have at my disposal a large and novel dataset

concerning cinematographic composition with human subjects. However, there are several

problems in data representation, as the dataset is not inherently uniform.

1. The frames have varying resolutions, aspect ratios, and with differing dimensions

of values for different parameters collected. This can be easily addressed by using

normalized display coordinate space, and normalizing all angles into a [0, 1] or

[−1,+1] range.

2. All of the machine learning models I have experimented with require fixed dimension

inputs with normalized ranges, but the dataset consists of a variable number of

parameters collected from each frame. This parameter count variability is dependent

on two factors: what computer vision tools triggered for each detected person, and

the number of people detected.

(a) To address the problem of differing detectors firing for different people in

different frames, I experimented with three different approaches: fill missing

values for desired parameters with zeros, only use parameters that are mutually

available, and try to learn a model capable of filling in missing parameters.

I have so far been unable to identify a significant advantage for any of these

194

options in my experiments, so have defaulted to filling in missing values with

zeros as the easiest option.

(b) The problem of varying numbers of detected people in each frame can be solved

by specifying an input space with channels for N distinct detected people.

In this formulation, each person channel would have the same input feature

dimensions, which are set to zero if no person is occupying this channel in this

frame.

This leaves a problem of how to order detected people from the frame into

the available channels. The solution used here, which was pioneered by (Jiang

et al., 2020), sorts people by their average size over all the frames in the shot.

This is based upon a cinematographic rule of thumb commonly credited to

Alfred Hitchcock, which asserts that the largest person in frame is usually

the most important. This Hitchcock rule ordering not only keeps each person

in the same channel throughout multiple shots in the same frame, but also

ensures that the largest people appear in the first slots most often. This is why

having a consistent measure of person size was such an important part of the

data collection process.

8.2 Modeling strategy and motivation

With these techniques, the dataset can be formed into a fixed dimension format with

normalized inputs. However, forming a coherent machine learning model around this

data is a tremendously unintuitive task, as what we essentially have is an unsupervised

learning task.

Unlike classic machine learning tasks like classification or regression, we have no

obvious cinematographic properties to attempt to learn here. Worse still, it is unclear

whether attempting to classify compositions into individual cinematographic categories,

such as shot size or emotional intent, would be useful for powering complex camera control

behavior, as doing so would not inherently inform any balance or compromise mechanism

195

between a user’s desires among multiple categories.

Also, the goal of virtual cinematography used here is to control a virtual camera in

an existing 3D space using the positions and orientations of objects in the scene. As

discussed in Section 3.2, there are a variety of popular and distinct problems that do not

meet this definition, such as image synthesis and pixel-based aesthetics analysis, have

widely utilized machine learning techniques.125

Alternatively, it can be tempting to imagine, given the end goal of crafting a practical

camera controller, that the ideal machine learning model is inherently generative: pick

some camera control space (e.g., Cartesian, polar, or toric space), and try to learn a

mapping directly from actor motion to camera pose/path in that camera control space.

While this is an intuitive approach that can work in some cases, it is far from ideal. This

is primarily because the data available does not contain camera motion in anything like a

global reference frame, instead only capturing the motion of actors relative to the camera.

Some other researchers have addressed this limitation by choosing a camera control space

that is defined relative to the actor(s) in the scene. However, such a controller could then

only be used when the same type and number of actors appear in the scene, severely

limiting the usability of the resulting camera system.

Instead, the approach I have taken is to consider a model that has learned a distance

metric between some user specified cinematographic intent and a prospective composition.

Were we to have such a model, all we would have to do is ask the optimization tools

propounded upon at length in Section 5 to find the optimal composition with the lowest

distance to the desired composition. Not only would such a model be compatible with all

of the rest of the mathematical tools outlined so far, including smoothing, the model itself

could provide valuable analytical insight into the grammar or semantics of the language

of cinematographic composition.

It should be noted that I have separated the tools used for machine learning from

125While the generation or manipulation of pixels is of a fundamentally distinct nature to the problems
explored here, future research into techniques such as inverse rendering may allow these problems to be
bridged. See Section 3.2 for a longer discussion.

196

those for camera control. Except where otherwise noted, I have used PyTorch ((Paszke

et al., 2019)) for the training of machine learning models. These trained models are then

exported into a JSON file format, which can be parsed and imported into my optimization

framework for camera control. This separation allows for PyTorch GPU acceleration

when no real time graphics integration is required, and the existing integrations between

my optimization system and the real time graphics system to be used when needed.

8.3 PCA

The first option I explored was simple principal component analysis (PCA).

Taking a set of 5 parameters including head position (i.e., NDCS X and Y), head

height, and head orientation (i.e., pitch and yaw), for each detected person in isolation,

PCA reports that all 5 dimensions are needed to account for at least 95% of the variance in

the dataset. Interestingly, adding in shoulder and pelvis orientation to a PCA reports that

only 7 dimensions are required, despite this adding an additional 4 inputs. PCA seems

to indicate that vertical and horizontal position are the two most significant dimensions

from the original dataset.

Taking multiple people, as intended by the Hitchcock rule ordering, we can run PCA

on compositions with multiple people. Again, this analysis was done with the same 9

input dimensions as used in the previous analysis, but also with an additional input for

each person indicating whether this person was detected at all. Additionally, all missing

values were filled with zero.

Intuitively, increasing the number of people in the composition requires increasing

numbers of PCA dimensions. However, these increases are not uniform. While each of

the first two people in the composition seem to require 7 additional dimensions, each

subsequent person seems to require only 5 or 4 additional dimensions. I suspect this is

primarily because most compositions in the dataset contain two or fewer people, meaning

that less variance is captured by each person past the second.

197

Figure 8.1: Plot of variance explained by PCA for collected data.

I also dabbled with clustering this data, both before and after PCA dimensionality

reduction. Unfortunately, the dataset is simply too large for me to do any kind of thorough

exploration of the clustering. Running K-means with varying parameters only really

revealed that compositions could be clustered by the number of people detected within

them, which is far from insightful.

While much of this is analytically interesting, it is not remotely clear how to leverage

this information in the manufacturing of a practical camera controller.

8.4 Frame Embedding

So far, we have largely ignored the only obvious structure in this data: the sequential

nature of frames. Given that our dataset consists of data captured from frames sampled

at 0.5 second intervals from the original video, frames in the same shot that appear close

together in time are likely to correspond to similar compositions. Conversely, if two frames

from the dataset are chosen at random, we would expect dissimilar compositions with

high probability.

Essentially, this forms the basis for a frame embedding task, where the goal is to find

a mapping from data space to some latent space in which pairs of frames believed to be

similar have a small distance, while those believed to be dissimilar have a large distance.

198

This concept is inspired by word embedding, a common technique in natural language

processing, which represents a similar task with textual words in a plaintext corpus.

However, there is a key difference between our frame embedding task and word embedding:

words are discrete and finite, while our input vectors are essentially continuous. Whereas

many standard word embedding techniques rely upon counting the relative coincidence of

words, the continuous vectors from our dataset cannot be made discrete in any obvious

way.

Instead, we can provide a more literal interpretation of the motivation. Suppose

we have two frame representation vectors x and y, and f : Ra → Rb that maps frame

representation vectors into a latent space. We would like to be able to say that the distance

between the latent space vectors should be as small as possible if the compositions these

vectors represent are similar, while we would like the distance between these vectors to

be at least some preset value if they are dissimilar.

I chose to model this as a loss function

L(x,y, a, b) = ELU (a (|f(x)− f(y)| − b)) + 1

where the exponential linear unit function

ELU(x) = min(|x|, ex − 1).

In this formulation, weight label a is +1 if the two embedding space vectors are similar

and −1 if the vectors are dissimilar, while weight label b corresponds to the desired

minimum distance between dissimilar vectors.

With this minimum distance loss (MDL), I chose a simple network architecture

with 4 linear layers sandwiching leaky-ReLU layers and leading to a 10-dimensional

embedding space, and proceeded to try to train the model. The dataset was sampled such

that frames within a shot in positions ±3 of a given frame were considered similar, while

25 other frames from the dataset were chosen to represent dissimilar frames, and assigned

199

0 2 4 6 8 10
0

2

4

6

8

x

f
(x
)

L(x, 0, 1, 2)
L(x, 0,−1, 2)

Figure 8.2: A Plot of a 1D version of the MDL loss function.

weight values of a = −1, b = 3. After removing pairs of frames where either frame was

empty (i.e., contained no detected people), this resulted in a training dataset with ∼ 18

million pairs of frames, where ∼ 10.6% were similar, and the remainder were dissimilar.

After training a model in this way, an early issue appeared in the form of a profoundly

disadvantageous interaction between sampling distributions and input parameters chosen.

As previously mentioned, the films all have varying fundamental characteristics that I

intentionally attempted to normalize away, one of which was aspect ratio. Although it

did not appear anywhere in the input data I used to train, when I started plotting the

results of my first experiments, what I discovered was that aspect ratio seemed to be one

of the principal input parameters the model was using in its mapping.

This partially makes sense: as a considerable portion of the dissimilar frames were

sampled from films with different aspect ratios, the model would have a large incentive to

use the aspect ratio as a key parameter. However, neither the aspect ratio nor resolution

of the frame were parameters given to the model, begging the question of how the model

seemed to be using this data. However, the initial input vectors contained both the height

and the width of detected heads, which tend to be almost perfectly linearly correlated

in pixel space. When the data was normalized to normalized display coordinate space,

the ratio between these values becomes indicative of the frame aspect ratio, allowing the

200

model to learn an intentionally omitted property.

As a result of this behavior, this model did not seem to be forming a mapping that

unified data from all the films, instead partitioning films with differing aspect ratios into

separate regions of the latent space. I made two changes to combat this problem. First, I

removed the head width from the input vector, leaving only height. Second, I added 9

randomly chosen frames from neighboring shots in the same film to the set of dissimilar

frames for a given frame, with weight values a = −1, b = 2. After again removing empty

pairs of frames, this resulted in a training dataset with ∼ 21 million pairs of frames, where

∼ 9.2% were similar, and the remainder were dissimilar.

These changes produced a dramatic improvement, albeit one that is hard to quantify.

In this new model, not only does aspect ratio no longer seem to be strongly correlated

with distance in the embedded space, but many of the resulting feature distances seem to

make sense.

The resulting mapping is fascinating to manually explore, and several views of a PCA

projection from this embedding space to 3D are picture in Figure 8.3. Just from the views

shown, it is clear that embedding distance is highly correlated with the number of people

detected in the frame, and moderately correlated with the position of the most significant

person in the frame. However, the relative angles of the most significant detected person

show only minimal evidence of being correlated with embedding distance, suggesting that

the property often matters little for single person compositions.

However, this mapping only utilizes a small part of the sequential information provided.

As explored in Section 2.4, a significant portion of film semantics is captured in the order

and timing of sequences of shots edited together.

I tried to capture some of the sequential shot information missing in the MDL model

with another frame embedding model inspired by the Word2Vec model now ubiquitous in

NLP (Mikolov et al., 2013). This Frame2Vec paradigm models the distance between

frames as a cosine loss between the latent embedding space for a given shot, and a

latent context space for any shots in neighboring shots. Formally, this loss function was

201

Figure 8.3: Visualization of the MDL frame embedding. These plots visualize the result
of using an MDL model to transform the ∼ 1M frames from the dataset into the latent
embedding space of the model, in which the distance metric can be applied. The 10
dimensional latent space was then reduced to the most significant 3 dimensions with PCA
for visualization. Here, coloring by 5 properties are rendered from 3 different axis-aligned
views, with each row corresponding to a single property and each column corresponding
to a single view. The first row is colored according to what person channels are used
in each frame, a property referred to as channel code. The second and third rows are
colored according to the x and y components of the image position of the head of the
most significant detected person. The last two rows are colored according to the yaw and
pitch of the most significant detected person.

202

represented as

L(x,y) = BCE(σ(f(x) · f(y)), ℓ)

where the sigmoid function

σ(x) =
1

1 + ex

and the binary cross entropy function

BCE(x, ℓ) = −(ℓlog(x) + (1− ℓ)log(1− x)).

Using a similar distribution of pairs of frames from the MDL set, but with labels of 0 or 1

as targets for cosine loss. Unfortunately, I have yet to discover any additional capabilities

this Frame2Vec model provides over the MDL model described earlier, although the

mapping it produces is distinct.

8.5 Limitations

However, both the MDL and Frame2Vec embedding models suffer from a profound lack

of expressivity when implemented as objective functions for camera control optimization

problems. Any user specified composition has only one representation in each model,

which means that a user cannot modify their preferences regarding the relative importance

of any part of the composition without modifying the composition itself. To put it another

way, this model allows a user to specify where an optimum will be in the resulting objective

functions, but does not allow the user to modify any of the rest of the function, including

compromise behavior.

For example, when I first incorporated the resulting MDL model into a camera

controller, I discovered that the model did not prioritize the relative angle of the head

nearly as much as I would personally prefer. For some scene geometries, the resulting

camera did not seem to want to care about relative angles at all, instead choosing whatever

orientation would put the actor into the desired position and height in the resulting frame.

203

One interpretation of this problem is that this frame embedding paradigm fails to take

into account the fact that, although each frame might have some semantic or aesthetic

meaning individually, much of the intent behind cinematographic decision making is

hidden in the temporal grouping of frames. From a single frame in a shot, no observer

would be able to accurately determine what the distribution of properties the rest of

the frames in the same shot might have. As each frame has only one frame embedding

regardless of the temporal context in which the frame appears, any temporal relationships

seem to be uncapturable in this frame embedding paradigm.

While I have done some preliminary investigations into additional models with the po-

tential to overcome these issues, none have so far produced results of sufficient significance

for deep discussion in this text. The following includes a few of these exploratory ideas.

• Bag-of-frames: Instead of using only a single frame for context, use a sequence

or set of frames surrounding the current target frame to capture the temporal

semantics currently utilized. While appealing, this presents several issues, such as

how to structure the model so that differing numbers of frames can be input, and

what training distribution will allow for the most structure to be learned without

introducing undesirable bias.

• Transformer: A variety of recurrent machine learning models, such as transformers,

have been shown to be highly effective at capturing sequential semantics in natural

language tasks. While such a recurrent model could be used as the basis for a

declarative virtual cinematography distance metric, doing so would likely limit the

flexibility of the other techniques utilized here, as the change from instantaneous

to sequential temporality would make optimization order with varying keyframe

density much trickier.

• Weight learning: Instead of learning a mapping from frame representations to latent

space, another alternative would be to learn a mapping to weights for predefined

objective functions from Chapter 7. This has the appealing advantage that it could

improve controllability, as the lack of explainability of the preceding black-box

204

systems are likely to make controllability a challenge. However, how to structure

these functions for compositions with a varying number of people remains unclear.

In addition to these possibilities for future machine learning research, another exciting

opportunity is present in using the data to determine characteristics common to the

cinematography of different categories of films, such as what distinguishes the styles of

different directors or genres. While some researchers, such as Courant et al. (2021), have

performed limited explorations of this topic for pixel-based cinematography, no one has

yet explored these questions with purely vector-based data.

205

CHAPTER 9

Results

All of the described tools and techniques were implemented in a single-threaded prototype

camera control system that was integrated with Unreal Engine 4.25. This system can

either be run online with the engine’s standard game thread, or in a parallel thread that

shares results as the optimization algorithm progresses with the main game thread. Several

different experimental scenes, with several different objective functions and optimization

strategies, were then tested for both scripted and unscripted applications.

In most experiments, each camera pose required that the system optimize over 5

variables: position in R3, yaw, and pitch. All experiments had a static user-specified

aspect ratio, specifically a ratio of ∼ 1.78 width to height commonly referred to as 16:9.

A few experiments also included field of view, focus distance, and aperture as variables to

optimize over, but most experiments used user-specified values. In principle, the system

is capable of optimizing over both aspect ratio as well as camera roll, but no experiments

run have yet called for either.

After some empirical experimentation, different combinations of desired compositions

and scenes seem to call for different keyframe rates. Generally speaking, wider compositions

of slower scenes require fewer keyframes than tighter compositions of faster scenes with

more abrupt motions, with typical keyframe rate values falling between 2 and 40 per

second. However, one of the wonderfully elegant features of instantaneous objective

functions is that the keyframe density of the resulting optimization problem can be

nonuniform and dynamic, with the same optimization setup suited relatively equally well

to a range of densities.

206

9.1 Scenes

While most of the scenes used in these experiments take place in simple environments,

the motions of the actors within these scenes comprise a variety of actions. These actor

motions have two sources.

Some of the scenes, especially those where the actors are interacting closely with the

environment, are simply the result of automatically animated game characters reacting

to some combination of player input and preprogrammed game AI. As these game

character motions come directly from the game engine, they are trivial to integrate with

the game engine.

The remainder of the scenes pull actor motion from publicly available motion capture

datasets, in particular the CMU mocap (Cmu, 2022) and Human3.6M (Ionescu et al., 2014,

2011) datasets. Whereas many of the game character motions tend to be cartoonishly

exaggerated, these mocap motions offer the realistic and subtle expressions of human

performers.

However, I found the original mocap data sources to be quite noisy, producing

unnaturally jittery motions when applied to game character meshes. To mitigate this

issue, I applied a smoothing operation to the joint rotation data, setting the orientation

for a joint at a keyframe to be equal to the average of that joint’s orientation within ±3

keyframes.

Correctly computing the average of orientations is a highly nontrivial problem. To

circumvent some of this difficulty, I used a modified version of an existing python library

((Hagen, 2017)), which in turn was an implementation of (Markley et al., 2007). The

approach taken models orientations as quaternions, q1, . . . ,qn, where each quaternion qi

contributes to the average with weight wi such that
∑n

i=1 wi = 1. In this approach, the

weighted average can be computed as the eigenvector with the maximum eigenvalue of

the matrix

A =
n∑

i=1

wiqi ⊗ qi,

207

where q⊗ q is the outer product of q, treated as a real vector, with itself. This process is

somewhat computationally expensive, so it was desirable to run it once, offline from any

experiments, and save the smoothed animation data to disk.

Finally, these smoothed mocap motions must be retargeted from their original motion

capture performer’s skeletons on to whatever skeletal mesh is desired within the game

engine. My methodology for this was relatively simple, with the simple goal of guarantee

rotational alignment between certain important character bones in the unmodified reference

poses for the original and destination skeleton. For example, most of the target skeletons

from the mocap datasets had a pure T-pose as reference, while most of the game engine

skeletons use a pose with arms and legs at a more natural angle. Aligning these bones

can be accomplished with a single depth first pass through each skeleton, computing the

relative local quaternion rotation required to align each important bone as each joint tree

is descended. These local retargeting transformations can then be applied to each source

joint orientation when loading animation data for this skeleton.

Separately, I also briefly experimented with trying to use the motion of actors from

my own dataset, but found the results less than satisfactory. While the dataset contains

3d joint position estimates, all motions are relative to the camera, which could be moving,

and only captured at 2FPS. Personally, I found the results of animating a 3D character

with these values to be uncanny at best and unrecognizable at worst.

9.2 Use Cases

To demonstrate the effectiveness of the system across different use cases, camera paths

from two sample scenes are visualized in Figure 9.1. These use cases are divided into the

following categories.

1. Unscripted: The system computes a camera pose for each frame online with the

display of the frame, and with zero future knowledge. The objective is optimized

with a gradient based algorithm (e.g., gradient descent, backtracking line search) for

208

Figure 9.1: Visualizations of camera paths for different use cases. Overhead views of the
camera paths computed for a simple moving scene (top) and a more complex scene where
the camera’s optimal path is blocked by a number of pillars (bottom). Color key: Green
is unscripted-unsmoothed, yellow is unscripted-smoothed, red is scripted-unsmoothed,
and blue is scripted-smoothed, while black is the path of the character.

each frame, with a warm start from the previous frame’s computed camera settings.

2. Unscripted with smoothing: The system computes a camera pose for each frame

online with the display of the frame, but with limited future knowledge allowing

for a consideration of path smoothness a small interval into the future. Like the

unscripted use case, this begins with a gradient based optimization for each keyframe

individually, followed by smoothed gradient optimization with smoothing over all

keyframes.

3. Scripted: Each frame is first optimized with a stochastic optimization approach

(e.g., simulated annealing, PSO), the result of which is used to warm start a gradient

based optimization (e.g., gradient descent, backtracking line search).

4. Scripted with smoothing: Results from scripted simulation are run through the

implicit smoothing gradient descent of equation 4.13.

209

The first scene features a character running around an open area, where the objective

was configured for the camera to follow the character from the front, following the recipe

in Table 7.1. The path of the camera, as shown in the top image of Figure 9.1, is similar

in all use cases tested.

An example of a scene in which there are noticeable dissimilarities between use cases

is visualized in the bottom image of Figure 9.1. In this scene, a character runs past a set

of pillars while the camera follows him with a long lens in profile. As the optimal camera

path for the relative angle objective becomes occluded by the pillars, the system must

compromise between the occlusion objective and the relative angle objective. As shown

in Figure 9.1 (bottom), the paths of the various use cases vary much more significantly,

and each suffers from its own particular issue.

The unscripted-unsmoothed strategy becomes stuck when it comes to the first occlusion

boundary, while the unscripted-smoothed strategy manages to find its way around the

first occlusion to trail the actor from a distance. While the latter solution seems intuitively

better, the user has not explicitly specified which is preferable.

Meanwhile, both of the scripted strategies attempt to balance more evenly between all

objectives, resorting to jagged solutions that momentarily provide an occluded the view

of the actor. However, these solutions represent a technically fairer compromise between

the desired shot objectives.

Additionally, the effects of varying the smoothness on a camera path are visualized in

Figure 9.2. Note that, while the camera path becomes smoother as the smoothing weights

are raised, that smoothness is not uniform across the entire path, with some keyframes

having more abruptly turning curves where the objective is strongest. This ability to

compromise between smoothness and objective values sets my method apart from alternate

approaches that smooth as a behavior-incognizant post-processing operation.

210

Figure 9.2: Visualization of camera paths resulting from varying smoothness parameters.
The black path corresponds to the path of the actor, who turns left and right while
walking straight. The blue, green, and red paths correspond to camera paths that achieve
compositions similar to the image inset in the upper right corner. While all paths have a
smoothing coefficient of α = 0, the blue path has β = 0.05, the green path has β = 0.5,
and the red path has β = 5.

9.3 Manually defined objective functions

To demonstrate the controllability of the system with manually defined objective functions,

several example scenes have had camera control specified with a variety of different settings

to the recipe described in Table 7.1, with paths visualized in Figures 9.3 and 9.4. Note

the direct controllability in changes to shot size and angle demonstrated in these paths,

with other parameters being similarly controllable.

Additionally, an example scene has been explored using the two-person cinematographic

objective recipe described in Table 7.2, as visualized in Figure 9.5. Note that the system is

capable of varying all of the same properties in this two-person scene as are parameterized

in the recipe, including relative angle, shot size, and smoothness, across the same variety

of use cases as were demonstrated for single person scenes.

A useful visualization for examining objective functions in this context takes the

form of a contour plot, such as in Figure 9.6. Note that the objective function varies

211

Figure 9.3: Visualization of camera paths resulting from different choices of horizontal
relative angle. The black path in corresponds to the path of an actor running from the
right side of the scene to the left, turning as he runs. The pink, red, green, and blue
paths correspond to camera paths with a horizontal relative angle of 0°, 30°, 60°, and
90°respectively, as illustrated in the correspondingly colored insets below. Note that no
line of axis constraint was included in this experiment, resulting in compositions that
may switch between the character looking left or right over time.

meaningfully along all axes plotted, allowing for significant control authority of both the

position and orientation of the camera.

9.4 Machine Learning defined objective functions

We can also briefly examine the capabilities of objective functions defined through the

machine learning exercises described in Chapter 8. Unfortunately, as described in that

section, expressivity is severely limited, with the latent control space only allowing for

specification of the most statistically significant features in the dataset.

For example, a contour plot is displayed in Figure 9.7, which is probably best under-

stood in comparison to Figure 9.6. While the MDL model displays complex rotational

control authority, the positional plot shows minimal evidence for support for behaviors

212

Figure 9.4: Visualization of camera paths resulting from different choices of shot size.
The black path corresponds to the path of an actress walking from right to left through
the scene, turning slightly as she moves. The red, green, and blue paths correspond to
wide, medium, and close-up compositions, as illustrated in the correspondingly colored
illustrations below.

like relative angles. Worse still, perturbing the inputs slightly does not seem to allow for

significant changes in prioritization between what the manual objectives would consider

distinct compositional behaviors, severely limiting the expressivity of this model.

As a result, camera paths with these objectives tend to appear like those shown in

Figure 9.8, with the camera conforming shot size and frame position behaviors, but not

incorporating much if any relative angle behavior. As a result, the camera has a tendency

to follow behind the path of the actor, taking the shortest path that allows for the desired

shot size.

213

Figure 9.5: Visualization of camera paths for a scene with two people. In this scene, the
glasses wearing actor walks over and sits next to the actress, where they have a short
conversation. The black path corresponds to the path of the actor as he walks the few
feet before sitting, while the actress remains in the same seat throughout the scene. Two
camera paths were computed with the objective function described in Table 7.2 to begin
with a wide shot and move into a medium-close-up. However, the horizontal relative angle
of the two camera paths are different, with the blue path showing the two characters from
perpendicular to the axis between them, and the red path showing the two characters
from a ∼ 30°angle towards the actress.

9.5 Speed

Measuring the speed of the system is difficult as it entirely depends on the thresholds

used for terminating optimization, as well as the complexity of the objective functions

being optimized. There is a tradeoff between processor time and solution quality, so a

user willing to endure slower performance can set a higher bar for numerical quality. All

timing measurements were taken on a desktop computer with a 4.20 GHz processor and

an Nvidia GTX 1080Ti graphics card running my system integrated with Unreal Engine

4.25.126

For most of the scripted scenes tested, a satisfactory unsmoothed camera path could

126The core of the software is quite modular, with the only portions of code directly integrated with
UE4 being isolated to a separately compilable software module. This portion of the system should be
relatively easy to integrate with other engines, such as UE5, Unity, Maya, or Blender, but I have not yet
attempted to do so.

214

Figure 9.6: Plots of objective function values for the recipe from Table 7.1. These images
plot the objective function values for the recipe from table 7.1, parameterized for a wide
shot size and with a horizontal relative angle of 30°. The upper image plots the optimal
value for each potential camera position in a fixed 3D volume, with a search allowed over
camera yaw and pitch. The lower image plots the objective value over a range of yaw and
pitch values from a fixed position.

215

Figure 9.7: Plots of objective function values for a sample parameterization of machine
learning derived MDL objective function. The upper image plots the optimal value for
each potential camera position in a fixed 3D volume, with a search allowed over camera
yaw and pitch. The lower image plots the objective value over a range of yaw and pitch
values from a fixed position. Note that the curving bands of high values correspond to
orientations that would project points of interest on the actor to near-infinite values on
the image plane.

216

Figure 9.8: Visualization of camera paths resulting from machine learning constructed
objective function. The black path corresponds to the path the actor takes as he runs
from the left to the right of the scene. The green and blue paths correspond to camera
paths computed using the same vector input to the MDL model, but with different
starting search positions. Sample frames from the green and blue paths are illustrated in
the correspondingly colored frames inset below. Note that while these two paths begin
differently, they eventually converge to the same path following the actor, as the final
inset frame shows.

Scenario Smoothing
Stochastic
Iterations

Gradient Iterations Time/Keyframe

Scripted
No 3K 2K 1.15s

Yes 3K
1K w/o smoothing,
1K w/ smoothing

1.75s

Unscripted
No 0 100 0.016s (60 FPS)

Yes 0

10 w/o smoothing
(for each keyframe),

10 w/ smoothing
(across all keyframes)

0.04s (25 FPS)

Table 9.1: Summary of Average Computational Speed Across Different Use Cases

217

be found using approximately 3,000 iterations of simulated annealing, followed by ap-

proximately 2,000 iterations of gradient descent, taking about 1.15 seconds per keyframe.

With smoothing, the same two-phase optimization can be used to roughly locally optimize

using about 50–75% of the iterations required without smoothing, followed by 1,000–1,200

iterations of gradient descent with smoothing at a total cost of about 1.75 seconds per

keyframe.

In unscripted experiments, the unsmoothed algorithm was subjectively found to be

capable of finding satisfactory solutions using 100 optimization iterations of gradient

descent at an average of 50-60 frames per second, depending on the particular objective

function used. The smoothed algorithm was found to produce a subjectively satisfactory

solution—given the prediction of 4 future keyframes with t = 0.25 sec and with 10

iterations of gradient descent to initialize each keyframe, followed by another 10 iterations

of active contour model implicit gradient descent—at an average of 25 frames per second,

which is sufficient to support real-time usage.

However, achieving these speeds for each use case requires that the program constructed

must first be analyzed and optimized by the tools described in Sections 5.3, which often

requires a nontrivial computation time. Note that this static analysis and program

optimization is only performed once, before the program begins attempting to compute

camera positions at any keyframes, somewhat analogously to a compiler producing

machine code. For unscripted unsmoothed use cases, this optimization takes less than 1.5

seconds, while unscripted smoothed scenarios can require 10-20 seconds of preprocessing

optimization depending on the objective function used. Scripted use cases, both with and

without smoothing, tend to require more time for preprocessing optimization, sometimes

as much as 30 seconds. However, in all use cases, running the preprocessing program

optimization provides a significant 30-60% speed improvement, making the computational

cost worthwhile in the overwhelming majority of cases.

As discussed in Section 5.5, there are several engineering improvements that could

significantly improve system speed. The current system has been engineered to be only

as fast as necessary to support the experiments run, not maximally optimized for speed

218

or efficiency. Consequently, these speed statistics should be interpreted as how fast the

system needs to be to support these use cases, rather than an upper bound on the speed

achievable with the techniques described in this text.

219

CHAPTER 10

Conclusion

10.1 Contributions

This thesis has explored answers to the question: Is it possible to engineer a software system

to provide expressive, controllable, and efficient vector-based virtual cinematography

automation for online and offline applications, with and without future knowledge?

The results shown in Chapter 9 demonstrate that the mathematical techniques and

software proposed in Chapters 4 and 5 can be used to achieve a variety of declarative

virtual cinematography applications with practicable efficiency. In addition, different

approaches to providing more controllable and expressive interfaces to the system were

explored, both as a library of easily combinable objective functions in Chapter 7 and as a

novel machine learning model trained on data from feature films in Chapters 6 and 8.

Along the way, a novel taxonomy for understanding the diverse body of related virtual

cinematography research was introduced in Chapter 3, a new dataset of human motion

in feature films was collected as discussed in Chapter 6, and an unprecedented type

of programming language modeled system for declarative virtual cinematography was

proposed in Chapter 5, among other significant contributions discussed throughout the

remainder of the text.

10.2 Future Work

Nevertheless, the techniques proposed, tools built, data collected, and results presented

thus far leave a considerable number of areas of virtual cinematography open for future

220

research. Some of these potential future work directions were previously discussed, such

as the probability of computational speed improvements in Chapter 5, the possibility of

estimating camera motion in a global reference frame in Chapter 6, and the practicability

of alternative machine learning models to circumvent the limitations of the models explored

here, among others. However, several areas of future virtual cinematography research

remain to be discussed.

One of the most fascinating and challenging questions that to our knowledge has not

been addressed, rests in attempting to quantify the usability of virtual cinematography

systems. While abstract design principles, such as controllability and expressivity, are

intuitively appealing in theory, attempting to measure the usability of systems with

differing behavioral capabilities, interface paradigms, or algorithmic strategies for real users

in real environments presents an enormous challenge. While running such an experiment

might seem as simple as asking volunteers to use different virtual cinematography systems

to attempt to achieve specific cinematographic goals and comparing their responses, a

variety of prerequisite questions make such a test difficult. What types of use cases and

cinematographic goals should be sampled, and how should user responses be measured?

What types of end-users should such an experiment attempt to model, and how should

volunteers be selected or directed to represent them? How should differences between

differing cinematographic sensibilities among volunteers be weighted against their responses

to using each system? Questions such as these are difficult to answer and represent a

largely unexplored area ripe for future research.127

Another exciting direction for future research lies in attempting to automatically

control not only the camera, but also other elements of the scene and high level behaviors.

As discussed in Chapter 3, a variety of tasks are closely related to virtual cinematography,

such as layout synthesis and character animation. Only limited work has been published

that discusses how to combine virtual cinematography with such tasks, commonly with

highly specific applications or behavioral properties in mind. Would it be possible to

127A good place to start on the subject is Hösl (2019), as well as many of the works referenced therein.

221

extend tools like those proposed here to automatically and generically control, or adjust

the controls of, cameras, actors, and props together to achieve desired cinematographic

compositions?

However, perhaps the most enticing possibility for future research rests yet beyond

these well explored boundaries. Would it be possible to first generate a story, then

determine how to layout the props for each scene, animate the actors, and control the

camera, all to evoke the emotion in the generated story? This represents a truly daunting

task requiring not only virtual cinematography, layout synthesis, and character animation,

but also an unprecedented ability to automate complex natural language generation and

processing tasks. Perhaps one day in the future, more advanced forms of tools discussed

in this work may be capable of generating entire feature films based on each viewer’s

personal preferences, granting each of us a truly unique entertainment experience at the

touch of a button.

222

APPENDIX A

Reverse Accumulating Autodiff Rules

In formal notation, the general strategy described in Chapter 5.4.2 can be expressed as a

single transformation,

δr(e) = xrd = [];α(e); e = 1 ; execr(xrd).

Here, the α(e) transformation depends upon the specific type of term, with

α(x) =x,

α(n) =n,

α(peekv(x)) =pushr(xrd, xtemp = peekv(x) ; popv(x) ; pushv(x, xtemp + e) ;

e = 0) : peekv(x),

α(e) =pushr(xrd, popv(xe) ; e = 0) ; pushv(xe, β(e)) ;

pushr(xrd, θ(e)) : peekv(xe) for all other e not already listed,

α(x = e) =pushv(x′, x) ; (x = α(e)) ; pushr(xrd, (e += x) ; (x = 0) ;

(x = peekv(x′)) ; popv(x′)),

α(pushv(x, e)) =pushv(x, α(e)) ; pushr(xrd, e += peekv(x) ; popv(x) ; popv(x)),

α(popv(x)) =pushr(xrd, pushv(x, peekv(x
′)) ; popv(x′) ; pushv(x, 0)) ;

pushv(x′, peekv(x)) ; popv(x), and

α(t) =β(t) for all t not already listed, where

β(t) =clone of t where every child tc has been replaced with α(tc).

223

The critical θ transformations, within which derivative data is passed between adjoint

variables, also vary by expression type, but generally follow the standard calculus rules

for simple differentiation.

e θ(e)

n skip

x skip

s : es es += e

e1 + e2 e1 += e ; e2 += e

e1 − e2 e1 += e ; e2 += 0− e

e1 · e2 e1 += e · γ(e2) ; e2 += γ(e1) · e
e1
e2

e1 += e
γ(e2)

; e2 += 0− γ(e1)·e
γ(e2)2

ens es += n · γ(e)n−1 · e

f(es) es += f(γ(es)+e)−f(γ(es))
e

Here, γ(e) is an additional utility transformation that accesses the value of the

expression at that moment of reversed operation order. Additionally, the += operation is

shorthand for incrementing the relevant variable by the amount specified. Formal rules

for both using the variables already defined can be expressed as follows.

γ(n) =n

γ(x) =x

γ(e) =peekv(xe)

(n += e) =(skip)

(x += e) =(x = x+ e)

(e1 += e2) =(e1 = e1 + e2)

224

REFERENCES

(2011). Driver: San Francisco. [PC CD-ROM]. 39

(2015). Grand theft auto v credits - windows. https://www.mobygames.com/game/

windows/grand-theft-auto-v/credits. Accessed: 2021-20-04. 54

(2018). Red dead redemption ii credits - playstation 4. https://www.mobygames.com/
game/playstation-4/red-dead-redemption-ii/credits. Accessed: 2021-20-04. 54

(2022). Carnegie mellon university motion capture database. [Database].
http://http://mocap.cs.cmu.edu/. 207

(2022). Cinemetrics. [Database]. http://www.cinemetrics.lv/index.php. 90

Abdullah, R., Christie, M., Schofield, G., Lino, C., and Olivier, P. (2011). Advanced
composition in virtual camera control. In Smart Graphics, pages 13–24. Springer,
Berlin. 31, 75, 182

Aho, A. V., Lam, M. S., Sethi, R., and Ullman, J. D. (2006). Compilers: principles,
techniques and tools. Addison Wesley. 121, 129

Akenine-Möller, T., Haines, E., Hoffman, N., Pesce, A., Iwanicki, M., and Hillaire, S.
(2018). Real-Time Rendering. A K Peters/CRC Press, fourth edition. 66

American Film Institute (1998). AFI’s 100 YEARS...100 MOVIES. https://www.afi.
com/afis-100-years-100-movies/. 157

American Film Institute (2012). The 100 Greatest Films of All Time. https://www.
bfi.org.uk/sight-and-sound/greatest-films-all-time. 157

André, E., Finkler, W., Graf, W., Rist, T., Schauder, A., and Wahlster, W. (1993).
Wip: The automatic synthesis of multimodal presentations. In IMI’91: Proceedings of
the 1991 International Conference on Intelligent Multimedia Interfaces. 70, 86

Andujar, C., Vazquez, P., and Fairen, M. (2004). Way-finder: guided tours through
complex walkthrough models. Computer Graphics Forum, 23(3):499–508. 71

Arijon, D. (1991). Grammar of the film language. Silman-James Press; Distributed by
Samuel French Trade, 1st silman-james press ed edition. 29, 41

Ashtari, A., Stevšić, S., Nägeli, T., Bazin, J.-C., and Hilliges, O. (2020). Capturing
subjective first-person view shots with drones for automated cinematography. ACM
Transactions on Graphics, 39(5):1–14. 41

Bain, M., Nagrani, A., Brown, A., and Zisserman, A. (2020). Condensed movies: Story
based retrieval with contextual embeddings. arXiv. 90, 91

225

https://www.mobygames.com/game/windows/grand-theft-auto-v/credits
https://www.mobygames.com/game/windows/grand-theft-auto-v/credits
https://www.mobygames.com/game/playstation-4/red-dead-redemption-ii/credits
https://www.mobygames.com/game/playstation-4/red-dead-redemption-ii/credits
https://www.afi.com/afis-100-years-100-movies/
https://www.afi.com/afis-100-years-100-movies/
https://www.bfi.org.uk/sight-and-sound/greatest-films-all-time
https://www.bfi.org.uk/sight-and-sound/greatest-films-all-time

Bares, W., McDermott, S., Boudreaux, C., and Thainimit, S. (2000a). Virtual 3D
camera composition from frame constraints. In Proc. 8th ACM International Conference
on Multimedia, pages 177–186. ACM Press. 43, 181

Bares, W. H., Gregoire, J. P., and Lester, J. C. (1998a). Realtime constraint-based
cinematography for complex interactive 3d worlds. In IAAI-98 Proceedings. 37, 43, 44,
58

Bares, W. H. and Lester, J. C. (1997). Realtime generation of customized 3d animated
explanations for knowledge-based learning environments. AAAI-97 Proceedings. 37

Bares, W. H. and Lester, J. C. (1999). Intelligent multi-shot visualization interfaces for
dynamic 3d worlds. In Proceedings of the 4th international conference on Intelligent
user interfaces - IUI '99. ACM Press. 57, 58

Bares, W. H., Thainimit, S., and McDermott, S. (2000b). A model for constraint-based
camera planning. In Proceedings of AAAI spring symposium on smart graphics. From:
AAAI Technical Report SS-00-04. Compilation copyright © 2000, AAAI (www.aaai.org).
All rights reserved. 57, 71

Bares, W. H., Zettlemoyer, L. S., Rodriguez, D. W., and Lester, J. C. (1998b). Task-
sensitive cinematography interfacesfor interactive 3d learning environments. In Proceed-
ings of the 3rd international conference on Intelligent user interfaces - IUI '98. ACM
Press. 57

Beckhaus, S. (2002). Dynamic Potential Fields for Guided Exploration in Virtual
Environments. PhD thesis, Otto von Guericke University Magdeburg. 75

Blinn, J. (1988). Where am I? What am I looking at? IEEE Computer Graphics and
Applications, 8(4):76–81. 31, 36, 37, 39, 42, 46, 52, 66, 67, 69, 88

Bonatti, R., Bucker, A., Scherer, S., Mukadam, M., and Hodgins, J. (2021). Batteries,
camera, action! learning a semantic control space for expressive robot cinematography.
In 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE.
33, 68

Bonatti, R., Wang, W., Ho, C., Ahuja, A., Gschwindt, M., Camci, E., Kayacan,
E., Choudhury, S., and Scherer, S. (2020a). Autonomous aerial cinematography in
unstructured environments with learned artistic decision-making. Journal of Field
Robotics, 37(4):606–641. 75, 77

Bonatti, R., Zhang, Y., Choudhury, S., Wang, W., and Scherer, S. (2020b). Autonomous
drone cinematographer: Using artistic principles to create smooth, safe, occlusion-free
trajectories for aerial filming. In Springer Proceedings in Advanced Robotics, pages
119–129. Springer International Publishing. 75, 77

Bonneel, N., Coeurjolly, D., Digne, J., and Mellado, N. (2020). Code replicability in
computer graphics. ACM Transactions on Graphics, 39(4). 88

226

Bowen, C. J. and Thompson, R. (2013). Grammar of the Shot. Taylor & Francis. 23,
24

Brown, B. (2013). Cinematography theory and practice : image making for cinematog-
raphers and directors. Taylor & Francis. 10, 21, 25, 26, 27

Bucker, A., Bonatti, R., and Scherer, S. (2021). Do you see what i see? coordinat-
ing multiple aerial cameras for robot cinematography. In 2021 IEEE International
Conference on Robotics and Automation (ICRA). IEEE. 78

Burelli, P. (2012). Interactive Virtual Cinematography. PhD thesis, IT University of
Copenhagen. 75

Burelli, P., Gaspero, L. D., Ermetici, A., and Ranon, R. (2008). Virtual camera
composition with particle swarm optimization. In Smart Graphics, pages 130–141.
Springer, Berlin. 44, 59, 75, 182

Burg, L., Lino, C., and Christie, M. (2020). Real-time anticipation of occlusions for
automated camera control in toric space. Computer Graphics Forum, 39(2):523–533.
64

Burtnyk, N., Khan, A., Fitzmaurice, G., Balakrishnan, R., and Kurtenbach, G. (2002).
Stylecam: Interactive stylized 3d navigationusing integrated spatial & temporal controls.
In Proceedings of the 15th annual ACM symposium on User interface software and
technology - UIST '02. ACM Press. 54, 68

Butz, A. (1997). Anymation with cathi. In AAAI’97/IAAI’97: Proceedings of the four-
teenth national conference on artificial intelligence and ninth conference on Innovative
applications of artificial intelligence, pages 57–962. 86

Cao, Z., Hidalgo, G., Simon, T., Wei, S.-E., and Sheikh, Y. (2019). Openpose: Realtime
multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 43:172–186. 164

Cao, Z., Simon, T., Wei, S.-E., and Sheikh, Y. (2017). Realtime multi-person 2d pose
estimation using part affinity fields. In CVPR. 164

Castellano, B. (2020). Pyscenedetect: Video scene cut detection and analysis tool
(version 0.5.2). [Software]. https://github.com/Breakthrough/PySceneDetect. 161

Chaudhuri, P., Kalra, P., and Banerjee, S. (2007). View-Dependent Character Anima-
tion. Springer. 85

Chen, C., Wang, O., Heinzle, S., Carr, P., Smolic, A., and Gross, M. (2013). Compu-
tational sports broadcasting: Automated director assistance for live sports. In 2013
IEEE International Conference on Multimedia and Expo (ICME). IEEE. 85, 91

Chen, J. and Carr, P. (2014). Autonomous camera systems: A survey. In Workshops
at the Twenty-Eighth AAAI Conference on Artificial Intelligence. 78

227

Chen, J. and Carr, P. (2015). Mimicking human camera operators. In 2015 IEEE
Winter Conference on Applications of Computer Vision. IEEE. 68, 83, 91

Chen, J., Le, H. M., Carr, P., Yue, Y., and Little, J. J. (2016). Learning online smooth
predictors for realtime camera planning using recurrent decision trees. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4688–4696.
68, 78, 91

Chen, M., Mountford, S. J., and Sellen, A. (1988). A study in interactive 3-d rotationus-
ing 2-d control devices. In Proceedings of the 15th annual conference on Computer
graphics and interactive techniques - SIGGRAPH '88. ACM Press. 67

Chiou, R. C. H., Kaufman, A. E., Liang, Z., Hong, L., and Achniotou, M. (1998).
Interactive path planning for virtual endoscopy. In 1998 IEEE Nuclear Science Sympo-
sium Conference Record. 1998 IEEE Nuclear Science Symposium and Medical Imaging
Conference (Cat. No.98CH36255). IEEE. 78

Christianson, D. B., Anderson, S. E., He, L.-w., Salesin, D., Weld, D. S., and Cohen,
M. F. (1996). Declarative camera control for automatic cinematography. In AAAI. 40,
60

Christie, M. and Languénou, E. (2003). A constraint-based approach to camera path
planning. In Smart Graphics, pages 172–181. Springer Berlin Heidelberg. 68, 73

Christie, M., Languénou, E., and Granvilliers, L. (2002). Modeling camera control
with constrained hypertubes. In Lecture Notes in Computer Science, pages 618–632.
Springer Berlin Heidelberg. 37, 43, 57, 68, 73

Christie, M., Lino, C., and Ronfard, R. (2012). Film editing for third person games
and machinima. In Workshop on Intelligent Cinematography and Editing. 84

Christie, M., Machap, R., Normand, J.-M., Olivier, P., and Pickering, J. (2005). Virtual
camera planning: A survey. In Smart Graphics, pages 40–52. Springer, Berlin. 31, 46

Christie, M. and Normand, J.-M. (2005). A semantic space partitioning approach to
virtual camera composition. In Computer Graphics Forum, volume 24, pages 247–256.
Wiley. 57

Christie, M., Olivier, P., and Normand, J.-M. (2008). Camera control in computer
graphics. In Computer Graphics Forum, volume 27, pages 2197–2218. Wiley Online
Library, Wiley. 31, 64, 69

Church, A. (1941). The Calculi of Lambda Conversion. Princeton University Press.
140

Cook, D. A. (2004). A history of narrative film. W.W. Norton. 28

Courant, R., Lino, C., Christie, M., and Kalogeiton, V. (2021). High-level features
for movie style understanding. In ICCV 2021 - Workshop on AI for Creative Video
Editing and Understanding. 91, 205

228

Courty, N. and Marchand, E. (2001). Computer animation: A new application for
image-based visual servoing. In Proceedings 2001 ICRA. IEEE International Conference
on Robotics and Automation (Cat. No.01CH37164). IEEE. 69, 79

Cousot, P. and Cousot, R. (1977). Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In Proceedings
of the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming languages,
pages 238–252. 129

Cutting, J. E., Brunick, K. L., DeLong, J. E., Iricinschi, C., and Candan, A. (2011).
Quicker, faster, darker: Changes in hollywood film over 75 years. i-Perception, 2(6):569–
576. 90, 162

Cutting, J. E., DeLong, J. E., and Nothelfer, C. E. (2010). Attention and the evolution
of hollywood film. Psychological Science, 21(3):432–439. 90

Drucker, S. M. (1994). Intelligent Camera Control for Graphical Environments. PhD
thesis, Massachusetts Institute of Technology. 77

Drucker, S. M. and Galyean, T. A. (1992). CINEMA: A system for procedural camera
movements. In I3D ’92. 55, 88

Drucker, S. M. and Zeltzer, D. (1994). Intelligent camera control in a virtual environ-
ment. In Graphics Interface. 59

Drucker, S. M. and Zeltzer, D. (1995). CamDroid: a system for implementing intelligent
camera control. In Proc. 1995 ACM Symposium on Interactive 3D Graphics, pages
139–144. ACM Press. 77, 186

Effron, L. and Gowen, G. (2018). ’Jurassic Park’ turns 25. https://abcnews.go.

com/Entertainment/jurassic-park-turns-25-scenes-moments-iconic-summer/

story?id=55332468. 172

Elson, D. K. and Riedl, M. O. (2007). A lightweight intelligent virtual cinematography
system for machinima production. In Proc. Artificial Intelligence and Interactive Digital
Entertainment Conf., pages 8–13. 37, 41, 68, 85

Epic Games (2022). Unreal engine (version 4.25.4). [Software].
https://www.unrealengine.com. 54, 65, 70, 85, 113

Espiau, B., Chaumette, F., and Rives, P. (1993). A new approach to visual servoing in
robotics. In Geometric Reasoning for Perception and Action, pages 106–136. Springer
Berlin Heidelberg. 69, 79

Fang, C., Lin, Z., Měch, R., and Shen, X. (2014). Automatic image cropping using visual
composition, boundary simplicity and content preservation models. In Proceedings of
the 22nd ACM international conference on Multimedia. ACM. 83

229

https://abcnews.go.com/Entertainment/jurassic-park-turns-25-scenes-moments-iconic-summer/story?id=55332468
https://abcnews.go.com/Entertainment/jurassic-park-turns-25-scenes-moments-iconic-summer/story?id=55332468
https://abcnews.go.com/Entertainment/jurassic-park-turns-25-scenes-moments-iconic-summer/story?id=55332468

Feiner, S. K. and Seligmann, D. D. (1992). Cutaways and ghosting: satisfying visibility
constraints in dynamic 3d illustrations. The Visual Computer, 8(5-6):292–302. 58, 70,
86

Funge, J., Tu, X., and Terzopoulos, D. (1999). Cognitive modeling: Knowledge,
reasoning and planning for intelligent characters. In Proc. ACM SIGGRAPH, pages
29–38. ACM Press. 57, 67, 72, 76

Gaddam, V. R., Eg, R., Langseth, R., Griwodz, C., and Halvorsen, P. (2015). The
cameraman operating my virtual camera is artificial: Can the machine be as good
as a human? ACM Transactions on Multimedia Computing, Communications, and
Applications (TOMM), 11(4):1–20. 83

Galvane, Q., Christie, M., Lino, C., and Ronfard, R. (2015a). Camera-on-rails: Au-
tomated computation of constrained camera paths. In Proc. 8th ACM SIGGRAPH
Conference on Motion in Games, pages 151–157. ACM. 66, 191

Galvane, Q., Christie, M., Ronfard, R., Lim, C.-K., and Cani, M.-P. (2013). Steering
behaviors for autonomous cameras. In Proceedings of Motion on Games. ACM. 44, 68,
75, 85

Galvane, Q., Ronfard, R., Lino, C., and Christie, M. (2015b). Continuity editing for
3d animation. In Proceedings of the AAAI Conference on Artificial Intelligence. 84, 91

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design Patterns. Addison-
Wesley Professional. 132

Giors, J. (2004). The full spectrum warrior camera system. Game Developer. 44, 55,
68, 70

Gleicher, M. (1994). A Differential Approach to Graphical Interaction. PhD thesis,
Carnegie Melon University. 89

Gleicher, M. and Witkin, A. (1992). Through-the-lens camera control. Computer
Graphics, 26(2):331–140. (Proc. ACM SIGGRAPH ’92). 37, 60

Goi, M., editor (2013). American cinematographer manual. The ASC Press, tenth
edition. 20

Goodfellow, I., Bengio, Y., and Courville, A. (2017). Deep Learning. MIT Press. 82

Graham, P. (2009). Doug mcilroy: Mccarthy presents lisp. http://www.paulgraham.
com/mcilroy.html. Accessed: 2022-04-13. 140

Gu, C., Sun, C., Ross, D. A., Vondrick, C., Pantofaru, C., Li, Y., Vijayanarasimhan,
S., Toderici, G., Ricco, S., Sukthankar, R., Schmid, C., and Malik, J. (2017). Ava: A
video dataset of spatio-temporally localized atomic visual actions. arXiv. 90

Guennebaud, G., Jacob, B., et al. (2010). Eigen v3. http://eigen.tuxfamily.org. 113

230

http://www.paulgraham.com/mcilroy.html
http://www.paulgraham.com/mcilroy.html

Hagen, C. (2017). (correctly) averaging quaternions. [Software].
https://github.com/christophhagen/averaging-quaternions. 207

Haigh-Hutchinson, M. (2009). Real-time cameras: a guide for game designers and
developers. Morgan Kaufmann. 31, 32, 39, 51, 55, 68

Halper, N., Helbing, R., and Strothotte, T. (2001). A camera engine for computer
games: Managing the trade-off between constraint satisfaction and frame coherence.
Computer Graphics Forum, 20(3):174–183. 72, 108

Halper, N. and Olivier, P. (2000). Camplan: A camera planning agent. In Smart
Graphics 2000 AAAI Spring Symposium. 33, 75

Hassanien, A., Elgharib, M., Selim, A., Bae, S.-H., Hefeeda, M., and Matusik, W.
(2017). Large-scale, fast and accurate shot boundary detection through spatio-temporal
convolutional neural networks. arXiv. 161

He, L.-W., Cohen, M. F., and Salesin, D. H. (1996). The virtual cinematographer: A
paradigm for automatic real-time camera control and directing. In Proc. 23rd Annual
Conference on Computer Graphics and Interactive Techniques, pages 217–224. ACM,
ACM Press. 40, 54, 68, 84, 88

Hong, L., Muraki, S., Kaufman, A., Bartz, D., and He, T. (1997). Virtual voyage:
Interactive navigation in the human colon. In Proceedings of the 24th annual conference
on Computer graphics and interactive techniques - SIGGRAPH '97. ACM Press. 78

Hösl, A. (2019). Understanding and Designing for Control in Camera Operation. PhD
thesis, Ludwig Maximilian University of Munich. 221

Huang, C., Dang, Y., Chen, P., Yang, X., and Cheng, K.-T. (2019a). One-shot imitation
filming of human motion videos. arXiv. 33

Huang, C., Dang, Y., Chen, P., Yang, X., and Cheng, K.-T. T. (2021). One-shot
imitation drone filming of human motion videos. IEEE Transactions on Pattern
Analysis and Machine Intelligence, pages 1–1. 33, 41, 66

Huang, C., Lin, C.-E., Yang, Z., Kong, Y., Chen, P., Yang, X., and Cheng, K.-T.
(2019b). Learning to film from professional human motion videos. In 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). IEEE. 33

Huang, H., Lischinski, D., Hao, Z., Gong, M., Christie, M., and Cohen-Or, D. (2016).
Trip synopsis: 60km in 60sec. Computer Graphics Forum, 35(7):107–116. 77, 88

Huang, Q., Xiong, Y., Rao, A., Wang, J., and Lin, D. (2020). MovieNet: A holistic
dataset for movie understanding. In The European Conference on Computer Vision
(ECCV), pages 709–727. Springer International Publishing. 90

Ierusalimschy, R. (2006). Programming in lua. Roberto Ierusalimschy. 113

231

Ionescu, C., Li, F., and Sminchisescu, C. (2011). Latent structured models for human
pose estimation. In International Conference on Computer Vision. 207

Ionescu, C., Papava, D., Olaru, V., and Sminchisescu, C. (2014). Human3.6m: Large
scale datasets and predictive methods for 3d human sensing in natural environments.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(7):1325–1339.
207

Jakob, W., Speierer, S., Roussel, N., and Vicini, D. (2022). DR.JIT. ACM Transactions
on Graphics, 41(4):1–19. 81

Jardillier, F. and Languénou, E. (1998). Screen-space constraints for camera movements:
The virtual cameraman. Computer Graphics Forum, 17(3):175–186. 73, 181

Jiang, H., Christie, M., Wang, X., Liu, L., Wang, B., and Chen, B. (2021). Camera
keyframing with style and control. ACM Trans. Graph., 40(6). 39, 41, 68, 88

Jiang, H., Wang, B., Wang, X., Christie, M., and Chen, B. (2020). Example-driven
virtual cinematography by learning camera behaviors. ACM Transactions on Graphics
(TOG), 39(4):45–1. 39, 41, 53, 61, 66, 67, 68, 91, 195

Jovane, A., Louarn, A., and Christie, M. (2020). Topology-aware camera control for
real-time applications. In Motion, Interaction and Games. ACM. 68

Kass, M., Witkin, A., and Terzopoulos, D. (1988). Snakes: Active contour models.
International Journal of Computer Vision, 1(4):321–331. 102

Kato, H., Beker, D., Morariu, M., Ando, T., Matsuoka, T., Kehl, W., and Gaidon, A.
(2020). Differentiable rendering: A survey. arXiv preprint arXiv:2006.12057. 80

Katz, S. D. (1991). Film directing shot by shot. Michael Wiese Productions in
conjunction with Focal Press. 29

Kellnhofer, P., Recasens, A., Stent, S., Matusik, W., and Torralba, A. (2019). Gaze360:
Physically unconstrained gaze estimation in the wild. In IEEE International Conference
on Computer Vision (ICCV). 165

Kessenich, J., Sellers, G., and Shreiner, D. (2016). OpenGL Programming Guide
The Official Guide to Learning OpenGL, Version 4.5 with SPIR-V. Addison-Wesley
Professional. 66

King, D. E. (2009). Dlib-ml: A machine learning toolkit. Journal of Machine Learning
Research, 10:1755–1758. 163

Kirchner, F. and Sinot, F.-R. (2007). Rule-based operational semantics for an imperative
language. Electronic Notes in Theoretical Computer Science, 174(1):35–47. 117

Kmett, E. (2022). Haskell package ad: Automatic Differentiation. [Software].
https://hackage.haskell.org/package/ad. 150

232

Koyama, Y., Sato, I., Sakamoto, D., and Igarashi, T. (2017). Sequential line search
for efficient visual design optimization by crowds. ACM Transactions on Graphics,
36(4):1–11. 82

Larson, R. and Edwards, B. H. (2009). Calculus. Cengage Learning. 145

Le Cun, Y. and Fogelman-Soulié, F. (1987). Modèles connexionnistes de l’apprentissage.
Intellectica, 2(1):114–143. 140

Leake, M., Davis, A., Truong, A., and Agrawala, M. (2017). Computational video
editing for dialogue-driven scenes. ACM Trans. Graph., 36(4):130–1. 84

Lei, J., Yu, L., Bansal, M., and Berg, T. L. (2018). Tvqa: Localized, compositional
video question answering. arXiv. 90

Lei, J., Yu, L., Berg, T. L., and Bansal, M. (2019). Tvqa+: Spatio-temporal grounding
for video question answering. arXiv. 90

Li, J., Xu, K., Chaudhuri, S., Yumer, E., Zhang, H., and Guibas, L. (2017). Grass:
Generative recursive autoencoders for shape structures. ACM Transactions on Graphics,
36(4):1–14. 82

Li, T.-M., Aittala, M., Durand, F., and Lehtinen, J. (2018). Differentiable monte carlo
ray tracing through edge sampling. ACM Transactions on Graphics, 37(6):1–11. 81

Linnainmaa, S. (1970). The representation of the cumulative rounding error of an
algorithm as a taylor expansion of the local rounding errors. Master’s thesis, Master’s
Thesis (in Finnish), Univ. Helsinki. 140

Lino, C. (2015). Toward more effective viewpoint computation tools. Eurographics
Workshop on Intelligent Cinematography and Editing. 37, 43, 59, 76

Lino, C. and Christie, M. (2012). Efficient composition for virtual camera control. In
ACM SIGGRAPH/Eurographics Symposium on Computer Animation. The Eurographics
Association. 36, 37, 40, 69

Lino, C. and Christie, M. (2015). Intuitive and efficient camera control with the toric
space. ACM Trans. Graph., 34(4):1–12. 40, 44, 53, 191

Lino, C., Christie, M., Lamarche, F., Schofield, G., and Olivier, P. (2010). A real-
time cinematography system for interactive 3D environments. In Proc. 2010 ACM
SIGGRAPH/EG Symposium on Computer Animation, pages 139–148. 40, 73

Lino, C., Christie, M., Ranon, R., and Bares, W. (2011). The director’s lens: An
intelligent assistant for virtual cinematography. In Proceedings of the 19th ACM
international conference on Multimedia - MM '11. ACM Press. 73

Lino, C., Christie, M., Ranon, R., and Bares, W. (2013). A smart assistant for shooting
virtual cinematography with motion-tracked cameras. In Proceedings of the 19th ACM
international conference on Multimedia - MM '11. ACM Press. 73

233

Lino, C., Ronfard, R., Galvane, Q., and Gleicher, M. (2014). How do we evaluate the
quality of computational editing systems? In WICED@AAAI, pages 35–39. 84

Litteneker, A. and Terzopoulos, D. (2017). Virtual cinematography using optimization
and temporal smoothing. In Proceedings of the Tenth International Conference on
Motion in Games, page 17. ACM. 59, 113, 144

Louarn, A., Christie, M., and Lamarche, F. (2018). Automated staging for virtual
cinematography. In Proceedings of the 11th Annual International Conference on Motion,
Interaction, and Games. ACM. 43, 86

Louarn, A., Galvane, Q., Lamarche, F., and Christie, M. (2020). An interactive staging-
and-shooting solver for virtual cinematography. In Motion, Interaction and Games.
ACM. 73, 86

Loubet, G., Holzschuch, N., and Jakob, W. (2019). Reparameterizing discontinuous
integrands for differentiable rendering. ACM Transactions on Graphics, 38(6):1–14. 80

Mackinlay, J. D., Card, S. K., and Robertson, G. G. (1990). Rapid controlled movement
through a virtual 3d workspace. In Proceedings of the 17th annual conference on
Computer graphics and interactive techniques, SIGGRAPH ’90, pages 171–176, New
York, NY, USA. Association for Computing Machinery. 67

Marchand, E. and Courty, N. (2000). Image-based virtual camera motion strategies.
In Graphics Interface Conference. 69

Marchand, É. and Courty, N. (2002). Controlling a camera in a virtual environment.
The Visual Computer, 18(1):1–19. 69

Marchand, E. and Hager, G. D. (1998). Dynamic sensor planning in visual servoing.
In Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat.
No.98CH36146). IEEE. 69, 79

Marin-Jimenez, M., Zisserman, A., and Ferrari, V. (2011). “Here’s looking at you, kid.“
detecting people looking at each other in videos. In British Machine Vision Conference.
165

Markley, F. L., Cheng, Y., Crassidis, J. L., and Oshman, Y. (2007). Averaging
quaternions. Journal of Guidance, Control, and Dynamics, 30(4):1193–1197. 207

Markoff, J. (1994). Gary kildall, 52, crucial player in computer development, dies. The
New York Times. 126

Mehta, D., Sotnychenko, O., Mueller, F., Xu, W., Elgharib, M., Fua, P., Seidel, H.-P.,
Rhodin, H., Pons-Moll, G., and Theobalt, C. (2020). XNect: Real-time multi-person
3D motion capture with a single RGB camera. ACM Transactions on Graphics, 39(4).
166

Merabti, B., Christie, M., and Bouatouch, K. (2015). A virtual director using hidden
markov models. Computer Graphics Forum, 35(8):51–67. 84

234

Metz, C. (1991). Film language: A semiotics of the cinema. University of Chicago
Press. 29

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of word
representations in vector space. In International Conference on Learning Representa-
tions (ICLR). 201

Mobbs, D., Weiskopf, N., Lau, H. C., Featherstone, E., Dolan, R. J., and Frith,
C. D. (2006). The kuleshov effect: the influence of contextual framing on emotional
attributions. Social cognitive and affective neuroscience, 1(2):95–106. 28

Moore, R. E. (1966). Interval analysis. Prentice-Hall. 125

Moss, R. (2018). How bad crediting hurts the game industry and muddles history. 54

Naumann, U. (2011). The art of differentiating computer programs: an introduction to
algorithmic differentiation. SIAM. 142

O’Hara, K. (2020). Optimlib: a lightweight c++ library of numerical optimization meth-
ods for nonlinear functions (revision x). [Software]. https://github.com/kthohr/optim.
113

Olivier, P., Halper, N., Pickering, J., and Luna, P. (1999). Visual composition as
optimisation. In AISB Symposium on AI and Creativity in Entertainment and Visual
Art, volume 1, pages 22–30. 33, 44, 59, 64, 75

Oskam, T., Sumner, R. W., Thuerey, N., and Gross, M. (2009). Visibility transition
planning for dynamic camera control. In Proceedings of the 2009 ACM SIGGRAPH/Eu-
rographics Symposium on Computer Animation - SCA '09. ACM Press. 72, 76

Osokin, D. (2019). Real-time 2d multi-person pose estimation on cpu: Lightweight
openpose. 166

Osokin, D. and Ageeva, M. (2020). Real-time 3d multi-person pose estimation demo
(version 0.5.2). [Software]. https://github.com/Daniil-Osokin/lightweight-human-pose-
estimation-3d-demo.pytorch. 166

Padia, K., Bandara, K. H., and Healey, C. G. (2019). A system for generating storyline
visualizations using hierarchical task network planning. Computers & Graphics, 78:64–
75. 178

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala,
S. (2019). Pytorch: An imperative style, high-performance deep learning library. In
Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett,
R., editors, Advances in Neural Information Processing Systems 32, pages 8024–8035.
Curran Associates, Inc. 197

235

Patow, G. and Pueyo, X. (2003). A survey of inverse rendering problems. Computer
Graphics Forum, 22(4):663–687. 80

Phillipson, G., Jolly, S., Sheikh, A., Mills, P., Stagg, R., and Evans, M. (2022). ‘old
school’: An 8k multicamerashoot to create a dataset for computational cinematography.
Technical report, British Broadcasting Corporation. 91

Pickering, J. H. (2002). Intelligent Camera Planning for Computer Graphics. PhD
thesis, University of York. 31, 57

Pickering, J. H. and Olivier, P. (2003). Declarative camera planning roles and require-
ments. In Butz, A. et al., editors, International Symposium on Smart Graphics, volume
2733 of LNCS, pages 182–191. Springer, Springer. 57, 58, 66

Pierce, B. C. and Benjamin, C. (2002). Types and programming languages. MIT press.
116, 117

Plantinga, H. and Dyer, C. R. (1990). Visibility, occlusion, and the aspect graph.
International Journal of Computer Vision, 5(2):137–160. 65

Poulin, P., Ratib, K., and Jacques, M. (1997). Sketching shadows and highlights to
position lights. In Proceedings Computer Graphics International. IEEE. 80

Ranon, R. and Urli, T. (2014). Improving the efficiency of viewpoint composition.
IEEE Transactions on Visualization and Computer Graphics, 20(5):795–807. 37, 44,
76, 88

Rao, A., Wang, J., Xu, L., Jiang, X., Huang, Q., Zhou, B., and Lin, D. (2020a). A
unified framework for shot type classification based on subject centric lens. In Computer
Vision – ECCV 2020, pages 17–34. Springer International Publishing. 91

Rao, A., Xu, L., Xiong, Y., Xu, G., Huang, Q., Zhou, B., and Lin, D. (2020b). A
local-to-global approach to multi-modal movie scene segmentation. arXiv. 90

Rogers, S. (2014). Level Up The Guide To Great Video Game Design. Wiley, second
edition. 55

Rogez, G., Weinzaepfel, P., and Schmid, C. (2017). LCR-Net: Localization-
Classification-Regression for Human Pose. In CVPR, Honolulu, United States. 166

Rohrbach, A., Rohrbach, M., Tandon, N., and Schiele, B. (2015). A dataset for movie
description. arXiv. 90

Ronfard, R. (2012). A review of film editing techniques for digital games. In Workshop
on Intelligent Cinematography and Editing. 83

Ronfard, R. (2021). Film directing for computer games and animation. Computer
Graphics Forum, 40(2):713–730. 87

236

Ronfard, R. and de Verdière, R. C. (2022). OpenKinoAI: A framework for intelligent
cinematography and editing of live performances. Leonardo, pages 373–377. 83

Rosenbrock, H. H. (1960). An Automatic Method for Finding the Greatest or Least
Value of a Function. The Computer Journal, 3(3):175–184. 117

Ruiz, N., Chong, E., and Rehg, J. M. (2018). Fine-grained head pose estimation without
keypoints. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops. 164

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representations
by back-propagating errors. Nature, 323(6088):533–536. 140

Russell, S. J., Norvig, P., and Davis, E. (2010). Artificial intelligence: a modern
approach. Prentice Hall series in artificial intelligence. Prentice Hall, 3rd ed edition. 72,
74

Sack, W. and Davis, M. (1994). IDIC: Assembling video sequences from story plans and
content annotations. In Proceedings of IEEE International Conference on Multimedia
Computing and Systems MMCS-94. IEEE. 84

Salt, B. (1974). Statistical style analysis of motion pictures. Film Quarterly, 28(1):13–22.
90

Salt, B. (2006). Moving Into Pictures. Starword. 90

Salt, B. (2009). Film Style & Technology: History and Analysis. Starword. 90

Sanokho, C. B., Desoche, C., Merabti, B., Li, T.-Y., and Christie, M. (2014). Camera
motion graphs. Eurographics/ ACM SIGGRAPH Symposium on Computer Animation.
68

Schneider, P. and Eberly, D. H. (2002). Geometric Tools for Computer Graphics (The
Morgan Kaufmann Series in Computer Graphics). Morgan Kaufmann. 66

Seligmann, D. D. and Feiner, S. (1991). Automated generation and of intent-based and
3d illustrations. ACM SIGGRAPH Computer Graphics, 25(4):123–132. 57, 58, 70, 86

Setlur, V., Takagi, S., Raskar, R., Gleicher, M., and Gooch, B. (2005). Automatic
image retargeting. In Proceedings of the 4th international conference on Mobile and
ubiquitous multimedia - MUM '05, pages 59–68. ACM Press. 82, 83

Shoemake, K. (1992). ARCBALL: A user interface for specifying three-dimensional
orientation using a mouse. In Graphics Interface, volume 92, pages 151–156. 36, 61

Shuai, Q., Geng, C., Fang, Q., Peng, S., Shen, W., Zhou, X., and Bao, H. (2022). Novel
view synthesis of human interactions from sparse multi-view videos. In Special Interest
Group on Computer Graphics and Interactive Techniques Conference Proceedings. ACM.
82

237

Simon, T., Joo, H., Matthews, I., and Sheikh, Y. (2017). Hand keypoint detection in
single images using multiview bootstrapping. In CVPR. 164

Solomon, J. (2015). Numerical Algorithms: Methods for Computer Vision, Machine
Learning, and Graphics. CRC Press. 72, 74, 97

Sun, T., Barron, J. T., Tsai, Y.-T., Xu, Z., Yu, X., Fyffe, G., Rhemann, C., Busch,
J., Debevec, P., and Ramamoorthi, R. (2019). Single image portrait relighting. ACM
Transactions on Graphics, 38(4):1–12. 82

Sun, Y., Chao, Q., and Li, B. (2022). Synopses of movie narratives: a video-language
dataset for story understanding. arXiv. 90

Tapaswi, M., Zhu, Y., Stiefelhagen, R., Torralba, A., Urtasun, R., and Fidler, S. (2015).
Movieqa: Understanding stories in movies through question-answering. arXiv. 90

Technologies, V. (2022). Veo sports camera. https://www.veo.co/en-us. Accessed:
2022-09-01. 83

ThePhD (2018). sol2: a c++ <-> lua api wrapper (version 2.20.6). [Software].
https://github.com/ThePhD/sol2. 113

Tomlinson, B., Blumberg, B., and Nain, D. (2000). Expressive autonomous cinematog-
raphy for interactive virtual environments. In Proceedings of the fourth international
conference on Autonomous agents - AGENTS '00. ACM Press. 68

Turner, R., Balaguer, F., Gobbetti, E., and Thalmann, D. (1991). Physically-based
interactive camera motion control using 3d input devices. In Scientific Visualization of
Physical Phenomena, pages 135–145. Springer Japan. 68

Unity (2021). Unity (version 2021.3.3f1). [Software]. https://www.unity.com. 54, 65

Unity (2022). Cinemachine (version 2.8.4). [Software].
https://unity.com/unity/features/editor/art-and-design/cinemachine. 42, 62,
68, 88

Vázquezz, P.-P., Feixasz, M., Sbertz, M., and Heidrich, W. (2001). Viewpoint selection
using viewpoint entropy. In VMV, pages 273–280. Citeseer. 31, 71

Vicol, P., Tapaswi, M., Castrejon, L., and Fidler, S. (2018). MovieGraphs: Towards
understanding human-centric situations from videos. In 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition. IEEE. 90

Ware, C. and Osborne, S. (1990). Exploration and virtual camera control in virtual
three dimensional environments. In Proceedings of the 1990 symposium on Interactive
3D graphics - SI3D '90. ACM Press. 36, 37, 51, 60

Wei, S.-E., Ramakrishna, V., Kanade, T., and Sheikh, Y. (2016). Convolutional pose
machines. In CVPR. 164

238

https://www.veo.co/en-us

Weiss, T., Litteneker, A., Duncan, N., Nakada, M., Jiang, C., Yu, L., and Terzopoulos,
D. (2018). Fast and scalable position-based layout synthesis. IEEE Transactions on
Visualization and Computer Graphics, pages 1–1. 72, 86

Weiss, T., Litteneker, A., Jiang, C., and Terzopoulos, D. (2017). Position-based
multi-agent dynamics for real-time crowd simulation. In Proceedings of the ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, page 27. ACM, ACM.
72

Wengert, R. E. (1964). A simple automatic derivative evaluation program. Communi-
cations of the ACM, 7(8):463–464. 140, 151

Wu, H.-Y., Galvane, Q., Lino, C., and Christie, M. (2017). Analyzing elements of style
in annotated film clips. Eurographics Workshop on Intelligent Cinematography and
Editing. 90

Wu, H.-Y., Palù, F., Ranon, R., and Christie, M. (2018). Thinking like a director:
Film editing patterns for virtual cinematographic storytelling. ACM Transactions on
Multimedia Computing, Communications and Applications, 14(4):1–23. 85

Xiao, D. and Hubbold, R. (1998). Navigation guided by artificial force fields. In
Proceedings of the SIGCHI conference on Human factors in computing systems - CHI
'98. ACM Press. 75

Yoo, J. E., Seo, K., Park, S., Kim, J., Lee, D., and Noh, J. (2021). Virtual camera
layout generation using a reference video. In Proceedings of the 2021 CHI Conference
on Human Factors in Computing Systems. ACM. 75

Young, R. C. (1931). The algebra of many-valued quantities. Mathematische Annalen,
104(1):260–290. 125

Yu, L.-F., Yeung, S.-K., Tang, C.-K., Terzopoulos, D., Chan, T. F., and Osher, S.
(2011). Make it home: automatic optimization of furniture arrangement. In ACM
SIGGRAPH 2011 papers on - SIGGRAPH '11. ACM Press. 86

Zeleznik, R. and Forsbergt, A. (1999). Unicam - 2d gestural camera controls for 3d
environments. In Proceedings of the 1999 symposium on Interactive 3D graphics - SI3D
'99. ACM Press. 37

239

	1 Introduction
	1.1 Application Domains
	1.2 System Evaluation Criteria
	1.3 Approach Overview
	1.4 Thesis Structure

	2 Cinematography for Beginners
	2.1 What is a Camera?
	2.2 Modern Filmmaking Processes
	2.2.1 Scripted Filmmaking
	2.2.2 Unscripted Filmmaking

	2.3 Cinematography in Practice
	2.4 On Editing and Broader Semantics

	3 Related Work
	3.1 Taxonomy of Related Work
	3.1.1 Behavior Types
	3.1.1.1 Common Behavioral Specializations
	3.1.1.2 Behavioral Abstraction and Style
	3.1.1.3 Interpretation and Compromise
	3.1.1.4 Behavioral Inputs and Outputs

	3.1.2 Interface Paradigms
	3.1.2.1 Direct Interfaces
	3.1.2.2 Parametric Interfaces
	3.1.2.3 Imperative Interfaces
	3.1.2.4 Declarative Interfaces
	3.1.2.4.1 Constraint Satisfaction
	3.1.2.4.2 Optimization
	3.1.2.4.3 Constrained Optimization

	3.1.2.5 Hybrid and Composite Interfaces

	3.1.3 Algorithmic Strategies
	3.1.3.1 Occlusion and Collision Testing
	3.1.3.2 Temporality
	3.1.3.3 Analytical Algorithms
	3.1.3.4 Search Algorithms
	3.1.3.4.1 Constraint Satisfaction
	3.1.3.4.2 Unconstrained Optimization
	3.1.3.4.3 Constrained Optimization

	3.2 Separate but Related Fields
	3.2.1 Robotics
	3.2.2 Pixel-Based Approaches
	3.2.2.1 Inverse Rendering
	3.2.2.2 Image Generation and Editing

	3.2.3 Computational Editing
	3.2.4 Character Animation
	3.2.5 Automatic Layout Synthesis
	3.2.6 Computational Film Directing

	3.3 Systems Engineering
	3.4 Cinematographic Datasets

	4 Mathematical Framework
	4.1 Objective Functions
	4.1.1 Hierarchical Constraint Penalties

	4.2 Optimization Algorithms
	4.3 Temporal Smoothing
	4.4 Use Cases
	4.4.1 Scripted Scenarios
	4.4.2 Unscripted Scenarios

	5 Computational Tools Systems Engineering
	5.1 Micro Language Specification
	5.2 Semantics
	5.3 Static Analysis
	5.3.1 Control Flow Analysis
	5.3.2 Value Range Analysis
	5.3.2.1 Flow Insensitive
	5.3.2.2 Flow Sensitive Analysis

	5.3.3 Program Simplification and Caching

	5.4 Automatic Differentiation
	5.4.1 Forward Accumulation
	5.4.2 Reverse Accumulation

	5.5 Limitations

	6 Cinematographic Data Collection
	6.1 Criteria
	6.2 Data Collection
	6.2.1 Edit Detection and Frame Extraction
	6.2.2 Frame Feature Detection
	6.2.2.1 Facial Detection
	6.2.2.2 2d Pose Estimation
	6.2.2.3 3D Pose Estimation

	6.2.3 Intra-Frame Feature Matching
	6.2.4 Inter-Frame Feature Matching

	6.3 Dataset at a Glance
	6.4 Limitations

	7 Manually Defined Cinematographic Objective Functions
	7.1 Data Inspiration
	7.2 A Library of Objectives
	7.2.1 Frame Position
	7.2.2 Visibility
	7.2.2.1 Frame Bounds
	7.2.2.2 Occlusion and Collision

	7.2.3 Shot Size
	7.2.4 Relative Angles
	7.2.5 Rule of Thirds
	7.2.6 Look Space
	7.2.7 180°rule
	7.2.8 Depth of Field

	7.3 Basic Cinematographic Recipes

	8 Machine Learning Defined Cinematographic Objective Functions
	8.1 Data Representation
	8.2 Modeling strategy and motivation
	8.3 PCA
	8.4 Frame Embedding
	8.5 Limitations

	9 Results
	9.1 Scenes
	9.2 Use Cases
	9.3 Manually defined objective functions
	9.4 Machine Learning defined objective functions
	9.5 Speed

	10 Conclusion
	10.1 Contributions
	10.2 Future Work

	A Reverse Accumulating Autodiff Rules
	References

