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Applying deep reinforcement learning to multi-agent environments has become a popular

trend. However, creating adaptive agents that perform well in dynamic, complex settings

remains challenging. Key difficulties include (1) scaling with the number of agents, as

complexity grows exponentially with each additional agent, (2) adapting to new environments,

where agents need to leverage past experiences, (3) cooperating with unfamiliar agents, since

agents trained in fixed groups must interact effectively with unseen peers, and (4) operating

within multi-modal input scenarios, beyond simple vector inputs. We identify the limitations

of current approaches in addressing these challenges and propose novel methods to overcome

them. The contributions of this thesis include the following:

1. Evolutionary Population Curriculum (EPC): A training approach that enables agents

to gradually adapt from small to large groups through a mix-and-match strategy,

enhancing scalability.

2. Social Gradient Fields (SocialGFs): A novel gradient-based state representation for

multi-agent reinforcement learning, leveraging denoising score matching to learn social

dynamics from offline samples. This adaptive representation allows agents to exhibit

diverse behaviors.

3. Inverse Attention Network: A mechanism that models agents’ Theory of Mind (ToM)

ii



by inferring attentional states based on observations and prior actions, refining attention

weights to improve decision-making.

4. Multi-Modal Multi-Agent Benchmark in Minecraft (TeamCraft): A comprehensive

benchmark designed to highlight the limitations of current Vision-Language Models

(VLMs) in handling complex, dynamic multi-agent environments, setting a new standard

for future research in multi-agent systems.

These contributions advance the field by providing scalable and adaptive solutions to funda-

mental challenges in multi-agent systems.
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CHAPTER 1

Introduction

Humans are inherently social beings, actively engaging in various social activities within

a dynamic and interconnected world. A multi-agent system (MAS) serves as an effective

simulator for this complexity, offering a framework to study relationships and interactions

among agents. With MAS, we aim to replicate human capabilities and model real-world

scenarios.

One of humanity’s greatest strengths is the ability to generalize and adapt to diverse

environments. For example, humans can function effectively in both small groups and large

populations, demonstrating remarkable adaptability to varying numbers of agents. This

flexibility extends to tasks as well—when placed in new environments, humans draw on prior

experiences to navigate unfamiliar situations. This task adaptability enables us to observe,

learn, and adjust behavior as needed.

Furthermore, humans excel in adapting to interactions with different individuals, even

those they’ve never met. Consider the game Dota, where five strangers from around the

world collaborate to defeat an opposing team. Players quickly adapt to each other’s strategies

and playstyles, achieving effective teamwork.

Lastly, humans thrive in a multi-modal world, seamlessly processing complex and ever-

changing inputs from their surroundings. By integrating visual, auditory, and other sensory

observations, we can navigate intricate environments. This capacity to manage and respond

to diverse, complex stimuli highlights another dimension of our generalization prowess.

In this dissertation, we address four fundamental questions about agent design and

adaptability in multi-agent systems:
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1. How can we scale with the number of agents as complexity grows exponentially with

each additional agent? We present the evolutionary population curriculum (Long et al.,

2020), an approach that incrementally introduces new agents in successive rounds. This

method effectively mitigates scalability challenges, enabling the system to handle larger

populations.

2. How can agents adapt to new environments by leveraging past experiences? We

introduce the SocialGFs representation (Long et al., 2024c), a high-level environmental

abstraction that addresses the issue of sparse rewards. This representation allows agents

to generalize and perform effectively in unseen environments by simply replacing the

representations.

3. How can agents cooperate with unfamiliar peers, especially when trained in fixed groups?

We tackle this challenge with the Inverse-Att agent (Long et al., 2024a), capable of

inferring the attention of other agents. By dynamically updating its own attention

and actions based on these inferences, the agent effectively adapts to interactions with

unseen peers in dynamic settings.

4. How can agents operate within multi-modal input scenarios beyond simple vector-based

representations? We present the TeamCraft Benchmark(Long et al., 2024b), a multi-

modal, multi-agent benchmark inspired by Minecraft. This benchmark provides a rich,

complex environment with diverse inputs, enabling the development and evaluation of

advanced algorithms designed to handle multi-modal tasks.

Our work aims to push the boundaries of agent generalization and adaptability, drawing

inspiration from human social and cognitive capabilities. The following sections will discuss

each of the above four fundamental questions and list the contributions of this thesis in

greater detail.
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1.1 Scalability in Multi-Agent Systems

Many real-world problems involve interactions between multiple agents, and such problems

become significantly more difficult in the presence of complex cooperation and competition

among agents. Inspired by the tremendous success of deep Reinforcement Learning (RL) in

single-agent applications, such as Atari games (Mnih et al., 2013), robotics manipulation

(Levine et al., 2016), and navigation (Zhu et al., 2017; Wu et al., 2018; Yang et al., 2019),

it has become a popular trend to apply deep RL techniques to multi-agent applications,

including communication (Foerster et al., 2016; Sukhbaatar et al., 2016; Mordatch and Abbeel,

2018), traffic light control (Wu et al., 2017), physical combat (Bansal et al., 2018), and video

games (Liu et al., 2019a; OpenAI, 2018).

A fundamental challenge for Multi-Agent Reinforcement Learning (MARL) is that, as the

number of agents increases, the problem becomes significantly more complex and the variance

of policy gradients can grow exponentially (Lowe et al., 2017). Despite advances in tackling

this challenge via actor-critic methods (Lowe et al., 2017; Foerster et al., 2018), which utilize

decentralized actors and centralized critics to stabilize training, recent works still scale poorly

and are mostly restricted to less than a dozen agents. However, many real-world applications

involve a moderately large population of agents, such as algorithmic trading (Wellman et al.,

2005), sport team competition (Hausknecht and Stone, 2015), and humanitarian assistance

and disaster response (Meier, 2015), where one agent should collaborate and/or compete

with all other agents. When applying existing MARL algorithms directly to complex games

with a large number of agents, the agents may fail to learn good strategies and end up with

little interaction with other agents even when collaboration is significantly beneficial. Yang

et al. (2018) proposed a provably converged mean-field formulation to scale up the actor-critic

framework by feeding the state information and the average value of nearby agents’ actions

to the critic. However, this formulation strongly relies on the assumption that the value

function for each agent can be well approximated by the mean of local pairwise interactions.

This assumption often does not hold when the interactions between agents become complex,

leading to a significant drop in performance.
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Figure 1.1: Our population-invariant Q function: (a) utilizes the attention mechanism to
combine embeddings from different observation-action encoder fi; (b) is a detailed description
for fi, which also utilizes an attention module to combine M different entities in one
observation.

We propose a general learning paradigm called Evolutionary Population Curriculum

(EPC), which allows us to scale the number of agents exponentially. The core idea of EPC

is to progressively increase the population of agents throughout the training process. In

particular, we divide the learning procedure into multiple stages with increasing numbers

of agents in the environment. The agents first learn to play in simpler scenarios with fewer

agents and then leverage these experiences to gradually adapt to later stages with more

agents and ultimately our desired population.

There are two key components in our curriculum learning paradigm: To process the varying

number of agents during the curriculum procedure, the policy/critic must be population-

invariant. So, we choose a self-attention-based architecture (Vaswani et al., 2017) that can

generalize to an arbitrary number of agents with a fixed number of parameters. More impor-

tantly, we introduce an evolutionary selection process, which helps address the misalignment

of learning goals across stages and improves agent performance in the target environment.

Figure 1.1 illustrates the architecture of our paradigm.

Intuitively, our within-stage MARL training objective only incentivizes agents to overfit a

particular population in the current stage. When moving towards a new stage with a larger

population, the successfully trained agents may not adapt well to the scaled environment. To
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mitigate this issue, we maintain multiple sets of agents in each stage, evolve them through

cross-set mix-and-match and parallel MARL fine-tuning in the scaled environment, and select

those with better adaptability to the next stage.

EPC is RL-algorithm agnostic and can be potentially integrated with most existing MARL

algorithms. We illustrate the empirical benefits of EPC by implementing it on a popular

MARL algorithm, MADDPG (Lowe et al., 2017), and experimenting on three challenging

environments, including a predator-prey-style individual survival game, a mixed cooperative-

and-competitive battle game, and a fully cooperative food collection game. We show that

EPC outperforms baseline approaches by a large margin on all these environments as the

number of agents grows even exponentially. We also demonstrate that our method can

improve the stability of the training procedure.

We have published this work as (Long et al., 2020) and present it in Chapter 3.

1.2 Task Adaptiveness in Multi-Agent Systems

A Multi-Agent System (MAS) is composed of multiple autonomous agents that interact with

each other and the environment. It has many applications in domains such as games (Vinyals

et al., 2019; OpenAI et al., 2019), social simulation (Vinitsky et al., 2022; Yaman et al., 2022),

and distributed computing (Shalev-Shwartz et al., 2016). However, designing and learning

MASs that can adapt to diverse and dynamic scenarios is a key challenge. For example, a

MAS may need to cope with changes in the environment (such as obstacles or resources) and

the number, goals, and roles of agents (such as teammates or adversaries). Therefore, it is

desirable to build a MAS that can transfer agent knowledge across different settings.

Researchers into MARL have trained policies that can generalize across various aspects,

such as multi-task performance (Wen et al., 2022; Omidshafiei et al., 2017), scalability (Agar-

wal et al., 2019; Long et al., 2020; Zhou et al., 2021; Hu et al., 2021), and communication

(Omidshafiei et al., 2019; Jiang and Lu, 2018; Wang et al., 2022). Researchers have explored

different techniques to enhance generalization, such as policy representation learning (Grover

et al., 2018), meta learning (Chen et al., 2021), self-play (Zhong et al., 2021), curriculum
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learning (Long et al., 2020), network architecture (Jiang and Lu, 2018; Xu et al., 2020). How-

ever, the agents learned by these methods are often tailored to specific tasks or environments

and lack transferability and reusability.

The most important part of achieving such an adaption ability in a MAS is to find a

general and efficient way to represent complex environments. The concept of social force

(Helbing and Molnár, 1995), borrowed from sociology, describes how individual behavior,

interaction, and cognition are influenced by various factors in a social context. Examples of

social force include attraction and repulsion among individuals, conformity and deviation

from social norms, and cooperation and competition among groups. We argue that agents

in a MAS are also subject to different types of forces that originate from the environment,

other agents, and their intrinsic motivation. These forces can modulate the agents’ actions

and strategies and ultimately determine their performance and adaptation.

The idea of using vector fields to represent forces has been explored in robotics, where

artificial potential fields (Warren, 1989) or other gradient vector fields (Zhao et al., 2022)

have been applied to various tasks such as environment simulations (Kolivand et al., 2021;

Wan et al., 2014), robot navigation (Klančar et al., 2022; Konolige, 2000) and multi-agent

path planning (Matoui et al., 2019; Zheng et al., 2015). However, these vector fields are

often handcrafted and tailored to specific environments, limiting their generalizability and

transferability. Furthermore, designing these vector fields explicitly is challenging in complex

environments where multiple factors may influence the behavior of agents. Therefore, it is

necessary to learn these vector fields from data rather than specify them manually.

We introduce Social Gradient Fields (SocialGFs), which are learned offline from examples

of attractive or repulsive outcomes using denoising score matching (Song et al., 2021), a

score-based generative modeling technique. SocialGFs represent these abstract forces as

vector fields that guide the agents toward favorable states and away from unfavorable states.

Tasks can be represented as compositions of gradients and often share common gradients,

such as those for collision avoidance. Hence, these gradients can be reused across different

tasks. Moreover, as the gradient fields are dense, they can provide informative guidance in

sparse reward scenarios, addressing the credit assignment problem in multi-agent learning.
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Figure 1.2: We use a score matching function to train each example, obtaining different gf
functions. For various tasks, we select different sets of gf and apply them to the observation
to generate a gf -based representation (SocialGFs). We then apply RL methods to train
the adaptive agent based on that representation. By employing different gf functions for
representation, the agent can adapt to various scenarios.

Furthermore, with graph neural networks, they can also scale easily with the number of

entities. With these features, we can unify the representation in multi-agent environments

across varying tasks and populations.

In the end, given these gradients to the agents, the agents need only learn the policy

from the gradient-based state representation in an RL manner, rather than learning a state

representation from scratch. Since the gradient fields can provide generalist representation

among tasks and scenarios, agents can also adapt easily to a new environment by replacing

the gradient-based representation. We show this pipeline in Figure 1.2.

To summarize, our main contributions are three-fold:

1. We propose learnable gradient fields, which are learned from offline examples by

denoising score matching, for learning adaptive multi-agent policy.

2. We develop generalizable RL-based agents to learn to act based on the gradient fields

and adapt to different scenarios.

3. We empirically demonstrate the effectiveness and generalization of our method in

both the cooperative-competitive game and the cooperative game in a particle-world
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environment.

We have published this work as (Long et al., 2024c) and present it in Chapter 4.

1.3 Agent Adaptiveness in Multi-Agent Systems

MARL has significantly advanced the study of complex, interactive behaviors in multi-agent

systems, allowing intricate modeling of scenarios involving multiple autonomous agents.

However, creating an ad-hoc agent that excels with various types of teammates and opponents

poses a significant challenge. Current methods suffer a limitation: while agents trained

together demonstrate proficient coordination, their performance deteriorates markedly when

paired with unfamiliar agents.

To address this challenge, we delve deeper into multi-agent collaboration by incorporating

a cognitive perspective, specifically through the modeling of attention and Theory of Mind

(ToM) (Bratman, 1987) within the MARL framework, and we propose the Inverse-Attention

Agent. Unlike classical ToM research, which focuses on attributing mental states such as

beliefs and desires, our model shifts to the crucial yet less-emphasized component of attention.

Our methodology adopts a mentalistic approach, explicitly modeling the internal attentional

state of agents using an attention recognition neural network that can be trained end-to-end

in combination with components of MARL. Contrary to traditional ToM modeling approaches

that rely heavily on Bayesian inference to handle mental state transitions (Baker et al., 2009;

Kleiman-Weiner et al., 2016; Shum et al., 2019; Gao et al., 2020; Tang et al., 2022), our

method maintains the ontology of these states while focusing on the direct modeling of agents’

attentional mechanisms. This shift from Bayesian methods to more direct, attention-based

modeling opens new pathways for understanding and enhancing agent interactions in complex

environments.

To enhance task performance, we craft an agent that adeptly infers the attention of other

agents — a crucial aspect of ToM. We employ gradient field functions to construct goals within

the environment. Subsequently, we incorporate a self-attention architecture within the policy
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Figure 1.3: Pipeline for training the inverse attention agent: The first phase involves applying
a self-attention mechanism, where the agent assigns attention weights to its observations and
acts based on these weights. In the second phase, the agent performs attention inference on
other agents of the same type using the inverse attention network. By placing itself in the
position of these agents, it infers their attention weights, gaining insights into their goals and
behaviors. In the final phase, the inverse attention agent uses the inferred information from
the previous step to update its original attention weights, {w1, w2, ..., wn} to {w̃1, w̃2, ..., w̃n},
consequently leading to changes in its final actions.

network to generate attention weights for these goals, guiding the agent’s actions accordingly.

Throughout the training phase, we accumulate the weighted goals and corresponding actions

into a training dataset. This dataset then serves to train an attention inference network

that determines attention weights based on the observations and actions of other agents,

effectively modeling their attention. In the final phase, we amalgamate the self-attention

structure with the inverse attention to create our Inverse-Attention Agent, which integrates

environmental observations with inferred attention weights from the inference network to

fine-tune its final actions. The whole process is illustrated in Figure 1.3.

We demonstrate the effectiveness of our approach through a series of experiments adapted

from the Multi-agent Particles Environment (MPE) (Lowe et al., 2017). Specifically, we

employ a Mix-and-Match scheme to evaluate the performance of our models in ad-hoc

collaboration, by pairing models trained using various algorithms. The results indicate that

our model consistently outperforms baselines, particularly excelling in cooperative tasks.

Moreover, we conduct a series of human experiments where humans join teams alongside
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agents trained with different methods. Through both quantitative and qualitative analysis,

our model demonstrates superior cooperation within ad-hoc teams comprising both humans

and previously unseen agents.

To summarize, we introduce a MARL training scheme inspired by theories in cognitive sci-

ence, where each agent explicitly reasons about the attentional states of group members. Our

approach is specifically designed to enhance ad-hoc coordination among agents, addressing a

long-standing challenge in MARL. Our framework also adopts a simplified state representation

using social gradient fields, which further reduces the complexity of the environmental input

that agents must process, thereby facilitating more flexible and efficient decision making. By

explicitly modeling attention and incorporating cognitive principles, our approach paves the

way for more effective multi-agent collaboration in complex, interactive scenarios.

We have published this work as (Long et al., 2024a) and present it in Chapter 5.

1.4 A Benchmark for Multi-Modal Multi-Agent Systems

Developing collaborative skills is essential for embodied agents, as collaboration is a fundamen-

tal aspect of human intelligence (Smith and Gasser, 2005). In the AI community, multi-agent

collaboration is frequently studied using grid-world environments (Leibo et al., 2021; Suarez

et al., 2021; Stone and Veloso, 2000; Gong et al., 2023c; Dong et al., 2024; Puig et al., 2021;

Park et al., 2023; Zhang et al., 2024a; Wu et al., 2021; Long et al., 2024a). However, agents in

these environments lack multi-modal understanding. By contrast, learning within visually-rich

environments enables agents to develop useful representations of multi-agent dynamics (Chen

et al., 2020; Jaderberg et al., 2019), as vision facilitates implicit communication, coordination,

and collaborative execution (Jain et al., 2020, 2019).

Learning vision-based, multi-task, multi-agent systems is a challenging objective that

presents several difficulties. These systems must develop detailed scene understanding to

handle the diverse visual appearances of scenes. The complexity is further heightened by the

numerous combinations of task configurations, such as object spatial arrangements, goal con-

figurations, arbitrary numbers of agents, and heterogeneous agent capabilities. Consequently,
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it is essential for multi-agent systems to acquire generalizable skills that can be effectively

transferred across different settings.

An important step in addressing these challenges is to develop simulation systems that

support multi-modal multi-agent learning. Recent advances in simulated environments have

significantly facilitated progress in embodied vision-based systems (Yu et al., 2024; Jain et al.,

2020; Chen et al., 2020; Perez-Liebana et al., 2019; Das et al., 2019). Despite notable progress,

these systems have several limitations: (1) many of them target one or two-agent scenarios

(Jain et al., 2019; Mandi et al., 2024; Wang et al., 2023a), (2) they are often limited to indoor

settings with a narrow range of tasks (Puig et al., 2021; Zhang et al., 2024c), and (3) the

task specifications are generally purely in text (Liu et al., 2022b; Mandi et al., 2024), making

it hard to specify subtle task differences accurately and efficiently.

To drive progress in this area, we have developed a comprehensive benchmark, named

TeamCraft, that features procedurally generated large-scale datasets specifically designed for

multi-modal multi-agent systems. This benchmark utilizes the widely acclaimed open-world

video game Minecraft as an experimental platform to engage with the complex dynamics of

multi-modal multi-agent interactions. Inspired by the work of Jiang et al. (2022), we also

leverage multi-modal prompts as task specifications to guide agent interactions, as language

often fails to effectively convey spatial information (Cai et al., 2024). Our benchmark offers rich

visual backgrounds, diverse object categories, complex crafting sequences, and varying task

dynamics. These features enable systematic exploration of out-of-distribution generalization

challenges for multi-modal, multi-task, multi-agent systems at scale. In particular, our

benchmark evaluates a model’s ability to generalize to novel goal configurations, unseen

number of agents, novel agent capabilities, and new types of visual backgrounds. To evaluate

existing techniques using our benchmark, we design several baseline models to work within

the framework and compare their performance. Our results highlight that current approaches

to vision-conditioned collaboration and task planning encounter significant challenges when

tested within TeamCraft’s complex and dynamic environment, especially when it comes to

generalizations. The overall structure of TeamCraft is shown in Figure 1.4.

In summary, our main contributions are as follows:
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Figure 1.4: The TeamCraft platform consists of three main components: (1) a Minecraft
server that hosts the game as an online platform, (2) Mineflayer, which serves as the interface
for controlling agents in the server, and (3) a Gym-like environment that provides RGB and
inventory observations to the models, allowing control of multiple agents through high-level
actions.

1. TeamCraft, a new multi-modal multi-agent benchmark with its associated large-scale

dataset encompassing complex tasks challenging multi-agent systems in a wide variety

of generalization scenarios.

2. Extensive experiments and analyses on state-of-the-art multi-modal multi-agent models,

uncovering their strengths and weaknesses to inform and inspire future research.

3. To ensure reproducibility and encourage future work from the community, we open

source the entire platform, its training and evaluation code, and release the model

checkpoints and training data.1

We have published this work as (Long et al., 2024b) and present it in Chapter 6.

1https://github.com/teamcraft-bench/teamcraft
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CHAPTER 2

Related Work

In this chapter, we review prior work related to the main research topics relevant to this thesis;

specifically, multi-agent reinforcement learning, attention-based policies, curriculum learning,

evolutionary learning, learning adaptive multi-agent systems, social forces in multi-agent

systems, gradient fields for decision making, theory of mind and attention, ad-hoc teaming,

platforms for multi-agent systems, embodied language-guided benchmarks, and benchmarks

based on Minecraft.

2.1 Multi-Agent Reinforcement Learning

There has been a long history in applying RL to multi-agent games (Littman, 1994; Shoham

et al., 2003; Panait and Luke, 2005; Wright et al., 2019). Recently, deep RL techniques

have been applied into the multi-agent scenarios to solve complex Markov games and great

algorithmic advances have been achieved. Foerster et al. (2016) and He et al. (2016) explored

a multi-agent variant of deep Q-learning; Peng et al. (2017) studied a fully centralized actor-

critic variant; Foerster et al. (2018) developed a decentralized multi-agent policy gradient

algorithm with a centralized baseline; Lowe et al. (2017) proposes the MADDPG algorithm

which extended DDPG to the multi-agent setting with decentralized policies and centralized

Q functions. Our population curriculum approach is a general framework for scaling MARL

which can be potentially combined with any of these algorithms. Particularly, we implement

our method on top of the MADDPG algorithm in this paper and take different MADDPG

variants as baselines in experiments. There are also other works studying large-scale MARL

recently (Lin et al., 2018; Jiang and Lu, 2018; Yang et al., 2018; Suarez et al., 2019), which
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typically simplify the problem by weight sharing and taking only local observations. We

consider a much more general setting with global observations and unshared-weight agents.

Additionally, our approach is a general learning paradigm which is complementary to the

specific techniques proposed in these works.

2.2 Attention-Based Policy Architecture

Attention mechanism is widely used in RL policy representation to capture object level

information (Duan et al., 2017; Wang et al., 2018), represent relations (Zambaldi et al., 2018;

Malysheva et al., 2018; Yang et al., 2019) and extract communication channels (Jiang and

Lu, 2018). Iqbal and Sha (2019) use an attention-based critic. In our work, we utilize an

attention module in both policy and critic, inspired by the transformer architecture (Vaswani

et al., 2017), for the purpose of generalization to an arbitrary number of input entities.

2.3 Curriculum Learning

Curriculum learning can be tracked back to Elman (1993), and its core idea is to “start small”:

learn the easier aspects of the task first and then gradually increase the task difficulty. It has

been extended to deep neural networks on both vision and language tasks (Bengio et al., 2009)

and much beyond: Karras et al. (2017) propose to progressively increase the network capacity

for synthesizing high quality images; Murali et al. (2018) apply a curriculum over the control

space for robotic manipulation tasks; several works (Wu and Tian, 2016; Florensa et al., 2017;

Sukhbaatar et al., 2017; Wang et al., 2019) have proposed to first train RL agents on easier

goals and switch to harder ones later. Baker et al. (2019) show that multi-agent self-play

can also lead to autocurricula in open-ended environments. In our paper, we propose to

progressively increase the number of the agents as a curriculum for better scaling multi-agent

reinforcement learning.
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2.4 Evolutionary Learning

Evolutionary algorithms, originally inspired by Darwin’s natural selection, has a long history

(Bäck and Schwefel, 1993), which trains a population of agents in parallel, and let them

evolve via crossover, mutation and selection processes. Recently, evolutionary algorithms have

been applied to learn deep RL policies to improve training scalability (Jaderberg et al., 2017;

Salimans et al., 2017), promote diversity (Houthooft et al., 2018) and encourage exploration

(Conti et al., 2018; Khadka and Tumer, 2018). Leveraging this insight, we train several

groups of agents in parallel and keep evolving them to larger population for the purpose of

better generalization across stages and improved training stability. Czarnecki et al. (2018)

proposed a similar evolutionary mix-and-match training paradigm to progressively increase

agent capacity, i.e., larger action spaces and more parameters. Their work considers a fixed

environment with an increasingly more complex agent and utilizes the traditional parameter

crossover and mutation during evolution. By contrast, we focus on scaling MARL, namely an

increasingly more complex environment with a growing number of agents. More importantly,

we utilize MARL fine-tuning as an implicit mutation operator rather than the classical

way of mutating parameters, which is more efficient, guided and applicable to even a very

small number of evolution individuals. A similar idea of using learning for mutation is also

considered by Gangwani and Peng (2018) in the single-agent setting.

2.5 Learning Adaptive Multi-Agent Systems

Adaptive multi-agent systems consist of multiple agents that can learn from their interactions

and adapt to changing environments and goals. One of the challenges is how to coordinate the

agents to achieve a new goal while transferring to a novel environment. Agarwal et al. (2019)

used graph neural networks to handle the dynamic size of input. Long et al. (2020) used

the attention mechanism and curriculum learning method to start from a small population

environment and then adapt to large populations. Yang et al. (2020) applied mean-field

theory to incorporate with large number of entities. Zhou et al. (2021) and Hu et al. (2021)
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applied a transformer to deal with variant inputs. Liu et al. (2019b) used policy distillation

(Rusu et al., 2016) for transfer learning among similar tasks. However, all of these methods

rely on the high similarities between tasks. It would be hard for them to adapt to a completely

new environment.

2.6 Social Forces in Multi-Agent Systems

Social force model (SFM) is a powerful tool for simulating the behavior of agents in a variety

of environments (Kolivand et al., 2021; Wan et al., 2014; Chen et al., 2018; Huang et al., 2018).

For example, Helbing and Molnár (1995) used SFM to simulate pedestrian behavior in crowds,

where pedestrians adjust their movement to reach a stable state in response to repulsive

and driving forces. In this way, SFM replicates observed behaviors like lane formation and

collision avoidance. Gil et al. (2021) also applied SFM with machine learning techniques

to build a social robot. However, SFM is sensitive to the parameters of the models and is

difficult to calibrate and validate. Another disadvantage of SFM is that they are not always

generalizable to new environments. This is because SFM is usually manually designed and

defined based on empirical observations of real-world agents, which makes it expensive or

impossible to transfer. To address these limitations, we propose a new data-driven approach

that is based on the examples and use the gradient field to represent the social force. This

approach is more generalizable to complicated environments because it does not rely on

empirical observations of real-world agents.

2.7 Gradient Fields for Decision Making

The Gradient field is a vector field that describes the trend of change of a function or a

distribution. Thus, it can be used to represent the social force in a multi-agent environment.

It has been widely applied for decision-making like navigation tasks (Klančar et al., 2022;

Konolige, 2000; Guldner and Utkin, 1995). Vail and Veloso (2003) applied gradient for role

assignment based on different scenarios. Recent work by Zhao et al. (2022) introduced a
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hybrid gradient vector field for path-following. All of the above methods are planning-based

methods that require knowing the explicit expression of the target function or distribution or

being able to estimate or approximate it effectively. Another fold of methods is Learning-based

methods. They learn a gradient field from data to guide decision-making, without requiring

knowing the explicit expression of the target function or distribution. These methods usually

use deep neural networks to fit an energy function or a score function, thus implicitly defining

a gradient field. For example, TarGF (Wu et al., 2022) uses denoising score matching

(Song et al., 2021) to learn target gradient fields to rearrange objects without explicit goal

specification. It learns a score function by minimizing the squared difference between the score

of an energy function and the score of the true data distribution. Building on this, GraspGF

(Wu et al., 2024), GFPose (Ci et al., 2022), and (Xue et al., 2023) expand this methodology

to broader applications such as dexterous hand manipulation, human pose estimation, and

the irregular shape packing. In this work, we also use denoising score matching to learn the

gradient fields with a set of offline examples, but we use hybrid gradient fields to represent

all the factors in the environments in multi-agent environments and further introduce an

RL-based agent to act based on the gradient-based representation.

2.8 Theory of Mind and Attention

Theory of Mind (ToM) refers to the cognitive ability to attribute mental states to oneself

and others (Bratman, 1987). It allows for tailored strategies to be generated in multi-agent

scenarios, where one can reason about what other players are doing and determine one’s

action accordingly. ToM has been an active area of research in multi-agent systems, with

the goal of designing agents that coordinate more like humans. Previous work has primarily

utilized Bayesian approaches to explicitly model beliefs, desires, and intentions (Shum et al.,

2019; Kleiman-Weiner et al., 2016; Wu et al., 2021), providing a principled framework for

inferring and updating beliefs about other agents’ mental states based on observed behavior

and actions. To avoid the complexity of recurrently reasoning about each others’ mental

state, Tang et al. (2020) and Stacy et al. (2021) proposed frameworks based on the idea of
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shared agency, relying on coordinating group-level mental states and establishing a shared

understanding of the task and goals among agents. Departing from Bayesian methods,

Rabinowitz et al. (2018) proposed to integrate ToM reasoning directly into the neural network

architecture, aiming to learn representations of other agents’ mental states in a data-driven

manner.

Building upon previous frameworks, our work addresses three key aspects: First, we

develop our model around the idea that ToM is not merely concerned with beliefs, desires,

and intentions, but is a human-unique ability to be sensitive to what others are attending

to. While attention as a critical mental state is often neglected in ToM research, our work

aims to address this gap by explicitly modeling attention mechanisms. Second, we model

cooperation from an individualistic perspective to encourage more flexible behavior generation.

In this way, instead of shared agency, our agents maintain an individualistic perspective

while coordinating with teammates. Third, we deviate from traditional Bayesian approaches

to modeling ToM and instead develop an end-to-end neural network-based training, thus

allowing for more flexibility and generalizability.

2.9 Ad-Hoc Teaming

Ad-hoc collaboration is defined as the challenge of enabling autonomous agents to effectively

coordinate with previously unknown teammates, without any prior opportunities for coordi-

nation or agreement on strategies (Stone et al., 2010). Addressing this problem necessitates

agents to model the behavior of their teammates and subsequently select actions that facilitate

effective collaboration, while simultaneously adapting to changes or new information that

emerges during the interaction. A prominent approach to modeling teammate behavior is

type-based reasoning, which represents teammates as belonging to hypothesized behavior

types (Barrett et al., 2017). Alternatively, neural network-based techniques have been pro-

posed to infer teammate types from observations (Rabinowitz et al., 2018; Rahman et al.,

2021; Xie et al., 2021). Once teammate models are obtained, agents perform downstream

action planning with techniques such as Monte Carlo tree search (Barrett et al., 2014; Albrecht
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and Stone, 2019) and meta-learning action selection (Zintgraf et al., 2021). Adapting the

agent’s behavior based on new information about teammates is also crucial in sustaining

the collaboration. Addressing this, Macke et al. (2021) employed communication between

agents and Lupu et al. (2021) proposed a method to generate diverse training trajectories to

improve generalization to novel teammates.

In our work, we tackle the ad-hoc problem by leveraging the attention mechanism. We

argue that the instability issues in ad-hoc settings typically arise because agents fail to

comprehend unseen states, consequently making it difficult to generalize the trained policies.

However, by implementing the attention mechanism, our agents are capable of selectively

focusing on relevant aspects of the environment. This focused attention helps maintain

consistency in decision-making across different scenarios (Cheng et al., 2023). Thus, the

attention mechanism serves as a method for filtering information, which is crucial for achieving

generalizability when interacting with previously unseen teammates.

2.10 Platforms for Multi-Agent Systems

The recent success of multi-agent reinforcement learning (MARL) methods (Lowe et al., 2020;

Yu et al., 2021; Long et al., 2020, 2024c) has attracted attention, as these methods explore

cooperation and competence behaviors among agents. However, many of the methods are

evaluated in simplified 2D environments (Leibo et al., 2021; Suarez et al., 2021; Mordatch

and Abbeel, 2017; Vinyals et al., 2019; Carroll et al., 2020). Recent work on embodied

multi-agent benchmarks has considered more realistic tasks and environments (Liu et al.,

2022a,b; Gong et al., 2023a; Park et al., 2023; Chang et al., 2024), but it often relies on certain

privileged sensor information of the environment (Zhang et al., 2024b; Puig et al., 2021,

2023). Additionally, subject to environmental constraints, these works often have limited set

of tasks (Jain et al., 2019; Tan et al., 2020) related to navigation and simple interactions

such as object rearrangement (Szot et al., 2021). By comparison, TeamCraft is based on

Minecraft, a three-dimensional, visually rich open-world realm characterized by procedurally

generated landscapes and versatile game mechanics supporting an extensive spectrum of
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Table 2.1: TeamCraft features visual observation for multi-agent control with widely-varied
tasks specified by multi-modal prompts, targeting various types of generalization essential
for multi-agent teaming. MM Spec.: multi-modal task specification. Observation: V
for visual observation and S for state-based observation. MA: multi-agent control, C for
centralized and D for decentralized. Interaction: object interaction. Tool: tool use.
Generalization: types of generalization targeted, E for generalization on novel environments
or scenes, G for novel goals, A for novel numbers of agents. # Variants: number of task
variants involved.

Benchmark MM Spec. 3D Observation MA Interaction Tool Generalization # Agents # Variants # Demonstrations

ALFRED (Shridhar et al., 2020a) ✗ ✓ V ✗ ✓ ✓ E 1 2,600+ 8,000+
FurnMove (Jain et al., 2020) ✗ ✓ V CD ✓ ✗ E 2 30 ✗

Marlo (Perez-Liebana et al., 2019) ✗ ✓ V D ✓ ✗ ✗ 4+ 14 ✗

MineDojo (Fan et al., 2022) ✗ ✓ V ✗ ✓ ✓ EG 1 3,000+ 740,000+
MindAgent (Gong et al., 2023c) ✗ ✓ VS C ✓ ✓ ✗ 4+ 39 ✗

Neural MMO 2.0 (Suárez et al., 2024) ✗ ✗ S CD ✓ ✓ EGA 128+ 25+ ✗

Overcooked-AI (Carroll et al., 2020) ✗ ✗ VS C ✓ ✓ ✗ 2 5 80
PARTNR (Chang et al., 2024) ✗ ✓ VS CD ✓ ✓ E 2 100,000+ 100,000+
RoCoBench (Mandi et al., 2024) ✗ ✓ S CD ✓ ✓ G 2 6 ✗

VIMA-Bench (Jiang et al., 2022) ✓ ✓ V ✗ ✓ ✓ EG 1 1,000+ 600,000+
Watch&Help (Puig et al., 2021) ✗ ✓ S CD ✓ ✓ EG 2 1,200+ 6,300+

TeamCraft ✓ ✓ VS CD ✓ ✓ EGA 4+ 55,000+ 55,000+

object interactions, providing rich activities ripe for intricate collaborations.

2.11 Embodied Language-Guided Benchmarks

Several researchers have looked at the problem of using natural language as the interface

between embodied agents, either in the form of task specifications (Shridhar et al., 2020b,a;

Zheng et al., 2022; Gong et al., 2023b), question answering (Das et al., 2018; Gordon et al.,

2018; Ma et al., 2023; Majumdar et al., 2024), instruction following (Anderson et al., 2018;

Narayan-Chen et al., 2019; Jayannavar et al., 2020; Gao et al., 2022; Padmakumar et al., 2022;

Wan et al., 2022; Gao et al., 2023), or as means of task coordination (Li et al., 2023; Mandi

et al., 2024). VIMA-Bench (Jiang et al., 2022) builds on previous efforts in language-guided

robotic manipulation (Zeng et al., 2020; Shridhar et al., 2021; Mees et al., 2022) and uses

multi-modal prompts as uniform task specifications for object manipulation. TeamCraft

extends multi-modal prompts to the multi-agent domain and uses them to specify a wide

variety of collaborative tasks that require object interaction and navigation.
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2.12 Benchmarks Based on Minecraft

Malmo (Johnson et al., 2016) marks the advent of a Gym-style platform tailored to Minecraft

games. It paves the way for subsequent single-agent works such as MineRL (Guss et al., 2019),

Voyager (Wang et al., 2023a), and MineDojo (Fan et al., 2022). Marlo (Perez-Liebana et al.,

2019) extends Malmo to multi-agent scenarios, but the small number of task variations limit

generalizations. Similar to our work, MindAgent (Gong et al., 2023c) and VillagerBench (Dong

et al., 2024) focus on multi-agent collaboration in a multi-task setting. However, both of these

use purely state-based observations, while TeamCraft tackles the more challenging problem

of learning to collaborate from multi-modal perceptions. Table 2.1 compares TeamCraft with

prior benchmarks.
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CHAPTER 3

Evolutionary Population Curriculum for Scaling MARL

3.1 Evolutionary Population Curriculum

In this section, we will first describe the base network architecture with the self-attention

mechanism (Vaswani et al., 2017) which allows us to incorporate a flexible number of

agents during training. Then we will introduce the population curriculum paradigm and the

evolutionary selection process.

3.1.1 Population-Invariant Architecture

We describe our choice of architecture based on the MADDPG algorithm (Lowe et al., 2017),

which is population-invariant in the sense that both the Q function and the policy can take

in an arbitrary number of input entities. We first introduce the Q function (Figure 1.1) and

then the policy.

We adopt the decentralized learning framework, so each agent has its own Q function and

policy network. Particularly for agent i, its centralized Q function is represented as follows:

Qµµµ
i (x, a1, . . . , aN) = hi([gi(fi(oi, ai)), vi]), where vi = attention(fi(oj, aj) ∀j ̸= i) (3.1)

Here fi(oj, aj) is an observation-action encoder (the green box in Figure 1.1(a)) which

takes in the observation oj and the action aj from agent j, and outputs the agent embedding

of agent j; vi denotes the global attention embedding (the orange box in Figure 1.1(a)) over all

the agent embeddings. We will explain vi and fi later. gi is a 1-layer fully connected network

processing the embedding of the ith agent’s own observation and action. hi is a 2-layer fully
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connected network that takes the concatenation of the output of gi and the global attention

embedding vi and outputs the final Q value.

Attention Embedding vi: We define the attention embedding vi by a weighted sum

of each agent’s embedding fi(oj, aj) for j ̸= i:

vi =
∑

j ̸=i

αi,jfi(oj, aj) (3.2)

The coefficient αi,j is computed by

αi,j =
exp (βi,j)∑
j ̸=i exp (βi,j)

, βi,j = fTi (oi, ai)W
T
ψWϕfi(oj, aj) (3.3)

where Wψ and Wϕ are parameters to learn. βi,j computes the correlation between the

embeddings of agent i and every other agent j via an inner product. αi,j is then obtained by

normalizing βi,j by a softmax function. Since we represent the observations and actions of

other agents with a weighted mean vi from (3.2), we can model the interactions between agent

i and an arbitrary number of other agents, which allows us to easily increase the number of

agents in our curriculum training paradigm.

Observation-Action Encoder fi: We now define the structure of fi(oj, aj) (Fig-

ure 1.1(b)). Note that the observation of agent j, oj, also includes many entities, i.e.,

states of all visible agents and objects in the game. Suppose oj contains M entities, i.e.,

oj = [oj,1, . . . , oj,M ]. M may also vary as the agent population scales over training procedure or

simply during an episode when some agents die. Thus, we apply another attention module to

combine these entity observations together in a similar way to how vi is computed (Equations

(3.2) and (3.3)).

In more details, we first apply an entity encoder for each entity type to obtain entity

embeddings of all the entities within that type. For example, in oj, we can have embeddings

for agent entities (green boxes in Figure 1.1(b)) and landmark/object entities (purple boxes

in Figure 1.1(b)). Then we apply an attention module over each entity type by attending

the entity embedding of agent j to all the entities of this type to obtain an attended type
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embedding (the orange box in Figure 1.1(b)). Next, we concatenate all the type embeddings

together with the entity embedding of agent j as well as its action embedding. Finally, this

concatenated vector is forwarded to a fully connected layer to generate the output of fi(oj, aj).

Note that in the overall critic network of agent i, the same encoder fi is applied to every

observation-action pair so that the network can maintain a fixed size of parameters even

when the number of agents increases significantly.

Policy Network: The policy network µµµi(oi) has a similar structure as the observation-

action encoder fi(oi, ai), which uses an attention module over the entities of each type in

the observation oi to adapt to the changing population during training. The only difference

in this network is that the action ai is not included in the input. Notably, we do not share

parameters between the Q function and the policy.

3.1.2 Population Curriculum

We propose to progressively scale the number of agents in MARL with a curriculum. Before

combining with the evolutionary selection process, we first introduce a simpler version, the

vanilla population curriculum (PC), where we perform the following stage-wise procedure: (i)

the initial stage starts with MARL training over a small number of agents using MADDPG

and our population-invariant architecture; (ii) we start a new stage and double1 the number

of agents by cloning each of the existing agents; (iii) apply MADDPG training on this scaled

population until convergence; (iv) if the desired number of agents is not reached, go back to

step (ii).

Mathematically, given N trained agents with parameters θθθ = {θ1, ..., θN} from the

previous stage, we want to increase the number of the agents to 2N with new parameters

θ̃θθ = {θ̃1, ..., θ̃N , ..., θ̃2N} for the next stage . In this vanilla version of population curriculum,

we simply initialize θ̃θθ by setting θ̃i ← θi and θ̃N+i ← θi, and then continue MADDPG training

on θ̃θθ to get the final policies for the new stage. Although θ̃i and θ̃N+i are both initialized

1Generally, we can scale up the population with any constant factor by introducing any amount of cloned

agents. We use the factor of 2 as a concrete example here for easier understanding.
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from θi, as training proceeds, they will converge to different policies since these policies are

trained in a decentralized manner in MADDPG.

3.1.3 Evolutionary Selection

Introducing new agents by directly cloning existing ones from the previous stage has a clear

limitation: the policy parameters suitable for the previous environment are not necessarily

the best initialization for the current stage as the population is scaled up. In the purpose of

better performance in the final game with our desired population, we need to promote agents

with better adaptation abilities during early stages of training.

Therefore, we propose an evolutionary selection process to facilitate the agents’ scaling

adaption ability during the curriculum procedure. Instead of training a single set of agents,

we maintain K parallel sets of agents in each stage, and perform crossover, mutation and

selection among them for the next stage. This is the last piece in our proposed Evolutionary

Population Curriculum (EPC) paradigm, which is essentially population curriculum enhanced

by the evolutionary selection process.

Specifically, we assume the agents in the multi-agent game have Ω different roles. Agents

in the same role have the same action set and reward structure. For example, we have Ω = 2

roles in a predator-prey game, namely predators and prey, and Ω = 1 role of agents for

a fully cooperative game with homogeneous agents. For notation conciseness, we assume

there are N1 agents for of role 1, namely A1 = {µµµ1, ...,µµµN1}; N2 agents of role 2, namely

A2 = {µµµN1+1, ...,µµµN1+N2}, and so on. In each stage, we keep K parallel sets for each role of

agents, denoted by A
(1)
i , . . . , A

(K)
i for role i, and take a 3-step procedure, i.e., mix-and-match

(crossover), MARL fine-tuning (mutation) and selection, as follows to evolved these K parallel

sets of agents for the next stage.

Mix-and-Match (Crossover): In the beginning of a curriculum stage, we scale the

population of agents from N to 2N . Note that we have K parallel agent sets of size Ni for role

i, namely A
(1)
i , . . . , A

(K)
i . We first perform a mix-and-match over these parallel sets within
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every role i: for each set A(j)
i , we pair it with all the K sets of the same role, which leads to

K(K + 1)/2 new scaled agent sets of size 2Ni. Given these scaled sets of agents, we then

perform another mix-and-match across all the Ω roles: we pick one scaled set for each role

and combine these Ω selected sets to produce a scaled game with 2N agents. For example, in

the case of Ω = 2, we can pick one agent set A
(k1)
1 from the first role and another agent set

A
(k2)
2 from the second role to form a scaled game. Thus, there are Cmax = (K(K + 1)/2)Ω

different combinations in total through this mix-and-match process. We sample C games

from these combinations for mutation in the next step. Since we are mixing parallel sets of

agents, this process can be considered as the crossover operator in standard evolutionary

algorithms.

MARL Fine-Tuning (Mutation): In standard evolutionary algorithms, mutations are

directly performed on the parameters, which is inefficient in high-dimensional spaces and

typically requires a large amount of mutants to achieve sufficient diversity for evolution.

Instead, here we adopt MARL fine-tuning in each curriculum stage (step (iii) in vanilla PC)

as our guided mutation operator, which naturally and efficiently explores effective directions

in the parameter space. Meanwhile, due to the training variance, MARL also introduces

randomness which benefits the overall diversity of the evolutionary process. Concretely,

we apply parallel MADDPG training on each of the C scaled games generated from the

mix-and-match step and obtain C mutated sets of agents for each role.

Selection: Among these C mutated sets of agents for each role, only the best K mutants

can survive. In the case of Ω = 1, the fitness score of a set of agents is computed as their

average reward after MARL training. In other cases when Ω ≥ 2, given a particular mutated

set of agents of a specific role, we randomly generate games for this set of agents and other

mutated sets from different agent roles. We take its average reward from these randomly

generated games as the fitness score for this mutated set. We pick the top-K scored sets of

agents in each role to advance to the next curriculum stage.
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Algorithm 1: Evolutionary Population Curriculum
Data: environment E(N, {Ai}1≤i≤Ω) with N agents of Ω roles, desired population

Nd, initial population N0, evolution size K, mix-and-match size C
Result: a set of Nd best policies
N ← N0;

initialize K parallel agent sets A
(1)
i , . . . , A

(K)
i for each role 1 ≤ i ≤ Ω;

initial parallel MARL training on K games, E(N, {A(j)
i }1≤i≤Ω) for 1 ≤ j ≤ K;

while N < Nd do
N ← 2×N ;
for 1 ≤ j ≤ C do

for each role 1 ≤ i ≤ Ω: j1, j2 ← unif(1, K), Ã
(j)
i ← A

(j1)
i + A

(j2)
i

(mix-and-match);

MARL training in parallel on E(N, {Ã(j)
i }1≤i≤Ω) for 1 ≤ j ≤ C (guided mutation) ;

for role 1 ≤ i ≤ Ω do
for 1 ≤ j ≤ C do

S
(j)
i ← Ekt ̸=i∼[1,C]

[
avg. rewards on E(N, {Ã(k1)

1 , . . . , Ã
(j)
i , . . . , Ã

(kΩ)
Ω })

]

(fitness);

A
(1)
i , . . . , A

(K)
i ← top-K w.r.t. Si from Ã

(1)
i , . . . , Ã

(C)
i (selection);

return the best set of agents in each role, i.e., {A
(k⋆i )
i |k

⋆
i ∈ [1, K] ∀1 ≤ i ≤ Ω};

Overall Algorithm: Finally, when the desired population is achieved, we take the best

set of agents in each role based on their last fitness scores as the output. We conclude the

detailed steps of EPC in algorithm 1. Note that in the first curriculum stage, we just train

K parallel games without mix-and-match or mutation. So, EPC simply selects the best from

the K initial sets in the first stage while the evolutionary selection process only takes effect

starting from the second stage. We emphasize that although we evolve multiple sets of agents

in each stage, the three operators, mix-and-match, MARL fine-tuning and selection, are all

perfectly parallel. Thus, the evolutionary selection process only introduces little influence on

the overall training time. Lastly, EPC is an RL-algorithm-agnostic learning paradigm that

can be potentially integrated with any MARL algorithm other than MADDPG.
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Figure 3.1: Environment Visualizations

3.2 Experiments

We experiment on three challenging environments, including a predatory-prey-style Grassland

game, a mixed-cooperative-and-competitive Adversarial Battle game and a fully cooperative

Food Collection game. We compare EPC with multiple baseline methods on these environments

with different scales of agent populations and show consistently large gains over the baselines.

In the following, we will first introduce the environments and the baselines, and then both

qualitative and quantitative performances of different methods on all three environments.

3.2.1 Environments

All these environments are built on top of the particle-world environment (Mordatch and

Abbeel, 2018) where agents take actions in discrete timesteps in a continous 2D world.

Grassland: In this game, we have Ω = 2 roles of agents, NS sheep and NW wolves, where

sheep moves twice as fast as wolves. We also have a fixed amount of L grass pellets (food for

sheep) as green landmarks Figure 3.1(a). A wolf will be rewarded when it collides with (eats)

a sheep, and the (eaten) sheep will obtain a negative reward and becomes inactive (dead). A

sheep will be rewarded when it comes across a grass pellet and the grass will be collected

and respawned in another random position. Note that in this survival game, each individual

agent has its own reward and does not share rewards with others.

Adversarial Battle: This scenario consists of L units of resources as green landmarks and

two teams of agents (i.e., Ω = 2 for each team) competing for the resources Figure 3.1(b).
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Both teams have the same number of agents (N1 = N2). When an agent collects a unit of

resource, the resource will be respawned and all the agents in its team will receive a positive

reward. Furthermore, if there are more than two agents from team 1 collide with one agent

from team 2, the whole team 1 will be rewarded while the trapped agent from team 2 will be

deactivated (dead) and the whole team 2 will be penalized, and vice versa.

Food Collection: This game has N food locations and N fully cooperative agents (Ω = 1).

The agents need to collaboratively occupy as many food locations as possible within the game

horizon Figure 3.1(c). Whenever a food is occupied by any agent, the whole team will get a

reward of 6/N in that timestep for that food. The more food occupied, the more rewards the

team will collect.

In addition, we introduce collision penalties as well as auxiliary shaped rewards for each

agent in each game for easier training. All the environments are fully observable so that each

agent needs to handle a lot of entities and react w.r.t. the global state.

3.2.2 Methods and Metric

We evaluate the following approaches in our experiments: (1) the MADDPG algorithm

(Lowe et al., 2017) with its original architecture (MADDPG); (2) the provably-converged

mean-field algorithm (Yang et al., 2018) (mean-field); (3) the MADDPG algorithm with our

population-invariant architecture (Att-MADDPG); (4) the vanilla population curriculum

without evolutionary selection (vanilla-PC); and (5) our proposed EPC approach (EPC).

For EPC parameters, we choose K = 2 for Grassland and Adversarial Battle and K = 3

for Food Collection; for the mix-and-match size C, we simply set it Cmax and enumerate all

possible mix-and-match combinations instead of random sampling.

For Grassland and Adversarial Battle with Ω = 2, we evaluate the performance of different

methods by competing their trained agents against our EPC trained agents. Specifically, in

Grassland, we let sheep trained by each approach compete with the wolves from EPC and

collect the average sheep reward as the evaluation metric for sheep. Similarly, we take the
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same measurement for wolves from each method. In Adversarial Battle, since two teams

are symmetric, we just evaluate the shared reward of one team trained by each baseline

against another team by EPC as the metric. For Food Collection with Ω = 1, since it is fully

cooperative, we take the team reward for each method as the evaluation metric. In addition,

for better visualization, we plot the normalized scores by normalizing the rewards of different

methods between 0 and 1 in each scale for each game.

3.2.3 Qualitative Results

We qualitatively illustrate the learned strategies by MADDPG and EPC in the three games

here.

In Grassland, as the number of wolves goes up, it becomes increasingly more challenging

for sheep to survive; meanwhile, as the sheep become more intelligent, the wolves will be

incentivized to be more aggressive accordingly. In Figure 3.2, we illustrate two representative

matches for competition, including one using the MADDPG sheep against the EPC wolves

(Figure 3.2a), and the other between the EPC sheep and the MADDPG wolves (Figure 3.2b).

From Figure 3.2a, we can observe that the MADDPG sheep can be easily eaten up by the EPC

wolves (note that dark circle means the sheep is eaten). On the other hand, in Figure 3.2b,

we can see that the EPC sheep learns to eat the grass and avoid the wolves at the same time.

In Adversarial Battle, we visualize two matches in Figure 3.3 with one over agents by

EPC (Figure 3.3a) and the other over agents by MADDPG (Figure 3.3b). We can clearly

see the collaborations between the EPC agents: although the agents are initially spread over

the environment, they learn to quickly gather as a group to protect themselves from being

killed. While for the MADDPG agents, their behavior shows little incentives to cooperate or

compete — these agents stay in their local regions throughout the episode and only collect

resources or kill enemies very infrequently.

In Food Collection (Figure 3.4), the EPC agents in Figure 3.4a learn to spread out and

occupy as many food as possible to maximize the team rewards. While only one agent among

the MADDPG agents in Figure 3.4b successfully occupies a food in the episode.
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(a) MADDPG sheep vs EPC wolves (b) MADDPG wolves vs EPC sheep

Figure 3.2: Example matches between EPC and MADDPG trained agents in Grassland

(a) EPC (b) MADDPG

Figure 3.3: Quantitative result of adversarial battle

3.2.4 Quantitative Results

Quantitative Results in Grassland : In the Grassland game, we perform curriculum

training by starting with 3 sheep and 2 wolves, and gradually increase the population of

agents. We denote a game with NS sheep and NW wolves by “scale NS-NW ”. We start

with scale 3-2 and gradually increase the game size to scales 6-4, 12-8 and finally 24-16.For

the two curriculum learning approach, vanilla-PC and EPC, we train over 105 episodes in

the first curriculum stage (scale 3-2) and fine-tune the agents with 5 × 104 episodes after

mix-and-match in each of the following stage. For other methods that train the agents from

scratch, we take the same accumulative training iterations as the curriculum methods for a

fair comparison.

(a) EPC (b) MADDPG

Figure 3.4: Quantitative result of food collection
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(a) Normalized scores of wolves and sheep (b) Sheep statistics

Figure 3.5: Quantitive result in grassland game. In part (a), we show the normalized scores
of wolves and sheep trained by different methods when competing with EPC sheep and EPC
wolves respectively. In part (b), we measure the sheep statistics over different scales (x-axis),
including the average number of total grass pellets eaten per episode (left) and the average
percentage of sheep that survive until the end of episode (right). EPC trained agents (yellow)
are consistently better than any baseline method.

Main Results: We report the performance of different methods for each game scale in

Figure 3.5a. Overall, there are little differences between the mean-field approach and the

original MADDPG algorithm while the using the population-invariant architecture (i.e., Att-

MADDPG) generally boosts the performance of MADDPG. For the method with population

curriculum, vanilla-PC performs almost the same as training from scratch (Att-MADDPG)

when the number of agents in the environment is small (i.e., 6-4) but the performance gap

becomes much more significant when the population further grows (i.e., 12-18 and 24-16).

For our proposed EPC method, it consistently outperforms all the baselines across all the

scales. Particularly, in the largest scale 24-16, EPC sheep receive 10x more rewards than the

best baseline sheep without curriculum training.

Detailed Statistics: Besides rewards, we also compute the statistics of sheep to understand

how the trained sheep behavior in the game. We perform competitions between sheep trained

by different methods against the EPC wolves and measure the average number of total grass

pellets eaten per episode, i.e, #grass eaten, and the average percentage of sheep that survive

until the end of an episode, i.e., survival rate, in Figure 3.5b. We can observe that as the

population increases, it becomes increasingly harder for sheep to survive while EPC trained

sheep remain a high survival rate even on the largest scale. Moreover, as more sheep in

the game, EPC trained sheep consistently learn to eat more grass even under the strong
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(a) Adversarial Battle (b) Food Collection

Figure 3.6: Quantitative results in adversarial battle game and food collection game

pressure from wolves. In contrast, the amount of eaten grass of MADDPG approach (i.e.,

Att-MADDPG) drastically decreases when the number of wolves becomes large.

Quantitative Results in Adversarial Battle: In this game, we evaluate on environments

with different sizes of agent population N , denoted by scale N1-N2 where N1 = N2 = N/2.

We start the curriculum from scale 4-4 and then increase the population size to scale 8-8

(N = 16) and finally 16-16 (N = 32). Both vanilla-PC and EPC take 5×104 training episodes

in the first stage and then 2× 104 episodes in the following two curriculum stages. We report

the normalized scores of different methods in Figure 3.6a, where agents trained by EPC

outperform all the baseline methods increasingly more significantly as the agent population

grows.

Quantitative Results in Food Collection: In this game, we begin curriculum training

with N = 3, namely 3 agents and 3 food locations, and progressively increase the population

size N to 6, 12 and finally 24. Both vanilla-PC and EPC perform training on 5× 104 episodes

on the first stage of N = 3 and then 2 × 104 episodes in each of the following curriculum

stage. We report the normalized scores for all the methods in Figure 3.6b, where EPC is

always the best among all the approaches with a clear margin. Note that the performance

of the original MADDPG and the mean-field approach drops drastically as the population

size N increases. Particularly, the mean-field approach performs even worse than the original

MADDPG method. We believe this is because in this game, the agents must act according
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(a) Stability comparison: Grassland, (b) Adversarial Battle, (c) Food Collection.

(d) Normalized scores: Grassland, (e) Adversarial Battle, (f) Food Collection.

Figure 3.7: Ablation analysis on the second curriculum stage in all the games. Stability
comparison (top) in (a), (b) and (c): We use 3 different seeds to perform training and observe
EPC has much less variance comparing to vanilla-PC. Normalized scores during fine-tuning
(bottom) in (d), (e) and (f): This illustrates that EPC can successfully transfer the agents
trained with a smaller population to a larger population by fine-tuning.

to the global team state collaboratively, which means the local approximation assumption in

the mean-field approach does not hold clearly.

Stability Analysis: The evolutionary selection process in EPC not only leads to better

final performances but also stabilizes the training procedure. We validate the stability of

EPC by computing the variance over 3 training seeds for the same experiment and comparing

with the variance of vanilla-PC, which is also obtained from 3 training seeds. Specifically,

we pick the second stage of curriculum learning and visualize the variance of agent scores

throughout the stage of training. These scores are computed by competing against the final

policy trained by EPC. We perform analysis on all the 3 environments: Grassland with

scale 6-4 (Figure 3.7a), Adversarial Battle with scale 8-8 (Figure 3.7b) and Food Collection

with scale 6 (Figure 3.7c). We can observe that the variance of EPC is much smaller than

vanilla-PC in different games.
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(a) Grassland (b) Adversarial Battle (c) Food Collection

Figure 3.8: Environment Generalization: We take the agents trained on the largest scale and
test on an environment with twice the population. We perform experiments on all the games
and show that EPC also advances the agents’ generalizability.

Convergence Analysis: To illustrate that the self-attention based policies trained from

a smaller scale is able to well adapt to a larger scale via fine-tuning, we pick a particular

mutant by EPC in the second curriculum stage and visualize its learning curve throughout

fine-tuning for all the environments, Grassland (Figure 3.7d), Adversarial Battle (Figure 3.7e)

and Food Collection (Figure 3.7f). The scores are computed in the same way as the stability

analysis. By comparing to MADDPG and Att-MADDPG, which train policies from scratch,

we can see that EPC starts learning with a much higher score, continues to improve during

fine-tuning and converges to a much better solution.

Generalization: We investigate whether the learned policies can generalize to a different

test environment with even a larger scale than the training ones. To do so, we take the

best polices trained by different methods on the largest population and directly apply these

policies to a new environment with a doubled population by self-cloning. We evaluate in all

the environments with EPC, vanilla-PC and Att-MADDPG and measure the normalized

scores of different methods, which is computed in the same way as the fitness score. In all

cases, we observe a large advantage of EPC over the other two methods, indicating the better

generalization ability for policies trained by EPC.

35



CHAPTER 4

Learning Social Gradient Fields for Adaptive Multi-Agent

Systems

4.1 Preliminary

4.1.1 Theory of Social Force

Theory of social force (Patten, 1896; Helbing and Molnár, 1995) assumes that agents are

influenced by various social forces in their environment, such as attraction, repulsion, cohesion,

or alignment. Social force theory can be formulated mathematically as a system of differential

equations that describe the motion of each agent as a function of its position, velocity, and

the forces exerted by other agents and external factors. The general form of the social force

model is:
dvi
dt

= fi(xi,vi,x−i,v−i),
dxi
dt

= vi (4.1)

where xi and vi are the position and velocity vectors of agent i, and fi is the net force acting

on agent i, which depends on its own state and the state of other agents (x−i,v−i). The

specific form of fi can vary depending on the domain and the assumptions made about the

agent’s behavior and objectives. And the agents usually will be driven by multiple forces.

4.1.2 Learning Gradient Fields via Score-Matching

The score-based generative model aims to learn the gradient field of a log-data-density, i.e.,

the score function. Given samples {xi}Ni=1 from an unknown data distribution {xi ∼ pdata(x)},

the goal is to learn a score function to approximate ∇x log pdata(x) via a score network
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sθ(x) : R
|X | → R

|X |.

L(θ) =
1

2
Epdata

[
∥sθ(x)−∇x log pdata(x)∥

2
2

]
(4.2)

During the test phase, a new sample is generated by Markov Chain Monte Carlo (MCMC)

sampling, e.g., Langevin Dynamics (LD), which is out of our interest since we focus on

gradient field estimation.

However, the vanilla objective of score-matching in (4.2) is intractable, since pdata(x) is

unknown. To this end, the Denoising Score-Matching (DSM) (Vincent, 2011) proposes a

tractable objective by pre-specifying a noise distribution qσ(x̃|x), and train a score network

to denoise the perturbed data samples, where qσ(x̃|x) = N (x̃;x, σ2I) is a Gaussian kernel

with tractable gradient in our cases:

L(θ) = E x̃∼qσ(x̃|x),
x∼pdata(x)

[
∥sθ(x̃)−∇x̃ log qσ(x̃|x)∥

2
2

]

= E x̃∼qσ(x̃|x),
x∼pdata(x)

[∥∥∥∥sθ(x̃)−
1

σ2
(x− x̃)

∥∥∥∥
2

2

] (4.3)

DSM guarantees that the optimal score network holds s
∗
θ(x) = ∇x log pdata(x) for almost all

x.

In practice, we adopt an extension of DSM (Song et al., 2020) that estimates a time-

dependent score network sθ(x, t) : R|X | × R
1 → R

|X | to denoise the perturbed data from

different noise levels simultaneously:

L(θ) = Et∼U(ϵ,T )
{
E x̃∼qσ(t)(x̃|x),

x∼pdata(x)

λ(t)

[∥∥∥∥sθ(x̃, t)−
1

σ2(t)
(x− x̃)

∥∥∥∥
2

2

]}
(4.4)

where T , ϵ, λ(t) = σ2(t), σ(t) = σt0 and σ0 are hyper-parameters. The optimal time-dependent

score network holds s∗θ(x, t) = ∇x log qσ(t)(x) where qσ(t)(x) is the perturbed data distribution:

qσ(t)(x̃) =

∫
qσ(t)(x̃|x)pdata(x)dx (4.5)

37



Algorithm 2: Learning SocialGFs from Offline Examples
Generate Ne examples from the environment E(OE, RE) with the observation
function Oe and reward function Re;

while N < Ne do
Learn gradient fields gf from example EN ;
if EN ⊆ S+ then

add gf to attractive representation set gf+;
if RE is sparse then

RE ← RE − λ|gf+| ; // credit assignment

else
add gf to repulsive representation set gf−;

OGF ← {gf
+, gf−}; // combine GFs

return the new environment representation: E(OGF , RE);

4.2 Method

In this section, we will introduce how to learn the gradient fields in the multi-agent environment

and how to train an adaptive agent by using the gradient-based state representation.

4.2.1 Problem Formulation

In the context of a multi-agent environment denoted as E(OE, RE), which is characterized

by an observation function OE and a reward function RE, we initially express OE as the

concatenation of gf vectors: OE is assigned as gf1, gf2, ..., gfn. Additionally, we adapt the

reward function RE to suit sparse reward environments by deducting the magnitude of the

positive gf+: RE is updated to RE − λ|gf+
E |. For adaptation, we simply substitute the

existing gf representation, yielding the agent to respond accordingly to the new output.

Further elaboration on these details follows.

For representing the OE with gf , the initial step involves acquiring the example set S.

For each example within this set, a score network s
∗
θ is trained by minimizing the expression

specified in (4.4). This score network essentially embodies the learned gradient fields. By

applying each s
∗
θ to the observation, a Gradient Field (GF) representation of the environment,

denoted as OGFE
, is obtained through the concatenation of all the individual outputs. This
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representation can be further subdivided into attractive GF gf+
E and repulsive GF gf−

E as

OGFE
← {gf+

E , gf
−
E }. Thereby transforming the environment representation to E(OGFE

, RE).

For scenarios with sparse rewards where exploration of the attractive example set is

challenging, credit assignment is implemented. The magnitude of gf+
E is subtracted from

these sparse attractive examples with a discount factor applied to the reward function RE,

resulting in RE ← RE −λ|gf+
E |. Subsequently, Multi-Agent Reinforcement Learning (MARL)

methods are applied to the new gf representation of the environment. An policy trained on

this represented environment E is denoted as πϕ{at|gf
+
E , gf

−
E }.

For adaptation, specifically transferring the policy πϕ{at|gf
+
E1
, gf−

E1
} trained on envi-

ronment E1 to the environment E2, the GF representation OGFE2
is obtained in the new

environment, which is partitioned into attractive GF gf+
E2

and repulsive GF gf−
E2

. Subse-

quently, the gf+
E1
, gf−

E1
from E1 are replaced with those from E2, resulting in the updated

agent πϕ{at|gf
+
E2
, gf−

E2
}. gf could be shared among different tasks.

4.2.2 Offline Examples Collection

The creation of example set S involves the delineation of two fundamental categories: attractive

examples S+ = {s+} ⊆ S and repulsive examples S− = {s−} ⊆ S tailored to each type of

agent based on the task description, reward function, and expert knowledge. Subsequently,

these example sets will serve as the foundation for training gradient fields in subsequent

stages.

To elucidate, in the guidance of agents towards task completion, attractive examples

pertain to goal states, whereas repulsive examples encompass scenarios where agents get

punished. Examples can be obtained from triggered event. Let’s consider a grassland game

scenario, where the game dynamics stipulate that wolves prey on sheep, while sheep aim to

evade wolves and consume grass. For the wolf, successful consumption of a sheep designates

instances as attractive examples, whereas for the sheep, evading such situations constitutes

repulsive examples. It is noteworthy that within each aspect, attractive S+ or repulsive S−,

there may exist multiple types of example sets. Different example sets correspond to distinct
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(c) Color Navigation (d) Team Navigation(b) Vanilla Navigation

(a) Grassland

(a) The offline examples that we used
for learning gradient fields. The differ-
ent colors of the balls indicate that they
belong to different classes.

(b) Grass eating GF(a) Wolf avoid GF

(b) The visualization of learned Gradient fields for sheep
in grassland game. Red and green circles indicate the
wolves and the grass respectively.

goal states that agents aim to achieve or avoid. This process of generating example sets proves

particularly efficacious in scenarios with sparse rewards, where achieving the designated goal

state poses a formidable challenge and the diversity of examples is inherently limited.

In practice, we collect the examples based on the event triggered by the agents. Figure 4.1a

shows several examples extracted from the environments. The different colors of the balls

indicate that they belong to different classes. We show examples of the grassland game in

Figure 4.1a(a). The red ball represents a wolf and the gray ball represents sheep. The left

example is collected when the “sheep eaten" event is triggered. This is used as a repulsive

example for sheep and a positive example for wolves. The middle example is collected when

the “grass eaten" event is triggered. This is used as a positive example for sheep. The right

side example is collected from frames in the game. It is used as an agent-object example of

legal position since the agent is not colliding with the boundaries or obstacles. It is used as a

positive example for both sheep and wolves. Figure 4.1a shows the three examples (b, c, d)

of navigation games. They are collected when the “success" event is triggered.

4.2.3 Learning Gradient Fields

Utilizing the attractive example sets S+ and repulsive example sets S− as a foundation, we

can proceed to train score networks to provide attractive gradient field gf+ and repulsive

gradient field gf−, by adhering to the principles outlined in (4.4). The learned score networks
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can subsequently be employed at each step to estimate the gradient from each type of example

set. This gradient serves as an elevated representation of the environment, offering insights

into the direction and distance of an agent to all kinds of example sets within S.

The gradient vectors obtained through this process encapsulate crucial information

regarding an agent’s proximity to attractive or repulsive instances, thereby enabling an

abstract understanding of the environment. This higher-level representation, derived from

the attractive and repulsive gradient field networks, enhances the agent’s capacity to navigate

and respond appropriately to the varying challenges posed by the attractive and repulsive

examples within the environment. In Figure 4.1b, we show part of the gf applied in the

grassland game. The arrows are generated by putting sheep in that location. The length

of the arrows measures the magnitude of the gradients. Figure 4.1b(a) is the wolf avoid

gfwolf_avoid where the red circles are the positions of wolves. Figure 4.1b(b) is the grass-eaten

gfgrass_eaten where the green circles indicate grass.

4.2.4 Gradient-Enhanced Rewards

In scenarios characterized by sparse rewards, where rewards are only allocated to a limited

set of states, reward shaping becomes a common strategy. However, its applicability is

problem-specific and demands meticulous engineering. In the context of gf generation from

these sparse attractive examples, the magnitude |gf+| serves as an indicator of the current

state’s distance from the distribution of attractive examples. Consequently, to mitigate

sparsity, the absolute value of the GF, denoted as |gf+|, is subtracted from the reward

function with a discount factor, resulting in Re ← Re − λ|gf+|.

The objective is to maximize the reward function, thereby minimizing the distance between

the current state and the example state. This approach ensures that the agent, by seeking to

maximize rewards, progressively narrows the gap between its current state and the target

state, facilitating more effective learning and convergence toward the desired outcomes.
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4.2.5 Learning Adaptive Policy

Adaptive ability refers to an agent’s capacity to alter its behavior in response to environ-

mental shifts or novel tasks. The gradient field represents a form of representation adept

at encoding the social rules and relationships within an environment. The introduction of

adaptive ability in a Multi-Agent System can be accomplished through the replacement of

gf representation. An agent πϕ{at|gf
+
E1
, gf−

E1
} target for E1 can transfer to E2 by simply

applying the gfE2 representation: πϕ{at|gf
+
E2
, gf−

E2
}. A novel representation of the altered

environment is introduced, compelling agents to transition to a new policy rooted in the

updated gf . This transition prompts adjustments in the agents’ interactions with each other

and the environment, fostering a dynamic and responsive behavior reflective of the modified

environmental conditions. Also, gf can be reused among different tasks and agents.

4.3 Experiments

We tested our approach on four challenging environments, including a wolf-sheep game on

grassland and three varieties of fully cooperative navigation games with sparse rewards.

We found that our approach, SocialGFs, outperformed all other baselines in those four

environments. We also tested the adaptive performance of SocialGFs across tasks and

with different scales of agent populations and found that it performed well in those four

environments.

4.3.1 Environments

All of the environments we used in our experiments were built on top of the particle-world

environment (Mordatch and Abbeel, 2018), which is a continuous 2D world where agents can

take actions in discrete timesteps.

Grassland: As is shown in Figure 4.2(a), there are two types of agents: sheep (blue) and

wolves (red). The sheep need to collect grass pellets (green) and avoid wolves, while the
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wolves need to eat sheep. The sheep move faster than the wolves. There are a fixed number

of grass pellets (food for sheep) and large gray obstacles in the environment that can impede

the movement of the agents. When a wolf collides with (eats) a sheep, the wolf is rewarded,

and that (eaten) sheep will obtain a penalty. This will be marked as a “sheep eaten" event.

When any sheep comes across a grass pellet, that sheep is rewarded and the grass will be

collected and respawned in another random position, and this will be marked as a “grass

eaten" event. The goal of the sheep is to collect as many grass pellets as possible and avoid

being eaten by the wolves. The goal of the wolves is to eat as many sheep as possible.

Cooperative Navigation: In this environment, agents must cooperate through physical

actions to reach a set of landmarks L. The agents will receive a reward and the event will be

marked as “success" only when all the landmarks are occupied correctly. We designed three

varieties of cooperative navigation for different difficulties:

• Vanilla Navigation : N cooperative agents aim to simultaneously occupy N landmarks

without any conflicts, as shown in Figure 4.2(b).

• Color Navigation : There is an equal number of red and green agents, as well as an

equal number of corresponding red and green landmarks. The objective of the game

is for each agent to navigate towards and reach the landmark that matches their own

color, as shown in Figure 4.2(c).

• Team Navigation : In the game shown in Figure 4.2(d), there are two teams of agents,

one red and the other green. Both teams are composed of an equal number of agents.

However, the number of agents exceeds the number of available landmarks. For a

landmark to be deemed successfully occupied, it must be touched by at least one agent

from each team.

4.3.2 Baselines and Evaluation Method

In the experiments, we compared the following approaches:
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(c) Color Navigation (d) Team Navigation

Wolf
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Landmark
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(a) Grass Land (b) Vanilla Navigation

Figure 4.2: Four games used in the experiments. Figure (a) shows the grassland game where
sheep work together to collect grass and avoid wolves, while the wolves work cooperatively to
eat sheep. Figure (b)(c)(d) are three varieties of cooperative navigation games where agents
need to cooperatively reach different landmarks.

• Original (sparse) Reward: this method trains the agents using event-based sparse

reward and MAPPO (Yu et al., 2021) algorithm;

• Reward Engineering: this method trains the agents with human-shaped dense reward

and MAPPO;

• SocialGFs*: Agents are trained with the original reward using the gradient fields

learned from previously collected offline examples. The adaptive model, denoted by an

asterisk (*), is trained from the SocialGFs sheep model at a scale of 4− 4 within the

Grassland game environment.

• SocialGFs+ (for Cooperative Navigation): Specifically designed for sparse reward

scenarios, this method further incorporates gradient field representation with credit

assignment.

For the grassland, we follow the evaluation method of Long et al. (2020) by competing

agents trained from different methods. Specifically, we let sheep trained by different approaches
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compete with wolves trained from SocialGFs to get the average reward as the evaluation of

sheep. Similarly, we compete for wolves with SocialGFs sheep to evaluate different wolves.

For better visualization, we use normalized reward from 0.1-1 to show the difference between

methods. We also do a cross-match of every wolf and sheep trained under a scale of 4-4. In

cooperative navigation, we calculate the final step success rate as evaluation metrics.

4.3.3 Quantitative Results in Grassland

We denote a game with NW wolves and NS sheep by “scale NW -NS”. Both NW and NS can

choose from {2, 4, 8} so totally there are 9 scales. The SocialGFs sheep’s GF-representation

is: {gf+
grass_eaten, gf

+
boundary_avoid, gf

−
wolf_avoid}, and the wolf’s GF-representation is:

{gf+
sheep_chasing, gf

+
boundary_avoid}. During MARL training, every method is trained with 2×106

episodes on all scales. The SocialGFs* we choose are sheep models trained from scale 4− 4.

To adapt the sheep, there is nothing to change since the gf representation is the same. For

wolves, we replace gf+
grass_eaten with the wolves gf+

sheep_chasing and remove the gf+
grass_eaten.

Main Results: The results are shown in Figure 4.3. From the graph, we can see that

SocialGFs* and SocialGFs dominate most of the scales. Overall, there is little difference

between the original reward and Reward Engineering results. For adaptive ability, SocialGFs*

adapt perfectly as sheep for all the scales, surprisingly, they are even the best wolves for a

few scales. We also do cross matches between all the wolves and sheep trained from different

methods on scale of 4-4. The result is shown in Table 4.1. The red numbers are the reward

of wolves and the green numbers are the result of sheep. When we fix the same group of

sheep or wolves, the SocialGFs and SocialGFs* method always perform better compared to

the other methods.

4.3.4 Quantitative Results in Cooperative Navigation

In the vanilla navigation game, we have 2-5 agents and the number of landmarks is the same

as the agent. For the color navigation game, there are two teams of the same equal agents,
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Table 4.1: Cross-validation results in the Grassland game with 4 sheep and 4 wolves

Sheep
Wolf

Original Reward Reward Engineering SocialGFs SocialGFs∗

Original Reward
-0.62

0.904
-0.638

0.905
-1.819

2.351
-0.734

1.07

Reward Engineering
-1

1.345
-0.316

0.662
-3.86

4.804
-1.894

2.577

SocialGFs
0.323

0.169
0.209

0.266
0

0.695
-0.178

0.855

SocialGFs∗
0.315

0.169
0.206

0.273
-0.019

0.707
-0.192

0.877

0.00
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0.00

0.25

0.50

0.75

1.00

2-2 2-4 2-8 4-2 4-4 4-8 8-2 8-4 8-8
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Original Reward Reward Engineering SocialGFs SocialGFs*

sheep reward

Figure 4.3: The quantitative results in Grassland. In the left two figures, we scale the wolf
and sheep reward to 0.1-1. In the rightmost figure, we list the grass eaten amount for sheep
in 100 time steps to measure the grass collection ability.

Table 4.2: Success rate of three cooperative navigation games with different populations

Vanilla Navigation Color Navigation Team Navigation

# of agents 2 3 4 5 2 3 4 5 2 3 4 5

Original Reward 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Reward Engineering 0.19 0.0 0.0 0.0 0.05 0.0 0.0 0.0 0.004 0.001 0.0 0.0
SocialGFs 0.998 0.948 0.88 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SocialGFs+ 0.992 0.971 0.883 0.751 0.484 0.428 0.348 0.240 0.359 0.265 0.203 0.106
SocialGFs∗ 0.771 0.639 0.571 0.400 0.417 0.302 0.243 0.142 0.121 0.098 0.051 0.038
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each with 2-5 agents and the landmark number is equal to the number of agents. For the team

navigation game, there are two teams of equal agents. The number of agents in each team

and landmarks are (2,3), (3,5), (4,6), and (5,7). The SocialGFs agent’s GF-representation

is gf+
navigation. The SocialGFs* we choose are sheep models trained in a grassland game of

scale 4-4. We replaced the representation from gf+
grass_eaten, gf

+
boundary_avoid, gf

−
wolf_avoid with

gf+
navigation.

We list the success rate of different navigation games in Table 4.2. Both the original

reward method and the Reward Engineering method failed in all scenarios except the smallest

scale of the vanilla navigation game. SocialGFs are only able to work in simpler scenarios

in vanilla navigation games that have less than 5 agents. SocialGFs+ outperforms all the

other methods with a large gap in all the environments. SocialGF* agents are also managed

to succeed in all the cooperative navigation games which shows the strong adaptability of

SocialGFs.

4.3.5 Qualitative Results

In the grassland game, as the number of wolves increases, it becomes more difficult for sheep

to develop grass-collecting abilities. This is because the wolves are able to more easily catch

and eat the sheep, which reduces the amount of time that the sheep have to collect grass.

We take a few example screenshots of two representative grassland matches between So-

cialGFs agents and original reward agents from the experiment rendering result in Figure 4.4a.

The small gray balls represent grass. The red balls represent wolf and the blue dot represents

sheep. The upper graph of Figure 4.4a shows the results of a simulation with 4 original

reward wolves and 2 SocialGFs sheep. The green box shows that one of the wolves is not

chasing any sheep and the other wolves are not able to catch the sheep. The red box shows a

sheep can collect grass and avoid the wolves at the same time. The lower graph shows the

results of a simulation with 4 SocialGFs* wolves and 2 original reward sheep. The red box

shows that the wolves can successfully corner and eat the sheep.

We also visualize two representative team navigation games in Figure 4.4b. Among the
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Team reward wolf vs SocialGFs sheep

SocialGFs* wolf vs Team reward sheep

Wolf

Grass
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(a) Qualitative results in grassland game

Team Reward

SocialGFs

Team Red

Landmark

Team Blue

(b) Qualitative results in team navigation game

Figure 4.4: Figure (a) is the qualitative results in grassland game. We visualize two
representative grassland matches between SocialGFs agents and original reward agents.
The upper graph shows the results of a simulation with 4 original reward wolves and 2
SocialGF sheep. The green box shows that one of the wolves is not chasing any sheep and
the other wolves are not able to catch the sheep. The red box shows a sheep can collect grass
and avoid the wolves at the same time. The lower graph shows the results of a simulation
with 4 SocialGFs* wolves and 2 original reward sheep. The red box shows that the wolves can
successfully corner and eat the sheep. Figure (b) is the qualitative results in team navigation
game. We visualize two representative team navigation games from the original reward
method and SocialGFs method. The upper graph shows that the original reward method is
unable to learn to play this game. The bottom figure shows the SocialGFs agents successfully
cooperate together to occupy 5 landmarks

cooperative navigation games, the team navigation game is the most difficult. The upper

graph of Figure 4.4b shows that the original reward method is unable to learn to play this

game. The bottom figure shows the SocialGFs agents successfully cooperating to occupy 5

landmarks. In the red box, we show two agents from different teams coming all the way

together to occupy the landmark in between.

These results suggest that agents trained with SocialGFs have adapted successfully in

new environments and SocialGFs is a more effective method for training agents to play the

grassland game and cooperative navigation games than the original reward method.
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CHAPTER 5

Inverse Attention Agents for Multi-Agent Systems

5.1 Method

In this section, we introduce the inverse-attention agent, which acts based on its attention

weights of goals and updates the weights based on the inferred goal weights of other agents.

The agent is trained in three phases. The first phase involves applying the self-attention

mechanism to the policy function (Vaswani et al., 2017) so that an agent acts based on

the weights of the attentions. The second phase is to infer the attention of other agents of

the same type using the inverse attention network. By placing itself in the position of the

other agents, the agent infers their attention weights, gaining insights into their attention

and behavior. The final phase involves training the inverse attention agent. The agent uses

the inferred attention weights from the previous phase to update its own attention weights,

consequently leading to changes in its final actions. The following subsections present the

details of our algorithm. The overall pipeline is shown in Figure 1.3. The architecture of the

inverse attention agent policy network is shown in Figure 5.1.

5.1.1 Self-Attention Structure

We incorporate a self-attention mechanism into the policy network in order to explicitly

model the agent’s mental states through attention weights assigned to different goals. These

mental states are crucial, as they influence the agent’s final action, and altering the attention

weights will lead to changes in the action. Additionally, during this phase, we prepare the

data required for training the inverse attention network. The agent trained with this structure

is referred to as the Self-Att agent.
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Figure 5.1: Network architecture of the inverse attention agent. For agent i, Wi is the
observation embedding function which takes in the observation and outputs initial attention
weights. IWi is the inverse attention network which takes in the action and observation of
the other agents and outputs the inferred attention weights. The UWi takes consideration of
self initial weights and inferred weights from others and update ai’s attention weights. The
hi function outputs the final action based on the updated weights.

Self-Attention Network: Instead of using an MLP for the policy network, we adopt a

structure similar to that proposed by Long et al. (2020), which utilizes attention embeddings

of the goal for the decentralized policy network. This can be represented as

πi(oi) = hi(Wi(fi(oi)), Vi(fi(oi))), oi = oi,1, oi,2, ..., oi,N , (5.1)

where oi is the observation of agent i, which can be decomposed into a combination of N

goals within the environment, fi is a two-layer fully connected network that embeds the N

goals, Wi(oi) is the weight encoder that outputs the attention weights of the goals, whose

details we will discuss later, and Vi is the value function implemented as a two layer fully

connected layer. The function hi multiplies the attention weights with all the goal information

to get the weighted goals goalweighted =
∑

wi,jVi(fi(oi,j)) and then passed into a two-layer

fully connected neural network to output the final action.
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Attention Weight Function: We define the attention weight embedding function as

Wi(fi(oi)) = attention(fi(oi,i), fi(oi,j)), ∀j ̸= i. (5.2)

Self-attention is applied to the agent’s own information along with all the goals and generates

the output attention weights.

Attention Inference Dataset Construction: We collect the data pairs ({wi,1, wi,2, ..., wi,N}, oi)

during the training of the self-attention network. Once the policy has converged, we retain

only the most recent 1/10 of these data pairs in the dataset D for training our inverse

attention network.

5.1.2 Attention Inference

We train the inverse attention network using the attention inference dataset D. This network

operates inversely to the self-attention network: It outputs the predicted attention weights

based on the given goals and past actions. An agent then applies the inverse attention

network to other agents of the same type to infer their attention weights. This allows the

current agent to infer the attentions of other agents without knowing the ground truth values

of their attention weights.

Inverse Attention Network: We propose the inverse attention network, designed to

infer the attention of agents of the same type from their perspective. This function has the

following structure:

{wi,1, wi,2, ..., wi,N} = IWi(oi) = attention(oi,i, fi(oi,j)), ∀j ̸= i. (5.3)

Similar to the attention weight function, the IWi function predicts the attention weight by

applying self-attention between the embedding of self-information oi,i and the embedding

of other goals fi(Oi,j). Using the dataset D, which is agent’s own data collected during

the training process of Phase 1, we train the IWi network by minimizing the following loss
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function:

Loss = L2({wi,1, wi,2, ..., wi,N}, IWi(oi)). (5.4)

Inference of Others: To estimate the attention weights of other agents, we position

the current agent as if it were one of the other agents. In a fully observable environment,

we gather the observations and previous actions of other agents of the same type. Then, we

utilize the inverse attention network to infer their attention towards different goals. The

inference attention weight for aj is

{w̃j,1, w̃j,2, ..., w̃j,N} = IWi(oj). (5.5)

5.1.3 Inverse Attention Agent

We construct the inverse attention agent (Inverse-Att) by concatenating its original attention

weights with the inferred weights. This concatenated vector is then passed through a fully

connected layer, UWi, to update the attention weights. This mechanism enables an inverse

attention agent to adapt its attention weights and consequently adjust its actions based on

the attentions of other agents. The process is represented by the following equation:

{w̃i,1, w̃i,2, ..., w̃i,N} = UWi(Wi(fi(oi)), IWi(oj)), ∀j ̸= i and aj is the same type as ai,

(5.6)

where oj is the observation from the other agent in the previous step, IWi(oj) outputs the

inverse attention estimation of agent j from agent i, and UWi is the weight updating model,

which concatenates the estimated attention weights from other agents of the same type with

the original weights Wi(fi(x)). The concatenated weights are then passed through a one-layer

fully connected network to update the attention weights to w̃. Given that the attention

weight embedding is a high-level representation, only a shallow network is required.

For fast convergence, the UWi are initialized to 1 when connected to the original attention

weight and 0 when connected to the other agents’ attention weights. This initialization

guarantees that the initial output aligns with that of the Self-attention agent, maintaining
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Algorithm 3: Inverse attention algorithm
Data: environment E(N, {Ai}) with N agents
Result: an inverse attention agent
Use (5.1) as the policy function for the target training agent ai; // self-att

framework

while ai’s policy network is not converged do
MARL training on ai;
Collect {w, oi} pair and store it to the dataset D; // training dataset for

IW

Keep the 1/10 latest {w, oi} in D and discard the rest;
Training inverse attention network IW using {w, oi} pair from the trimmed D by
following (5.4);

Replace the policy network of ai with (5.7) using trained IW ; // inverse-att

framework

while ai’s policy network is not converged do
MARL training on ai;

Return: ai is the inverse attention agent;

unchanged attention weights. Commencing the optimization process from this point enhances

effectiveness.

The complete policy network module for the inverse attention agent is outlined as follows:

πi(oi) = hi(UWi(Wi(fi(oi)), IWi(oj)), Vi(fi(x)))), ∀j ̸= i and aj is the same type as ai.

(5.7)

algorithm 3 is the inverse attention algorithm.

5.2 Experiments

We adopted MAPPO (Yu et al., 2022) as our MARL training scheme. We evaluated the

adaptive performance of the policies in collaboration with human participants across all

these tasks and found that the inverse attention agent performed well in these environments.

Additionally, we compared our agents’ behavior with human behavior. Our results indicate

that the inverse attention agent is more adaptable to a wider variety of agents.
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Figure 5.2: Environment visualization of the spread, adversary and grassland game

5.2.1 Environment

All of the environments used in our experiment were built on top of MPE (Mordatch and

Abbeel, 2017; Lowe et al., 2017). Agents are depicted as particles inhabiting a continuous

two-dimensional space, where they navigate, interact with one another, and with static

landmarks, all within discrete time intervals. The key distinction lies in our application

of the GF function atop raw observations, resulting in a gf representation structured as

{gf1, gf2, ..., gfN , gfwall}. This representation comprises the gradient fields of N entities and

the gradient field of the boundaries, serving as the goals for the agents. We assessed the

efficacy of our algorithm across five challenging environments: Spread, Adversary, Grassland,

Navigation, and Tag on MPE. Visualizations of these environments are depicted in Figure 5.2.

Spread: This is a fully cooperative game. In this scenario, N agents must spread to cover

N landmarks. At each discrete time step, an agent earns 5 points if it occupies a landmark,

and 0 points otherwise. The optimal state is each agent occupies a distinct landmark. The

default setting is N = 3.

Adversary: This is a fully competitive game that involves two types of agents: N sheep

and N wolves. Wolves catch sheep, while sheep avoid capture. Sheep are faster than wolves.

Each wolf earns 5 points for catching a sheep, while each caught sheep loses 5 points. The

scale of this game is denoted as N −N . The default setting is N = 3.

Grassland: This is a mixed game. Entities include N sheep, N wolves, and 4 grass. Sheep

aim to collect as much grass as possible while evading wolves. Wolves seek to catch as many

sheep as they can. Each sheep earns 3 points for each collected grass but loses 5 points
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for each capture. Wolves earn 5 points for each caught sheep. Grass re-spawns at random

positions after being consumed by sheep. The scale of this game is denoted as N −N . The

default setting is N = 3.

Navigation: This is a fully cooperative game with a group reward system. There are two

fast agents and one slow agent, and the goal is for the agents to navigate to three different

landmarks as quickly as possible. The team earns 5 points for each landmark occupied, shared

equally among all agents. The fast agents must accommodate the slow agent to help reach

the more distant landmarks.

Tag: This is a mixed game involving 3 wolves and 3 sheep, with group rewards. The

objective for the wolf team is to catch the sheep while avoiding three obstacles during the

chase. When any wolf catches a sheep, all wolves received 5 points and all sheep lose 5 points.

5.2.2 Baseline and Evaluation Method

In the experiments, we compared agents trained with the following methods: (1) MAPPO:

We follow the same method as (Yu et al., 2022). (2) IPPO: We follow the same method as

(Schulman et al., 2017) (3) MAA2C: It extends the existing on-policy actor-critic algorithm

A2C (Mnih et al., 2016) by applying centralised critics conditioned on the state of the

environment. (4) ToM2C*: A modified ToM method adapted from (Wang et al., 2022),

where agents directly predict other agents goals without communication. (5) Self-Att: We

adopt the self-attention structure proposed in Section 5.1.1. (6) Inverse-Att: Our proposed

attention inference agent described in Section 5.1.3. All the baseline methods are trained

for the same amount of accumulative episodes as an Inverse-Att agent required. All agents

trained in these methods do not see agents of other methods until evaluation time.

We assessed the performance of our algorithm through mix-and-match. For each method,

we select three different seeds to form three distinct groups. We formed an agent pool by

putting agents trained using all the evaluated methods. During the cross-competition period,

agents were randomly sampled from this pool to form a unique composition. The cross
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Table 5.1: Full result

MAPPO IPPO MAA2C ToM2C* Self-Att Inverse-Att

Spread 31.82±1.21 0.55±0.01 48.46±0.47 49.04±3.77 283.89±6.23 404.14±5.40
Adversary Sheep -113.97±1.74 -121.03±4.17 -96.54±3.26 -86.15±2.80 -23.15±0.83 -16.91±1.84
Adversary Wolf 48.76±1.86 25.18±1.40 109.14±0.69 61.58±1.31 107.93±2.26 110.15±3.74
Grassland Sheep -84.50±4.20 -86.54±0.32 -70.79±2.41 -61.60±1.98 -10.02±5.19 28.59±0.93
Grassland Wolf 27.86±0.79 22.60±1.38 74.28±1.27 41.11±1.59 93.68±1.61 101.21±2.84
Navigation 251.14±4.93 230.10±0.89 279.87±7.05 249.41±5.29 328.24±7.76 497.96±10.75
Tag Sheep -93.51±2.13 -111.79±3.03 -77.81±2.03 -56.69±1.02 -11.74±0.65 -5.99±0.44
Tag Wolf 42.17±3.46 26.77±0.82 59.41±1.10 52.99±1.17 67.60±1.00 109.81±1.36

competitions were conducted over 1000 episodes with each episode consisting of 200 steps.

During each episode, we recorded the agents’ rewards according to their respective methods

and calculated the average reward for performance comparison.

5.2.3 Quantitative Results

In this section, we delve into the quantitative results across all five games. We conducted

training for MAPPO, IPPO, MAA2C, ToM2C* and Self-Att agents over 40 million steps

across all scales. For training the Inverse-Att agent, Phase 1 encompassed 20 million steps,

followed by another 20 million steps for Phase 3. Phase 2 training involved offline learning,

obviating the need for interaction with the environments. Subsequently, evaluations were

carried out over 2× 106 steps of mix-and-match for all five games.

We tested all the methods across all environments, with the full results presented in

Table 5.1. The Inverse-Att method demonstrates significant improvement over all the other

methods across the five games in cooperative, competitive, and mixed settings, as well as with

both individual and team rewards. This highlights the superior adaptability and generality

of Inverse-Att when dealing with unseen agents. Self-Att ranks second, while the remaining

baselines perform similarly and rank below both Inverse-Att and Self-Att. Due to the similar

performance of MAPPO, IPPO, MAA2C, and ToM2C*, and computational limitations, in

the following sections we will focus on MAPPO, Self-Att, and Inverse-Att in the Spread,

Adversary, and Grassland games.
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Table 5.2: Spread result

MAPPO Self-Att Inverse-Att

2 51.14 ± 1.15 288.75 ± 2.80 363.02 ± 1.99
3 31.10 ± 0.93 258.81 ± 5.35 379.95 ± 1.99
4 19.59 ± 0.22 253.48 ± 1.13 269.12 ± 0.86

Table 5.3: Adversary result

MAPPO Self-Att Inverse-Att MAPPO Self-Att Inverse-Att
WOLF WOLF WOLF SHEEP SHEEP SHEEP

2-2 14.30 ± 0.61 39.75 ± 1.88 42.45 ± 1.50 -64.23 ± 1.70 -18.49 ± 0.48 -13.82 ± 1.10
3-3 29.30 ± 1.42 71.95 ± 2.38 75.44 ± 1.02 -132.75 ± 2.27 -30.79 ± 1.82 -12.61 ± 0.24
4-4 32.93 ± 1.21 66.75 ± 1.62 67.15 ± 0.97 -134.31 ± 3.01 -16.82 ± 0.28 -15.59 ± 0.65

5.2.4 Impact of Different Population Scales

We tested the scalability of Inverse-Att by comparing with MAPPO and Self-Att in the

Spread, Adversary, and Grassland games in the MPE environment.

In the Spread game, evaluations were conducted across three scales: 2, 3, and 4 agents.

The results are detailed in Table 5.2. Meanwhile, in the Adversary and Grassland games,

evaluations were conducted across scales of 2-2, 3-3, and 4-4 for both sheep and wolves. The

outcomes are presented in Table 5.3 and Table 5.4, respectively.

Across all three games, notable enhancements were evident when comparing the outcomes

of MAPPO and Self-Att, underscoring the efficacy of the self-attention network. The Inverse-

Att method exhibited superior performance across the tested environments, particularly in

cooperative-related games such as Spread and Grassland. This superiority likely stems from

the attention inference being exclusively applied to agents of the same type (teammates), a

factor more critical in cooperative settings than in fully competitive games.

5.2.5 Human Experiments

To further assess the adaptive capabilities of the Inverse-Att agents, we conducted human

experiments to evaluate their performance in collaboration with human players. Five partici-
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Table 5.4: Grassland result

MAPPO Self-Att Inverse-Att MAPPO Self-Att Inverse-Att
WOLF WOLF WOLF SHEEP SHEEP SHEEP

2-2 20.80 ± 0.23 36.85 ± 2.18 56.69 ± 1.78 -70.17 ± 1.71 10.25 ± 2.33 33.66 ± 1.23
3-3 22.06 ± 0.78 65.50 ± 1.96 70.28 ± 0.78 -99.73 ± 1.19 -21.52 ± 1.32 25.45 ± 0.13
4-4 35.38 ± 0.54 46.35 ± 0.79 81.67 ± 1.51 -138.71 ± 2.68 14.14 ± 0.71 36.16 ± 0.14

Table 5.5: Results of the human experiments

MAPPO Self-Att Inverse-Att Human

Spread 16.8± 13.81 272.0± 30.41 332.3 ± 17.13 115.86± 55.89
Adversary (Wolf) 81.5± 38.42 197.4± 25.85 286.9 ± 22.21 188.4± 74.87
Adversary (Sheep) −48.8± 24.06 −8.0± 3.46 -0.8 ± 1.16 −15.33± 10.47
Grassland (Wolf) 49.3± 20.38 197.9 ± 12.76 185.7± 30.45 132.86± 51.84
Grassland (Sheep) −20.75± 13.95 9.8± 8.66 20.34 ± 2.33 −30.52± 32.15

pants engaged in Spread, Grassland and Adversary games across the following scales: Spread

(3 agents), Adversary (3-3), and Grassland (3-3), assuming five distinct roles (agent for Spread;

sheep and wolf for Adversary and Grassland). In each role, participants cooperated with

teammate agents of the same type trained using each of the three methods (MAPPO, Self-Att,

Inverse-Att) over five episodes, while opponent agents remained consistently MAPPO agents.

Agents were sampled by type in each environment and then fixed to ensure uniformity across

participant groups. Each episode comprised 100 steps, with rewards recorded based on the

respective training methods. The results are summarized in Table 5.5.

It is noteworthy that both Self-Att and Inverse-Att agents outperformed human partici-

pants in the tested environments. Across most roles within the environments, Inverse-Att

agents exhibited greater adaptability to human players and demonstrated greater stability

Table 5.6: Group reward in spread game with multi Inverse-Att agents

Scale
#N Inv-Att

0 1 2 3 4

2 86.44± 0.36 472.92± 4.93 593.57± 7.02 - -
3 148.53± 1.64 635.40± 7.01 812.77± 5.12 1070.28± 8.75 -
4 109.26± 1.60 494.59± 11.30 701.60± 13.95 818.24± 8.20 1140.23± 4.67
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compared to the other methods, with exceptions observed in the role of wolf in the Grassland

environment.

5.2.6 Impact of Multiple Inverse-Att Agents

In multi-agent systems, incorporating Theory of Mind (ToM) can introduce intricate dynamic

interactions. This complexity is amplified when the inference is reciprocal, potentially creating

a cognitive loop that exacerbates uncertainty and leads to unpredictable or suboptimal

decision-making outcomes. Our objective is to explore the impact of increasing the number

of Inverse-Att agents on emergent behavior patterns.

We initiated the investigation by replacing randomly sampled MAPPO agents, trained

with different seeds, with Inverse-Att agents gradually. Evaluations were conducted over

2× 106steps per group in the Spread game, across three different scales: 2, 3, and 4 agents.

The total rewards earned by the teams are summarized in Table 5.6. We observe a nonlinear

marginal return pattern as more Inverse-Att agents are introduced into the game at all three

scales. This observation underscores the effectiveness of our Inverse-Att agent in cooperating

effectively with other attention-aware agents.

5.2.7 Inverse Attention Network Prediction Accuracy

We collected 2×106 steps of weights-observation pair from one Self-Att agent per environment,

considered as the attention ground truth of those agents. We then inputed the observation

into our inverse attention network and compared the predicted weights with the ground truth

across the spread, adversarial, and grassland environments at scales {spread: 3, adversarial:

3−3 and grassland: 3−3}. We evaluated the effectiveness of our inverse network in accurately

predicting weights based on their rank. For example, if the inverse network identifies gfwall

as having the highest weight, this prediction is considered accurate if the self-attention

network also determines that the weight of gfwall is the highest. The results are summarized

in Figure 5.3. The prediction of the most significant attention reaches nearly 100% accuracy,

demonstrating that the inverse network can accurately predict the attentions of other agents,
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Figure 5.3: We evaluated the prediction accuracy of the inverse attention network across
five roles in the spread, adversary, and grassland environments under the scale of {spread: 3,
adversarial: 3− 3 and grassland: 3− 3}. In each bar graph, from left to right, we display
the prediction accuracy from the most attended goal to the least attended goal. The results
demonstrate that the inverse network can accurately predict the attentions of other agents,
particularly for the top two attentions of interest.

especially for the top two attentions of interest.
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CHAPTER 6

A Benchmark for Multi-Modal Multi-Agent Systems in

Minecraft

6.1 The TeamCraft Benchmark

6.1.1 Problem Formulation

Assume that an embodied multi-agent system comprised of N agents needs to complete

a complex task involving navigation and object manipulation. The task is specified in a

multi-modal prompt xL = {xl}
L
l=1, which is a sequence of interleaved language and image

tokens with length L. At time step t, each agent receives partial observation otn ∈ O from

the full observation space O. To complete the task, each agent can choose to perform a high

level action at ∈ A from the full set of action A. The action can be further decomposed into

a sequence of low level control signals.

6.1.2 Simulation Environment

TeamCraft utilizes Minecraft as its foundational simulation environment, offering a complex,

open-world setting for multi-agent interactions. With a Gym-like environment, it facilitates

the execution of intricate multi-agent commands via self-explanatory skills. Figure 1.4

illustrates the platform architecture. High level skills from the model can be translated into

low level control signals via nested API calls through Mineflayer1. After execution, visual

observation of each agent are rendered and provided as input to the model.

1https://github.com/PrismarineJS/mineflayer
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SmeltingFarmingClearingBuilding

System 

Prompt Three bots need to craft 3 smooth 

sandstone. To craft, I need obtain 

‘sandstone’ with a pickaxe. Write 

actions for bot1, bot2, bot3 …

Two bots need to grow on the 

platform. The goal is to get 4 carrot. 

Write actions for bot1, bot2 based 

on given observation.

Three bots need to break everything 

on the platform. Write actions for 

bot1, bot2, bot3 based on given 

observation.

Three bots need to build a building 

on the platform. Write actions for 

bot1, bot2, bot3 based on given 

observation.

Language 

Instruction

First 

Person 

View
Observ

ation bot1 has 1 beef,

bot2 has 1 iron_sword,

bot3 has 1 iron_shovel…

bot1 has 3 carrot,1 potato,

bot2 has 3 carrot, 2 beetroot…

bot1 has a stone_axe,

bot2 has a stone_pickaxe,

bot3 has a stone_sword…

bot1 has 5 bricks, 3 iron_ore,

bot2 has 2 sea_lantern,

bot3 has 1 brick…

Inventory

Information

putItem(bot1, 'sandstone', (0,0,-1)),

obtainBlock(bot2, (2,0,0)),

obtainBlock(bot3, (1,0,-3))

farmWork(bot1, (1,-1,1), sow, 'carrot')

farmWork(bot2, (-1,-1,-2), sow, 

'carrot')

mineBlock(bot1, (-1,0,1))

mineBlock(bot2, (-2,0,0))

mineBlock(bot3, (-1,1,1))

placeItem(bot1, 'bricks', (-1,0,-1))

placeItem(bot2, 'oak_planks', (0,0,0))

placeItem(bot3, 'iron_ore', (0,0,-1))

Action

Three 

Orthographic 

Views

Figure 6.1: Multi-modal prompts are provided for all tasks. The system prompt includes
both the three orthographic views and specific language instructions. Observations consist of
first-person views from different agents, along with agent-specific information.

Multi-Modal Prompts: In our work, the multi-modal prompt xL consisting of a language

instruction interleaved with a set of orthographic projection images (i.e. top, left, front views)

for task specification. Depending on the specific task, the images can specify either the initial

states, intermediate states or the goal states.

Observation and Actions: To mimic real world settings of embodied visual agent teaming,

we use first-person view RGB image and inventory information as the observation on. The

action space A involves high-level self-explanatory skills such as obtainBlock to obtain a block

and farmWork to farm a crop. Most actions take three input parameters, including (1) agent

name such as bot1, as the action-executing entity, (2) item name such as dirt, and (3) a 3D

vector indicating the position of the target. There are 8 types of actions in total. A complete

list of actions are described in the supplementary.

6.1.3 Task Design

TeamCraft introduces a variety of complex and interactive tasks that challenge the agents’

capabilities in planning, coordination, and execution within a collaborative and dynamic

environment. Each task is designed to test different facets of MA interaction, including role

distribution, real-time decision-making, and adaptability to changing environments. Task

examples are shown in Figure 6.2 and the corresponding prompt examples are shown in
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iron_axe, iron_sword]
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carrot, potato]

[carrot, 

beetroot]

[stone_axe, 

stone_sword]

[dirt, wool, fence, 

sponge,log, stone]

Inventory

Demonstration

Figure 6.2: We present example task configurations, as a combination of distinct biomes,
playground base blocks, task goals, target blocks materials and agent counts. Agents are
initialized with unique inventories, which provide them with different capabilities to complete
various activities. A detailed distribution is provided in the supplementary.

Figure 6.1.

Building: Agents erect a structure based on a provided orthographic view blueprint.

Each agent possesses a unique inventory of building blocks necessary for the construction.

Successful completion requires visual cognition to associate blueprint components with

inventory items, spatial reasoning to reconstruct a 3D structure from 2D images and map

it to 3D coordinates for action targets, and collaborative coordination with other agents to

resolve action dependencies. For example, an agent cannot place a floating block and should

wait for another agent to build the supporting block first.

Clearing: Agents are required to remove all blocks from a specified area. Besides spatial

understanding and awareness of action dependencies, agents must employ appropriate tools

to break blocks, which vary in durability, thereby requiring multiple interactions for complete

removal. The use of correct tools can dramatically reduce the time required to remove blocks.

Thus agents must coordinate task assignments to optimize block-breaking efficiency. Strategic

coordination is essential in this task as agents need to dynamically decide which blocks to

target based on their current tools, and assist each other even without the optimal tools

when necessary.
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Farming: Agents sow and harvest crops on designated farmland plots. They must monitor

crop growth stages, from newly planted to fully grown, and harvest only when crops reach

maturity. Efficient task completion requires spatial reasoning to select appropriate farmland,

visual cognition to assess crop maturity, and continuous updating of farmland states based

on other agents’ actions. As the available farmland exceeds what is needed, understanding

other agents’ actions to avoid redundancy, and dynamically allocating sub-tasks based on

positions, available seeds, and crop maturity are essential. For example, some agents can sow

while others are harvesting, stop when the total yield meets the goal.

Smelting: Agents obtain processed items using furnaces by gathering materials and co-

ordinating actions. They collect resources from the environment, by harvesting blocks or

killing mobs, or use existing inventory items to produce goal items like cooked food or refined

materials. Agents also need to gather fuel before they can make use of furnaces. Efficient task

completion requires spatial understanding to locate furnaces and resources, and coordinating

actions with inter-agent dependencies. For instance, if one agent is collecting beef, others

should focus on gathering fuel rather than duplicating efforts. Working as a team to use

limited furnaces efficiently is crucial, rather than each agent independently smelting their

own goal item.

6.1.4 Centralized and Decentralized Agents

TeamCraft supports centralized and decentralized control.

Centralized Agents: The centralized model is given the observational data of all agents,

including the first-person view, action history, and inventory information. Based on these

comprehensive data, the model generates the actions for all agents simultaneously. This

approach leverages the full scope of information available in the environment to coordinate

and optimize the actions of all agents collectively.
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Table 6.1: Task variants and dataset statistics

Building Clearing Farming Smelting

# Action Sequences 2 – 6 2 – 9 2 – 7 2 – 8
# Agents 2 – 3 2 – 3 2 – 3 2 – 3
# Tools – 1 – 4 – 1 – 4
# Scenes 6 5 4 5
# Base Types 10 11 9 11
# Furnaces – – – 1 – 2
# Target Block Types 19 16 3 13
# Target Block Counts 5 – 12 4 – 9 2 – 14 1 – 4
# Fuel Types – – – 12
# Resource Types – – – 20
# Dimensional Shapes 2 2 2 1
# Placement Shapes 7715 12724 13188 8885
# Total Demonstrations 14998 14641 14815 10803
# Test Set 50 50 50 50
# Generalization Set 200 200 150 200
# Generalization Conditions 4 4 3 4

Decentralized Agents: The decentralized models do not receive information about other

agents except for the initial inventory of the team. Each model generates actions solely for

the individual agent based on its limited view. This setting simulates a more realistic scenario

where agents operate independently with restricted information, focusing on their actions

absent of any centralized coordination.

6.1.5 Diversity

The tasks are complex and challenging, testing multi-agent systems in diverse settings.

Table 6.1 provides task statistics and variants, with visual diversity detailed in supplementary.

Object Diversity: More than 30 target object or resource are used in tasks. Objects,

such as a fence, an anvil, or a stone block, have different shapes and textures. Farm crops

have different visual appearances during growth stage. The smelting task has resources with

different appearances, such as chickens or rabbits.

Inventory Diversity: Agent’s inventory might include essential items mixed with non-

essential ones (i.e., distractors), realistically simulating scenarios where agents must choose

the right materials for specific tasks while managing inventory constraints. Agents are also
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Figure 6.3: The architecture of the TeamCraft-VLA model. Multi-modal task specifications
combining three orthographic views images of the task goal states and corresponding lan-
guage instructions are encoded as initial input to the model. Agents inventories and visual
observations are further encoded in each step to generate actions for agents. For decentralized
setting, the model only has access to one agent’s information, exampled by Bot2: items
associated with a * represent the fact that only the data associated with agent 2 are available.

provided with random tools for each task. Having the appropriate tools significantly enhances

efficiency in tasks like clearing. For smelting, some resources must be collect by agent with

specific tools.

Scene Diversity: More than 10 scenes are included in the tasks, covering biomes such

as village, mountain, forest, swamp, desert, etc. Tasks take place on grounds with diverse

textured bases such as glass, concrete, and quartz. Certain tasks may involve additional

complexity, including farmland which are intermixed with non-plantable blocks.

Goal Diversity: Each task requires achieving a varying number of goal targets. Building

requires different blocks placed into various shapes, categorized based on dimensionalities,

e.g., 2D (all blocks are at the same level) or 3D (some blocks are on top of others). Farming

requires various target crops and yields. For the smelting task, the target object is sampled
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from various food or processed items.

6.1.6 Tasks and Expert Demonstrations Generation

To create a rich learning environment and effective imitation learning dataset, systematic

scenario design and data collection methods are employed, as follows:

Task Generation: Variables from a diversity pool, such as agent counts, scenes, and

goals, are sampled to establish task configurations. Specifically, a solvable task is formulated

by rejection sampling of the essential task variables. "Solvable" implies that the task can

be completed within the Minecraft world rules and is within the agents’ capabilities. For

example, in smelting tasks, fuel must either be available to collect in the scene or directly

accessible in the inventory.

Planner-Based Demonstrations Generation: Given the task specifications, a planner

assigns actions to agents at every time step, utilizing privileged information of the environment.

Assume agent i performing action j, the planner optimizes a cost function designed to minimize

total task completion time T , idle actions Ei, action dependencies D, redundant actions U ,

and the cost cij for agent i performing action j:

C = w1T + w2

N∑

i=1

Ei + w3D + w4

N∑

i=1

∑

j∈Ai

cij + w5U (6.1)

where w1, w2, w3, w4, w5 are weighting coefficients. Details of the weights are available in the

supplementary.

As shown in Table 6.1, we generated 55,000 unique task variants, each with one demonstra-

tion. A demonstration consists of a multi-modal prompt as task specification, including three

orthographic view images representing task initial states or goal states and the corresponding

language instructions. At each time step, agent inventories, first-person RGB observations

and actions are recorded.
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Figure 6.4: Subgoal success rate and task success rate across centralized, decentralized and
grid-world settings. The leftmost column displays the Test category, which shares similar
data distribution as training. The Goal, Scene and Agents categories represent generalization
tasks involving unseen goals, scenes, and tasks involving four agents, respectively. Average
performance is presented in the rightmost column.

6.1.7 Test Set and Generalization Set

TeamCraft features a test set, where agents are initialized with random position, orientation,

and inventory. Other variables follow the same distribution as training. To evaluate the model

generalization, we further designed a generalization set with hold-out elements excluded from

training data. In general, we withheld test cases involving four agents, whereas the training

data include only two or three agents. We also introduced unseen scenes not present during

training. In addition to these general hold-outs, we implemented task-specific exclusions as

following: 1) Building: novel shapes and materials to build. We exclude 8 block placement

shapes, defining how target blocks are arranged on the ground. These shapes varied in

complexity, containing 5 to 12 blocks in both 2D and 3D configurations. Additionally, we

omitted 3 block materials appeared in clearing but not in building. 2) Clearing: novel shapes

and materials to clear. We held out 6 block placement shapes with block counts ranging

from 4 to 9. We also excluded 3 block materials present in building but absent in clearing. 3)

Farming: novel crops to farm and collect. 4) Smelting: novel number of furnaces and goal

objects. We excluded 4 unseen goal objects and introduced scenarios with novel number of
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furnaces in the scene. As shown in Table 6.1, with 50 samples per task for the test set and

each generalization condition, our benchmark contains a total of 950 test cases.

6.2 Experiments

6.2.1 Baselines and Ablations

TeamCraft-VLA: We introduce TeamCraft-VLA (Vision-Language-Action), a multi-modal

vision-language action model designed for multi-agent collaborations. As shown in Figure 6.3,

the model first encodes multi-modal prompts specifying the task, then encodes the visual

observations and inventory information from agents during each time step to generate actions.

Following Liu et al. (2024), the VLA model architecture consisting of a CLIP encoder for

images, a projector to align the image features with language model. We use CLIP ViT-L/14

as the visual encoder and a linear projector for modality alignment. The model is trained on

the demonstration data for three epochs before convergence.

Proprietary VLA: We use GPT-4o as the proprietary VLA. Specifically, we use similar

prompt structures as the centralized finetuned TeamCraft-VLA model, with additional task

information in the initial system prompt to provide background knowledge of the task. The

system prompt contains recipes, input, output formats, all available blocks, items, workspace

limitations, and one successful rollout of a similar task in the same task family. At the

first step, we additionally provide the first user prompt, where the model is given a specific

multi-modal task specification accompanied by initial visual observations and inventory

details of the agents. Based on the system prompts and user prompts, the model predicts the

actions. As the interaction progresses with subsequent prompts, the context is maintained

and expanded with the addition of prior responses and updated visual data. Detailed prompts

are available in the supplementary.

Grid-World Settings: In order to the understand the impact of learning in multi-modal

environment as opposed to purely text-based or state-based environment, we perform an
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ablation study by translating the TeamCraft environments into a 3D grid-world. We retain

the same prompt structure of the training data used in the TeamCraft-VLA models, with

the main difference being that environmental information (i.e. visual observations and three

orthographic view images) is now represented in text, describing the voxel coordinate of each

block, e.g. "brick is at (2,3,0), stone is at (2,3,1)...". We fine-tuned a LLM in centralized

setting with variance in the dataset size (10%, 50%, and 100% of the total data) for three

epochs before convergence.

Ablations: We performed a total of 15 ablation studies, varying in dataset sizes (10%, 50%,

and 100% of the total data), control settings (centralized and decentralized), experiment

settings (Multi-Modal and Grid-World) and sizes of the VLA model (7B and 13B).

6.2.2 Evaluation Metrics

We evaluated the performance of the methods based on three key metrics: task success rate,

subgoal success rate and redundancy rate.

Subgoal Success Rate: This metric evaluates the effectiveness of agents in completing

tasks. Given M test cases, each test case m has sgm subgoals, and agents complete sdm subgoals.

The subgoal success rate SGS is defined as:

SGS =
1

M

M∑

m=1

sdm
sgm

(6.2)

Specifically, subgoals are designed based on the task requirements, i.e. the number of blocks

to be built for building and the number of target objects to be created for smelting.

Task Success Rate: This metric indicates the proportion of test cases that the model can

successfully complete from start to finish. Specifically, the task success rate TS is defined as:

TS =
1

M

M∑

m=1

1
[
sdm = sgm

]
(6.3)
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Figure 6.5: Task success rates of centralized and decentralized VLA model and GPT-4o.
Models are trained with the full data except GPT-4o. TeamCraft-VLA-7B-Cen outperforms
the other two methods by a significant margin across nearly all variants.

A higher success rate reflects the model’s ability to consistently achieve the desired outcomes

in various scenarios.

Redundancy Rate: This metric assesses whether multiple agents are performing the same

action at the same time, which would lead to conflicts. Assume pm is the total number of

actions for test case m and qm the number of conflicts between agents, the redundancy rate

RR is defined as:

RR =
1

M

M∑

m=1

qm
pm

(6.4)

A lower redundancy rate indicates better task allocation among agents and a higher level of

cooperative efficiency.

6.2.3 Evaluation Results

We evaluated the subgoal success rate and task success rate of the models. As illustrated in

Figure 6.4, our analysis and findings are discussed below:

Success Rate: For both the 7B and 13B models, the subgoal success rate and task success

rate fall short of optimal performance. This is particularly evident in challenging tasks such

as smelting, with both subgoal and task success rates below 40%. This highlights the inherent

difficulty of the designed tasks and underscores the current limitations of VLA models in

handling multi-step, sequentially dependent processes.
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Across Model Size: In Figure 6.4, we observe that as training data increased, the

performance of the 7B model approaches that of the 13B model, especially when generalizing

to novel goals and number of agents. This suggests that scaling up model sizes blindly do

not guarantee success.

Multi-Modal Environment vs. Grid-World: The performance of the language model

in the text-based Grid-World significantly surpasses VLA models in multi-modal settings.

This suggests that state descriptions provided purely in text format are less challenging for

models than multi-modal inputs, underscoring a notable gap in current VLA models’ ability

to effectively interpret visual information. For the language model, we observe a surprising

trend in the Goal and Agents splits: training with more data lower the success rate. This

decline suggests that the generalization capacity for certain task categories actually diminishes

as training goes on. One possible cause is when exposed to more data, the model relies more

heavily on patterns specific to the training examples, limiting its ability to adapt to unseen

scenarios.

On Generalization Splits: For VLA models, performance generally drops when models

transfer to novel generalization splits, especially in the Goal and Agents categories. The

Scene split primarily tests image understanding, while the Goal and Agents splits emphasize

task planning and allocation, critical factors in multi-agent systems. This indicates that VLA

models still struggle with planning for unseen goals and adapting to variable numbers of

agents.

Scaling Law: As training data increases, we observe significant improvements in both

subgoal and task success rates across centralized and decentralized settings, underscoring the

importance of dataset size for achieving better performance. The improvement is particularly

pronounced when the training data increases from 10% to 50% in centralized settings. This

suggests that while more data generally leads to better performance, gains diminish beyond

a certain point, especially in the decentralized setting.
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Table 6.2: Comparison of TeamCraft-VLA model redundancy rates

Test Goal Scene Agents Average

TeamCraft-VLA-7B-Cen 0.01 0.02 0.01 0.01 0.01
TeamCraft-VLA-7B-Dec 0.13 0.12 0.13 0.24 0.15

Centralized vs. Decentralized: Figure 6.5 compares centralized and decentralized

settings in terms of subgoal and task success rates across all task variants. Centralized tasks

exhibit significantly better performance across nearly all variants, highlighting the challenge

of effective planning with partial information. This finding also demonstrates that multi-agent

systems cannot be simplistically modeled as single agents interacting with environments

containing other agents. In decentralized settings, the absence of comprehensive agent

modeling is particularly impactful, especially for cooperation-intensive tasks like "Farming"

or "Building".

Redundancy Rate: Table 6.2 compares redundancy rates between centralized and de-

centralized settings. Our results show that decentralized agents exhibit significantly higher

redundancy rates than centralized agents, indicating reduced efficiency in task planning

and allocation. This inefficiency becomes even more pronounced as the number of agents

increases, creating greater challenges for effective task allocation. In decentralized settings,

the absence of centralized control complicates the avoidance of redundant work, as each agent

must independently infer the intentions of others to prevent duplication. By contrast, a

centralized controller can efficiently assign distinct tasks to each agent, minimizing overlap

and enhancing overall efficiency. These findings suggest that VLA models lacking explicit

mechanisms to understand or infer the actions of other agents, highlighting a critical need for

improved inter-agent communication and awareness within decentralized systems.

GPT-4o Result: We evaluate GPT-4o on in a one-shot prompt learning setup and it failed

on almost all test cases. A detailed analysis reveals that GPT-4o struggles with mapping

block coordinates based on visual inputs, demonstrate a lack of 3D spatial reasoning needed

for accurate task execution. This shortcoming severely impacts performance, since most of
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our tasks require precise spatial orientation and alignment. For example, in building task,

a brick should be placed at (8,0,8), while the output of model is "placeItem(bot1, ’bricks’,

(7,0,9))" which leads to wrong execution.

6.2.4 Qualitative Analysis

We performed a qualitative analysis across three generalization splits, examining how models

handle novel goals, new scenes, and novel number of agent:

Goals: When faced with novel goals, the models struggle to generalize beyond familiar

items and often fail to adapt to specific, unseen objectives. For example, in the "farming"

task, if instructed to farm beetroot—a crop not encountered in training—the model might

generate a command like "farm_work(bot1, (9,3,3), ’sow’, ’beef’)," causing Bot1 to sow

"beef", which appears in the training data for "smelting". This behavior reflects the model’s

reliance on similar, previously seen items in the training data and reveals its limited ability

to infer new tasks based solely on partial similarity.

Object State Recognition: VLA models show strong generalization to new scenes,

performing comparably to the Test set. However, errors often arise in recognizing object

states. For example, in "farming" tasks, agents may harvest crops before they are fully

grown due to challenges in identifying crop states, especially when encountering new scenes.

This highlights limitations in precise object state recognition when operating within unseen

environments.

Agents: For generalization to four agents, models frequently ignoring the fourth agent and

assigning tasks inefficiently only to two or three agents. For example, for the building task, the

model predicts the action sequences {"placeItem(bot1, ’birch_log’, (4,4,7))", "placeItem(bot2,

’sandstone’, (4,4,6))", "placeItem(bot3, ’dirt’, (3,4,6))"} with the fourth agent overlooked,

reducing productivity and sometimes preventing timely task completion. This limitation

becomes especially evident in tasks requiring full coordination, such as "Building." In these
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tasks, each of the four agents holds unique blocks in their inventory, and all agents must

contribute their specific block to a shared platform to complete the structure. The model’s

inability to distribute tasks effectively across all agents often leads to incomplete structures

or outright task failure. This highlights a significant limitation in precise coordination and

workload distribution necessary for successful multi-agent collaboration.

75



CHAPTER 7

Conclusions

In this dissertation, we have addressed four key challenges in the field of adaptive multi-agent

systems.

To tackled the issue of scalability, we proposed Scale Multi-Agent Reinforcement Learning

(Scale-MARL), which leverages curriculum learning over agent populations combined with

evolutionary selection. Our approach demonstrates significant improvements over baseline

methods, not only in performance but also in training stability. These promising results

across various environments suggest that our method is generalizable and could potentially

enhance the scalability of other MARL algorithms. Furthermore, we envision that training

with large agent populations may foster the emergence of swarm intelligence in environments

governed by simple rules.

To enable adaptation to novel tasks, we introduced a learnable gradient-based state

representation called Social Gradient Fields (SocialGFs). SocialGFs are trained using a set of

exemplar states via denoising score matching. By incorporating these fields into the state

and reward representations, agents can efficiently learn policies through MARL. Our method

significantly outperforms baseline approaches and demonstrates remarkable adaptability

across tasks. These results provide a fresh perspective on enhancing the adaptability of

multi-agent systems, showcasing the potential of SocialGFs to facilitate task generalization.

To adapt to novel agents, we presented the Inverse Attention Agent, which utilizes inferred

attention weights of other agents to adjust its own focus and actions. This mechanism enables

the agent to adapt its behavior dynamically, showing superior performance when interacting

with unseen agents trained by various methods as well as with human participants. The

adaptability of the Inverse Attention Agent highlights its potential for robust interactions in
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diverse settings.

Finally, to create a complex and dynamic environment for testing multi-agent systems,

we introduced TeamCraft, a benchmark for multi-modal, multi-agent collaborative task

planning in Minecraft. TeamCraft features challenging tasks and evaluation splits designed to

assess agent performance across novel goal configurations, unseen team sizes, and unfamiliar

environments. Through extensive experiments, we identified limitations of current models

and outlined promising research directions for developing collaborative, multi-modal agents.

7.1 Limitations and Future Work

For task adaptiveness, one modification is to rank the importance of each SocialGF at the

start of generalization to a new environment. This prioritization can enhance adaptability

across tasks. Extending SocialGFs to more photo-realistic 3D environments, such as UnrealCV

(Qiu et al., 2017), is also a key direction for future work.

For agent adaptiveness, the current attention inference mechanism is limited to agents of

the same type. In future work, we aim to model the theory of mind for agents of different

types. Additionally, we plan to develop an attention model for the UW network that can

dynamically accommodate an arbitrary number of inferred attention weights.

For the TeamCraft benchmark, given the limited capabilities of existing multi-agent

vision-language-action (VLA) models, TeamCraft currently relies on MineFlayer as an oracle

controller to execute skills predicted by the models. A critical avenue for future research

is enabling VLA models to directly control multiple agents via low-level actions (Wang

et al., 2023c,b). Our models have been trained using procedurally generated multi-agent

demonstration data. Incorporating noisy yet diverse real-world demonstrations from human

players could further improve model generalization (Baker et al., 2022; Fan et al., 2022).

Currently, decentralized TeamCraft agents rely solely on implicit communication (Jain

et al., 2019), passively perceiving other agents and the environment to gather information

and collaborate. Empowering agents to communicate explicitly through natural language

(Narayan-Chen et al., 2019; Jayannavar et al., 2020; Mandi et al., 2024) holds great potential
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for reducing redundant actions and enhancing efficiency. Multi-player video games have long

been utilized as testbeds for human-AI collaboration (Carroll et al., 2020; Gao et al., 2020;

Amresh et al., 2023). Extending TeamCraft to include human players represents an exciting

and promising research direction.
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APPENDIX A

Evolutionary Population Curriculum Details

A.1 Environment Details

In the grassland game, sheep gets +2 reward when he eats the grass, -5 reward when eaten

by wolf. The wolf get +5 reward when eats a sheep. We also shape the reward by distance,

sheep will get less negative reward when it is more closer to grass and wolf will less negative

reward when it is more closer to sheep.

In the Adversarial battle game, agent will get +1 reward when he eats the food, −6

reward when killed by other agents. If N agents kill an enemy, they will be rewarded +6/N .

We shape the reward by distance. Agent will receive less negative rewards when it is more

closer to other agents and grass. We want to encourage collision within agents and also will

be easier for them to learn to eat.

In the food collection game, there are N agents and N food locations. Each agent will get

a shared +6/N reward per timestep when one food is occupied by any agent. If one agent

gets collision with another, all of the agents will get a punish of −6/N . We shape the reward

by distance. Agents will receive less negative rewards when it gets closer to the food. Since

the number of agents and food are equal, we want to avoid the collision within agents and let

the agents to learn to occupy as many food as possible.

We use the normalized reward as the score during evaluation. For a particular game with

a particular scale, we first collect the reward for each type of agents, namely the average

reward of each individual of that type without the shaped rewards. Then we re-scale the

collected rewards by considering the lowest reward among all methods as score 0 and highest

reward as score 1.
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A.2 Training Details

We use the Adam optimizer with learning rate 0.01, β1 = 0.9, β2 = 0.999 and ε = 10−8 across

all experiments. τ = 0.01 is set for target network update and γ = 0.95 is used as discount

factor. We also use a replay buffer of size 106 and we update the network parameters after

every 100 samples. The batch size is 1024.

We set K = 2 in all the games during training except that K = 3 in the food collection

game. During EPC training, in the grassland game, we train the scale of 3 sheep 2 wolf for

100000 episodes. We train another 50000 episodes every time the agents number doubles.

In the adversarial battle game and food collection game, we train the first scale for 50000

episodes. We train another 20000 episodes every time the agents number doubles.

In the grassland game, the entity types are the agent itself, other sheep, other wolf and

food. We thus have four types of entity encoders for each of those entity types. In the

adversarial battle game, Similar to grassland game, the entity types are agent itself, other

teammates, enemies and food. We also have four types of entity encoders for each of those

entity types. Since there is only one group in the food collection game, the entity types are

agent itself, other teammates and food. We thus have three entity encoders in our network.

A.3 Evaluation Details

To evaluate the agents trained in the environment with Ω = 2, we make two roles of agents

trained with different approaches compete against each other. Each competition is simulated

for 10000 episodes. The average normalized reward over the 10000 episodes will be used as

the competition score for each side. Note that in our experiments, we let all the methods

compete against our EPC approach for evaluation. For adversarial battle game, we take the

average score of two teams as the model’s final evaluation score, since the two teams in this

game are completely symmetric.

In the food collection game, since there is only one role, we simply simulate the model for

10000 episodes. The average normalized reward over the 10000 episodes will be used as the
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score of the model.
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APPENDIX B

SocialGF Details

B.1 Algorithm Details

algorithm 4 conducts the entire training process. It begins by categorizing each example from

the given set S into specific example sets Ei based on triggered events ei. Subsequently, it

trains various categories of target score network Φi using Denoise Score Matching (algorithm 1)

in all the example sets Ei. Next, it obtains a representation of the environment, denoted as

OGF , which consists of positive (gf+) and negative (gf−) gradients. Finally, it carries out

MARL training on the environment represented by OGF and the reward function RE.

B.2 Environment Details

B.2.1 Reward

In the grassland game, the sheep gets +2 reward when the sheep eat the grass, −5 reward

when eaten by the wolf. The wolf gets +5 reward when eats a sheep. For the Reward

Engineering, the wolf’s reward will be minus the minimum distance to the sheep, Rwolf− =

Min(Distance(self, sheepall)) and the sheep’s reward will be minus the minimum distance

to the grass: Rsheep− = Min(Distance(self, grassall)).

In the cooperation navigation games, every agent will get a reward of 10 after every

landmark is correctly occupied. For the reward engineering method: the agent reward

will be minus the minimum distance from each landmark to that agent: Reward− =

Min(Distance(self, landmarkall)). The agent will also get a bonus +1 reward when it

successfully occupies a landmark.
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Algorithm 4: Whole Training Process
Given a set of example S;
for example e in S do

Categorize e to example set Ei based on triggered events ei; // Categorize each

example

Train different categories of target score network Φi via Denoise Score Matching
(algorithm 1) on all the example set Ei;

Get gf representation of the environment: OGF ← {gf
+, gf−} ;

Conduct the MARL training on the gf represented environment: E(OGF , RE);

Table B.1: The hyperparameters for learning GF

lr activation sigma t0 hidden size optimizer optimizer betas network

2e− 4 Relu 25 1 64 Adam [0.5, 0.999] GNN

B.2.2 Observation

In the grassland game, agents receive comprehensive information including the relative

positions of other agents, grass, and obstacles, alongside the velocities of the other agents. In

cooperative navigation games, in addition to the relative locations and velocities of other

agents, they also gain access to color markings and relative locations of all other landmarks.

B.2.3 Action

The agent’s action is represented by a two-dimensional continuous vector, which describes

the force applied to an entity, considering both magnitude and angular direction.

B.3 Training Details

We follow all the hyperparameters used by Wu et al. (2022) for GF learning based on Table B.1

and PPO (Yu et al., 2021) for MARL (Table B.2). We select 1000 examples for learning

every gf and set t = 0.01 for computing the gf score.
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Table B.2: The hyperparameters for MAPPO

lr activation gain share policy hidden size optimizer optimizer epsilon network

7e− 4 Tanh 0.01 False 64 Adam 1e− 5 MLP

FCObservation

GF0
GF0
GF0
GF0GF0

φn

gf0
gf0
gf0
gf0
gf0
gfn

Valueφi:

Figure B.1: The structure of the Neural Network. We delve into the network architecture
devised for crafting gf representations and driving the generation of the final action. The
target score network functions ϕi harness the capabilities of graph neural networks to adeptly
capture intricate relationships among the various entities, where nodes symbolize both agents
and landmarks. We construct the gradient field representation OGF by applying each GFi
function ϕi to its corresponding category i and consolidating the resulting outputs gfi through
concatenation. This concatenated representation OGF undergoes further refinement through
a fully connected layer FC, culminating in the production of the final action.

B.4 Network Structure

In this section, we delve into the network architecture devised for crafting gf representations

and driving the generation of the final action Figure B.1. Specifically, the target score network

functions ϕi harness the capabilities of graph neural networks to adeptly capture intricate

relationships among the various entities, where nodes symbolize both agents and landmarks.

The target score network seamlessly embeds observations into distinct gradient fields gfi.

The structure of ϕ is based on the codes from the TarGF (Wu et al., 2022). It contains two

hidden dimensions with a hidden dimension size of 64 and then connects to the EdgeConv

layer to get the final output.

Throughout the process of MARL training, we construct the gradient field representation

OGF by applying each GFi function ϕi to its corresponding category i and consolidating the

resulting outputs gfi through concatenation. Subsequently, this concatenated representation

OGF undergoes further refinement through a fully connected layer (FC), culminating in the

production of the final action. FC is identical for all the tasks based on the codes from the
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Figure B.2: Grass eating ability of different methods in the grassland game. Original Reward
and Reward Engineering sheep both fail to learn to eat grass, especially when there are more
wolves. SocialGFs sheep learn to eat grass successfully, and the amount of grass they eat is
inversely proportional to the number of wolves

MAPPO (Yu et al., 2021). It has two hidden layers and the hidden dimension is 64.

B.5 Evaluation Results Details

In the grassland game, all the reward and grass-eaten statistics are generated by competing

against the SocialGFs wolf and sheep in 1000 episodes.

The sheep have a more challenging role to train in this environment than wolves because

they must not only avoid wolves but also collect as much grass as possible. In addition to

rewards, we also show the grass-eating ability of sheep in the rightmost figure in Figure B.2.

This shows how much grass is collected by sheep in 100 time steps. We can see that Original

Reward and Reward Engineering sheep both fail to learn to eat grass, especially when there

are more wolves. This is because being eaten by wolves is a huge punishment for sheep,

and the rewards for eating grass are difficult to explore. SocialGFs sheep learn to eat grass

successfully, and the amount of grass they eat is inversely proportional to the number of

wolves.

In cooperation navigation games, we also show occupation rate in Table B.3. It shows

how much time a landmark is occupied during the game. We can see from the table that

SocialGF+ outperforms all the other methods in almost all the tested scenarios. The reward

engineering method helps the occupation performance but is not good enough to lead the
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Table B.3: The occupation rate in cooperative navigation games

Vanilla Navigation Color Navigation Team Navigation

2 3 4 5 2 3 4 5 2 3 4 5

originalreward 0.005 0.008 0.021 0.031 0.02 0.025 0.028 0.049 0.00 0.002 0.005 0.005
RewardEngineering 0.189 0.094 0.082 0.089 0.32 0.13 0.079 0.1 0.044 0.025 0.025 0.026
SocialGFs 0.560 0.880 0.744 0.300 0.08 0.106 0.103 0.101 0.0 0.002 0.003 0.004
SocialGFs+ 0.570 0.876 0.744 0.734 0.719 0.719 0.734 0.719 0.532 0.563 0.583 0.517
SocialGFs∗ 0.496 0.770 0.67 0.668 0.651 0.655 0.685 0.69 0.376 0.440 0.463 0.472

agents to the success state shown in Table 4.2. We run 1000 episodes to calculate the

occupation rate and final success rate.
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APPENDIX C

Inverse-Att Agent Details

C.1 Environmental Details

Reward: In the Spread scenario, during training, agents are awarded +100 reward for

occupying a landmark at every timestep. For reward engineering, the agent’s reward

will be deducted proportional to the minimum distance to the landmarks Rdistance =

0.2min(Distance(self,Landmarkall)) In the Adversary scenario, wolves are awarded with

+100 reward for every sheep it catches, while sheep are awarded with −100 reward for

every time it gets caught. The wolves reward will be deducted proportional to the min-

imum distance to the sheep Rdistance = 0.2min(Distance(self, Sheepall)). In the Grassland

scenario, wolves are awarded a +5 reward for every sheep they catch, while sheep are

awarded a −5 reward for every time they get caught and +2 reward for every land-

mark they occupy. The wolves’ reward will be deducted proportional to the minimum

distance to the sheep Rdistance = 0.2min(Distance(self, Sheepall)). On the other hand, the

sheep’s reward will be deducted proportional to the minimum distance to the landmarks

Rdistance = 0.2min(Distance(self,Landmarkall)). For Navigation environment, the group re-

ward is defined as +5 reward for every landmark an agent occupied. For Tag environment,

when any wolf catches a sheep, all wolves received +5 points and all sheep receive −5.

Observation: In the Spread scenario, MAPPO and Self-Att agents receive information

regarding their own position, velocity, other agents’ positions, and landmarks’ positions. They

use these information to generate gradient field {velocity, gfo} as observation. Inverse-Att

agents also receive the past actions and past observations of their teammates and have {
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Table C.1: Hyperparameters for the gradient field

lr sigma t0 hidden size optimizer optimizer betas network

Agent GF 2e-4 25 1 64 Adam [0.5, 0.999] GNN
Boundary GF 2e-4 25 1 64 Adam [0.5, 0.999] MLP

Table C.2: Hyperparameters for agent training

lr gain share policy optimizer critic lr ppo epoch

MAPPO 7e-4 0.01 False Adam 7e-4 10
IPPO 7e-4 0.01 False Adam 7e-4 10
MAA2C 7e-4 0.01 False Adam 7e-4 10
ToM2C* 7e-4 0.01 False Adam 7e-4 10
Self-Att 7e-4 0.01 False Adam 7e-4 10
Inverse-Att 7e-4 0.01 False Adam 7e-4 10

teammate past action, teammate past observation } in addition to the gradient fields. In the

Adversary scenario, the observation is the same except for the omission of gflandmarks, and

Grassland, Navigation and Tag have exactly the same observation space.

Action: The agent’s action is represented by a two-dimensional continuous vector, which

describes the force applied to an entity, considering both magnitude and angular direction.

C.2 Training Details

We present the hyperparameters for gradient field as well as for all agent training.

70% of the dataset is used for training. 10% of the dataset is split into a validation

dataset, which is used for early stopping. 20% of the dataset is used for testing.

Table C.3: Hyperparameters for the inverse network

lr batch size hidden dim patience threshold num epoch Optimizer

0.001 64 64 100 3000 Adam
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C.3 Gradient Field Synthetic Data Generation

We use synthetically generated data to train the Agent Gradient Field as well as the Boundary

Gradient Field. Detailed instructions for synthetic data generation are as follows:

Entity Gradient Field: We randomly generated 10,000 two dimensional points within

a 2× 2 grid as one entity’s position. We then randomly generated another entity’s position

close to the previous position such that the L1 distance is less than 10−5. We mark this gf

representation as gfe. This gf function takes in the agent’s location and a relative position of

another entity.

Boundary Gradient Field: We randomly generated 10000 positions (x, y) ∈ [−0.8, 0.8]×

[−0.8, 0.8]. We mark this gf representation as gfwall. This gf function only takes in the position

of the agent’s position.

C.4 Gradient Field Representation of the Environment

For the spread, adversary and grassland environments, we applied entity gradient field for all

the other entities around that agent as entity attentions, as well as a boundary gradient field

used as the environment attention. Thus we transform the observation from {oi,1, oi,2, ..., oi,n}

which is the information of N entities to {gfe(oi,1), gfe(oi,2), . . . , gfe(oi,n), gfwall(oi,i)}.

C.4.1 Qualitative Results

Figure C.1 provides example screenshots of a representative match involving Inverse-Att

agents in the Spread scenario. In these images, the blue balls represent Inverse-Att agents,

while the small black balls are landmarks. The left figure shows the initial state of all

agents. The middle figure demonstrates the Inverse-Att agents successfully navigating to

their respective landmarks. The right figure shows the final result, where all three Inverse-Att

agents occupy their own landmarks without conflict.

Additionally, we visualize two representative games in the Adversary and Grassland
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Figure C.1: Qualitative results in spread, adversary and grassland games in MPE demonstrate
that Inverse-Att agents can successfully adapt to unseen agents.

scenarios. In these visualizations, the smallest black balls are landmarks. Large balls

represent wolves, with red indicating Self-Att agents and white indicating Inverse-Att agents.

Small balls represent sheep, with blue indicating Self-Att sheep and white indicating Inverse-

Att sheep. The screenshots illustrate that Inverse-Att wolves cooperate with unknown Self-Att

agents to corner the sheep. Inverse-Att sheep successfully avoid wolves and capture as many

landmarks as possible.

These results suggest that Inverse-Att agents can adapt successfully to new teammates,

indicating that our approach is an effective method for creating adaptive agents that excel

when paired with various types of teammates and opponents.
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C.4.2 Human Experiment Details

There are five experiments in total: Spread, Adversary (human plays wolf), Adversary

(human plays sheep), Grassland (human plays wolf), Grassland (human plays sheep). In each

experiment, human players will cooperate with three types of agents, MAPPO, Self-Att, and

Inverse-Att, for five rounds. The episode rewards are averaged for these rounds. Human

players are not informed about the type of agents that they are playing with. In the Adversary

and Cooperate games, the opponents are always MAPPO agents.

Five participants (4 males and 1 females) participated in this experiment. All were between

the ages of 21 and 28 with normal or corrected-to-normal visual acuity. All participants

were given the Experiment Instructions below and received rewards (free food) for their

participation. All participants were instructed to use the UP, DOWN, LEFT, and RIGHT

keys on the keyboard to control their movements.

Experiment Instructions for Participants

Thank you for participating in this research experiment designed to evaluate the

performance of various MARL agents in adapting to human players. There are three

scenarios: Spread, Adversary, and Grassland. In the Adversary and Grassland, you will

play both as wolf and sheep. In total there are five scenarios to play. In each scenario,

you will cooperate with three types of MARL agent, and you will play five rounds with

each type of agents.

Detailed Game Descriptions

• Spread Game:

– Setup: The game area contains several small black balls, each representing

a landmark. You are represented by a white ball, and your teammates by

blue balls.

– Objective: Each player must navigate to occupy a unique landmark. The

number of landmarks equals the number of players.

– Gameplay : Using directional controls, navigate towards the landmarks.
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Coordination with teammates might be necessary to ensure all landmarks

are covered.

– Scoring : You earn 5 points for every timestep you occupy a landmark.

• Adversary Game:

– Setup: In this scenario, you are assigned the role of either sheep or wolves.

The color of your ball is always white, with large ball indicating wolves and

small ball indicating sheep. Large red balls are MARL wolves and small

blue balls are MARL sheep.

– Objective:

∗ As a Sheep: Avoid the wolves.

∗ As a Wolf: Work together with other wolves to catch the sheep.

– Gameplay : Sheep must use speed and agility (as they move faster) to escape

from wolves, while wolves need to coordinate their movements to catch

sheep.

– Scoring :

∗ As a Sheep: Each wolf catch results in a deduction of 5 points from

your score.

∗ As a Wolf: You gain 5 points for every sheep you catch.

• Grassland Game:

– Setup: The game environment includes the same players and roles as the

Sheep Wolf Game, but now includes four small black balls (landmarks) that

appear randomly in the game area.

– Objective:

∗ As a Sheep: Collect as many landmarks as possible while avoiding

wolves.
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∗ As a Wolf: Catch the sheep while they attempt to collect landmarks.

– Gameplay : Sheep must balance between quickly moving towards landmarks

and evading wolves. Wolves, while trying to catch sheep, must also strategize

to guard landmarks indirectly, making them risky spots for sheep.

– Scoring :

∗ As a Sheep: Gain 3 points for each landmark collected and lose 5 points

each time you are caught by a wolf.

∗ As a Wolf: Gain 5 points for each sheep caught. Landmarks disappear

once collected and respawn randomly.

Instructions for Each Turn:

• At the start of each round, your role (sheep or wolf) and the specific game scenario

will be communicated.

• Use the directional controls to navigate your character according to the game’s

objectives. You can move in four directions: up, down, left, and right.

• The games are within a 2× 2 grid. You will not be able to move out of this grid.

• The game ends until the time expires.

C.4.3 Computational Resources

Hardware specifications: All experiments are run on servers/workstations with the

following configurations:

• 128 CPU cores, 692GB RAM

• 128 CPU cores, 1.0TB RAM

• 32 CPU cores, 120GB RAM
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• 32 CPU cores, 120GB RAM

• 32 CPU cores, 120GB RAM

• 24 CPU cores, 80GB RAM, 1 NVIDIA 3090 GPU.

• 24 CPU cores, 80GB RAM, 1 NVIDIA 3090 GPU.

• 24 CPU cores, 80GB RAM, 1 NVIDIA 3090 GPU.

• 24 CPU cores, 80GB RAM, 1 NVIDIA 3090 GPU.

All experiments can be run on a single server with 24 CPU cores, 80GB RAM, 1 NVIDIA

3090 GPU.
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APPENDIX D

TeamCraft Details

D.1 High Level Skills

The action space of agents mainly involves high-level self-explanatory skills such as obtainBlock

and farmWork. We provided 8 such skills. Most skills take three input parameters, including

1) agent name such as bot1, as the action executing entity, 2) item name such as dirt, which

strongly associated with task goal or agent’s inventory, 3) a vector indicating the position of

the target on the test field.

For example, obtainBlock(bot1, new Vec3(1, 0, 1)) takes the agent name bot1 and

a 3D vector (1, 0, 1) as its arguments. It directs bot1 to perform multiple actions in

Minecraft via APIs provided by Mineflayer. First, it controls bot1 to goto a diggable position

for block (1, 0, 1), then has bot1’s vision ray cast to the block at (1, 0, 1) using the

lookAt action. Next, it commands bot1 to equip a proper tool that can dig the block at (1,

0, 1) most efficiently, and then instructs bot1 to dig the target block. Once the target block

has been mined, bot1 will goto the position where the block item dropped and collect it.

Similarly, farmWork(bot2, "sow", "potato", new Vec3(2, 0, 4)) takes the agent

name bot2, action type "sow" (as opposed to "harvest"), crop seed item "potato", and

a 3D vector (2, 0, 4) as its arguments. It directs bot2 to goto a placeable position for

farmland at (2, 0, 4), then check if the seed is a valid item—that is, a crop seed available

within bot2’s inventory. It then checks if the farmland at (2, 0, 4) is plantable. Finally,

it instructs bot2 to lookAt the farmland and sow it with the seed "potato".

Table D.3 documents all the skills, which are implemented in JavaScript code with

Mineflayer APIs.
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D.2 Low Level Atomic Actions

High level skills are processed through multiple stages before reaching the final execution

APIs. At each time step, TeamCraft accepts a list of skills as input, with a maximum

length equal to the number of agents involved in the current task and a minimum length

of zero. Each agent can perform at most one skill per time step. The updated list of skills

is then passed into the JavaScript environment along with the predefined atomic actions.

Each atomic action is processed simultaneously, meaning that agents’ actions are executed

concurrently rather than sequentially. This avoid the dependency issue that might occur

in sequential execution. For example, if one agent’s action is executed ahead of another’s,

the first agent may block the location where the next agent intends to place a block. The

agent whose atomic action is executed first will have a higher chance of success, potentially

altering the dynamics of the multi-agent setting. Executing actions concurrently ensures

fairness among agents and maintains the equivalence of the multi-agent environment.

D.3 Visual Diversity

TeamCraft uses a set of visual variate to provide a visual rich environment. Each task is

constructed from a random number of agents, in a randomly selected scene, achieving different

goal on playground built by different base block.

D.3.1 Shared Elements

Each task begins with a basic setting involving multiple agents on a playground. Each agent

has a unique skin, as illustrated in Figure D.1, and is rendered as a two-block-high character.

The playground combines a base platform spawned within a Minecraft biome. The base block

is also randomly selected from a pool,shown in Figure D.1. Each biome offers variations in

special surrounding blocks, designs, and environments.

For example, the seaside village biome is a village near the sea with houses made of

oak wood and cobblestone, decorated with flowers and cow sheds, as shown in Figure D.6. It
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also features a nearby farm surrounded by oak logs (Figure D.7). Another variation of village

is the desert village biome, built from acacia planks, acacia logs, and sandstone, blending

seamlessly with the desert’s arid terrain, shown in Figure D.8. Figure D.9 illustrates a biome

that is located on half of the mountains, where a small flat land protruding from a cliff.

Additional examples of biomes used are shown in Figure D.10, Figure D.11, and Figure D.12.

D.3.2 Task Specific Diversity

Clearing task uses a random set of blocks as its targets, illustrated in Figure D.2. Building

task also uses a random set of blocks as its target, with some blocks shared with clearing

task, as illustrated in Figure D.3. Unlike other tasks, the Farming task does not use a

regular base. The playground is constructed from a combination of farmland for planting

crops, water blocks, and randomly selected unfarmable blockers from the base that replace

some of the farmland. An example is shown in Figure D.17. Each corps used in farming task

has its own grown stage with different appearances, shown in Figure D.4. Smelting task

requires a wide varieties of resources to achieve its goal. Resources could be either entity,

block, or item. Shown in Figure D.5.
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GlowstonePodzolObsidianOak Wood Grass Block

Gold BlockStoneSmooth QuartzCyan Concrete Glass Hay Block Pink Wool

Bot3Bot2Bot1Bot0

Base Blocks

Bot Skins

Figure D.1: Visualization of the shared visual diversity in the tasks

Crafting TablePumpkinGold OreOrange Concrete Bookshelf Sandstone Bricks

CobwebBirch LogGrass BlockAnvil Clay Coal Ore Dirt

Oak LogStoneOak FenceAcacia Fence Iron Ore

Stone PickaxeStone SwordStone ShovelStone Axe

Clearing

Targets

Clearing

Tools

Figure D.2: Visualization of the visual diversity in Clearing tasks
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Building

Targets
(shared w/ Clearing)

Grass Block

Sea Lantern Emerald Block

Building

Targets

Acacia Fence

Bookshelf

Oak Log

Figure D.3: Visualization of the visual diversity in Building tasks
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Figure D.4: Visualization of crop appearances across various growing stages in Farming tasks
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Figure D.5: Visualization of the visual diversity in Smelting tasks
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Figure D.6: An example scene in the Seaside Village biome

Figure D.7: An example scene in the Grass Village biome
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Figure D.8: An example scene in the Dessert Village biome

Figure D.9: An example scene in the Half Mountain biome
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Figure D.10: An example scene in the Swamp biome

Figure D.11: An example scene in the Iceberg biome
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Figure D.12: An example scene in the Snow Mountain biome
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D.4 Planner for Expert Demonstration

TeamCraft employed a planner to assign actions to each agent at every time step, utilizing

perfect knowledge of the task including goal object positions, agents’ inventories, and each

agent’s efficiency in performing actions. The planner optimizes actions using a cost function

designed to minimize the total time to complete the task, reduce idle times for agents,

minimize action dependencies to prevent agents from waiting on others, maximize parallelism

of actions, assign tasks to the most efficient agents, and eliminate redundant or unnecessary

actions. The cost function considers the following components:

Minimize Total Task Completion Time T : Denoted by minT , our primary objective

is to reduce the overall time required to complete the task, measured in time steps until the

last agent finishes their final action.

Minimize Idle Actions for Each Agent E: Denoted by min
∑N

i=1 Ei, we minimize the

total empty actions, the sum of empty action Ei preformed by agent i.

Minimize Action Dependencies Across Agents D: Denoted by minD, we minimize

dependencies cause agents to wait for others to complete certain actions.

Minimize Redundant or Useless Actions U : Denoted by minU , we minimize the total

number of redundant or unnecessary actions performed by all agents.

Maximize Action Efficiency: Denoted by min
∑N

i=1

∑
j∈Ai

cij , we assign actions to agents

with higher capabilities to reduce the overall cost, where cij be the cost (inverse of efficiency)

for agent i to perform action j.

We assign each component a weight:

C = w1T + w2

N∑

i=1

Ei + w3D + w4

N∑

i=1

∑

j∈Ai

cij + w5U (D.1)
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where w1, w2, w3, w4, w5 are weighting coefficients, and adjusted for each tasks.

Building: In the building task, where dependencies are moderate and parallelization is

preferred, we place greater emphasis on minimizing idle actions by setting w2 = 1.4 and

assign a weight of 0.9 to the other components. This encourages agents to remain active and

reduces idle time, enhancing overall efficiency.

Clearing: In the clearing task, using the correct tools can significantly speed up block

removal (up to a threefold increase). Therefore, we assign a higher weight of w4 = 1.8 to

maximize action efficiency by assigning tasks to the most capable agents. The other weights

are set to 0.8 to maintain overall performance while focusing on efficient tool usage.

Farming: Farming task is not heavily constrained by action dependencies, we assign equal

weights of 1 to all components, ensuring a balanced consideration of time minimization, idle

actions, action dependencies, action efficiency, and redundancy elimination.

Smelting: In the smelting task, which involves comparatively long and highly dependent

action sequences, we prioritize minimizing action dependencies by setting w3 = 1.8. The other

weights are assigned a value of 0.8 to support this focus, facilitating smoother coordination

among agents and reducing waiting times.

D.4.1 Example Expert Demonstrations

Figure D.13 and Figure D.14 show a classic example of the building task, which involves

three agents building a 2x3 building on the mountain half. Each of the agents has some of

the needed blocks in their inventory to build the building. For every time step after step 0,

each of the three agents build one block, from bottom level to the second level.

Figure D.15 shows an example of the clearing task. Two agents are assigned to clean

the blocks on a 6x6 platform. Each of them has a stone pickaxe in their inventory, which is

the efficient tool to break "stone-like" blocks. In this case, they are able to break brick and
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Bot1 Bot2

Bricks

build a building on the playground base  

below. has 5                  , 2                   , 1                  .

Building 01:

4                  . The blueprint looks like:

Step 0:

Actions: None

FrontTop Side

Reward: 0

Bot2Bot1 Sky View

Step 1:

Actions: placeItem(bot1, 'pumpkin', new Vec3(-1,0,-1)), placeItem(bot2, 'coal_ore', new Vec3(1,0,-1)), 

placeItem(bot3, 'bricks', new Vec3(0,0,-1))

Reward: 0.5

Bot2Bot1 Sky View

Bot3 Hay Block

halfway up the mountain, following the blueprint given

Pumpkin Sea Lantern Coa Ore

has 3                   , 2                  , 2                  .

Coa Ore Orange Concrete Oak Planks

has 3                   ,

Oak Planks

Bot3

Bot3

Bot1 Bot2 Bot3

Figure D.13: An example demonstration in the Building task, Part I
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Step 2:

Actions: placeItem(bot1, 'sea_lantern', new Vec3(1,1,-1)), placeItem(bot2, 'orange_concrete', new Vec3(-1,1,-1)),

placeItem(bot3, 'oak_planks', new Vec3(0,1,-1))

Reward: 1.0

Bot2Bot1 Sky ViewBot3

Figure D.14: An example demonstration in the Building task, Part II

remove 

Bot1 Bot2 Bookshelf Sandstone BricksCrafting Table

blocks on the playground base  

Gold Block

in a dissert village. 

Stone Pickaxe

,           has 1has 1 .                     requires only one timestep to break                                  , but two timesteps

Clearing 01:

Stone Pickaxe Stone Pickaxe Sandstone Bricks

Bookshelf Crafting Table

. The initial playground looks like:

Step 0:

Actions:None

FrontTop Side

Reward: 0

Bot2Bot1 Sky View

to break or 

Bot1

Bot2

Figure D.15: An example demonstration in the Clearing task, Part I
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Step 1:

Actions: mineBlock(bot1, new Vec3(1,0,0)), mineBlock(bot2, new Vec3(0,0,-1))

Reward: 0.5

Bot2Bot1 Sky View

Step 2:

Actions: mineBlock(bot1, new Vec3(-1,0,1)), mineBlock(bot2, new Vec3(-2,0,1))

Reward: 0.5

Step 3:

Actions: mineBlock(bot1, new Vec3(-1,0,1)), mineBlock(bot2, new Vec3(-2,0,1))

Reward: 1.0

Bot2Bot1 Sky View

Same visual observation as it requires two timesteps to break. 

Figure D.16: An example demonstration in the Clearing task, Part II

sow and harvest for 2 more                      on                   on an iceberg. Some   

Bot1 Bot2

are blocked by                   .

Crops take up to three timesteps to grow from                to                  to be harvestable. Each                  gives 2                   .

has  2                 , 3                 . 

Farming 01:

has 1                 , 1                 .    The initial playground looks like:

FrontTop Side

Farmland Farmland Smooth Quartz

Age 0 Age 7

Bot1 Beetroots Bot2 Potato

Carrot

Age 7 Carrot

Carrot Carrot

Figure D.17: An example demonstration in the Farming task, Part I
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Step 0:

Actions: None

Reward: 0

Bot2Bot1 Sky View

Step 1:

Actions: farm_work(bot1, new Vec3(-2,-1,-1), 'sow', 'carrot’), farm_work(bot2, new Vec3(-1,-1,1), 'sow', 'carrot')

Reward: 0

Bot2Bot1 Sky View

Step 2:

Actions: None

Reward: 0.5

Bot2Bot1 Sky View

Step 3:

Actions: farm_work(bot1, new Vec3(-2,0,-1), 'harvest’), farm_work(bot2, new Vec3(-1,0,1), 'harvest')

Reward: 1.0

Bot2Bot1 Sky View

Figure D.18: An example demonstration in the Farming task, Part II
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cook for 2                        in a dissert village. To get 

Bot1 Bot2

, smelt                  with                   as fuel in                   .

Resources are on base                   or in inventory. To get , kill                     with                 . To get                  , collect with      

has 1                 . 

Smelting 01:

has 1                , 1                 , and                    . The initial playground looks like:

Step 0:

Actions: None

FrontTop Side

Reward: 0

Bot2Bot1 Sky View

Step 1:

Actions: killMob(bot1, new Vec3(2,0,-3)), putFuelFurnace(bot2, 'birch_log', new Vec3(0,0,0))

Reward: 0

Bot2Bot1 Sky View

Furnace

Bot1 Bot2

Cooked Porkchop Cooked Porkchop Porkchop Birch Log

PorkchopHay Block Pig Iron Sword Birch Log

Iron Axe

.

Iron Sword Iron Axe Porkchop Birch Log

Figure D.19: An example demonstration in the Smelting task, Part I
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Step 2:

Actions: putItemFurnace(bot1, 'porkchop', new Vec3(0,0,0)), putItemFurnace(bot2, 'porkchop', new Vec3(0,0,0))

Reward: 0.5

Step 3:

Actions: obtainBlock(bot1, new Vec3(-3,0,-3))

Reward: 1.0

Bot2Bot1 Sky View

Step 4:

Actions: putFuelFurnace(bot1, 'birch_log', new Vec3(0,0,0))

Reward: 1.0

Bot2Bot1 Sky View

Step 5:

Actions: takeOutFurnace(bot1, new Vec3(0,0,0))

Reward: 1.0

Same visual observation as step 4. 

Figure D.20: An example demonstration in the Smelting task, Part II
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Table D.1: Comparison of TeamCraft-VLA redundancy rates

Test Goal Scene Agents Average

TeamCraft-VLA-7B-Cen 0.01 0.02 0.01 0.01 0.01
TeamCraft-VLA-13B-Cen 0.01 0.00 0.01 0.01 0.01
TeamCraft-VLA-7B-Dec 0.13 0.12 0.13 0.24 0.15
TeamCraft-VLA-13B-Dec 0.11 0.11 0.12 0.22 0.14

Table D.2: Comparison of TeamCraft-VLA action sequence length

Test Goal Scene Agents Average

TeamCraft-VLA-7B-Cen 6.62 7.63 5.93 6.35 6.63
TeamCraft-VLA-13B-Cen 6.25 7.44 6.46 6.47 6.65
TeamCraft-VLA-7B-Dec 8.42 8.53 8.06 7.38 8.1
TeamCraft-VLA-13B-Dec 8.62 8.46 8.41 6.71 8.04

sandstone in just one time step with pickaxe but requires two time step to break "wood-made"

blocks like bookshelf and crafting table. This resulted time step 2 and 3 has exactly same

visual observation, shown in Figure D.16.

Figure D.17 and Figure D.18 shows an example of two agents farming on a snow mountain

for two extra carrots. In step 1, agent1 and agent2 both sow the carrots on the open ground.

In step 2 they saw that the carrots are ready to collect and they both collect one carrot in

step 3 and eventually they collected two carrots.

Figure D.19 and Figure D.20 shows an example of smelting task where two agents need to

get two cooked porkchops. In step 1, one agent is in charge of adding the fuel to the furnace

and the other agent tries to kill the pork to get the raw porkchop. Since bot2 already has one

porkchop, it only requires one additional porkchop. In step 2, both agents put the porkchop

to the furnace and in step 3, they got 2 cooked porkcops.

D.5 Grid-World Settings

Under the grid-world setting, we replace the three orthographic view images and first person

view images with text descriptions of the task goal and current environment states, and

provide them as input to the model. Here we show one example of the prompt construction
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Table D.3: Action space within TeamCraft

Type Arguments Description

placeItem BotID, ItemType, Location BotID places an item of ItemType at the specified 3D Location.

mineBlock BotID, Location BotID mines a block at the specified 3D Location.

farmWork BotID, Location, Action, ItemType BotID performs an Action (sow or harvest) on ItemType at the specified 3D Location.

obtainBlock BotID, Location BotID obtains a block from the specified 3D Location.

putFuelFurnace BotID, ItemType, Location BotID places an ItemType as fuel into a furnace at the specified 3D Location.

putItemFurnace BotID, ItemType, Location BotID inserts an ItemType into a furnace at the specified 3D Location.

takeOutFurnace BotID, ItemType, Location BotID removes an ItemType from a furnace at the specified 3D Location.

killMob BotID, Location BotID engages and eliminates a mob at the specified 3D Location.

System Prompt

Three bots need to build a building on the platform. Target building is: Put sea_lantern on [0 ,1 ,0]. Put oak_fence on
[-1 ,1 ,0]. Put sponge on [0 ,1 ,-1]. Put emerald_block on [-1 ,1 ,-1]. Put dirt on [0 ,0 ,0]. Put bricks on [-1 ,0 ,0]. Put
emerald_block on [0 ,0 ,-1]. Put clay on [-1 ,0 ,-1].

User Prompt

bot1 has 4 dirt. bot1 has 3 clay. bot1 has 7 emerald_block. bot1 has 1 oak_fence. bot1 has 3 sponge. bot1 has 1
bricks. bot1 has 3 sea_lantern. bot2 has 4 bricks. bot2 has 2 sponge. bot2 has 6 sea_lantern. bot2 has 2 oak_fence.
bot2 has 4 emerald_block. bot2 has 1 dirt. bot2 has 3 clay. bot3 has 6 emerald_block. bot3 has 4 oak_fence. bot3 has
2 dirt. bot3 has 2 sponge. bot3 has 3 clay. bot3 has 2 sea_lantern. bricks is on [-1 ,0 ,0]. dirt is on [0 ,0 ,0]. Write the
actions for bot1, bot2 and bot3 based on this given observation.

Figure D.21: Prompt example for Building task under the grid-world setting

in each task.

Building: As shown in Figure D.21, the system prompt consists of both task description

and the target building coordination of each block. The user prompt consists of the built

blocks and the inventories of the agents.

System Prompt

Three bots need to break everything on the platform. clay is on [-2 ,0 ,-2]. birch_log is on [-2 ,0 ,0]. dirt is on [-1 ,0 ,-2].
crafting_table is on [-1 ,0 ,1]. anvil is on [-1 ,1 ,1]. anvil is on [0 ,0 ,-2]. iron_ore is on [0 ,0 ,1]. cobweb is on [1 ,0 ,1].

User Prompt

bot1 has 1 stone_pickaxe. bot1 has 1 anvil. bot2 has 1 stone_axe. bot2 has 1 crafting_table. bot3 has 1 stone_pickaxe.
bot3 has 1 dirt. clay is on [-2 ,0 ,-2]. birch_log is on [-2 ,0 ,0]. iron_ore is on [0 ,0 ,1]. cobweb is on [1 ,0 ,1]. Write the
actions for bot1, bot2 and bot3 based on this given observation.

Figure D.22: Prompt example for Clearing task under the grid-world setting
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System Prompt

Two bots need to grow on the platform. The goal is to get 5 carrot. farmland is on [-3 ,-1 ,-2] with value of 7.
cyan_concrete is on [-3 ,-1 ,-1]. water is on [-3 ,-1 ,0]. cyan_concrete is on [-3 ,-1 ,1]. cyan_concrete is on [-3 ,-1 ,2].
farmland is on [-2 ,-1 ,-2] with value of 7. cyan_concrete is on [-2 ,-1 ,-1]. water is on [-2 ,-1 ,0]. farmland is on [-2 ,-1 ,1]
with value of 7. cyan_concrete is on [-2 ,-1 ,2]. cyan_concrete is on [-1 ,-1 ,-2]. cyan_concrete is on [-1 ,-1 ,-1]. water is
on [-1 ,-1 ,0]. farmland is on [-1 ,-1 ,1] with value of 7. farmland is on [-1 ,-1 ,2] with value of 7. cyan_concrete is on [0
,-1 ,-2]. farmland is on [0 ,-1 ,-1] with value of 7. water is on [0 ,-1 ,0]. cyan_concrete is on [0 ,-1 ,1]. cyan_concrete is
on [0 ,-1 ,2]. cyan_concrete is on [1 ,-1 ,-2]. cyan_concrete is on [1 ,-1 ,-1]. water is on [1 ,-1 ,0]. farmland is on [1 ,-1
,1] with value of 7. cyan_concrete is on [1 ,-1 ,2]. cyan_concrete is on [2 ,-1 ,-2]. cyan_concrete is on [2 ,-1 ,-1]. water
is on [2 ,-1 ,0]. cyan_concrete is on [2 ,-1 ,1]. farmland is on [2 ,-1 ,2] with value of 7. cyan_concrete is on [3 ,-1 ,-2].
farmland is on [3 ,-1 ,-1] with value of 7. water is on [3 ,-1 ,0]. cyan_concrete is on [3 ,-1 ,1]. farmland is on [3 ,-1 ,2]
with value of 7.

User Prompt

bot1 has 5 carrot. bot1 has 2 beetroot. bot1 has 3 potato. bot2 has 2 carrot. bot2 has 2 beetroot. bot2 has 2
wheat_seeds. farmland is on [-3 ,-1 ,-2] with value of 7. cyan_concrete is on [-3 ,-1 ,-1]. water is on [-3 ,-1 ,0].
cyan_concrete is on [-3 ,-1 ,1]. cyan_concrete is on [-3 ,-1 ,2]. farmland is on [-2 ,-1 ,-2] with value of 7. cyan_concrete
is on [-2 ,-1 ,-1]. water is on [-2 ,-1 ,0]. farmland is on [-2 ,-1 ,1] with value of 7. cyan_concrete is on [-2 ,-1 ,2].
cyan_concrete is on [-1 ,-1 ,-2]. cyan_concrete is on [-1 ,-1 ,-1]. water is on [-1 ,-1 ,0]. farmland is on [-1 ,-1 ,1] with
value of 7. farmland is on [-1 ,-1 ,2] with value of 7. cyan_concrete is on [0 ,-1 ,-2]. farmland is on [0 ,-1 ,-1] with value
of 7. water is on [0 ,-1 ,0]. cyan_concrete is on [0 ,-1 ,1]. cyan_concrete is on [0 ,-1 ,2]. cyan_concrete is on [1 ,-1 ,-2].
cyan_concrete is on [1 ,-1 ,-1]. water is on [1 ,-1 ,0]. farmland is on [1 ,-1 ,1] with value of 7. cyan_concrete is on [1 ,-1
,2]. cyan_concrete is on [2 ,-1 ,-2]. cyan_concrete is on [2 ,-1 ,-1]. water is on [2 ,-1 ,0]. cyan_concrete is on [2 ,-1 ,1].
farmland is on [2 ,-1 ,2] with value of 7. cyan_concrete is on [3 ,-1 ,-2]. farmland is on [3 ,-1 ,-1] with value of 7. water
is on [3 ,-1 ,0]. cyan_concrete is on [3 ,-1 ,1]. farmland is on [3 ,-1 ,2] with value of 7. carrots is on [3 ,0 ,-1] with value
of 0. carrots is on [3 ,0 ,2] with value of 0. Write the actions for bot1, bot2 based on this given observation.

Figure D.23: Prompt example for Farming task under the grid-world setting

System Prompt

Two bots need to craft 2 stone. Here are the instructions: Cooking Food: 1. To cook a ’cooked_beef’... cobblestone is
on [-2 ,0 ,2]. furnace is on [0 ,0 ,1]. spruce_planks is on [2 ,0 ,-3]. cobblestone is on [2 ,0 ,-1].

User Prompt

bot1 has 1 iron_sword. bot1 has 1 iron_shovel. bot1 has 1 iron_pickaxe. bot1 has 1 cobblestone. bot1 has 1
spruce_planks. bot2 has 1 spruce_planks. bot2 has 1 iron_shovel. bot2 has 2 iron_pickaxe. cobblestone is on [-2 ,0 ,2].
furnace is on [0 ,0 ,1]. spruce_planks is on [2 ,0 ,-3]. cobblestone is on [2 ,0 ,-1]. Write the actions for bot1, bot2 based
on this given observation.

Figure D.24: Prompt example for Smelting task under the grid-world setting
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Top View

Side View

Front View

Figure D.25: Combining three orthogonal view images into a single composite image

Table D.4: Hyperparameters for TeamCraft-VLA

lr model max length vision tower patch size resolution language model optimizer lr scheduler type warmup ratio

2e-5 4096 openai-clip-vit-large 14 336*336 Vicuna-v1.5 AdamW constant_with_warmup 0.03

Clearing: As shown in Figure D.22, the system prompt consists of both task description

and the blocks that appeared on the platform initially. The user prompt consists of the

blocks that appeared on the platform at current time step and the inventories of the agents.

Farming: As shown in Figure D.23, the system prompt consists of both task description

and the blocks in the farmland. The user prompt consists of the blocks in the farmland and

crops information at current time step and the inventories of the agents.

Smelting: As shown in Figure D.24, the system prompt consists of both task description,

instructions to craft different items and the blocks in the field. The user prompt consists of

the blocks locations at current time step and the inventories of the agents.

D.6 TeamCraft-VLA Implementation Details

We use Vicuna-v1.5 as the LLM backbone. For the visual encoder, we employ CLIP ViT-L/14

to process all input images, including three orthogonal views and the first-person view of

the agents. The image embeddings are then projected into the LLM space with a linear
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projection layer and concatenated with the text embeddings. The combined embeddings are

fed into the LLM, which outputs the final action. During training, we froze the visual encoder

and projector and only finetune the LLM. All image embeddings are positioned before the

text embeddings, separated by "image start" and "image end" tokens. In centralized settings,

where the number of images varies depending on the number of agents, we pad a dummy

image at the end for training stability if the task involves only two agents. In decentralized

settings, the number of image inputs remains unaffected, as the model processes only the

first-person view of the current agent, excluding views from others.

We train each model for 3 epochs using the training split, leveraging 8 A100 GPUs with

a global batch size of 16. In the centralized setting, training the 7B model takes 36 hours,

while the 13B model requires 72 hours. In the decentralized setting, the training duration

doubles, with the 7B model requiring 72 hours and the 13B model taking 144 hours. In the

grid-world setting, training the 7B model takes 20 hours.

D.6.1 Arrangement of Three Orthogonal Views

For training and evaluation, we combine the three orthogonal view images into a single

composite image by arranging them to the upper-left top-left corner, top-right corner, and

the lower-left corner of the composite image. An example of this arrangement is shown

below Figure D.25. This process is to reduce the number of images provided to the model to

conform with the 4096 context length limit.

D.6.2 Hyperparameters

We present the hyperparameters for VLA training in Table D.4.

D.6.3 Model Output Parsing

The output of the model is a string which will be parsed into the pre-defined high level skills.

The string will be first processed by removing special sentence begin token, <s>, and ending

token </s>. It will then be split into a list, where each item is parsed as the skill of one agent.
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Table D.5: Task success rates and subgoal success rates of the TeamCraft-VLA-7B-Cen and
TeamCraft-VLA-7B-Dec models. Subgoal success rates are given in parentheses.

Tasks Condition
Centralized Decentralized

10% 50% 100% 10% 50% 100%

Building

Test 0.00 (0.12) 0.38 (0.76) 0.42 (0.81) 0.00 (0.18) 0.00 (0.28) 0.00 (0.38)
Shape 0.00 (0.12) 0.20 (0.67) 0.30 (0.75) 0.00 (0.15) 0.00 (0.25) 0.00 (0.40)
Material 0.00 (0.13) 0.18 (0.64) 0.30 (0.74) 0.00 (0.13) 0.00 (0.20) 0.00 (0.34)
Scene 0.00 (0.15) 0.36 (0.73) 0.40 (0.83) 0.00 (0.16) 0.00 (0.21) 0.00 (0.36)
Agents 0.00 (0.18) 0.02 (0.50) 0.02 (0.57) 0.00 (0.12) 0.00 (0.20) 0.00 (0.14)

Clearing

Test 0.00 (0.13) 0.08 (0.43) 0.64 (0.91) 0.00 (0.45) 0.02 (0.35) 0.20 (0.68)
Shape 0.00 (0.09) 0.08 (0.34) 0.56 (0.91) 0.00 (0.47) 0.02 (0.27) 0.16 (0.74)
Material 0.00 (0.10) 0.12 (0.45) 0.56 (0.90) 0.00 (0.48) 0.00 (0.22) 0.16 (0.67)
Scene 0.00 (0.11) 0.10 (0.44) 0.58 (0.92) 0.00 (0.41) 0.04 (0.37) 0.10 (0.64)
Agents 0.00 (0.16) 0.14 (0.64) 0.36 (0.81) 0.02 (0.50) 0.02 (0.54) 0.12 (0.60)

Farming

Test 0.14 (0.43) 0.34 (0.60) 0.36 (0.63) 0.02 (0.07) 0.02 (0.14) 0.00 (0.09)
Crop 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Scene 0.16 (0.39) 0.34 (0.65) 0.38 (0.67) 0.00 (0.05) 0.00 (0.11) 0.02 (0.07)
Agents 0.02 (0.18) 0.18 (0.61) 0.38 (0.68) 0.00 (0.08) 0.00 (0.11) 0.04 (0.27)

Smelting

Test 0.06 (0.17) 0.20 (0.36) 0.24 (0.28) 0.08 (0.13) 0.08 (0.09) 0.16 (0.29)
Goal 0.08 (0.21) 0.04 (0.07) 0.00 (0.00) 0.08 (0.17) 0.00 (0.00) 0.00 (0.00)
Furnace 0.10 (0.28) 0.10 (0.20) 0.18 (0.20) 0.06 (0.07) 0.06 (0.06) 0.06 (0.16)
Scene 0.08 (0.19) 0.14 (0.28) 0.18 (0.23) 0.08 (0.19) 0.14 (0.19) 0.12 (0.28)
Agents 0.00 (0.15) 0.02 (0.24) 0.06 (0.13) 0.04 (0.05) 0.00 (0.02) 0.02 (0.28)

D.7 Additional Results of TeamCraft-VLA

D.7.1 Task Success Rate and Subgoal Success Rate

We show task success rate and subgoal success rate of centralized and decentralized 7B models

with different data scales in Table D.5, and those of 13B models in Table D.6. We compare

among different centralized models in Table D.7.

D.7.2 Redundancy Rate

We present a more detailed analysis of redundancy rates, including the 13B models, in

Table D.1. Both the 7B and 13B models exhibit redundancy issues in decentralized settings.

Increasing model size alone does not resolve the redundancy problem in such scenarios.
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Table D.6: Task success rates and subgoal success rates of the TeamCraft-VLA-13B-Cen and
TeamCraft-VLA-13B-Dec models. Subgoal success rates are given in parentheses.

Tasks Condition
Centralized Decentralized

10% 50% 100% 10% 50% 100%

Building

Test 0.00 (0.18) 0.46 (0.80) 0.48 (0.79) 0.00 (0.13) 0.00 (0.18) 0.00 (0.31)
Shape 0.00 (0.16) 0.30 (0.73) 0.26 (0.69) 0.00 (0.15) 0.00 (0.15) 0.00 (0.32)
Material 0.00 (0.15) 0.24 (0.65) 0.08 (0.63) 0.00 (0.14) 0.00 (0.14) 0.00 (0.31)
Scene 0.00 (0.16) 0.38 (0.75) 0.48 (0.83) 0.00 (0.17) 0.00 (0.17) 0.00 (0.28)
Agents 0.00 (0.16) 0.00 (0.49) 0.04 (0.59) 0.00 (0.14) 0.00 (0.16) 0.00 (0.23)

Clearing

Test 0.04 (0.37) 0.42 (0.83) 0.64 (0.94) 0.00 (0.46) 0.02 (0.62) 0.02 (0.60)
Shape 0.00 (0.26) 0.42 (0.85) 0.78 (0.96) 0.00 (0.47) 0.00 (0.57) 0.04 (0.58)
Material 0.04 (0.36) 0.36 (0.83) 0.56 (0.92) 0.02 (0.53) 0.00 (0.60) 0.02 (0.58)
Scene 0.06 (0.35) 0.44 (0.88) 0.48 (0.90) 0.00 (0.55) 0.02 (0.59) 0.08 (0.64)
Agents 0.02 (0.55) 0.16 (0.65) 0.16 (0.77) 0.02 (0.50) 0.02 (0.52) 0.02 (0.50)

Farming

Test 0.4 (0.72) 0.62 (0.79) 0.46 (0.73) 0.08 (0.39) 0.04 (0.23) 0.02 (0.33)
Crop 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Scene 0.30 (0.69) 0.52 (0.76) 0.44 (0.75) 0.04 (0.32) 0.06 (0.29) 0.10 (0.33)
Agents 0.12 (0.54) 0.44 (0.79) 0.36 (0.72) 0.02 (0.22) 0.00 (0.19) 0.02 (0.23)

Smelting

Test 0.06 (0.08) 0.22 (0.44) 0.32 (0.59) 0.10 (0.25) 0.06 (0.09) 0.10 (0.19)
Goal 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.10) 0.00 (0.00) 0.00 (0.00)
Furnace 0.06 (0.08) 0.20 (0.40) 0.18 (0.38) 0.06 (0.12) 0.04 (0.08) 0.04 (0.07)
Scene 0.04 (0.08) 0.16 (0.43) 0.24 (0.56) 0.12 (0.28) 0.04 (0.09) 0.08 (0.18)
Agents 0.00 (0.03) 0.00 (0.26) 0.04 (0.37) 0.00 (0.02) 0.00 (0.01) 0.00 (0.00)

Table D.7: Task success rates and subgoal success rates of various centralized models. Subgoal
success rates are given in parentheses. All models are trained with the full training data
except GPT-4o.

Tasks Condition TeamCraft-VLA-7B TeamCraft-VLA-13B GPT-4o TeamCraft-7B-GridWorld

Building

Test 0.42 (0.81) 0.48 (0.79) 0.00 (0.07) 0.42 (0.88)
Shape 0.30 (0.75) 0.26 (0.69) 0.00 (0.08) 0.50 (0.90)
Material 0.30 (0.74) 0.08 (0.63) 0.00 (0.07) 0.26 (0.82)
Scene 0.40 (0.83) 0.48 (0.83) 0.00 (0.07) 0.48 (0.89)
Agents 0.02 (0.57) 0.04 (0.59) 0.00 (0.00) 0.12 (0.71)

Clearing

Test 0.64 (0.91) 0.64 (0.94) 0.00 (0.03) 1.00 (1.00)
Shape 0.56 (0.91) 0.78 (0.96) 0.00 (0.04) 1.00 (1.00)
Material 0.56 (0.91) 0.56 (0.92) 0.00 (0.12) 1.00 (1.00)
Scene 0.58 (0.92) 0.48 (0.90) 0.00 (0.06) 1.00 (1.00)
Agents 0.36 (0.81) 0.16 (0.77) 0.00 (0.00) 0.84 (0.97)

Farming

Test 0.36 (0.64) 0.46 (0.73) 0.00 (0.00) 0.78 (0.86)
Crop 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Scene 0.38 (0.67) 0.44 (0.75) 0.00 (0.00) 0.90 (0.96)
Agents 0.38 (0.68) 0.36 (0.72) 0.00 (0.00) 0.40 (0.73)

Smelting

Test 0.24 (0.28) 0.32 (0.59) 0.02 (0.02) 0.24 (0.51)
Goal 0.00 (0.00) 0.00 (0.00) 0.08 (0.08) 0.00 (0.00)
Furnace 0.18 (0.20) 0.18 (0.38) 0.00 (0.00) 0.24 (0.39)
Scene 0.18 (0.23) 0.24 (0.56) 0.00 (0.00) 0.36 (0.58)
Agents 0.06 (0.13) 0.04 (0.37) 0.00 (0.00) 0.00 (0.31)

120



D.7.3 Action Sequence Length

We compared the average action lengths across different splits between the 7B and 13B

models under both centralized and decentralized settings, as shown in Table D.2. In general,

decentralized settings require longer action sequences to complete tasks. Among the splits,

the Goal split is the most challenging, as it demands more actions to accomplish the tasks.
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