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The increasingly important role of medical imaging in the  diagnosis and treatment 

of disease has opened an array of challenging problems centered on the computatioii of 

accurate geomet ric models of anatornic st riict iires from medical images. -4 promising ap- 

proach to tackle such problems is the use of deformable models. These powerful models 

have prown to be effective in segment ingo visualizing. mat ching. and t racking anatomic 

structures by es~ lo i t ing  (bottom-up) constraints derived from the image data toget her 

with (top-down) R priori knowledge about the location. size. and shape of thesc struc- 

tiires. Fiirt hermore. deformable models support highly intuitive interaction rnechanisms 

that allorv medical scientists and practitioners to bring their expertise to bear on the 

image interpretation task. 

This thesis proposes. tlevelops. and applies a new class of discrete deformable rnodels 

for the segmentation and analysis of medical images. This new class of deformable models 

is embedded and defined in tcrms of an .-?gine Ce11 D~cornposilion (.-\CD) framework - 

a t lieoret ically soiind framework t hat significantly extends the abilit ies of t raditional 

deforniable models. enabling topological flesibility among other featiires. ;\CD-based 

deformable models can be used to estract. reconstruct and analyze everi t h e  most comples 

biological s t ruct mes from medical images. 

The ;\CD framework combined with a novel and original reparanieterization algorit hm 

creates a simple but elegant and powerful mechanism for rnultiresolution deformable 

curve. surface. and solid models to  'bflorv'' or -grow9' into objects with complex geome- 

tries and topologies. and adapt th& shape to conform to  the object boiindaries. Multiple 

instances of the models can be dpnamically created or destroyed and can seamlessly split 

or mergc to adapt to object topology. .\CD-based models maintain the traditional para- 



met ric physics-bwed formulation of deformahle models. allowing t hem to incorporate n 

priori anatomic knowledge in the form of energy and force-based constraints. an2 pro- 

vide intuitive interactive capabilities. Furt hermore. by defining the models in terrns of 

the .-\CD framework. -harde geomet ric. topological. and global shape const rai nts can be 

efficient ly realized. These combined propert ies Iead to a robust. elegant . and highlj- auto- 

rnated method of linking sparse or noisy local image features into a complete. consistent. 

and analyt ical object model. 
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Chapter 1 

Introduction 

The rapid development and proliferat ion of meclical imaging technologies is rcvoliit ion- 

iziiig medicine. Sledical imaging allows scientists and physicians to giean potentially 

life-saving information by peering noninvasively into the hiirnan bodj-. In recent >-cars. 

the role of medical imaging has espanded beyond the simple visualization and inspection 

of anatomic structures. I t  lias become a tool for surgical planning and simulation. intra- 

opcrat ive nai-igat ion. radiot herapy planning. and for t racking the progress of disease. 

For esample. ascertaining the cletailecl sliape and organization of anatomic striictiires 

enables a surgeon to preoperatively plan an optimal approach to sonie target striictiirc. 

[ r i  radiotherapy. nieclical irnaging allows the dcli\.ery of a necrotic dose of radiation to a 

t iimor n-it h minimal collateral damage to healt hy t issuc. 

\Vit  h medical imaging p l - i n g  an increasingly proniinent role i r i  t lie diagnosis and 

t rcat nient of disease. the medical image analysis communi ty has become preocciipicd wit h 

t h e  cliallenging problem of estracting-with t h e  assistance of computers-clinically ~iseful 

information about anatomic structures imaged through CT. SIR. PET. and ot her modal- 

it ies. Alt lioiigh modern irnaging devices pro\ide except ional k~iews of interna1 anatom' 

(Figure 1.1). the use of computers to quantify and analyze the ernbedded structures 

with accuracy and efficiency is limited. Accurate. reproducible. quantitative data niust 

be efficiently estracted in order to support the spectrurn of biomedical investigations and 

cliriical activities from diagnosis. to radiotherapy. to surgery. 

Segmcnting structures from medical images and reconstructing a compact analytic 



Figure 1.1: ( a )  .\,IR image slice of the brain. ( b )  Cells in a n  EN photomicrograph. ( c )  

I;ltrasoiind image of fetiis. ( d )  Portion of a fluorescent angiogram of the retina. (e) CT 

image slice of canine heart. ( f )  PET image slice of brain. 



representation of t hese structures is difficult due to the sheer size of the da ta  sets and the 

complexity and variability of the anatomic shapes of interest. Furthermore. the short- 

comings typical of sampled data. such as  sampling artifacts. spatial aliasing. and noise, 

may cause the boundaries of structures to be indistinct and discorinected. The challenge 

is to extract boundary elernents belonging to the same structure and integrate these 

elements into a complete and consistent model of the structure. Traditional low-level 

image processing techniques which consider only local information can make incorrect 

assumptions during t his integration process and generate infeasible object boundaries. 

.As a result. these model-free techniques usually require considerable amounts of expert 

intervention. Fort hermore. the subsequent analysis and interpretation of the segmented 

ob jects is hindered by the pixel- or voxel-level structure represent a t  ions generated by 

most image processing operations. 

.-\ promising and vigorously researched corn puter-wsisted medical image analysis tech- 

nique is the use of d e f o n a b l e  rnodels (see the recent survey [64]). Among model-basecl 

techniques. deformable models offer a unique and powerfiil approach to image analysis 

t tiat combines geornet ry. p hyics. and approximation t heory. These cont iniious geomct ric 

models consider an object boundary as c single connected structure. Connectivity of the 

object is t herefore guaranteed. Deformable models can make use of a pn'ori knowledge 

of object shape to constrain the segmentation problem and the inherent continuity and 

smoothness of the models can compensate for noise. gaps and other irregularities in ob- 

ject boundaries. Fiirtherrnore. t hc parametric representations of the rnodels can provide 

a compact. analytical description of object shape. Finally. deforrnable models support 

highl~. intuitive interaction mechanisms that. when necessa-. allow medical scientists 

and practitioners to bring their expertise to bear on the rnodel-based image interpreta- 

tion task. These combined properties Iead to a robust and elegarit technique for linking 

sparse or noisy local image features into a cornplete wli-defined model. 

This thesis proposes. develops. and applies a new class of deformable rnodels for the 

segmentation and analysis of medical images. This ncw class of deformable models ex- 

ploits an .@ne Ce11 Decornposition (.-\CD) of the image domain - a t heoretically sound 

frarnework that significantly extends the abilities of classical deforrnable models such as 



deformable contours or snakes [47] and deformable surfaces [99. 1051. Affine ce11 de- 

compositions divide an image domain into a collection of convex polytopes. Embedding 

deformable models in this framework allows the modeIs to estract and reconstruct even 

the most complex biological structures. The .\CD framework cornbined with a novel 

reparameterization algorithm creates a simple but elegant and powerful mechanisrn for 

multiresolution deformable curve. surface. and solid models to fiow" or -groiv" into ob- 

jects with complex geornetries and topologies. adapting t heir shape to conform to the 

object boundaries. Llodel shape adaptation or defornat ion is governed by a physics- 

based formulation. The AC D framework enables the models to  maintain the t radi t ional 

properties associated with classical deformable models. such as user interaction and the 

incorporation of constraints t hrough energy funct ions or force funct ions. while overcom- 

ing many of their limitations. The .-\CD framework also provides a convenient niecha- 

nism for the incorporation of -bard" geometric. topological and global shape constraints. 

These cornbined properties produce an effective technique for the efficient. accurate. re- 

proclitcible and highly automated extraction and analysis of anatornic structures from 

medical images. 

1.1 Problem Statement 

The segmentation of anatornic structures-the partitioning of the original set of image 

points into subsets corrcsponding to the structures-is an essential first stage of rnost 

niedical image analycis tasks. such as shape analysis. visualizat ion. regist rat ion. labeling. 

and mot ion t racking. These tasks usually require anatornic structures in the original 

image to be reduced to a compact. analytic representation of their shapes. -4 primary 

example is the segmentation of the heart. especially the left ventricle (LV). frorn cardiac 

imagery. Segmentation and reconstruction of the left ventricle is a prerequisite for com- 

piiting diagnostic information such as ejection-fraction ratio. ventricular volume ratio. 

heart output. and for wall motion analysis mhich provides information on wall thicken- 

ing. etc. [$Il]. 

The manual segmentation of medical images can be est.remely labor intensive and 



t ime-consuming. Consequently. semi-automat ic and. ultimately. fully-autornat ic tech- 

niques are a desirable goal. Increasing the degree of automation can not only relieve 

clinicians from the labor intensive aspects of their work. but it can also increase the  effi- 

ciency. accuracy and perhaps most importantly. reproducibility of the segmentation. On  

the ot her hand. since erroneous interpretat ions of medical images are unacceptable. any 

siiccessfiil segmentation technique should support intuitive. efficient interactive guidance 

or editing by the medical expert. 

With this motivation in mind. oiir goal is to  considerably extend the capabilities of 

classical cleformable models such as snakes. improving their performance and increasing 

t heir degree of automation. while retaining al1 of t heir t raditional st  rengr hs. An impor- 

tant property to maintain is the ability to design energy functions or force functions to  

constrain and  interactively guide the model: in other words. the ability to  incorporate or  

apply n prion' knowledge. The most significant limitations to  overcome are the following: 

Snakes and other deforrnable models are sensitive to  their initial conditions. Clas- 

sical snakes wwe designed as interactive models and usually niust be placed close 

to the boiindary of the target object to guarantee good performance. The esternal 

energy funct ionals used in the variat ional model formulations are ty pically noncon- 

\;es n-ith multiple local minima. Furthermore. gradient descent algoritlims. which 

do not giiarantee global solutions. are the most common metliocl iised for energy 

minirnization. As a result. snakes can settle into local minimum solutions that  do  

not represent the true boundary of the object. 

The  topology of the object of interest must be known in advance since traditional 

deformable models are paramet ric and are incapable of topological t ransformat ions 

wi t hoiit addi t ional machinery. 

The interna1 energy constraints of snakes. arc-length and curvature minimization, 

can limit their geometric flexibility and prevent them from representing long tube- 

like shapes or stiapes rvith significant protrusions. The energy furiction of most 

cleforrnable models depends on its parameterization and is not directly related to  



the geometry of the object. Xew parameterizations can change the model energy 

in arbitrary ways. 

Deformable models can be attracted to spurious image features during the energy 

minirnization. This is essentially due to the local nature of boundary-based models 

such as snakes. Furthermore. even if global energy minimization schemes are used. 

there may be no relationship between the equilibrium of a snake and the real 

boiindaries of the object. Finaily. it is difficult to perform a global analysis of 

object shape using local boiindary-based models. The incorporation of a pn'ori 

knoirledge of global object shape is essential for robust segmentation and analysis 

of noisy medical images. 

Tliese combined factors may ii1t.imately limit the efficiency and tlegree of automation 

that can be achieved by classical deforrnable models for t,he segmentation and analysis 

of medicai images. 

1.2 ACD-based Deformable Models 

Alost classical deformable models are parametric moclels whose parameterization is de- 

fined initially and does not change automatically througliout the cleformation process. If  

the topology of an object is fised and knoivn a priori and the geometr~? is simple ji.e. 

relativeiy compact and conves). such models ma- be the most appropriate since they will 

provide greater constraint. Implicit models on  the other hand. such as the formulation 

proposed in 11 3 .  1-1. 591. provide topological and geomet ric flesibility t hrough t heir level 

set representation. The?; are best suited to the recovery of objrcts with cornplex shapes 

and unkriomn or com ples topologies. Un fort iinately. implici t models are not as conve- 

nient as parametric models in terms of mathematical formulation and for accommodating 

int,eraction or guidance hy expert users and high-level control mechanisrns. 

In this thesis. ive deïelop a parametric deformable model that has the power of an 

implicit formulation by using a superposed afine ce11 complex or grid to  automatically 

and efficiently reparameterize the  model during the deformation process. That  is. we 



embed the t radit ional paramet ric snakes model wi thin the framework of affine ce11 domain 

decomposi t ion - a mat hemat ically sound decomposition met hod based on the t heory 

of algebraic topology. This frarnervork enables our models to efficient ly and effect ivelj* 

frilfil l  oor goal of maintaining the traditional propert ies associated witii snakes. such as 

user interaction and the incorporation of constraints through energy functions or force 

funct ions. while overcoming many of the limitations describecl in the previoiis section. 

Csing the grid to iterativel~. reparameterize t h e  model alloivs it to Botv into comples 

shapes and change its topology as necessary. .\lultipie connected components of the 

niodel can be ci>-namicallj- created or destroyed. or can seamlessl'; split or merge. In the 

follo\ving chapters of this thesis. ive describe these featiires of .\CD-based deforrnable 

moclels and many others that serve to demonstrate the poiver of this approach. 

1.3 Contributions 

Deformable models offer a flesible and powerful approacli to niedical image analysis. Sev- 

ertheless. rlef'ormable models suffer from srveral limitations thar prevent t heir application 

to the full range of medical image analysis problems ancl that limit their poteritial for 

aiitoniation. L\k propose .\CD-based deformable rnodels as a solution to rriany of these 

limitations. -4s ive will demonstrate in this t hesis. this new class of cleformable models 

can he  usecl to segment. reconstrrict and analyze alrnost any anatoniic structure froni 

images generated by almost an'. imaging niodalit!-. Fiirthermore. ivhen combincd ivitli 

various const rairtt niechanisms. t tie models are capable of cle\reloping into a conipletely 

aiitomatic image anal!-sis techniqiie. The contributions of the researcli are cletailed in 

the following sections. 

1.3.1 The Affine Cell Decomposition Framework 

a F\:e cast classical deformable models within the mathematically robust frameivork 

of domain decomposition \via affine ceils to yield a powerful and computationally 

efficient discrete geometric approach to topologicall~r adaptable deformable models. 

The 2D and 3 D  models developed within the framemork have ali of the capabilities 



of an implicit formulation combined wit h the advantages of parametric models. The 

models are capable of segmenting and reconstructing objects with cornples stiapes 

and topologies. The framework enables our models to maintrin the traditional 

propert ies associated wi t t i  classical deformable models. sucli as user interaction 

and the incorporation of data-derived constraints. while overcoming man- of the 

limitations previously descri bed. 

0 The affine ce11 grid provides an elegant mechanism for autoniatic mode1 reparame- 

terizat ion. allowing our models to segment and reconst ruct objects wi t h significant 

protrusions. tube-like objects. or objects wit h bifurcations. Fiirt hermore. the grid 

produces rnodel parameterizations in terms of the intrinsic local geometry of an 

object: there is no esplicit parameterization sensitivity. Finallj-. the automatic 

and intrinsic repararneterizat ion makes the rnodel ( relat i ~ d y )  i nsensi t ive to initial 

placement. significant 1- improving the efficiency and aiitomat ion of t hc segmenta- 

t ion process. 

1.3.2 Topologically Adapt ive Deformable Models 

i\é tlevelop topologicall>. adapti\-e snakes (T-snakes) [G'L. 631 and topological1~- ac1aptii-e 

deforrnable surfaces (T-surfaces) [66. 6.51. The affine cell grid provides a mat hematically 

sound frametcork for robust topological transformations. This propertj- allo~vs our mod- 

els to seamlessly split or merge. adapting to the topology of a target objcct. Topological 

adaptability cornbined ivith broad geometric coverage significantly increases mode1 au- 

tomation. Furt hermore. topological transformations are performed by efficient ly tracking 

and recording the interior region of the models as they floiv into an object. This space 

partit ioning property provides a useful mechanism to rnap object topology and structure. 

as well as to perform interior region analysis. 

1.3.3 Constraint Mechanisrns 

a Geornetric Constraints 

\Iode1 point constraints and other geometric constraints can h e  easi!y incorporated 



into .\CD-based deformable models either as soft constraints to be satisfied ap- 

prosirnatel- or as hard constraints that must never ~e vioiareri. The advantage of 

retaining a pararnet ric model formulation as opposed to an irnplicit model formu- 

lation is that an!- data constraint expressed as an energy function or force function 

can easily be incorporated into the physics-based framework. 

Topological Constraints 

We de\-elop a technique for imposing a global topological constraint on our ACD- 

based deformable models. In particular. the rnociels maintain the topology of a 

sphere by evolving according to a sequence of topology-prescrving deformations. 

This constraint enables -\CD-based models to be insensitive to breaks in the object 

aroitnd boiindaries or near narrow cavities due to noise and ot her iniaging art  ifacts. 

This property is important in applications such as registration or labeiing using a 

deformable anatomical atlas. Furthermore. multiple models can be  simult~aneoosly 

e\-olved iinder the ;\CD framework. The affine ce11 grid allows for est  remely efficient 

collision detection and avoidance betiveen models. again providing a potentiaily 

valuable constraint. for the construction of deformable anatomical atlas nlodels. 

Statisticai C'onstraints 

I'sing the .\CD framework. mode1 et.olution is performetl by tracking and recording 

t h e  interior region of a model as it espands or contracts under the influence of 

pressure forces. The strength of t hese pressure forces can be directly linked to the 

local or global statistics of the image pixel intensity values of the target ohject. 

These stat istical constraints allow .\CD-based models to behave as active region 

growing models t hat can effectively integrate edge in format ion wi t h region-hased 

information. 

C;Iobal Shape Constraints 

\Vc develop a technique for imposing global shape constraints on ACD-based de- 

formable models. We use multiple superquadric shape templates t hat are con- 

st rained to overlap. The implicit ly defined superquadric *'tells" are fit ted to anatornic 

structures using a -ceIl growing and splitting' procedure. The superquadrics cap- 



ture the gross shape of an object and a prion' anatomic knowledge is used to prevent 

tlie gcneration of infeasible stiapes. Lsing the affine ce11 grid. an implicit -skin" 

is then wrapped around the superquadrics and acts as the initial placement of an 

-4CD-based deformable model. The rcsult ing closed contour or surface model is 

then deformed as usual to capture the shape details of the object. Lié can also 

constrain the  skin. if necessary. to remain close to  the underlying superquadric 

templates. The global shape const raints provided b? the superqiiadrics corn bined 

wii h .\CD-based deformahle models significant ly increase the potent ial for fiilly 

automatic medical image segmentation and analysis. For esample. tlie deforriiable 

skin and iinderlying superquadrics provide a mechanism for the automatic detection 

of shape abnormalities. 

1.3.4 Prototype Interactive System and Applications 

i\'e iniplement a p r o t o t ~ ~ p e  medical image analysis system tliat ut ilizes 2D and 3 D  .-\CD- 

based dcforniable models. ive have used the system to segment and recoristriict a rvide 

i-ariety of anatornic structiires with comples shapes and topologies. \\è use a discrete. 

cornput at ionally efficient implenientat ion t hat incorporates a model element "cooling" 

process. \.\*hm t lie '-temperatiire" of an  element falls below a ..freezing point". t lie 

clenient is renioved from t lie compiitation. This adjostable mechanism allorvs t lie system 

to niaintain a small. manageable computational burden in niany segmentation scenarios. 

Fiirtlierniore. ive compute t h e  vertices. edges and cells of the grid as the? are needed 

during the evolution of the  model. Consequently. the only memory requirement for 

the çrid is one bit for each grid vertes. This .*virtuaf9 grid scheme alloivs us to use 

pisel or even subpisel resolut ion grids. if necessary. ivit hout inciirring significant memory 

or computational overhead. Finallj.. the evolution of r\CD-based deformable rnodels 

is implemented using a naturally parallel geoinet ric algorit hm and ive espect flirt her 

signi ficant performance gains on parallel machines. 



1.4 Thesis Organization 

Tlie organization of the remainder of the t hesis is as follows: 

In Chapter 2 we revietv the basic mathematical formulation of classical defornlable 

modeis. In particular. we provide a detailed description of the snakes formuiation in 

order to illustrate with a concrete example the basic mathematical machiner. that is 

present in niany deformable models. We end the  chapter with a description of the 3D 

generalizat ion of snakes. 

In Chapter 3 Ive survey the application of deformable models to ttvo fundamental 

nicdical image analysis problerns: segmentation and s hapc represent a t  ion. LVe descri be 

man- of the rleformable curve and surface models that have been developed and provide a 

brief cornparison between parametric deforrnable models and implicit deformable moclels. 

Lié conclude the chapter ivitli a survey of various mcchanisms for incorporating n priori 

knowledge into a deformable niodel framework. 

In Chapter 4 ive present topologically adaptable snakes (T-snakes). \\C int rodiice t tie 

iclca of using an affine ce11 decomposition of an image domain to iteratively reparameterizc 

a clefmmable contour model and to perforni topological transformations. tVe begin by 

describing the relationship of .\CD-based deformable motlels to front propagation or 

tut-1-e e\.oliition. L\-e describe T-snakes in detail. including a n  O\-ervie~r of t lie t heory 

of affine ce11 dccomposit ion using a class of affine cells knoivn as sirnplicinl cells. \,\.e 

thcn provitle a dctailed description of t,he T-snake repararneterizatiori (itcrati\.e simplicial 

approsimat ion) proccss. 

In C'liapter 5 ive lise T-siiakes to descrihe and dernoristrate several properties of .-\CD- 

based deforrnable models. LVe t hen describe. wit h examples. the const raint mechanisrns 

t hat can be iinposed on t hese models. Geometric const raints. topological const raints. 

statistical constraints. and global shape constraints are presented. 

in Chapter 6 ive present topologically adaptable deformable surfaces (T-surfaces): a 

clcformable cIosed-surface model that is a :3D generalization of topologically adaptable 

snakes. Lire estend simplicial ce11 decomposition to three dimensions using tetrahedra 

and dernonstrate the fundamental similarity of the '2D and 3D algorithms. 



In Chapter 7 ive descri be a prototype system for segmenting and reconst ruct ing 

anatomic structures using T-snakes and T-surfaces and present a wide range of applica- 

t ion esamples. The  real-world esamples serve to demonst rate t lie power and flesi bi li ty of 

the siniplicial ce11 decomposition framework and illustrate t h e  propert ies and constraint 

rnechanisrns of the mode1 described in eariier chapters. 

C'hapter 8 sumrnarizes the thesis and suggests future research directions. LiVe also 

present a corn parison of ACD-based cleformable models wit h alternat i\*e rnodels in order 

to underscore the i-iability of our approach. 

Appendix .-\ out lines the basic mathemat ical t heorj- of front propagat ion or c i m e  

evoliition and its adaptation to t h e  problems of sliape recovery. 

:\ppendis B provides a geometric proof of the robiistness of the classification algori t hm 

that  underlies tlie ability of ;\CD-based deformable models to flow into objects trith 

cornples shapes and topologies. 

Appcndis C proieides a detailed description of superq~iadrics as well as siiperqiiadric 

data-fitting and blending. 



Chapter 2 

Mathematical Foundations of 

Deformable Models 

The mat  hematical foundat ions of deforrnable models represent the confluence of geoni- 

etry. ph-sics. and approsimation theory. Geometry ser\.es t o  represent objcct sliape. 

plipics imposes constraints on how the shape may var- over space ancl time. and opti- 

mal approsimation theory provides the forma1 undcrpinnings of mechanisrns for fit ting 

the niociels t.o nieasured data.  

De forniable model geomet ry u s u a l l ~  perrni ts broad s hape cowrage by emplo~-ing ge- 

ometric rcpresentations that  involve man' degrees of freedom. such as spliries. The 

niodel reniains manageable. hoive\-er. I~ecause the degrees of freetlom are g n e r a l l ~ .  not 

permit ted to ei-olve independent 1): but are governed by pliysical principlcs t hat I)estolv 

intuiti\.el>- rneaningfiil behavior upon the geometric siihstrate. The  name -deforrnable 

niociels'~ stems primaril~. from the use of elasticity theory at the physical level. generaily 

wi t hin a Lagrangian dynamics set t ing. The p bysical interpretat ion views deformablc 

models as elastic bodies which respond naturally to applied forces and constraints. Typ- 

icall- deformation energy functions defined in terms of the  geometric degrees of freedom 

are associatcd \vit11 the deformable model. The energy grows monotonically as the model 

cleforms away from a specified natural or "rest shape" and often includes tcrms that  

constrain the srnoot hness or  symmetry of the model. In the Lagrangian setting. the de- 

formation energy gives rise to  elastic forces interna1 to the  model. Taking a pliysics-based 



Figure 2.1: Snake (white) attracted to ce11 membrane in an E31 photomicrograpli (1-1. 

vielv of classical optimal approsimation. esternai potent ial energy funct ions are clefined 

in ternis of the data of interest to which the model is to be fitted. Tlicse potential ener- 

gies give rise to esternal forces wtiich deform the niodel such that it masirnallj- fits the 

data. 

Deformable corve. surface. and solid models gained popiilari ty after t hey were pro- 

posed fcr ~IEP in computer vision [105] and computer graphics [101] in the mid 1980's. 

In computer vision. deformable ctirve and surface niodels were proposeci as solutions to 

ill-posetl inverse problems such as edge detect ion ancl surface reconstruction. Terzopou- 

los introdiiced the t heory of continuous ( multidimensional) cleformable models in a La- 

grangian cl!-naniics set t ing [%]. hased on clelormat ion energies in t lie form of ( con t rolled- 

continiiitj-) generalizetl splines [90]. The coritrolled-continuity spline is a gencralization 

of a Tikhonov stabilizer [106]. and can formally be regarded as regtrlnrizir~g [;!JI t h e  ill- 

posecl problems. rccast ing t hem as ivell-posed ftinct ional minimizat ion problems. Early 

ancestors of the tleforrnable models now in common use include Fischlcr and Elshlager's 

spring-loacled templates [X3] and Widrow's riibber mask techniqtie [llG]. 

The deformable model that has attracted the most attention to date is popularly 

known as '-snakes" [A;]. Snakes or "deformable contour models" represent a special case 

of t lie general mult idimensional deformable model t heory [9S]. CVe will revirw t heir simple 

formulation in the remainder of this chapter in order to illustrate with a concrete example 

the basic mathematical machiner? that is present in many deformable models. ive will 

end the chapter with a brief description of the deformable surface model formulation. 



Snakes are planar deforrnable contours that are useful in several image analysis tasks. 

The' are often used to approximate the  locations and shapes of object boundaries in 

images based on the reasonable assumption that boundaries are piecewise cont inuous or 

smooth (Fig. 2.1). In its basic form. the mathematical formulation of snakes draws from 

the t heory of optimal approximation involving functionals [113]. 

2.1 Energy-Minimizing Deformable Models 

C;eometrically- a snake is a parametric contour embedded in the image plane Ir. y )  E W .  

The contour is represented as v(s) = (s(s) .  y(s))'. where r ancl y are the coorclinate 

functions and s E [O. 11 is the parametric domain. Boundary conditions may be used to 

specif~.  the overall topology of the contour. For example. applying a perioclic boundary 

condition. [ ' (O) = C?(  1 ). produces a closed snake. 

The shape of the contour subject to an image I ( x .  y )  is dictated by t,he functional 

The functional can be viewed as a representation of the energy of t h e  contour and t h e  

final sliape and position of t.he contour corresponcls to the minimum of this energy. The 

first term of the ftinctional. 

is the internal cleformation e n e r g .  It characterizes the deformation of an clastic contour. 

Ttvo phj.sical parameter functions dictate the sirnulated physical characteristics of the 

coritoiir: tri (s) controls the .*tension" of the contour while w2(s)  controls its "rigitlity? 

We note here that the internal deformation energy defined above is a linearized version 

of a more general. nonlinear planar ciirve strain energy: 

lThe values of the non-negative functions w l ( s )  and ui2 (s )  determine the cstent to which the snake 
can stretch or bend at any point s on the snake. For example, incrcasing the magnitude of icl(s) 
increxies the "tension" and tends to eliminate extraneous loops and ripples by reducing the length of 
the snake. Increasing U - ? ( s )  increases the bending "rigidity" of the snake and tends to make the çnake 
smoother and Iess flexible. Setting the value of one or both of these functions to zero at  a point s pernlits 
discontinuities in the contour at S .  



rvhere s and K represent the arc length and curvature respectively. The linearized func- 

t ional (2.2) approximates ( 2 . 3 )  for small deformations near the act ual minimum ( where 

tiiglier order terms tend to 0 )  but is well behaved for large deformations and its quaclrstic 

form leads to significant computational benefits. In Chapter 4. ive [vil1 describe our topo- 

logically adaptable snakes formulation that uses a discrete approximation to ( 2 . 3 ) .  

The second term in (2.1) consists of esternal energy potentials that couple the snake 

to the image and support user interaction. Traciitionally. 

where P ( x .  y )  denotes a scalar potential function defined or1 the image plane. To couple 

snakes to images. esternal potent ials are designed whose local minima coincicle rvi t h 

i ntensi t ~ .  es t  rema. eciges. ancl ot lier image feat ures of interest. For esaniple. t lie contour 

will he attracted to  intensity eclges in an image I ( x .  y )  by choosing a potential 

ivliere c controls the magnitude of the potential. '7 is the gradient operator. and C;, * I 

tlcriotes t hc iitiaye convolvecl wit li  a ( Gaiissian) smoot tiing filter whosr charact erist ic 

wicltti /r controls the spatial estent of the local minima of P. 

I t  mcclical image anal>.sis. it is essent ial for a user to bc able to interactii-el'. control t lie 

scgnicntation process. Few medical images lend tliemselves to fiilly automatic proccssing 

~vitli satisfactory resiilts. Furthermore. the equilibrium state of the snake will. in general. 

represent only one local minimum solution out of a large set of possible local minima. 

Tlic iiser miist have the ability to pull the snake ou t  of one local minimum into anoi.lier. 

This ability is cotiveniently realized in the energy minimization frarncsork througli the 

lise of user defined es t  ernal const raint potent ials such as interactive spri ngs. ancliored 

springs. and "volcanos" [l'il. For esample. the snake can be piilled in the direction of 

the moose corsor location ( .ïmouse. ymouse) by choosing a spring poteritial P(x. y )  = 

c ( ( . r  - .rmoiise)' + ( y  - Ymouse)'). mhere c controls the strengtli of t lie spring. Points on 

the snake that are affectecl by the spring can be restricted to a small sertion of the snake 

closes t to the moiise. 



The combination of esternal image potentials and external constraint potentials can 

create a wide nmge of snake behavior. allowing snakes to extract and represent a broad 

spect rum of shapes. Furt hermore. extrrnal const raint potentials are an effective. flexible 

means from which high-leïel control mechanisms can guide shape recovery. forming a 

sound b a i s  for fully automatic image analysis. 

In accordance with the calculus of variations. the contour v ( s )  which minimizes tlie 

energy E(v ) must satisf?; the Euler-Lagrange eqqution 

This vector-valiied partial different ial equat ion expresses the balance of internal and 

csternal forces when the contour rests at equilibrium. The first two terms represent the 

internal stretching and bending forces. respectively. while the t hirtl term represents the 

esternal forces tliat couple the snake to the image data. The usual approach to solving 

( 2 . 6 )  is t hrougli the application of numerical algorit hms (Sec. 2 .  L .2). 

2.1.1 Dynamic Deformable Models 

\\-hile it is natiiral to view energy minimization as a static problem. a potent approach 

to coniptiting t ho local minima of a functional such as (2.  I ) is to constriict a dynamical 

systeni that is goïerned by the functional and allow the system to evol\-e to equilibrium. 

The s-s tem may be const rticted by applying the principles of Lagrangian niechanics. 

This leads to dynamic deforrnable niodels that unify the description of shape and motion. 

rnaking it possible to quantify not just static shape. but also shape evolution througli 

tirne. Dynamic models are valuable for medical image analysis. since niost anatomical 

structures are deformable and cont inually undergo nonrigid motion in vivo. SIoreover. 

dynamic rnodels eshibit intui tivel?; meaningful physical behaviors. making t heir evolotion 

amenable to interactive guidance from a user (Fig. 2.2). 

.-\ simple esaniple is a dynamic snake which can t>e represented by introducing a 

time-varying contour v(s. t )  = (x(s. t ) .  y(s. t))' with a mass density p ( s )  and a damping 

density ~ ( s ) .  The Lagrange equations of motion for a snake with the internai energy 



Figure 2.2: Snake deforming towards high gradients in a processed cardiac image. influ- 

enced by +-pina* points and an interactive -spring0' which pulls the contour towards an 

eclge (6 11. 

given I>>? (2.2) and esternal energy given by (2.4) is 

Tlic first two ternis on the  left hand side of this partial differential ecluation rcpresent 

incrtial and damping forces. Referring to ( 2 . 6 ) .  the remaining terms represent the internal 

stretching and bending forces. while the right hand side represents the esternal forces. 

Eqirilihriuni is achieved when the internal and esternal forces balance and the contour 

conies to rest (i.e.. Bvldt = a2v/8t2 = 0).  which yields the equilibrium condition ('1.6). 

2.1.2 Discret izat ion and Numerical Simulation 

In order to compute numerically a minimum energy solution. it is necessary to discretize 

the energy E(v). The usual approach is to represent the  continuous geometric model v 

in terms of linear combinations of local-support or global-support basis functions. Finitc 

elements [l' 11. fini te differences 18-1. and geometric splines [3 11 are local representat ion 

methods. whereas Fourier bases [4] are global representation methods. The continuous 

model v(s )  is represented in discrete form by a vector u of shape parameters associated 



\vit11 t,he basis functions. T h e  discrete form of energies such as  E ( v )  For the  snake may 

where K is called t he  sti_If-nes.5 matrir. and  P ( u )  is t h e  discrete version of t h e  es ternal  

potential. The minimum energy solution results from set t ing the  gradient of (2.S) t o  O. 

\\hich is equivalent t o  solving the set of nonlinear algebraic equations 

w here f is t lie generalized es ternal  force vector. 

T h e  discretized version of the  Lagrangian dynamics equatioti (2.7) ma). b e  ivritten as  

a set of second order orclinary differential equations for u(t):  

wliere M is t he  mass matr ix  and C is a damping matrix.  The t ime derivatives in ( 2 . 7 )  

are  approsimated by fini te differences and esplicit or  implicit nunierical t ime intcgrat ion 

niet liods are  applictl t o  simulate the  resiil t ing system of ordinary di fferent ial ecl~iat ions 

in t he  shape  parameters u. 

Sfany sliape recovery problems d o  not involve time-varying data .  In tliese sitiiatioris 

t l ie niass clensity p is often set to zero. result ing in sirnplified cquatioiis of motion and a 

snake  that  cornes to rest a s  soon as the  internat forces balance the esternal forccs: 

Essentiall~.. the niassless snake is in a viscous medium. We can solve this first-order 

tlynamics equat ion i terat  i l d y  using an  explicit first-order Euler met  liocl. This met hod 

approsimates  the  temporal derivatives mith formard finite differences. It ~ ipda t e s  t h e  

stiape parameters u from t ime  t to t ime t + At according t o  the  formula 

This  procediire can be equivalently viewed as  minimizing t h e  snake energy E(u)  using 

gradient descent. Depending on the  form of the  external potential energy P(u) and on  



the form of the  stiffness mat r i s  K. the simple gradient descent algorithm may converge 

ver- slotvly to  a solution. One way around t his problern is to  solvo q u a t i o n  (2.1 1 ) using 

backward finite differences to arrive at the semi-implicit first-order Euler met hoci 

L k  can view t his eqiiation as a series of linear systems. one system for each tinie step. In 

the case of snakes (contours). the constant mat r i s  ( K  + C )  is pentatliagorially banded: 

hence. each linear sj-stem can be solved efficiently using a direct method. siich as LI: 

dccornposition. The  semi-implicit technique [ 1 T I  is more ef€ecti\rc t han t lie esplicit Euler 

met liod a t  propagat ing snioothness constraints along the snake. 

For deforrnable surface models. tvhich are introduced in the nest section. the linear 

s>-stenis are  larger and t h e  constant matr is  terrn eshibits a more cornples banding st ruc- 

ture. making mat r i s  factorization techniques too costly. Instead. one can ernploy iterative 

niethods. such as the conjugate gradient rnethod. To maintain t h e  interactivit>- of the 

cleforrnable surface nioclel. the number of conjugate gradient iterations pr r  tinie s tep may 

b r  liniitecl. Typicall>r. only a feew iterations are required to  generate a siifficientl>- acciirate 

soliition to cacli linear system using the previous solution as an initial condition. 

2.1.3 Deformable Surface Models 

;\ cleforniable surface is represented using a vector-valued paranietric representation 

X I .  ) = [I( ( 1 .  ('1. ! j ( u .  I V ) .  ~ ( u .  [-)Ir where vector x represents the positions of matcrial 

points ( 1 1 .  ( 9 )  relative to a reference frame in Euclidean 4-space. Tho paranietric domain 

of the deformable surface is the unit square [O. 11'. 

The surface is constructed of the  simiilated thin-plate material under tension [99]. 

T h e  deforniat ion energy of t his material is given by the energy funct ional 

S is a cont rolled-cont inui ty spline defined in [99]. The non-negat ive weight ing funct ions 

a, ( 11. (1) and 3;,( u .  t v )  control t he  elasticity of the material. The  a10 and aol functions 

cont rol the tensions in the 11 and L. directions. respectively. while the ,320 and ,JO* functions 



Figure 2.3: Closed deformable surface being pulled by a spring force showing the efïect of 

m-ioiis ni, and 3,, settings [61]: ( a )  a;, = O.S. 3,, = O. ( b )  0, = ,JÏj = 0.5. ( c )  ai, = 0. 

3, ,  = 0.8. 

control t he  corresponding bending rigidit ies. and t h e  funct ion cont rols the twisting 

rigitlit>-. Increasing the a;, has a tendencl- to decrease the surface area of the material. 

while increasing the Ji, tends to make i t  less Resible. 

Analogous to ( 2 . 3 ) .  a more general. nonliriear strain energy for a deformable surface 

is a fiinction of the differential area and curvature at each point [103] : 

ivliere G and B represent the first and second fundamental matrices of t h e  surface forms 

[ 3 2 ] .  and n and 3 iveight the  matris norms. The n and 3 terms determine the resistance 

to stretching and bending respecti\-ely. In Chapter 6. ive will tlcscribc a topological1~- 

adaptable surface formulation t hat uses a discrete approsimation to (2.15). 

The clioice of botindary conditions can be used io specify the topology of the  sur- 

face niodel. Satura1 boundary conditions specify an  open surface. Periodic bounclar~. 

conditions may be specified in one or both directions to yield a cylindrical and toroidal 

topology respect ively. The addition of pole points to the cl-lindrical case yields a spliere. 



Chapter 3 

Medical Image Analysis wit h 
Deforrnable Models 

Althoiigh originally dr\.eloped for application to problems in computer vision and com- 

piiter graphies. the  potential of deformable rnodels for use in medical image analysis has 

been qiiiclily realized. They have been applied to images generatecl by irnaging rnodal- 

ities as varied as S-ray. cornputrd tomography (CT).  angiography. magnctic rcsonancc 

( 11 R ) -  and ~ i l t  rasound. Two diniensional and  t hree dimensional deformable modcls have 

h e m  iisecl to segment. visualizc. track. and qiiantify a variet?. of anatomic structures 

ranging in scale from the  macroscopic to  the microscopie. These include t lie brain. h a r t .  

face. cerehral. coronarjr and retinal arteries. kidney. lungs. stomach. liver. skull. \-ertehra. 

objects siicti as brain tumors. a fetus. and even cellular structures such as neiirons and 

cliromosomes. Deformable models have been usecl to track the nonrigicl motion of t h e  

heart. ttie growing tip of a neurite. and the  motion of erythrocytes. Thcy have been 

iiscd to locate structures in the brain. and to  register images of the  retina. vertebra and 

neuronal tissue. 

In the folloming sections. rve review and discuss t h e  application of deformable mod- 

els to  tiiro fiindamental problems of medical image analysis: segmentation and shape 

representation. 
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3.1 Image Segmentation wit h Deformable Curves 

Defining object, contours is an essential first step in many medical image applications. 

Object contour definition. o r  segmentation. is currently accomplished in a number of 

wqs:  completely manually. automatcd first giiess followed by manual editing. or manual 

rough delineat ion followed by automat ic contour definit ion. 

Alost clinical segmentation is st il1 performed using a completely manual technique 

known as manual slice editing. In this scenario. a skilled operator. using a compiiter 

mouse or trackball. manually traces the region of interest on each slice of an image 

voliime. .\Ianual slice edi t ing suffers from several severe drawhacks. T hese include lsbor 

intensiveness. the diffiailty in achieving reproducible results. operator bias. forcing t lie 

operator to view each 2D slice separately to deduce and measure t h e  shape and volume 

of 3D structures. and operator fatigue. 

Segmentation using t radi t ional loiv-ievel image processing techniques. siich as region 

growing. edge detection. and rnathemat ical morphology operations [S 11. follo~ved b>- man- 

ual ecliting. is still often very time consuming. requiring considerable amoiints of espert 

interactive guiciance. Furt herniore. it is difficult to automate rhese model-free approaches 

I~ecaiise of t. he shape corn piesi tj- and variahility wit hin and across indi tridiials. I n  general. 

t lie onderconstrained nature of the segmentation problem limits the efficacy of approaches 

t hat ose pixel-Ie\.el representat ions and take into account only local informat ion. Xoise 

and other image artifacts can cause the generation of incorrect regions or botindaries in 

objects recovered by these methods. 

Slaniial rougli delineation. follotved by automatic contour definition using a deformable 

model based segmentation scheme (Fig. 3 . 1 ) .  can overcome many of t he  limitations of 

manual slice editing and traditional image processing techniques. Deformable models 

can niake use of n priori knowledge of objert shape and smoothness to constrain the 

segmentation problem. These continuous geometric models consider an object boundary 

as a single connected structure. Therefore. not only is the connectivity and smoothness 

of an object guaranteed. but noise. gaps and other irregularities in object boiindaries 

can be overcome. Furt hermore. the geometric model representat ion provides a compact. 
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Figure 3.1: (a)  Intensity CT image slice of LV. (b) Edge detected image. (c)  Initial snake. 

(d)- ( f )  Snake deforming towards LV boundary. driven by -inflation" force. [61]. 

analytical description of object shape. These properties. combinecl witli intuitive inter- 

active mectianisnis. lead to accu rate. efficient and reproduci ble segmentations as w l l  as 

a sound platform [rom nehich to develop automatic analysis met hods. 

Segmentation iising deformable contour models. such as snakes [A;]. was arnong the 

tirst lises of deforrnable models in medical image analysis [i. 2 1. 10s. S.5. 22. 5 2 .  12. 4 1. 

56. 2.51 for botli 2D and 3 D  data sets. Three dimensional image volumes are processed by 

placing a snake on an initial image slice near the target object and allorving it t a  deform 

onto the object edges. Once the user is satisfied rvith the result. the fitted contour 

niotlel is tlien used as the initial object contour approximation for neighboring slices. 

These niodels are tlien deformed into place and again propagatcrl iintil al[ slices haïe 

hcen processed. The resiilting sequence of ZD contours can t h c n  he connectetl to foriii a 

cont iniioiis 3D siirface model [ad. 17. 21. 221. This spatial propagation of the cleformable 

contours can clramatically decrewe the time taken to segment an object from an image 

i.ol~ime [9 1 1. 
Larious rnethods have been proposed to estend. improïe and further automate the 

deforrnable contour segmentation process. Cohen and Cohen [ZL?] use an interna1 "infla- 

t.ion" force to espand a closed snake past spurious edges towards the real edges of thc  

st riict ure. making the snake less sensitive to initial condit ions (inflation forces were also 

employed in [los]). Cohen et  el. also normalized the image forces to avoid instabilities 

and to prevent the model from becoming trapped by spurious isolated edge points. 

A primary approach to solving energy ininimization problems is the  calculus of vari- 



ations. In this approach. finite difference or finite element techniques are used to solve 

the Euler-Lagrange equat ions derived from the energy funct ionai. This met hod can be 

rcgarded as gradient descent dong the potent ial energy surface of t lie deformable con- 

tour. Cnfortunately. gradient descent does not guarantee finding t lie global minimum if  

the energy surface or landscape is not conves and the initial contour model is far from 

the target. Amini c f  al. [21 use dynamic programming ( D P )  to carry oot a niore esten- 

si\-e search for global minima. .\lthough DP provides numerical stabilit!.. it does so at 

a high cost in computational complesity. Williams and Shah [II;] propose an alterna- 

tive (grceci!-) algori t hm to D P ivhich drastically cuts numerical costs: hoivever. it does 

not giiarantee numerical stability. Recently. Slortensen ancl Barret [;O] Iia\.e proposed a 

snake-like segmentation tool uçing DP tvhich allows the user to intcractir*e/g select the 

riiost sititable boi.indar~- from a set of al1 optimal boundaries ernanating from a seecl point. 

In an alternat ive approach. Neuenschwanderet al. [73] allow a user to specify only the 

end points of the target contour instcad of a complete polj-gona1 ootline. Optimization 

then progresses from tliese end points towards the center of the snake t hereby effectively 

propagat ing edge in format ion dong t lie snake. improving i ts convergence propert ies. 

Blake and Zisscrman [IO] propose an algorithm (Gracluated Sonconvesit!.) tvliicli is baseti 

on iterati\-e approximation of t lie energy functional by a conves function: it can bridge 

leu- riclges in the potential field ancl eliminate terniination in local \-alleys. 

Poon C I  al. [SOI and C;rzeszczuk and Levin [40] rninimize the energy of act i\-c contour 

motlrls itsing simulatecl annealing ~~+l i ich  is knotvn to gil-e global soliitions and allows 

the incorporation of non-differentiable constraints. In general howcver. drterniinistic 

algorit lims are usually preferred dite to t heir faster con\-ergence and the importance of 

user interaction in rnedical image segmentation scenarios. 

Poon et al.  [SOI also use a discriminant function to incorporate rrgion based image 

featiires into the image forces of their active contour model. The additional image fea- 

tiires serve as a constraint for global segmentation consistency (i.e. e\-cry image pisel 

contributes to the discriminant function). The result is a more robust e n c r e  functional 

and a mitch better tolerance to deviation of the initial guess from the true boundaries. 

Others researchers [S4. 16. 1.5. 42. 36. 36. 601 have also integrated region-hased informa- 
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tion into deformable contour models in an attempt to decreasc sensitivity to insignificant 

eclges and initial model placement. 

Several limitations or problems of snake-based segmentation met hods were mentioned 

in Chapter 1. An additional problern is that the selection of snake elasticity and rigidity 

parameters is often ad-hoc and optimal parameter settings are difficult to determine. 

Anet her limitation is the oscillatory behavior that can be displayed by snakes due to high 

intensity gradients used to push a snake towards edges. Several approaches have heen 

siiggested to deal wit h these difficulties. The  stability of snakes has been invest igated 

by adjusting interna1 paranieters in [86. S. 2.51. Leymarie and Levine [53]  introduced 

hooncls on the image forces. new rules for setting the elasticity parameters. and a new 

terminating condition. In [67. 8.51. the elastic parameters of the deformable rnoclels are 

automatically adjtisted to irnprove the accuracy and robustness of the stiape recovery. 

3.1.1 Implicit Deformable Contour Models 

Tliere are two main approaches to deformable contour models. Pnrame fric modcIs. for 

esample snakes. are specified as parametric curves defined initiallj-. ivhich do not (nec- 

essarily ) change doring the optimizat ion process. Irnplicit models. on t hc ot her hand do 

not dcpend on an' particular parameterization. 

One of t lie strongest limitations of pararnetric cleformablc niodels is the topology of 

the targct object mtist be known in ad~aance. Therefore. for images iv i th  multiple ol~jccts  

where some ohjects are contained bu. or emhedded in otliers. parametric dcforniable 

models reqiiire estensi\-e user interaction. Recent ly. several researchers [ 1 3 .  59. 1 1.5. L-l. 

SS] have been developing iniplicit deformable contour models that allow a deforrnable 

contour to not only represent long tube-like shapes or shapes with bifurcations. but also 

to dy namically sense and change i ts topology. 

In ttiis approach. the deformable contour model is viewed as the level set of a higher 

dimensional surface.'. The evolution of the surface is defined by a Hamilton-.lacobi- 

l ike partial differential equation. There are several attractive featiires to this approach. 

First. discrete mesh points iised in the numerical implernentation of the PDE do not 

'Apperidis .L\ provides a detailed esplanation of level set evolution techniques 
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more. resulting in a stable computation. Topological changes in the contour are handled 

naturally by exploiting the property that the level set need not be simply connected: the 

implici t ly defined surface always remains a L a c  t ion even if the level set changes t opology. 

The use of evolving contours as level sets and the relevant numerical implementation was 

first proposed by Osher and Sethian for flame propagation [i-l. 901 and used by Iiimia 

€ 1  al. in constructing a representation for shape in coniputer vision [-LS]. Maliadi et al. 

[59] and C'aselles e l  al. [14] illustrated the effectiveness of this approach for capturing 

interest ing structures in medical images. Recently. several researchers have estended the 

level set technique to 3D [.iS]. 

There is some connection between the irnplicit models and parametric snakes models. 

The cnergy minimization of the snakes mode1 involves variational principles rvhich can 

be equivalently formulated as solutions to partial differential equations (Euler-Lagrange 

equations j. C'aselles [14] pointed out that setting the rigidity term to zero in the energy 

functional of the snake mode1 establishes an equivalence between this parametric model 

and a geometric ciirve evolution. since the! both minimize the length of the contour in 

the metric induced by the image. 

3.2 Volume Image Segmentation with Deformable 
Surfaces 

Segmenting 3 D  image volumes slice by slice. eitlier rnanually or by applying 2D contour 

models. is a laborious process and reqiiires a post-processing step t O connect t lie sequence 

of 2D contours into a continuous surface. Fiirthrrmore. the resulting surface reconstruc- 

tion can contain inconsistencies or show rings or bands. The use of a triie 3 D  deformable 

surface model on the ot her hancl. can result in a more efficient. robust segmentation 

technique which ensures a globally smooth and coherent surface between image slices. 

Deformable surface models in 3D were first used in cornputer vision il051 and corn- 

puter graphics [100] and several variants have since been developed. In the field of 

cornputer-aided design. Terzopoulos and Qin [103] recently proposed D-NURBS (Dy- 

namic Xon-Uniform Rational B-Splines). a physics-based generalization of the NURBS 

reprcsentat ion. D-X URRS allorv a modeler to interactively sculpt cornplex shapes to 



rcquired speci ficat ion by applying simulated forces. 

.\[an- researchers have explored the use of deformable surface models for segmenting 

structures in medical image volumes. Miller [69] constructs a polygonal approsimat ion 

to a sphere and geometrically deforms this **balloonwo model until the balloon surface 

conforms to the object surface in 3D CT data. The segmentation process is forniulated 

as the minimization of a cost function where the dcsired behavior of the balloon model 

is cletermined b>- a local cost function associated with each mode1 L-ertes. The cost 

f~inction is a rveightecl sum of three ternis: a deformation potential that "inflates" the 

moclel vertices towards the object boundary. an image term t liat idcrit ifies features such 

as edges and opposes the balloon espansion. and a term tliat maintains the topology of 

the modcl by const raining each vertes to remain close to the cent roid of i ts rieighbors. 

C'oheri ancl Cohen [?O. 221 and SIclnerney and Terzopoulos [6 11 use fini te element and 

physics-based techniques to implement an elastically deformable cyliritler and sphere. re- 

spectively. The models are used to segment the inner wall of the left ventricle of the heart 

Ironi SIR or CT image volumes (Fig. 3 . 2 ) .  These deformable surfaces are based on the 

thin-plate iincier tension surface spline (2.2). ivhich controls and constrains the stretcliing 

and bending of the surface. T'lie models are fitted to data dynamically hy integrating La- 

çrangian eqiiations of motion through time in order to adjust the dcformational degrees 

of frecdom. Fiirthcrmore. the finite clement method is iisecl to represent the models as 

a continiioiis siirface in t h e  form of weighted siims of local polynomial basis fiinct ions. 

The fini te  elenlent niet hod provides an analyt ic surface represent at  ion ancl the  use of 

Iiigli-order polynomials rather than polygons means that fewer elenients are reqiiirecl to 

acciiratelj- represent an object. Pentland and Sclaroff [Z] and Sastar and .-\yaclie [72] 

also tlevelop physics-based rnodels but use a reduced niocial basis for the finite elements. 

S taib and Duncan [93] describe a 3D surface model used for geomet,ric siirface match- 

ing to :ID medical image data. The model uses a Fourier parameterization u-hicli de- 

composes the surface into a weighted surn of sinusoidal basis func t ions. Several different 

surface types are developed such as tori. open surfaces. closed surfaces and tubes. Surfacc 

finding is formulatecl as an optimization problem using gradient ascent which attracts 

the surface to strong image gradients in the vicinity of the model. A n  advantage of the 
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Figure 3.2:  ( a )  Deformable .*balloon- mode1 embedded in an eclge detected CT image 

\-olume deforming towards LC' edges. Three orthogonal slices of tlie volume are slioivri. 

( b )  Reconstriiction of LV [61]. 

Fourier pararneterizat ion is t hat it allows a \vide variety of smootfi surfaces to he de- 

scribetl with a small number of parameters. That  is. a Fourier representation expresses 

a f~inction in terms of a n  orthonormal basis and higher indexed Imsis functions in tlie 

siim represent higher spatial variation. Therefore. the series can bc truricatecl and still 

represent relat ively smoot h objects accurately. 

Szeliski t l  ni. [O61 overcome the fised topology limitation of paramet ric deformable 

riiodels by iising a dj-namic. self-organizing oriented particle systeni to mode1 surfaces 

of ohjects. Tlic oriented particies. which can he visualized as small. flat dislis. ci-olve 

according to Sewtonian mechanics and interact through esternal and interparticlc forces. 

Tlie csternal forces attract the particles to the data mhile interparticle forces at tempt t o  

group the particles into a coherent surface. The partictes can reconstruct objects with 

complex shapes and topologies by *floming" over the data. extracting and conforming to 

meaningful surfaces. A triangiilation is then performed wtiicli connects the particles into 

a continiious global model that is consistent with the inferred object surface. 

Leitner and Cinquin [5 11 have also developed a parametric deformable model. using 

a tensor product spline surface. that is capable of changing topology from a sphere to  a 



torils. O t her notable work involving 3D deformable surface models and medical image 

applications can be found in [27. 115. 97. 2-11 as well as several models described in the 

following section. 

3.3 Incorporating A Priori Knowledge 

In medical images. the general shape. location and orientation of ohjects is often known 

and this knowledge may be incorporated into the deformable model in the forrn of initial 

conditions. data constraints. constraints on the model shape parameters. or into t lie 

model fitting procedure. The use of implicit or esplicit anatornical knowledge to guide 

shape reco\*ery is especially important for robus t automat ic interpretat ion of meclical 

images. For automatic interpretation. it is essential to have a mode1 that not only 

tlescribes the size. stiape. location and orientation of the target object but that also 

perrnits espected ~eariations in these characterist ics. -Automatic interpretation of medical 

images can relieve clinicians from the labor intensive aspects of t heir work while increasing 

t hc cfficiency. accuracy. and reproducibility of the interpretations. 

.-\ riumber of researchers have incorporated knowleclge of object shape into cleformable 

motlels by using deformable shape ternplates. These models usually use -hanci-craftedm- 

global shape parameters to embody n priori knoivledge of expected stiape and sliape 

t-at-iat ion of the st riict ures and have been useci s~iccessfully for man>. applications of 

autoniat ic image interpretation. The idea of deformable templates c m  be traced back to 

t lie earll. rvork on spring loaded templates hy Fischler and Elshlager [ : 3 3 ] .  An escellent 

esample in coniputer vision is the work of lui l le  r! al. [1'70] who construct deformable 

tcmplates for cletecting and describing leatures of faces. siich as the eye. In medical 

image analysis. Lipson et  al. (5.51 note that axial cross sectional images of the spine yield 

approsiniately elliptical \-ertebral contours and consequentiy extract t h e  contours using 

a deformable ellipsoidal template. 

Deformable models based on superquadrics are another elcample of deformable shape 

templates that are gaining in popuiarity in medical image research. Superquadrics con- 

tain a small number of intuitive global shape parameters that can be tailored to the 

average shape of a target anatomic structure. Furthermore. the globai parameters can 



often he coupled with local shape parameters sirch as splines resulting in a powerfiil shape 

representation scheme. For example. bletasas and Terzopoulos [6S] employ a dj-namic 

deformable superquadric model [IO?] to reconstruct and track human limbs froni 3 D  

biokinetic data. Their models can deform both locally and globally bj- incorporating the 

global shape parameters of a superellipsoicl x i th  the local degrees of freedom of a niem- 

brane spline in a Lagrangian dynarnics formulation. The global parameters efficientlj- 

capt lire the gross shape featiires of the data. while the local deformation parameters re- 

construct the fine details of comples shapes. Lsing Iialman filtering theory. they develop 

and demonstrate a biokinetic motion tracker bwed on t heir deformable sic perqiiaclric 

model. 

\'miiiri ancl Radisavljevic (1 12. I l  l ]  construct a deformahle superquadric model in 

an ort lionormal wal-elet basis. This multi-resolution basis provides the model n-itli the 

ahi l i  ty to cont inuously t ransform from local to global shape deformat ions t hereby allowing 

a continuum of shape models to be created and to be represented with relative1~- few 

paranieters. They apply the moclel to segment and reconstruct anatoniical structiires in 

the human brain frorn 1LRI data. 

A s  a finai esample. Bardinet et al. [4. 61 fit a cleformable superqiiadric to segmentecl 

:ID cardiac images and then refine the superquadric fit using a 1-oliimetric cleformation 

technique knoivn as free form deformations (FFDs).  FFDs are definecl bj- tcnsor product 

trivariate splines and cari be ~Gualized as a rubber-like bos in ~vtiicti the object to bc 

cleformed (in this case the superquadric) is embedcled. Dcforniations of the box are 

autormtically transrnitted to embedcled objects. This volumetric aspect of FFDs alloivs 

t wo s~rperquadric surface rnodels to be simiiltaneously deformed in order to reconst ruct 

the inncr and outer surfaces of the left ventricle of the heart and the voltrrne in between 

these surfaces. Further examples of deformable superqtiadrics can be foiind in !76. 181 

Several researchers cast the deformable model fit ting process in a probabilist ic frame- 

ivork and incliide prior knowledge of object shape by incorporating prior probability 

distributions on the shape irariables to be estiniated (1 I l .  92. 119. 441. For esample. 

Staih and Duncan [92] iise a deformable contour model on ZD echocardiogra~ns and MR 

images to estract the LV of the heart ancl the corpus callosum of the brain. respectively. 



This closed con tour model is parameterized using an ellipt ic Fourier decomposi t ion and 

n priori shape informat ion is included as a spatial probabili ty espressed t hrough the 

likelihood of each mode1 parameter. The rnodel parameter probabili ty distributions are 

derived from a set of esample object boundaries and serve to bias the contour model 

toivards espected or more likely shapes. 

Szekely e t  d. [95] have also developed Fourier pararneterized models. Furt herrnore. 

they have addecl elasticity to tlieir models to create 'gFourier snakes- in 2D and elastically 

cieformable Fourier surface models in :ID. By using the Fourier parameterization folloived 

bj. a statistical analysis of a training set. the? define mean organ models and t heir 

eigen-deformations. .An elastic Fit of the mean mode1 in the siibspace of cigcnmodes 

restricts possible deformations and firids an optimal match betwen the model siirface 

and boiindary candidates. 

C'ootes e t  al. [23] and Hill e t  ni. [43] present a statistically based technique for 

biii lding deformable shape templates ancl lise t hese models to segment various organs 

froni ZD and 3D medical images. The statistical parameterization provides global shapc 

constraints a n d  allorvs the model to deforrn only in ways implieci bjr the training set. The 

shape models represcnt objects IF sets of landmark points which are placecl in tlie same 

way on an ohject boiindary in each input image. For esample. to estract the L i -  froni 

ccliocarcliograms. the'. choose points around the ventriclé boundary. the nearby edge 

of the riglit 1-entricle. and the top of the left atrium. The points can be connected to 

form a deformable contoiir. By esamining the statistics of training sets of hand-labelcd 

niedical images. and using principal component analysis. a shape model is derivcd that 

describes the ai-erage positions and the major modes of variation of the object points. 

Seiv shapes are generated iising the  mean shape and a iveighted sum of the major modes 

of variation. Object boundaries are then segmented using this "point distribut ion modcl" 

by esamining a region around each model point to calculate the displacenient required to 

moï r  it towards the boiindary. Tliese displacements are then used to update tlie shape 

parameter weight S. 



Chapter 4 

Topologically Adaptable Snakes 

in  t.his chapter ive describe an extension to the classical snakes paracligm iising a space 

partitioning or decomposition technique to create topologically adaptahie snakes (T- 

snakes). LIè begin by introducing the idea of using an affine ce11 decomposition of an 

image domain to iterativelj- reparameterize a snakes niodel and to perform topological 

transformations. \\é t lien describe the implementation of the model in tlet ail. inclocling 

a n  O\-erview of the t heory of affine ce11 decomposition and approximation iising a special 

type of affine ceIl knomn as a simples. We conclucie the chapter with an overvieiv of the 

complete algorithm as well as a brief discussion of potential limitations of T-snakes. 

4.1 Mode1 Overview 

\L-e clefine oiir T-snakes mode1 as a closed 'LD contour consisting of a set of nodcs con- 

nectetl i n  series. The viscoelast ic-like T-snake is a discrete approximat ion to a t raclit ional 

snakes niodcl and retains many of the snakes properties. In our irnplenientation. an  "in- 

flation" force is iisecl to push the mode1 towards image edges until it is opposed by 

esternal image forces. The internal forces act as a smoothness constraint and users can 

interact with the rnodel using spring forces and other constraints. The deformation of 

t h e  model is governed by discrete Lagrangian equations of motion. 

I-nlike traditional sriakes. the set of nodes and interconnecting elements of a T-snake 

does not remain constant during its evolution. That is. we decornpose the image domain 

into a grid of discrete cells. As the mode1 moves under the influence of esternal and 

internal forces. ive reparameterize the model with a new set of nodes and elements by 



efficiently cornputing the intersection points of the model with the superposed grid. We 

also keep track of the interior region of the mode1 by -turning on" any grid vertices the 

T-snake passed over during its motion. By reparameterizing the model at eacli iteration 

of t lie evolut ionary process. ive create a simple. elegant and autoniatic model subdivision 

technique and the grid proïides a framework for robust topological transformations. This 

into a l low the mode1 to be relatively independent of its initial placement and 9iow" ' 

cornplex shapes ivith comples topologies in a stable manner. Conversion to the traditional 

paranietric snakes niodel representation is simply a matter of disabling the grid nt an!. 

time during the evolutionary process. By provicling a boundary representation as well as 

a reprcsentation of the interior region of an object. this hybrid snakes rnoclel combines 

t lie space partit ioning. int rinsic parameterizat ion and topological Flexi bili ty propert ies of 

an implicit formulation ivith t lie boundary properties of a paramct ric model. 

4.1.1 Relationship t o  Front Propagation 

The motion of a T-snake is analogous to the motion of a propagating front. as in flanie 

propagation (see .-lppendis -4). There esist several tracli t ional numerical techniqiics iisecl 

to solve the eqiiations of niotion for tliis problem. The first set of techniques. as disciissetl 

in [ !JO].  parameterizes the moving front and cliscretizes the paranieterization into a set 

of rnarker particles or nodes. The normal direction to the front. the ciirvatirrc. and 

the st retcli are approsimated by discrete deril-at ives at t h e  marker nodes. T tic niotion 

of thta marker nodes is then gu\+erned b>- approximation to the eqiiations of motion. 

This Lngrcznginrti formulation reportecil)- suffers from instabilit~. p rob l~ms  and topological 

changes in t hc  front connectivity are difficult to achieve. 

The second set of techniques. known as -volurne of fluid" techniques [lQ]. track the 

mot ion of t lie interior region ratlier tlian the boundary. Ttiese algorit lims discretize the 

interior region by superposing a grid of cells on the domain and assigning to eacli ce11 a 

--\-olome fraction'. corresponding to the amount of interior Ruid current ly in the cell. The 

front is moved by constructing local polygonal approximations to the front in each ce11 

' A  Lagmnglan formulation or description of partick motion gives the velocity of each particle (i.e. a 
particle is tracked with respect to its original coordinates). An Eulenan description gives the velocity 
at fised points (i.e. a particle is tracked with respect to its final coordinates). 



based on neighboring volume fractions. This Eulerian technique is stable and topological 

changes are easily handled. It may be difficult. however. to calculate front properties. 

such as curvat ure and normals. from t h e  coarse boundary representation used wit hout 

resorting to very fine resolution grids. 

A thircl technique is the level set approach of Osher and Sethian [;-Il previously 

introduced in Chapter 3. They niodel the front as the level set of an evolving higher- 

dimensional surface. tvhere the motion of the surface is described by a scalar Hamilton- 

.Jacobi equat ion \vit h parabolic right hand side. .An Eulerian formulation provides st a- 

bilitj- and topological changes are handled naturally in the higher dimensional space. 

.A T-snake is a liybrid model that contains aspects of al1 three techniques and at tempts 

to combine t heir st rengt hs. Between reparameterizat ion stages. a T-snake behaves as a 

classical snake and eïolves according to Lagrangian tlynarnics. This Lagrangian formu- 

lation phase allows an- data-derived or user-defined force to guide the snake. During the 

reparameterization phase. the  snake is reparameterized in terms of the simpiicial grid and 

the fised grid points are ~ised to track the interior of the closed contour moclel. creating 

a space part itioning similar to t hat of a n  implicit firnction. This Euleriari forniiilat ion 

phase pro\-ides stahility. intrinsic parameterization. and topological fleri bility. 

4.2 Mode1 Description 

.-\ T-snake is a discrete form of the classical snake described in Chapter 2. I t  is definrd as 

a set of .\* nodes indesed b>- i = 1. . . . . .Y. n-here the nodes are connected in series. L\è 

associate rvit h these nodes tinie \w?;ing positions x,(l) = [ x , ( t  ). y,(! )]. dong with terision 

forces ai( t ). rigidity forces Pi(t ). inflation forces pi(t ). and esternal forces f , ( t )  that act 

in the iinage plane. ..\ periodic boundary condition is applied xl ( t )  = x s ( t )  to produce 

a closed contour model. 

The beliavior of a T-snake is governed by a discrete aiid simplified form of eqiiation 

(2.7). The result is a set of first-order ordinary differential equations of motion 

where xi is the velocity of node i. yi is a damping coefficient that controls the rate of 



dissipation of the kinetic energy of the nodes. and f, and pi are external forces t hat at tract 

mode1 nodes toward salient image edges. Since the model has no inertia. it cornes to rest 

as soon as the applied forces balance the interna1 forces (i.e. xi = 0) .  

4.2.1 Interna1 Forces 

\\é connect the nodes in series using nonlinear springs which we also refer to as niodel 

elenients. Let i, be the  given reference lengtti of the spring connecting node i to node 

i + 1. and let ri(! ) = xi+[ (t ) - x,( t ) be the separation of the nodes. L\'e want the spring 

to resist espansion or compression only when its actual lengt,h Ilrill is greater or less than 

1, respectively. Hence. given the deformation e , ( t )  = Ilrill - li. me define the tension force 

whcre the a ,  is the tension parameter for node i and the caret denotes a unit wctor. Since 

the set of notles and springs of our deforniable contoor model does not reniain constant 

diiring its evolution. ive define the rest-lengths of the springs at tinie t in tcrms of the 

lcngt h of the springs at time t - At. This gi\.es otir niodel the hehax-ior of a viscoelastic 

materiai. 

The niain objective of the rigidity forces are to minirnize the local ciir\at lire of the 
-- 

contour. There esist se\.eral discrete approsimatioris to local c u r ~ a t  tire [ I  17. r .3]. For 

csample. one can define the local curvature at a vertex to be the ciifference between 

the direct ions of the two normalized edge segments that  join at t hat location. L i e  lise 

an approximation that measures the distance between a vertes and the centroicl of its 

neighbors [69]. Consequent lp. the rigidi ty force at tempts to minimizc t his distance and 

is definecl as 

wliere 6; is the rigidity parameter. This force can be made scale invariant by dividing 

t lie right hand side of ( 4 . 3 )  by t lie distance between the neighbor nodes. :\ force in the 

opposite direction. multiplied bp 1/2. is also be applied to eacti of thc neighbor nodes. 



CHAPTER 4. TOPOLOGICALLY ADAPTABLE SNMES 

4.2.2 External Forces 

-An inflation force is used i o  push t h e  mode1 towards in tent i ty  edges in the image [lx. y) .  

iintil it is opposed hy t h e  image forces. The inflation force talces t h e  form 

pi = q F ( t ( x . g ) ) n , .  ( -1 

where n, is t h e  unit normal vector t o  the  contour a t  n o d e  i. a n d  q is the  ampl i tude 

this force. T h e  binary function F links t h e  inflation force to the image c h t a  

F ( l ( x . y ) )  = + I .  I ( x . y )  2 T .  

F ( l ( x .  y ) )  = -1. [(x. y)  < T.  

where T is a n  image intensity threshold. T h e  functional F makes t h e  T-snake contract  

tvhen [(s. 9 )  < T .  

To s t o p  t h e  contour at significant edges. rve construct  t h e  force 

wherc t h e  weight p controls t h e  strength of t h e  force a n d  t h e  potential P is tlefined by 

(2 .5) .  T h e  rveights p a n d  q are  usually chosen t o  be  of t h e  s a m e  order. with p slightly 

larger t han q so tha t  a significant edge ivill s top t h e  inflation. but  wit h p large eiiough so 

t ha t  t h e  niodel will pass t hrough weak or  spiirious edges. 

To calculate a continuous image functiori Itr. y )  for e i t h e r  (-1.6) o r  (-1.6) ive cornpute 

t h e  intensit). a t  a n  arbitrary point ( r .  y )  hy bilinearly interpolating t h e  intensities at t h e  

four pisels surrounding (r. y ) .  

4.2.3 Numerical Integrat ion 

\\.e integrate equation (3.1) forward through t ime  iising a n  esplici t  first-order Euler 

method.  T h i s  method approsimates  t h e  temporal  derivatives n i t h  forward finite differ- 

ences. It i ipdates t h e  positions of t h e  mode1 nodes from time t to t i m e  t + At according 



L!,'hile the esplicit Euler method is known to be unstable unless small time steps a re  used. 

it is simple. efficient and. in out esperience. a very reasonable range of t ime s tep  sizes 

can be found that produce stable T-snake behavior resulting in accurate segmentations. 

However. more sophisticated numerical integration techniques such as Runge-Iiutta [82] 

or  semi-implicit methods [IO31 could also be used and would result in better convergence 

and larger time steps. at the expense of a more compiicated numerical implemeritation. 

4.3 Simplicial Ce11 Decomposition 

The intuitive idea of a space decomposition is to subdivide space into a collection of 

disjoint connected subsets. Subdivision of a domain into simpler subdomains. d o n g  with 

a s t ructure that  links these subdornains. allows u s  to obtain valuable information about  

t h e  geornetry ancl the topology of the space. One common siibset is a k-dimensional 

ce11 (i.e. a set tvhich is homeomorphic to an open disk of some dimension k) .  trhere 

t h e  boiindary of each ce11 is defined to be a finite union of lower dimensional cells. The 

subdivision of space using siich subsets is known as a cellular cornplex [ T I ] .  The  frameivork 

of celliilar complexes is a powerful tool for constructing definitions and proofs for image 

topology [-191. 

.\ ffine ce11 decomposit ions are esamples of special cases of cet1 decomposi t ioris ob- 

tainetl by restricting the geornetry of the cells to that of a contlcr polylope. There arc 

t ivo main types of affine ce11 tlecomposition methods: non-simplicial and sin~plicial. AIost 

nonsi ni plicial met, hods employ a rectangular tessellat ion of space. The marching cubes 

algorithni (571 is an esaniple of this t ~ p e .  These methods arc fast and easy to implement 

but t liey cannot be used to represent the boundaries of an implicitlj- defined object un- 

ambigiiously without the use of a disambiguation scherne. Although non-simplicial ce11 

clecomposition rnethods can be used to reparameterize a T-snake. ive use .zimplicinl ce11 

decornpcsi tion [Ïl . 1 101. Simplicial ce11 decomposition is a t heoretically sound clecom- 

position method that  relies on classical results from algebraic topology relatecl t o  the  

piecewise linear structure of a simpficiaf complex. Computational work on this type of 

method \vas pioneered by Allgower (11. Throughout the remainder of this thesis. we will 

use t h e  terms *affine cell" and -simplicial cellqq interchangeable 



Figure 4.1 : Freudent ha1 t riangulat ion. 

In a siniplicial ce11 decomposition - also known as a tr-inngulation - space is parti- 

t ioned into cells clefined b -  open simplices. where an n-simples is the simplest geometrical 

object of dimension n: e.g.. a triangle in 2D or a tetrahedron in 3D. I t  is desirable to 

have a small number of ce11 tj-pes. e.g. congnrcnt cells. that differ only by orientation 

or reflection. I f  al1 the ceils are identical. cornputations can be made 1 ery simple and 

eficient. The simplest triangulation of Euclidean space Rn with this property is the 

C'orftcr- Fre iidenlhd t riangulation ( Fig. 4.1 ). It is constructed by dividing space using 

a uniforni cubic grid and the triangulation is obtained by subdivicling cadi cube into rc! 

sini plices. 

SIore fornially. given a set of k + i points {co.  cl .  . . . . < v k }  E :Rm . t h e  set is called 

nfineltj indt-pendent i f  the vectors {cl - cio. ('2 - ru.. . . . rk - ro} are linearly independent 

(i.e. t hey do not al1 belong to the same k-dimensional h~.perplane). 

DEF/.VI TI0.V 4.1. The set 

is callecl a '-simpler having vertices {t*i}f=Q. In other words. the simplex a"' is a concer 

lincni h rd1 of the points { L * ~ } : = ~ = , .  The coefficients X i  are usually called the bmycentric 

coordinates of r .  If {w~}!=~ is a nonempty subset of {ei}~.=,. the 1-siniples r = [Q. . . . . L L ~ ~ ]  

is called an 1-dimensional face of a. In general. the simplex al-[ is called the i th ( k  - 1 )- 

ciimensional face of the s i m p l e ~  a\ Thus. a k-dimensional simples has t + I faces of 

dimension k - 1. .-\ zero-dimensional face is a vertes. a one-dimensional face is an edge. 

and a two-dimensional face is a triangle. If a is a b-simples. the barycenter of O is defined 

l k  
by b ( a )  = El=, v , .  It is convenient to use a face of a which is formcd from the  convex 



Figure 4.2: -4 13-simplex ( far right ) and examples of its k - 1-dimensional faces. where 

(from left to right ) k = 0.1. and 2 respectively 

combination of the vertices of a with one or more specific vcrtices omitted (Figure 4.2).  

DEFI.\7TIO.V 4.2. .-\ sirnpliciaf cornpler or triangulation 7 over a domain D E ;Rn+' is 

a family of simplices with the following properties: 

2 .  If nl.o.2 E 7.  then al Ti Q is either empty or a cornmon face (lower dimensional 

siniples) of both al. a?. 

3 .  I f  D is a compact siihset of >Rn+' then it intersects onlx finitely rnany sirnplices. 

DEFI-\7TI0.\v-I.3. The rneahsize of a triangulation 7 is tlefined b'. 6 =sup ,~ . r  diam a. 

The meshsize depends on the space norm. and its value for different norms differ h ~ -  a con- 

stant. Ysing the Euclidean norm the meshsize cf the unitary Freudenthal triangulation 

in !Rn is fi. 

4.3.1 S implicial Approximation 

XIedical image volumes represent the sampling. typically at the vertices of a cubical 

lattice of voxels. of a n  intensity function I ( x .  y. z )  

The boundaries of anatomic structures embedded in these images can be viewed as iso- 

value surfaces S of this implicit function I ( r .  y, 2 )  = Is (or I ( x .  y )  = Ic. an isovalue 



Figure 4.3: Simples classification. 

contour in 2D).' 

Simplicial ce11 decompositions provide a framework for the creation of robust. con- 

sistent local polygonal (affine) approximations of the boundary contours (or boiindary 

surfaces in :3D) of these implicitly defined structures. In 2D. an anatomic structure par- 

titions an iniage irito two open sets of dimension 2 ( the interior and esterior points) and 

one open set of dimension 1 ( the boiiridary points). A simples 0' can be classified in 

relation to this partitioning of space by testing the -sign" of its vertices. If the signs 

are t h e  same for al1 vertices. the simples must be totally inside or outside t h e  struc- 

ture. If  the signs are different. the botindary of the structure must intersect the siniplcs 

(Fig. -1.3). In a k-simples. the negative (inside) vertices can alwvays be separated from 

t h e  positive (oiitside) vertices by a single plane: t hus an iinambiguous polygonalizat ion 

of the simples always esists. Fiirtherrnore. b>+ the definitiori of a simplicial cornples. a 

consistent pal!-gonization of the entire boiindary contoiir (surface) will result. 

In a 2 D  image. the set of grid triangles (2-dimensional simplices) that intersect the 

boundar~- contoiir of the anatoniic structure ( the boundary triangles) are called the t rnns- 

crrse simplices. These boundary triangles form a two dimensional combinatorial manifold 

tliat has as its dua1 a one dimensional manifold that approximates the contour. The  one 

dirncnsional manifold is const ructed from the intersection of the object boundary con- 

tour ivith the edges of each bounclary triangle. The intersection points result in one line 

segment (1-dimensional simples) approximating the boundary contour inside each bound- 

'Due to sarnpling artifacts. spatial aliasing, and noise. Is  is rarely well-defined 



Figure -1.4: Simplicial approximation (dashed-!ine) of an object contour (solicl-line) using 

a Freudent ha1 triangulation. The mode1 nodes (intersection points) are marked and the 

boundary triangles are shaded. 

ary triangle ( Fig. 4.4). Each line segment intersects a boundarr triangle at  two distinct 

eclges. separating the inside vertices from the outside vertices. The set of al1 these line 

segments constitute t h e  cornbinatorial manifold that approsimates tlie boundarlr contour 

of the object. 

Restating the above more forrnallj-. let H : Rn+' + Rn I x  a map. Given a trian- 

gulation 7 of :Rn+1. me are approsirnating the components of H - l ( O )  (ive sliall use the 

iso\-alue O without loss of generalitu) by using the values of H on the vertices of 7. This 

leads to the follon-ing formal definitions and t heorems [Il:  

DEFI.VITIO.\-4.4. For any map H : Rn+' + Rn. the piecewise linear approximation 

to H relati\.e to the triangulation 7 of Rn+' is the  rnap ~vhich is iiniquelj. defined hy 

1. H T ( r * )  = H ( n )  for al1 vertices of T.  

2. For aiiy ( n  + 1)-simple?< a = [el. vb. .  . . ~ r ~ + ~ ]  E 7. tlie restriction H7lo of f17 to  a 

is an affine map. Consequently, if u = C:.: A;(!; is a point in a. then its barycentric 

coordinates X i  satisfy x:z Xi = 1 and A i  2 O for i = 1. . . . . n + 2 .  and since IIT is 



affine. we have 

:3. The simplicial approximation of H is obtained as the union 

where HT(c) = H,(L! )  for c f a and a f T. 

Implicit Function Theorern 1 Let H : ?Rn+' -t ?Rn be a smooth nznp such thnt O E 

range(  H).  Then .\I = { r  E R n + k I ~ ( x )  = O. r is a regufar point of H )  is n siiiooth 

k-rlimcnsional manifold. 

For XI = 1. the manifold is a curve and for k = 2. the manifold is a surface 

Theorem 1 Let O b~ a r~gular  cafue of HT. I / o  E 7 has a non-empty intersection critli 

O . it i.5 transïerse). then .II, := O Ti H+'(O) is a k-dimensionni pofytope. and 

th€ fan)  il9 

.UT := {.\Io 1 0  E 7.  a n H;'(O) # 0} (-1.12) 

1.5 n k-dimensional piecewise finenr nrnnifofd approrirnating J I .  

Proposition 1 Assume that H is Lipshitr continuoris (i.e. there erist.': n constant n > O 

such that I I  H ( u )  - H(t*)Il 5 n Ilu - holds for al1 cr. c E Rn+') and tr ianplat ion 7 lrns 

rneshsize 5 > O .  T h m  I IH(x )  - HT(x)ll 5 !ad2 for x E Rn+'. 

The ttieoreni and proposition are not proved here: the reader is referred to [ I l .  

4.3.2 Iterat ive Reparameterization 

During .V time steps of equation (1.7) (referred to as a deformation step) a T-snake moves 

from its current position to a nem position.3 At the beginning of the deformati~n step. 

the mode1 nodes are defined in terms of the edges of the grid boundary triangles. At 

the end of the deformation step. the nodes have moved "off" of the grid triangle edges 
- - - - -- - 

"The T-snake is either espanding or shrinking, but not both. See Section 4.4 for a discussion of 
T-snake deformation modes. 



Figure 4.5: Phase I of T-snake repararneterization: (a)  T-snake espands and moves off 

grid tluring deformation step. ( b )  new mode1 nodes are computed. ( c )  new T-snake nodes 

and elements. 



(Figures - I . .k ) .  LVe then reestablish the correspondence of the model with the grid b ~ t  

computing a new sirnplicial approsimation of the deformed T-snake. This new simplicial 

approsirnation is computed using a novel two-phase wreparameterizationo* aIgorithm. In 

phase one. we perform a local search and intersection test for each model elemen t . That 

is. for each element connecting two nodes. ive compute a bounding bos of the element 

at its neiv position. Csing this bounding box. we determine which grid triangle edges 

ni- potentially intersect the mode1 element. For each of the edges wit hin t h e  bounciing 

box. an intersection test is performed wit h the model element. If an intersection point is 

foiinci. it is recorded and rnay become a node of the updated model (Figures -1.5b.c). I f  

an intersection point for t his edge already exists. ive can eit lier use the latest intersection 

point or the point closest to the "outside" grid vertes of this edge. This first phase of the 

reparameterization process is simple and efficient and is inherentl?; paraIlel: eacli mode1 

elenlent caii be processed independent ly. 

Diiring the deformation step. a T-snake -passes over" a set of grid triangle i-ert ices 

( Figure -\.Ca). C-sing the analogy of front propagation. specifically flame propagation. 

t hese grid 1-ert ices have been "b~ i rned^ .~  Ive  are able to determine and tracli the interior 

regiori of the T-snake by identifying and recording t liese biirned grid ~ w t  ices diiririg the 

tlcformat ion step. Fiirt hermore. t hese interior grid vert iccs unambig~ioiisly define the 

bount1ar~- of t lie niodel: t liey are iised to cont inuoiisly t rack t lie grid Imiindary triangles 

througliotit the el-olution of the rnodel and hence dctermine the set of ncw rnodel nodes 

iised to form the 1'-snake boundarj.. By maintaining an interior region representation as 

\ d l  as a boiindary representat,ion of a T-snake. ive are able to constriict a characteristic 

fiinction of an ohject O. The characteristic function 1 0  : !Rn i {O. l }  of an ohject O. is 

defined as \O(p) = 1 i f  p E (3 and \O(p) = O i f  p 3 (3. 

Deterrnining the  set of grid vertices that have been burned during a defortnation step 

uses a simple. robust and original classification algori tlim. Each niodel elemeiit nia- have 

T h e  inflation force described in section 4.2 pt~shes a T-inake i r i  n direction normal to the snake a t  
oacli rnodel node. Curves evolved in this manners can develop shocks or singularit,ics such as corners 
and self-intersections (Xppendix A ) .  Once these singuiarities develop. it is not clear how to evolve the 
curve beyond the singularities. \Ve solve this problem by n-iimicing the physically correct behavior for a 
propagating flarrie front. This behavior is selected by adhering to a so-calkd en t ropy  condttron [C-L]: rf 
the T-snakc 1s ~ ' t e u ~ d  as a biirnzng Jarne. then once a particle t s  bilrnt tt stays burnt .  



Figure 1.6: Phase 2 of T-snake reparameterization: (a)  a mode1 element of an  espanding 

T-snake rnay pass over a grid vertex. ( b )  subspace partitioning ( c )  new grid vertices 

(light-stiaded). (c i )  new T-snake. 



Figure 4.7: Formation of subspaces used in the labeling of a grid vertes. 

passecl over zero. one. or several grid vertices during a deformation step. For each model 

element. we form a bounding box around the current position and the new position of 

the element. Tlie bounding bon alloms us to quickly determine the subset of grid vertices 

that mq. have been burned. For each of the grid vertices within the hounding box. we 

partition the image domain into four subspaces by forming trvo Iialf-lines (Fig. 4.6a.b). 

The lines are formed by joining the two model nodes of a model elernent at their current 

position to a grid vertex. \Ve then classify the two model nodes at tlieir new positions into 

one of the four subspaces. This classification allows us to quickly deterniine whetlier the 

grid vertes in question has been burned. The classification algorithm ~ssential ly consists 

O C  several dot proclucts and is ext remely efficient and inherent ly parallel. Figures -1 .Ga-c. 

illustrate the  second phase of the repzrarneterization process. In Figure 1 . 6 ~ .  t hc new 

grid wrtices are sliown in light gray. Finally. Figure 4.6d shows the new T-snake after 

bot Li reparameterization phases have completed. 

Classification Algorithm 

This section describes a robust. efficient algorithm for determining if a model element 

has passecl over or %urnedg' a grid vertex r during one deformation st,ep. LL'e begin 

by partitioning the bounded image domain into four subspaces (Figure 4.7) by forming 

two hall-lines LI  and L2. Line LI is formed using node p l  of the model element and 

c.  and line L2  is formed using node p z  and L?. During one deformation step. pl and p2 



move to a nerv location. p l n  and pZn respectively. approximately in the direction of the 

normal defined at the model nodes p l  and PZ. We restrict the maximuni movernent of 

a model node during one deformation step to be much less than the dimensions of the 

image domain. This restriction allorvs us to assume the  movernent follows a straiglit line 

path and prevents the formation of degenerate suhspaces. We then classify p l n  and pZn 

into one of the four subspaces. depicted in Figure 4.7. There are 2 mode1 nodes and 4 

subspaces for a total of 16 possible classification combinations (Figure 4.S( 1 )-( 16) j. The 

four points p l .  pZ. pZn. p l  n form a closed polygon Q. This polygon m q -  be nonconves in 

rvhich case it cari be considered to consist of trvo convex (triangular) pieces. 

DEFI.\-ITI0.Y 4.5. -4 point p is inside polygon Q i/ a ray  cast /rom p intcrsccts trnctl!j 

one edge  o/ Q or crnctf.y three edges of Q .  

This definition is invalid when the ray passes esactly througli an endpoint of a n  cdge 

of polygon Q. I v e  will assume that this situation is detectable and one eclge of the 

polygon can be shortencd slight ly. 

DEFI.\ÏTIO.Y -!.ô. .-I grid rertex c is labeled as - 6 u r n ~ d "  if it is inside polygon Q .  

.-\ccorcling to these definitions. from Figure - l . S ( l ) - ( 1 6 ) .  cases 1. 2. and 7 ivoiild label 

the I *  hurned. cases 3-6 and $12 ivould label L. not-hiirned. Thiis. by simpl>? clasif>-ing 

p l r z  and p2n into one of the four siibspaces. rve can immediately label O for t he  majority 

of t lie cases. The classification algorit lim consists of tivo inside-outsidc half-space tests 

cach for pln and p2n. A half-space test essentially consists of a dot prodiict hetrreen a 

point p ancl the point-normal equation of a line and is estremely efficient. Furthermore. 

a neiglibor elernent of plp:! shares one of the half-lines. L I  or L:! (ivhich are formccl from 

the fised grid vertex point o).  and the maximum elernent niovement restriction rnentioned 

earlier giiarantees t hat degenerate subspaces cannot be  formed. This process resiil ts in 

stable numerical computat ions. 

Cases 13- 16 are ambiguous and require one addi t ional test. For each of t hese cases. me 

perform an inside-outside half-space test for r using a line fornied by the model element 

at its nerv location plnp-n to define the half-spaces. For cases 1 3  and 11. tv must lie in 

the same half-space as pl  and p2 for c to be labeled as burned. For cases 13 and 16. ' 
must lie in the same half-space as pl  and p2.  respectively. 



)( 
p l n  '. 

....-. 

Figure 4.S: Classification cornbinations. 



Figure -1.9: Esamples of T-snake topological transformations: (a) self-intersection. ( b )  

shrinking and splitting. ( c )  merging. The resulting 'T-snake(s) after the transformations 

are shown as the dotted line(s). Yode reconnections occur autornatically in the sliaded 

t rianglcs so that inside and oiitside grid ïertices are separated by a mode1 elernent. 

\\é clairn t hat the classification algorit hm is siifficient to unarnbiguo~~sly label a gricl 

i-ertes point t* as hurried or not-burned. LVe present a simple. gcometric proof of t his 

claini in rippendis B. 

4.3.3 Topological Transformations 

\Vhcn a T-snake collides with itself or with another T-snake. or when a T-snake breaks 

into trvo or more parts. a topological transformation must take place. I r i  order to effect 

consistent topological changes. consistent decisions niust be made about disconnectiiig 

ancl reconnect ing T-snake nodes. The sini plicial grid and the reparameterizat ion process 

providcs us with an automatic and unambiguous mechanism to  perform reconnections. 

By t racking the interior grid vertices (and hence the boundary grid triangles). adhering to 

the entropy condition. and reestablishing the correspondence of the model with the gricl 

after a deformation step. rve can alw-s unamhiguously determine the boundar~. or '-iso- 

contour" of the new T-snake(s). LVe sirnply compute new mode1 elements from the signs 

of the grid vertices in each boundary triangle and from the intersection points compiited 

in the first phase of reparameterization. such that the inside and outside grid vertices 

of these triangles are separated by the model element (Fig. 4.9). Thus. by mimicing 



the evolving level set of an implicit function. the simplicial grid and the reparameter- 

ization process guarantees t hat topological transformations are handled aiitomat ically. 

consistent ly and efficient ly. 

4.3.4 The T-Snake Algorit hm 

C-nlike the level set evolution techniques which accede cont rol to a higher dimensional im- 

plicit fiinction. T-snakes retain an esplicit parametric mode1 formulation. The parametric 

formulation allows us to track and control the evolution of the T-snake. Conseqiiently. 

reparameterizat ions can be performed ver' efficiently and const raints can be easilj- i i i i -  

posed on the  model. The entire process is essentially reduced to computing a new model 

.-region" - a boundary segment and interior grid lrertices - generated bj. t h e  movement 

of one mode1 element cluring a deformation step. The union of these regions defines the  

new 7-snake boundarj- and updates the interior of the T-snake. This process is directly 

cont rollable and parallelizable. The T-snake algorit hm is as follows: 

For each deformation step (.V time steps): 

1. For each time step: 

( a )  C'ompiite the esternal and interna1 forces acting on niorlel nodes. 

( b )  Lpdatc t h e  node positions using equation (4.7). 

2. Repararncterizat ion Phase 1 : I:sing the procedure described in Section 4.3.2. com- 

pute the grid intersection points for al! model eiements. Thesr intersection points 

will hecome the new mode1 nodes. 

3 .  Reparameterization Phase 2: For each model element. compute and record the grid 

vert iccç "burned" . 

4. Lsing t his set of burned grid vert ices. determine the corresponcling set of boundary 

grid triangles and compute al1 new mode1 elements and nodes. Modei nodes contain 

pointers to neighboring nodes. Slodel node neighbors (as well as element neigh bors) 

are easily cornputcd via adjacent boundary grid triangles. 



5 .  For al1 ciirrent model elements, determine if the model element is still valid. .4 

model element is valid if its corresponding grid triangle is still a boundary triangle. 

Discard invalid model elements and unused model nodes. 

-4 T-snake is considered to have reached its equilibrium state when al1 of the model 

elements have been inactive for a specified number of deformation steps. .\Iode1 element 

activity or movement is measured via the grid again using a flame propagation analogy. 

Mode1 elements are assigned a *temperature" based on the niimber of deformation steps 

the element (and its corresponding boundary grid triangle) has remained valid. An 

element is considered inactive when its temperature falls below a pre-set --freezing point". 

Once a T-snake has reached equilibrium the simplicial grid can be cliscarded. if desired. 

and the model run as a classical snake. The interna1 e n e g y  constrûints ivi l l  then create 

more el-enly spaced model nodcs ( Section 5.1.4). 

4.4 Limitations of T-Snakes 

Section 4.3 clescribed the mechanism by which a T-snake eïolves. In particular. to 

propagate a T-snake past singularities or shocks ive adhere to an entrop? condit ion: once 

a particle (in otir case. a grid vertex) is burned. it stays burned. While tliis policy 

niimics physically correct behavior of a propagating front (mhich is consistent with our 

pli>-sics-based frarneivork) and provides robust topological transformation abilit ies. the 

implication of this policj. is that a T-snake can only espand or shrink as it evol\.es. but 

riot both. We t~pical ly  seed a T-snake inside an object and allorv it to espand towards 

the objcct botindaries. Conversely. we can also surround an object with a T-snake and 

allow it to shrink and wrap itself around the object. This dejormation mode limitation 

can affect the degree of user interaction. If a T-snake is espanding. the user cannot exert 

a force on the snake in an "inward' direction. In practice however. this restriction is 

rarely probleniatic. Typically user interaction with T-snakes involves *'dragging- mode1 

nodes in the direction of evolution to pull the T-snake off of a spurious edge or into a 

narrow cavitjr partially "blocked" by an edge. Furthermore. a possible sol~ition to t his 

deforniation limitation would be to reverse the direction of evolution occasionally for a 



Figure 4.10: .Ji triangulation. 

small time interval. 

The resoliition of the sirnplicial grid controls the degree of geometric ffesibility of a 

T-snake. If an object of intercst contains a narrom protrusion. the  grid resolution must 

be fine enough to allovv the T-snake to fiovv into it. On  the other hand. the --bodu" of 

tlie object may be relatively smoot h (i.e. ot her t han the protrusion. the object houndary 

may not eshibit rapid shape mriations). This situation results in an escessiïe nuniber 

of mode1 elements iised to recover and describe the object boiindary. One solution to 

t his problem is to remove or merge mode1 elements in regions of low shape variation 

in a post-processing phase. This topic has been addressed in 3D by several researcliers 

[IO:. dS] and is not esplored in this thesis. 

The decomposition of a rectangular grid into triangles (Fig. 4.1 j introciiices diagonal 

cdges on  the rectangles. The orientation of these diagonal edges is arbitrarily cliosen 

and affects t lie connectivity of a T-snake. For t his reason. topological corrcc fn~ss  (Le. 

faithfulness to the geometry of the object boundary) of the T-snake is not guaranteed. 

onlj- topological consistencg (i.e. closed contours. mithout artifacts such as holes. arc 

aliv+.s generated). Typically. this orientation bias does not present a problem since thc 

resolution of the gricl is set fine enough to accommodate object feature size. Alternativcly. 

tlie J I  triangulation (Fig. 4.10) can be used to ameliorate this orientation bias problem 

(although it does iiot entirely eliminate i t )  a t  the espense of an  increased number of 

mode1 elements and algorithmic complexity. As mentioned previously. any affine cellular 

comples could be iised as the T-snake grid. Topological disarnbiguation schemes rn- 

be recliiired in some cases while others may increase algorithmic complesity or perhaps 



decrease the number of mode1 elements. We have found a simplicial cornples. using the 

Coseter-Freudent ha1 t riangulat ion. to be an excellent balance of mat hemat ical t heor?,. 

algorit hmic complesity. and mode1 compactness. 

As ment ioned pret-iously. if a target object contains a very narrow feature. the grid 

resolution must be fine enough to allow the T-snake to flow into it. Furt hermore. the 

grid orientation bias mentioned above also affects the minimum feature width that can 

be segmented. In general. image features that are orthogonal to the diagonal edges of the 

grid are the limiting factor. These features must be wider t han  tlie Iengt h of a diagonal 

edge ( i.e. the grid meshsize cf) to allow t heir segmentation. :\net her factor t hat affects the 

minimum segmentable feature width uv is the ratio of the inflation force strengt h to the  

strength of the interna1 forces. .As this ratio decreases. ic increases. Finally. other factors 

affecting i ~ *  are the width of tlie (Gaussian) smoothing filter o used in the extraction of 

image edge features (see section 2.1). image noise. and the local variation of the image 

intensitj- tlireshold T .  Given a noise-free image and T-snake parameter values n-itliin 

a normal range. t hen in our esperience. the minimum segmentable fpature rviclt 11 11. is 

approsimatel>- eqiral to l.3d. 



Chapter 5 

T- Snakes Features and Constraint s 

This chapter describes and dernonstrates several features of T-snakes. In particular we 

illustrate. with examples. t he  ability of T-snakes to flow into complex shapes and adapt to  

objecr topology. the interactive capabilities of T-snakes. and several additional features 

arising from the simplicial grid. LVe then describe the  various coristraint niechanisms t hat 

can be imposed on T-snakes. Geometric constraints. topologica.1 constraints. statistica! 

constraints. and global shapc const raints are  presented. 

5.1 T-Snakes Features 

5.1.1 Geometric Coverage and Intrinsic Parameterization 

Lsing the simplicial grid to reparameterize a T-snake at  each iteration of the e\-oliition 

process creates a simple. elegant and autornat ic mode1 subdivision technique. This pro- 

cess a l l o w  a T-snake to  segment and reconstruct objects with signifiant protriisions. 

tube-like objects. or objects with bifurcations (Figures 5.1. 5 . 2 ) .  Fiirt hermore. manifolds 

siich as cürves and surfaces have certain shape properties that  are independent of ariy 

particiilar parameterization: the intrinsic geometry of these objects depends only on their 

sliape in the domain. Embedding and defining T-snakes in terms of the  simplicial grid 

removcs an' esplicit parameterization and instead parameterizes the fitted 'T-snake in 

terms of t his intrinsic local geometry. This property can sigriificant lu increase segmen- 

t at  ion efficiency and reproducibility by making the  'ï-snake relativeel>- inseiisitive to  its 

initial placement. A T-snake may be seeded practically anywhere wi t hin or surround- 

ing a target object and still produce similar final segmentations with similar intrinsic 



Figure 5.1: T-snake floming into object with protrusions. 

parameterizat ions (Figure 5 .3) . '  Efficiency is increased in many scenarios because the 

tirne-consuniing task of initializing a snake near the boundary of the target object  is 

mitigated. 

This aiit.oiiiatiç and intrinsic rcparameterization property of T-sriakes is irriportant 

in the design of completel- automatic segmentation techniques. t t  is possible to design 

es plici t ly parameterized snakes models t hat are capable of automat ic global or local 

reparameterization [56. 461. This can be acheived. for example. by checking along the 

entire length of the snake for any snake element that has become larger tlian some 

prcdefined masimum length and then dividing these elements into shorter ones of equal 

lengt h [56]. In semi-automatic segmentation scenarios. this scheme can be quite effective 

since the snake is typically placed near the boundary of the target object. In automatic 

scenarios however. since the explicit parameterization of the snake is not directly related 

. . . - 

'Soise and spiirious image features can still affect T-snake behavior and, consequently, affect the 
result of the  segmentation. 



Figure 5.2: T-snak  flowing along a spiral tube-like object. 

to the geometrv of the target object. difFerent segmentation results may be generated 

by snakes placed in different initial positions. especially for objects with veïy comples 

shapes. 

5.1.2 Topological Adaptability 

-4s described in Chapter 4. the sirnplicial grid provides a matliematically sound framework 

for robust topologica1 transformations. This feature allows a T-snake to seamlessly split 

or merge and adapt to the topology of the target object (Figures 5.4. .;..j). Topological 

adaptability combined rvit h geometric flesibility can potentially significarit ly increase the 

aiitornation of the segmentation process. 

5.1 -3 Multi-resolution Capability 

ACD-based deformable rnodels are inherently rnulti-resolution. The size and number of 

moclel elements is directly determined by the grid resolution (Figure 5.6). Furthermore. 

if the grid resolution is restricted to multiples of an initial coarse resolution. the finer 

grids preserve the model nodes of the coarse resolution grids (Figure 5 . 7 ) .  

The mult i-resolut ion feature of T-snakes and T-surfaces can be esploi ted in several 

ivays. The grid resolution can be adjusted to generate a model tailored t,o espected image 

feature size or to generate a desired accuracy. We can also compute an image pyramid 

tliat provides a set of images at decreasing scales. Coarser resolut,ion models can then 

be riin on large scale images and the result can be used as input to finer scale images. 



Figure .5.:3: Initialkat ion insensitivity of T-snakes. .A T-snake may be seeded essent ially 

nnywhere wit hin or surrounding a n  object. 
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(4 

Figure 5.4: T-snake flowing and splitting 

(4 

to segment object ivith complcx topology. 



Figure 5.5: T-snake shrinking, rvrapping and splitting around multiple objects. 



CHAPTER 5 .  T-SNAKES FEATURES AND CONSTR-~INTS 

Figure 5.6: T-snake representation of circular object using 3 grid resolutions: (a)  4 x 4 

(b )  Y x (Y C) 16 x 16. 

Figure 5.7: T-snake nodes on coarse-resolution grid are preserved on finer resolution grid. 



Figure 5.S: Redistribution of snake nodes after discarding simplicial grid. Grid resolution: 

(a)  4 x 4 ( b )  S x 8 ( c )  16 x 16. 

.-\lthough this procedure is not explored further in this thesis. we believe it has potential 

for signi ficant improvements in segmentation efficiency for many applications. 

5.1.4 Conversion to/from Classical Snakes 

Converting a T-snake t o  the  traditional parametric snakes model is simply a mat te r  of 

discarding t he  sirnplicial grid and  disabling the  reparameterization process. This  conver- 

sion can be perforrned a t  any t ime during the  model evolution. The interna1 forces of the  

snake will then act t o  redistribute the  model nodes t o  produce a more eïen distribution. 

(Figure 5.8). 

C'on~rerting a closed snake back to  a T-snake requires the specification of a point 

inside t he  snake as well as t he  superposition of the  grid and the  resumption of t he  

reparameterizat ion process. Wi  t hout the specificat ion of an inside point i t is possible 

tha t  t h e  conversion will produce an  incorrect T-snake. This situation arises when a 

closed snake crosses itself. Conversion from a conventional snake to  a T-snake can also 

be carried out  a t  any t ime  during the  model evoiut ion. 

T h e  T-snake conversion feat ure can be very useful in some interactive segmentation 

scenarios. T h e  viscoelastic T-snake can be -slippery7' when the user a t t empt s  to  pull 

T-snake nodes wit h t h e  rnouse. It is also possible to  break off small pieces of a T-snake i f  

excessive interactive force is used. T h e  "rub ber- band7'-like classicai snake exhi bi t s  niore 
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Figure 5.9: Segmentation of the blood vessels in angiogram of retina using using multiple 

T-snakes. 

predictable behavior under interactive control. Convert ing to and from the  two rnodels 

allo~vs a user to dynamicalIy fine-tune sections of the T-snake fit. 

1Iultiple T-snakes can be statically or dynamically created (or destroj-ed) (Figure 5.9) .  

This feature can be useful in several scenarios. Firstly. multiple T-snakes can evolve con- 

current ly on parallel machine architectures to improve segmentation efficiency. Secondly. 

iisers can seed T-snakes on several objects or on part of an object that is blocked by an 

edge to the object body. Finally. target objects can be automatically identifted. seeded 

wit h multiple T-snakes. and t hen autornat ically segmented. 

Collision Detection and Avoidance 

As deicribed in Chapter 4. we keep track of the interior region of a T-snake by -turning 

on" any grid vertices the T-snake passed over during its evolution. This feature can be 

used to perform efficient collision detect ions arnong multiple T-snakes. When segment ing 

multiple anatomic structures with common or adjacent boundaries using multiple T- 

snakes. an efficient collision detection and avoidance scheme could be utilized as an extra 

constraint in the segmentation process. By assigning different values to the grid vertices 

of each T-snake, ive effectively give the T-snakes a unique identifier (Fig. 5.10). -4s a 

T-snake deforms. it may attempt to move into boundary grid triangles containing "on" 

vertices. A simple check can then be performed to determine the identity of the -on" 



CHAPTER 5. T-SNAKES FEATURES AND CONSTR.L\INTS 

, . 
Figure 5-10: Collision detection and avoidance using model interior region .*identifiers0'. 

.A T-snake cannot move into *territorf already occupied by another T-snake. 

Figure 5.11: Two niodels colliding, detecting and avoiding intersection. 

i w t  ices. If the grid vert ices belong to mot  her T-snake. varioiis --avoidance" st rategies 

(-an be iised siich as applying a repelling force to the intersecting nodes of the colliding 

T-snake to push it out of the occupied region (Figure 5.11). 

Ci:e demonstrate the use  of the model collision detection feature with a simpleexample. 

.A sagittal slice of a preprocessed h,IR brain image was manually segmented into four 

anatoniical regions and the pixels in each region were assigned a constant intensity d u e .  

We initialized two T-snakes in regions 2 and -1 and recovered the shapes of these regions 

(Figure 5.17) .  \k t hen initialized two T-snakes in regions 1 and 3 and allowed the snalies 

to evolve, using only a minimum intensity threshold as the  external image force. When 

tliese T-snakes at tempt to  flow into the brighter regions 1 and 3 they collide with the 

initial T-snakes and are forced to assume the shape of the  common boundary regions 



Figure 5.12: Reconstruction of preprocessed anatomical regions of the brain using mult i- 

ple models. The collision detection feature was used as an extra constraint when recon- 

struct ing regions 1 and 3 .  

(Fig. 5 .  lZc). 

We can make use of the multiple T-snakes feature in an interesting approach to automatic 

segmentation. The automatic segmentation of images containing multiple objects of 

interest. objects embedded inside ot her objects. or objects containing Iioles creates an 

iriitialization problem tha t  cannot be resolved using a single T-snake. If the T-snake 

is initialized such that it surrounds the objects of interest and then shrinks and split 

around these objects. only the outer boundaries will be recovered. Conversely. to groiv a 

T-snake fiom wit hin each object requires prior knowledge of. or automatic identification 

of the objects. In our approach. inspired by [97]. we uniforrnly distribute a set of srnall T- 

snake -seeds" over t he image domain. These T-snakes t hen progressively cspand. shrin k. 

merge. and/or split to recover larger and larger regions of each object. including hot h t he  

inner and outer boundaries (Figs. 5.13a-f). If there is no object of interest to  attract a 

T-snake. it will shrink and eventually disappear. This technique results in a single stage 

process and requires no user interaction. 

5.1.6 Mode1 Element "Cooling" Process 

We incorporate a model element h'cooling*' process into the T-snake irnplementation. -4s 

clescribed in Section 1.3.1. model elements are assigned a temperature based on the num- 



Figure .i.1:3: T-snakes seeds growing. shrinking. merging. splitting and disappearing to 

aiitomaticlly recover vertebral phantom parts. 

ber of deformations steps the element (and its corresponding boundary grid triangle) 

lias remained valid. The temperature attribute provides an excellent measure of mode1 

element activity or movement. When the temperature o l  an element falls below a iiser- 

set freezing point. the element is removed from the computational process and stored 

i r i  a table. This adjustabie mechanism allows the system to maintain a srnall. manage- 

able cornputat ional burden for many segmentation scenarios. Figure 5 .  l-l illustrates the 

cooling process. .As the T-snake flows along the spiral-shaped object. only a few mode1 

elements of the .fiame" are active (hot) at one tirne. The remaining elements are inactive 

(frozen) and do not contribute to the computational load. In this esaniple. a 40 x -10 

ce11 grid is used to segment the spiral from the 300 x :340 pixel image. The segmentation 

completes in a feiv seconds on a Silicon Craphics Indigo workstation. 

5.1.7 Interactive Control 

'The affine ce11 decomposition framework allows T-snakes to maintain the intuitive inter- 

act i\.e capabili t ies associated wi th classical snakes. Lsers can esert attraction or repulsioii 

forces using "volcanos". "magnets'. and "anchored springs" [17]. For example. figure 5.15 

shows a T-snake being piilled in the direction of t he  mouse. As ment ioned previously. the 

viscoelastic T-snake can be -slipperyV when using mouse driven forces. In the example 



Figure 5.14: T-snake flowing dong a spiral tube-like object. The active part  of the  

T-snake is in white, the  inactive part is black. 



Figure 5.15: T-snake flowing along retinal artery is "pulled' into smaller branch by user. 

presented. the mouse spring has slipped a lit tle along the T-snake during the application 

of the spring force as the T-snake begins to flom into the smaller branch. Other usefiil 

T-snake interaction mechanisms are descri bed in Section 5.2.1. 

5.2 T-Snakes Constraints 

The T-snakes features described above combine to create a powerful. semi-automatic 

segmentart ion technique. The addition of the const raints detailed in the following section 

pro\-ides T-snakes with the potential for completely automatic medical image analysis. 

Soft constraints are incorporated through the T-snakes physics-based formulation. Hard 

constraints are easily incorporated through the .\CD frameworli and through the para- 

metric mode1 formulation that maintains direct control of T-snake evolution. 

5.2.1 Geometric Constraints 

Geometric constraints are incorporated into the T-snakes mode1 either as soft constraints 

to h e  satisfied approximately or as hard constraints that must never be violated. Soft 

const raints are incorporated into the T-snakes physics-based formulation as energy f~inc- 

tions or force functions. .An example of a soft point constraint rvas described in the 

previous section through the mouse-driven spring force. 

Hard fixed-point constraints are easily incorporated into the ACD framework. The 

user begins by specifying a series of points wit h the rnouse or some ot her input device on 

or near the boundary of the target object (Figure 5.16a). These points are connected to 

form a closed polygon and the polygon is converted to a n  initial T-snake. Eacli of tliese 



Figure 5.16: Esample of geometric "hard" fixed point constraints. 



Figure 5.17: CT image slice of LV and edge-detected version. 

fised points lies within a grid boundary triangle. Instead of fmming one model element 

in earh of these boundary triangles the fixed points are used to  create two elements. 

using a fised point to form a shared mode1 node for the two model elements. Mode1 

nodes created from fixed points are frozen (i.e. unresponsive to forces). To ensure that 

boundary triangles containing fixed points remain valid boundary triangles throughout 

the T-snake evolution. at least one vertex of these boundary triangles must remain "off' 

or not -burnedg'. By enforcing this simple policy ive ensure that the  fised points always 

rcmain valid model nodes of the T-snake. Figures 5.16b-d show a T-snake constrained to 

pass through four fised points as it flows and conforms to a square-shaped object. The 

four points were positioned slightly away from the  boundary of the object for illustrative 

piirposes. Currently we restrict the number of fixed points per grid triangle to  one. 

O t lie; usefiil hard geomet ric constraints include barriers or "forbidden zones". For 

csample. the user can place a circle or ellipse in the path of a T-snake. If a T-siiake 

node enters one of these implicitly defined zones. it can either be instantly frozen or the 

model element cooling process will quickly freeze elements connected to the node. This 

cons traint forces the T-snake to take on the shape of the impacted region of the circle or 

ellipse. allowing the user to "shore-up' ob ject boundary sections wit h sparse edges. 

5.2.2 Statistical Constraints 

Section 4.2.2 described the external forces used to drive a T-snake towards object bound- 

aries and lock it ont0 object edges. C'nfortunately it is often the case that  image edge 

forces (equation 4.6) are not quite strong enough to overcome the inflation forces, result- 



Figure 5-18: T-snake segmenting LV image slice using statistically-weighted inflation 

force and image edge forces. 

ing in a "leak" of the T-snake into regions surrounding the target object. Conseqtiently. 

interactive guidance or intervention may be required to guarantee a good result. k i n g  

region based statistics to weight the inflation force can effectively address t his problem 

and thereby increase modei automation. Region based statistics can be incorporated into 

the inflation force by extending the Functional F of equation 4.6 

where 11 is the mean image intensity of the target object. a the standard deviation of 

the  object intensity and k is a user defined constant. The statistical values. p and a. arc 

typically computed or known a prion Figure 5.17a shows a CT image slice of a canine 

heart. The bright region is the left ventricle (LV). In this particular slice. notice tliat 

the LV intensity diminishes considerably in some regions resulting in very weak edges 

(Figure 5.17b). Figures 5.18 a-d show the T-snake segmenting the LV using a statistically 

weighted inflation force. Figures 5.2.2a.b provide an enlarged view. Notice t hat the area 

around the papillary muscles (the indentation in the upper right part of the T-snake) has 

been correctly segmented whereas this area has been smoothed- over when only a single 

threshold value is used to weight the inflation force (Figure 5.20). 
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Figure 5.19: Close-up view of LV segmentation: ( a )  image intensity slice. ( b )  edge- 

detected image slice. 

Figure 5.20: Segmentation of LV without incorporating image intensity statistics. 
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5.2.3 Topological Constraints 

-4 prornising technique for the analysis and interpretation of medical images is skele- 

tonizat ion. Xutomating the skeletonization process is difficult however because t hinning 

algorithms are highly sensitive to noise. Providing a smooth segmented object to the 

thinning algorithms which is guaranteed to have the topology of the real object can 

po tent ially resiilt in more robust skeletonizat ions. Classical paramet ric snakes models 

can produce srnooth object segmentations but it is difficult to guarantee that no self- 

intersections of the fitted snake model have occurred. Consequently during discretiza- 

tion. incorrect object topologies can be generated. The ACD framework. on the ot her 

hand. provides a robust mechanism to ident ify and prevent self-intersections (and t here- 

fore possible topology changes) of the T-snake. The result is a simple. efficient technique 

for imposing a global topological constraint on a T-snake that guarantees the topolog>- 

of the fitted T-çnake matches that of the real object. 

Topology Preserving Deformations 

We im plement the global topological const raint using topology-preserving T-snake defor- 

mations. The T-snake has an initial topology of a circle and the evoliition of the niodel 

is performed iising a sequence of these deformations. \Ve are able to efficiently perforni 

the topology-preser~ring deformations since our model is defined in terms of a simplicial 

ccil cornplex. 

During one deformation step. a T-snake is deformed (expanded or contracted) and 

a Finite number of grid vertices will be burned. The addition of these grid vertices 

to the  current set of burned vertices defines a new T-snake boundary. We would like to 

ensure that these additional grid vertices cannot change the T-snake topology. Therefore. 

before a mode1 element 1 burns a grid vertes a during a deformation step. ive validate the 

deforniation of i. If the tentative deformation of 1 is deemed invalid. then the simplest 

strategy is to  cancel its deformation. Horvever. this strategy may undermine the dynamic 

propert ies of t. he T-snake since sorne model elements are temporarily frozen for potent ially 

several deformation steps. .A repulsion force can therefore be calculated as the sum of 

interna1 and retlersed inflation forces. If the deformation of the element is still invaIid 
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Figure FI.? 1 : -At least 6 T-snake mode1 elements are needed to contain a grid vertes. 

despi te the addition of the repulsion force. the deforrnat ion is cancelled. 

Ni. begin the validation process by assurning t hat none of the grid vert ices connected 

to the target (-un-burned'.) vertex o by a grid triangle edge mil1 be burned during the 

ciirrent deformation step. CVe observe that there erists a path of grid triangle edges from 

an unburned grid vertes to al1 ot her unburned grid vertices. where no grid edge intersects 

a T-snake element. Otherwise there would exist an %land" of unburned grid vertices. 

indicating that a topology change of the T-snake had already occurred (al1 burned grid 

L-ert ices are connectecl in a similar manner). We can t herefore assume t hat some - but 

not al1 - of the vertices connected to v may already have been burned. 

Ciiven an!. grid vertes. t lie smallest number of model elements needed to form a. ciosed 

poli-gon containing the vertex is 6 (Figure 5-21 ). Therefore we check the 6 grid triangles 

stirroiincling I. and estract an- and al1 model elements present in  these triangles. .\Iode1 

elenient 1 will. of course. be a member of this set. LVe then perform a breadtli first 

t raversal of these extracted elements. That  is. beginning with a seed element ( 1 )  ive 

\-isit its two neighboring elernents. If either of these elements is a niember of the set of 

extracted elements. it is placed on a queue. Lie then take the first element froni the 

queue. visit its two neighbor elements (if they have not already been visited) and again. 

place any neighbor on the queue that is a member of the extracted element set. This 

process is repeated until t h e  queue is empty or al1 of the extracted model elements have 

been visited. 

IF al1 of the extracted model elements were marked as visited during the  traversal. 

tlien these elements are al1 neighbor elements: they forni a contiguous section of the 

T-sriake with a maximum path -1ength" of 6 model elements. In this case. the defor- 
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Figure .5.22: Example of topology-preserving deformat ion. In (a) .  the niodel element s in 

triangles -4. B. C. F form a contiguous section of the T-snake and cannot cause a topology 

change when the grid vertex (light-shaded square) is burned. In ( b ) .  i f  element A. for 

esample. burns the grid vertes. a topology change will occur. forming two T-snakes (one 

inncr T-snake and one outer). 

mation of 1 diiring this deformation step is deemed valid since t h e  estracted elements 

cannot form a closed circuit around L* (Figure 5.2Za). This observation follows froni our 

assiimptions that at least one of the grid vertices directly connected to c remains iin- 

biirned. If the estracted elements do not form a contiguous set then the deformation of 

1 is tleemed invalid. In this case. a topolog\. change of t h e  T-snake will occur (Figure 

5 . 2 )  Since Ive do not actually update mode1 element positions iintil after phase 2 of 

t tic repararneterizat ion process (Section 4.3.2). the validation process is deformation step 

dcpendent. For csample (Figure 5 - 2 3 )  during one deformat ion step mode1 element -4 

nia? validly burn grid vertex 1 whiie mode1 elernent B validly burns vertes 2. This rvould 

result in a topology change. with a small T-snake surrounding vertices 3 ancl 4. For 

t his reason. ive define two mode1 element deformation restrictions that ensure a mode1 

t opology preserving deformat ion: 

1 .  .A grid vertex cannot be burned during the current deformation step i f  any of the 

6 grid vertices connected to it have been burned during this deformation step. 

2 .  A grid vertex I. cannot be burned by a mode1 element .-I i f  



Figure 5.23: Esample used to illustrate the time dependency of the mode1 element val- 

idation proces. During one deformation step. elernent -4 may validly burn verte': 1 and 

element B may ~ d i d l y  burn vertex '2. .-\ topology change ivill occur resulting in two 

T-snakes. one inner surrounding vertices 3 and 1. and one outer T-snake. 

( a )  the re  esists another model elernent B whose grid triangle is one of the 6 grid 

triangles surrounding r .  

( b )  the re  does not exist a connected path from .4 to B t hrough al1 other model 

elernents estracted from the 6 grid triangles surrounding c.  

Topological Constraint Examples 

Figures .i.24--5.26 demonstrate the topological constraint mechanism \vit h a series of syn- 

tlietic examples. In the first series (Figures 5.24a-d) a model is seecled within a doniit 

shaped object. The model floivs into the object. collides with itself. and is unable to 

intcrpenet rate. Figure 5.25a shows a closeup of the collision region. Figure 5.25b shows 

t h e  same object but i~sing a finer resolution grid. Figures 5.26a-d.e-h depict two more 

esamples using tivo synthetic data sets presented in Sect,ion 5.1.2 for cornparison. 

5.2.4 Global Shape Constraints 

In t his section we prcsent a technique for imposing global shape constraints on T-snakes. 

ilse multiple deformable superquadric shape templates (referred to as "cells") that 

are fitted to  pieces of the target object and are constrained to overlap (Figure 5.27). 

In Chapter 3 i v e  described the recent work of several researchers involving superquadric 
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i r e  5 . 4 :  Esample of T-snake topological constraint. The T-snake flows around t he 

donut-sliaped object recovering its shape. I t  then collides with itself and is unable to 

interpenet rate. 



(4 0-4 

Figure 5.25: A ciose-up view of the self-co1Iision zone. In (b )  the same esample is repeatecl 

wi th  a finer resolution grid. 

Figure 5.26: Examples demonstrating T-snake topological constraint. 
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Figure 5.27: Superquadric "cells" fitted to  tubular-shaped object. 

shape templates as a method of incorporating a priori knowledge into shape recovery 

problems. The deformable superquadric cells described here are modified versions of 

the dynamic deformable superquadric models developed by Metaxas and Terzopoulos 

[IO-. 681. Appendix C provides a detailed description of our superquadric cells as ive11 as 

the cell-fit t ing and cell-blending process. 

Like T-snakes. supercluadrics have both an implicit and parametric representation. 

Consequently. wve can incorporate both region and boundary information into the su- 

perquadric cell-fit t ing process. Furt hermore. we have developed a ce11 grouing and split- 

tirig process. In the first phase of the process. a seed ce11 is initiaIl? placed wit hin a region 

of the target object. Initial ce11 placement is currently rnanual but automatic mechanisms 

could be easily created for many objects (using. for esample. bounding boxes). The ce11 

t hen globally deforms and adapts to the coarse shape of that region (Figure 5.2Sa.b). In 

the second phase. the parametrically-defined -*skin" of the fitted ce11 is locally deformed 

for a preset number of itrrations (Figure 5 .28~) .  LVe then examine the displacement of 

the skin irom the  underlying ce11 to find sections of the skin that have achieved a local 

masimum displacement. The average position of a local maximum section is used as a 

seed site for a new "child" superquadric cell. Seed sites could also be preset near "parent" 

ceIl houndaries for objects rvith relatively simple shapes. Points on the parent ce11 closest 

this seed site are used as a constraint point; a *'childo' ce11 is constrained to stay within 

a srnall distance of this point (Figure a.299-d). In addition, to deterinine a good initial 

orientation o i  non-circular cells, child ceils are "barn*. as circles and their growth or de- 

formation is restricted to global scaling and translation for a fixed time period. During 

this preliminary growth phase. the child ce11 attempts to center itself among local image 

edge ieatures. The orientation of the cell is then computed irom its center position and 

the constraint point on the parent ce11 (i.e. along an axis formed from these points). 



Figure 5 . 3 :  (a) , (b)  Superquadric ce11 growing and fitting to section of object. (c) Para- 

rnetric "skin' contour of ce11 deforming away from cell. Maximum displacement regions 

are used as seed sites for "child" celis. 

Figure 5.29: Superquadric cells growing and -'splitting7 to capture coarse shape of object. 

Once the ce11 orientation has been computed. the ce11 squareness parameter is set to 

a predetermined value that closely matches ce11 shape to object shape and the normal 

growt h of the ce11 is initiated. 

.-1 przori knowledge of a specific shape recovery problem can be incorporated into 

the ce11 growing/splitting process either statically or dynamically. For esample. Iimits 

on the global shape parameters of an individual ce11 can be preset: iipper aiid lower 

limits for the scale. bend. taper. and eccent ricit? of a ce11 can ensure t hat infeasi ble cells 

arc not generated. The minimum and maximum number of cells can also be statically 

deterrnined. Conversely. -child8' cells can dynamically 'inherit' shape characteristics 

from their parent during the ce11 splitting process. Child cells can also be -informed" 

of ciirrent region and edge information by a parerit. For esample. it is often the case in 

angiograms of arterial structures that the intensity of pixels diminishes as the distance 

from the  root of the artery "treen increases. This property makes it difficult to find a 

single intensity threshold value. By performing local region and edge analysis. a parent 

cell can detect changes to the image intensity and pass this information to child cells. 

The result is a robust adaptive threshold setting technique. 

The ce11 growing/splitting process terminates when no furt her seed si tes can be iound 



Figure 5.30: ( a )  Siiperqiiadric ceils blended to form initial T-snake. (b)  Final fitted 

T-snake ( c  ) Fit ted T-snake and  underlying cells. 

or t,iie preset masimum number of cells has been reached. Using the implicit form of 

the superquadric cells and t h e  simplicial grid. the  implicit ce11 functions are  blended 

result ing in a n  isocontour closely surrounding the cells ( Figure 5.30a). This implici t skin 

is converted to a T-snnke. \Ve then allow the T-snake to  deform as usual t o  capture t he  

shape details of the object (Figure 5.30b). Using anchored springs. we can also constrain 

the  distance between the  T-snake nodes and the  initial implicit "skin". We can then use 

the  displacement of the  final T-snake from the iinderlying superquadrics as a mechanism 

for t h e  automatic detection of shape abnormalities (Figure 5 . 3 0 ~ ) .  

Superquadric ce115 possess several desirable properties for noisy da t a  fitting: 



a .A small number of intuitive global shape parameters that can generate and concisely 

describe a wide range of shapes. 

a -+ln implicit and parametric representation. The parametric form provides a well- 

defined boundary representation that  can be used to perform efficient ce11 fitting 

and inter-ce11 constraints. The implicit form provides a well-defined ce11 interior 

and the ability to add or  blend cells together. 

a Image region and edge information can be integrated over the ce11 boundary and/or 

ce11 area. The effect of missing or noisy image features is tlierefore greatlj. mini- 

mized. 

These features. combined with the locally deformable T-snakes. result in a very robust 

shape reco\-ery technique that  is "tailorable- to a specific image analysis task. In Chapter 
- 
t i re present several exarnples using the superquadric cell/T-snake s j -s tem t o  demonst rate 

i t s potent ial as a widely applicable and fully automatic medical image analysis technique. 



Chapter 6 

Topologically Adaptable Surfaces 

This chapter presents topologically adaptable surfaces (T-surfaces) - a deformable 

closed-surface mode1 that is a :3D extension of T-snakes. W e  begin this chapter [vit h 

a descript ion of the physics-bwed mode1 formulation. highlighting the differences of the 

2D and 3D models. We then extend the simplicial ce11 decomposit ion frarnework to t hree 

dimensions using tetrahedral cells and demonstrate the fundamental similarity of the 

2D and 3 D  algorithms. We conclude the chapter with illustrative examples of T-surface 

feat ures and const raints. 

6.1 Mode1 Description 

lié clefine our discrete deformable surface model as a closed oriented t riangular surface 

mesh. A T-surface is a tliree dimensional generalization of a T-snake. Fiirtherrnore. 

analogous to the T-snake. a T-surface is a discrete form of a classical deformable niodel 

(i-e. a closed form of the deformable surface described in section 2.1.3). The vertices 

of t he  T-surface triangles, the model nodes. act as a dynamic particle system mhere the 

particles are interconnected hy discrete spring units [109]. Like the T-snake. Ive associate 

with t hese nodes time varying positions x i ( t  ) = [ t , ( t  ). yi(t ), z , ( t  )]. along with "tensiong' 

forces a,([). "rigidity0' forces P , ( t )  ''inflation forces" pz(t  ), and external forces fi([ ). 

The hehavior of the T-surface is governed by a 3D form of equation (4.1). Sirnilarly. 

3 D  forms of the tension forces (4.2). inflation forces (4.1). and external image forces (4.6) 

are used. Like the T-snake, the rigidity forces attempt to  minimize the local curvature 



of the mode1 by keeping a mode1 node at the centroid of its neighbors [69] 

\vliere n is the niirnber of neighbors. This force can be made scale invariant by di~riding 

the rigiit hand side of (6.1 ) mit h the  maximum distance between neighboring nodes. 

6.1.1 3D Simplicial Ce11 Decomposition 

Simplicial ce11 decomposi t ion in :ID uses tet rahedra. T lie 3 D  C'oseter-Freudent ha1 t rian- 

giilat ion ( i.e. tetrahedrization) ( Figure 6. l a )  is constructed by dividing Euclidean space 

iising a uniforrn cubic grid and subdividing each cube into 6 tetraliedra (Figure 6.11>). 

Thc set of grid tetrahedra that intersect the boundary surface of t h e  anatomic struc- 

ture ( the  boundary tetrahedra) form a three dimensional combinatorial manifold t hat 

lias as its diial a two dimensional manifold that approrimates the object boundary sur- 

face. The two dimensional manifold is constructed from the intersection of the object 

boundar:; surface wit h the edges of each boiindary tetrahedra. The intersection points 

resiilt in one triangle or one quadrilateral (which can be subdivided into two triangles) 

approximating the surface inside each boundary tetrahedra ( Fig. 6.2). mhere each trian- 

gle or quadrilateral intersects a tetrahedron on three or four distinct edges. respectively. 



Figure 6.2: Intersection of object boundary mith grid tetrahedra. Either one triangle is 

generated or one quadrilateral which can be divided into two triangles. The -signs" of 

the tetrahedra \vertices indicate whether the vertex is inside or outside the object. 

Figure 6.3: Approximation of a sphere using a 4 x 4 x 1 grid. 



Figure 6.4: Formation of subspaces used in the classification algorithm. ( a )  Three planes 

are Formed b>- joining the two nodes of a model triangle edge rvith a grid 1-ertex. ( b )  The 

three planes partition space into 8 subspaces. 

The triangle (or  quadrilateral) separates the positive vertices of the tet rahedron from 

the negative vertices. The set of al1 these triangles constitute the cornbinatorial manifold 

t liat approsimates the object boundary surface (Figure 6.3). 

6.1.2 Iterative Reparameterization 

The T-surface reparameterization process is identical to the T-snakes case. In phase 1. 

a bounding bos is formed around each mode1 element (triangle) at its ncw position and 

grid intersection points are computed. The intersection points are used to create the new 

nioclel nodes. 

In phase '2. each model triangle ma. have passed over zero. one. or several grid 

i-ertices diiring a deformation step (Figure 6.5a). The model triangle at its current and 

new positions form a prism-like polyhedron. The sides of this prism may be nonplanar 

so t hey are divided into two triangles forming an S-sided polyhedron ( Figiire 6..5b) ( t here 

are two possible triangulations of the prism sides). To determine if a grid vertex is burned 

19- a mode1 triangle during a deformation step. we must determine if the grid vertex is 

coritained by (inside) the polyhedron. The polyhedron may be twisted and/or invertcd 

depending on the  path followed by the mode1 element nodes during the deformation 

step. Rat her t han deal wit h the potentially complex-shaped polyhedron directly. ive use 



Figure 6.5: ( a )  .A model triangle moves to a new position during a deformation step 

and potentially burns a grid vertex. (b )  The S-sided polyhedron formed from the model 

triangle at current and new positions. (cl The 8 subspaces used to classify a model 

triangle at its new position and determine if t h e  grid vertex \vas burned. 



a simple. robust classification algorithm that depends on the fised positions of the grid 

\vertex and the well-defined current position of the mode1 triangle nodes pl. pz. p9. The 

classification algorit hm is a 3D extension of the T-snakes algorit hm described in Section 

-1.3.2. That is. we partition the image domain into eight subspaces by forming tliree 

planes. The three planes are formed by joining the two nodes of each model triangle edge 

at their current position to the target grid vertex (Figure 6.4a.b). We then classif- the 

three nodes of the model triangle at its new position pln. p2n. p3n into one of the eight 

siibspaces ( Figure 6 .5~) .  The classification algorit hm is then used to quickly determine 

whet her the grid vertex in question has been burned. The following section out lines the 

basic principles used to construct the algorithm. 

3D Classification Algorithm 

.As mentioned above. we begin by classifying p l n . p h . p 3 r r  into one of the Y subspaces. 

This classification operat ion consist s of 3 inside-outside half-space tests for each model 

element node. A :3D half-space test essentially consists of a dot product between a point 

p and the point-normal cquation of a plane and is extremely efficient. There are 3 model 

nodes and Y subspaces for a total of 513 possible classification cornbinations. 

Esarninat ion of the 2D classification algorit hm reveals essent ially two underlying prin- 

ciples. For cases 1-12 (Figure 4.8). i f  pin lies to the left of L 1 (definecl as t h e  insicle 

Iialf-space). and p2n lies to the right (in the inside half-space) of L 2 .  tlien Y is labeled as 

biirncd. For the arnbiguous cases ( 13. 14). this principle also holds: although in case 14. 

i t is re\-ersed. ;\ second principle can t hen be derived ivhich states t hat z9 and eit her of p 1 

or p2 must lie in the same half-space of the half-spaces defined by plnp-n. For case 15 

(or 16) a similar principle states that D must lie in the same half-space as p l  ( p 2 )  where 

the half-spaces are again defined by p l n p k .  

These two simple principles carry over to the 3 D  classification algorithm. We first 

note that in the 2D case each point. p l r i .  p2n.  has its own '*constraint" line L 1 .  L 2  

respect ively. against which it is classified. In :ID. each point p h .  p2n. p3n is associated 

witli ttco constraint planes. For example. p l n  is associated with the two planes ilefiiied 

by points p l ,  p2. v and p l .  p3. v .  The first principle. extended to 3D. states the following: 



O Point pin. i = 1.2,3.  is in the  inside half-space of one of its two constraint planes 

(i-e. there is a t  least one point ( p l n .  p2n. p3n) in the  inside space of each constraint 

plane). 

There is at least one point pin. i = 1.2.3. in t he  inside space of al1 constraint 

planes. 

If t hese two conditions are  met. then u is labeled as burned. 

For the arnbiguoiis cases in 3D analogous to  cases 13.14 in 2D (i.e. no point ( p l n .  p2n.  p3n) 

is inside al1 :3 constraint planes or  outside a11 3 planes). a second principle is used: 

0 Lkrtes r lies in the same half-space as p i  or p2 or  pi3. of t he  half-spaces defined by 

the plane formed from model triangle pln .  p2n. p3n. 

If this condition ancl the two conditions from the  first principle a re  met. r is labeled 

as  biirned. For the  3D cases equivalent to  the ZD cases 15.16. t he  second principle is 

modified slight l?;: 

0 LErtes I: lies in the same half-space as al1 points pl. p2. p 3  t hat have a corresponding 

point pln. p2n. p3n in the  inside space of al1 3 constraint planes (where the half- 

spaces are again defined bj- the  plane formed from the model triangle pl n.  p2n. p3n. 

6.1.3 Topological Transformations 

Topological transforniations are  handled as in the  T-snakes case. T h a t  is. by tracking 

t lie interior gricl vert ices (and  hence the boundary grid t.etrahedra) and  reestablishing the  

correspondence of t h e  T-surface wit-h the grid after each deformation step. the boundary 

or  *oisosurface" of the  new model(s) is uniquely determined. 

6.2 T-Surface Features 

C'hapter 5 described various features of T-snakes. These features a re  inherent t o  both LD 

and  3D ..\CD-based deformable models. T h e  following illustrat.ive exaniples will reiterate 

several of these features with T-surfaces. 



Figure 6.6: T-surface flowing into an object a i t h  a bifurcation. The dark shaded regions 

are "frozen" and have been removed from t lie compu t ation. 

6.2.1 Geometric Coverage and Topological Adaptability 

in the first esample. ive use a synthetic data set of a branching structure to demonstrate 

the au tomatic model element subdivision provided by the repararneterization process 

(Figure 6.6(1)-(6)). This feat ure provides a T-surface wit h broad geomet ric coverage. 

This esample also illustrates the model element cooling process described in section 

51.6. The d a r h r  shaded regions of the T-surface indicate frozen rnodel elements. Only 

a relatirely small niimber of model elements are active t hroughout the T-surface evolu- 

tion in this esample. Consequently. the segmentation and reconstruction requires onlp 

approsimately 1 minute on an SGI Indigo 2 workstation (grid resolution: 32 x 32 x 32 

cubic cells. each divided into 6 tetrahedra. data set: 128 x 128 x 128 msels). Figure 

6.6f shows the T-surface converted into a classical deformable surface model. Like the 

T-sxiake. conversion to a classical deformable model is sirnply a matter of discarding the 

grid. 

In the second set of examples we demonstrate the topological adaptability of T- 

surfaces. Figures 6.7. 6.8. and 6.9 show a T-surface growing (or shrinking) and merging 

with itself (or splitting) to segment several synthetic data sets. In Figures 6.8e and 6.9f! 

the T-surface has been converted to a ciassical deformable surface model. 



Figure 6.7: T-surface deforming and merging with itself to recover toroidal object. 

Figure 6.8: T-surface recovering shape of object nit h cornplex topology. 



Figiirc 6.9: T-surface shrinking. wrapping. and splitting to recover interlocked ring ob- 

jects. 



Figure 6.10: Approximation of a sphere using (a)  4 x 4 x 3 grid and ( b )  S x 8 x S grid. 

Figure 6.11: Conversion of T-surface sphere approximation to classical deformable siirface 

mode1 iising (a )  4 x 4 x 4 grid and ( b )  Y x S x 8 grid. Note the redistribution of model 

nodes from the action of the interna1 forces. 

6 2 . 2  Mult iresolut ion Capability 

Figure 6.10 shows a sphere approximated with a T-surface at tivo grid resolutions. Like 

the T-snake. i f  the grid resolution is restricted to multiples of an initial coarse resolution. 

the finer grids preserve the T-surface model nodes of the coarse resolution grids. 

.As ive have mentioned, converting a T-surface to a classical deformable surface model 

is siinpl>- a matter of discarding the grid. This action results in a redistribution of the 

surface mode1 nodes due to the  interna! forces (Figure 6.11). 

6.3 T-Surface Constraints 

L V e  have incorporated several of the constraint mechanisms described in Section 5.2 into 

t, he T-surface model. While it is relat ively straightforward to include hard geometric point 



constraints into the 3D ACD framework ( the procedure is essentially identical to that of 

T-snalies). this t,ype of constraint has not been implemented. Statistical constraints are 

also not described in this section ( the  principle is identical to the 2D case). They are. 

hoive~.er. used in several of the application examples presented in Chapter 7. 

6 -3.1 Topological Constraints 

As descrihed in Section 5.2.3. the ACD framework provides a robust. efficient mechanism 

to identif>- and prevent model self-intersections. allowirig us to impose a global topological 

constraint on T-snakes and T-surfaces. En the :3D case. the T-surface has an initial 

topology of a sphere. -A series of topology-preserving deformations is t hen used to deform 

the model. 

The principle of the 3D topology-preserving deformation is similar to the 2D case. To 

rritcrate. a model element 1 is alloived to burn a grid vertex tV during a deformation step 

onl'. if the cleformation of the element is deemed valid. The validation check is performed 

by cstracting any and al1 model elements from the 24 grid tetrahedra surrounding P .  

including niodel element 1. Like the 2D case. ive then perform a breadth first traversal of 

t tiese est racted elernents to determine i f  t hey form a contiguous section of the model. In 

t tiis case. an- element of t lie estracted set can be reached from any ot her elerncnt t lirough 

neighboring elements. where al1 neighbor elernents are also members of the  e s t  racted set 

(tiro model elements are neighbors if they share at  least one rnodel node). 

I f  the estracted model elenients do form a contiguous section of the T-surface. t hen 

the deformation of 1 during this deformation step is deemed valid since the extractecl 

clemerits cannot form a closed circuit around zl. If the extracted elements do not form a 

contiguous set then the deformaticn of I is deemed invalid. Like T-snakes. since we do 

not actually update model element positions iintil after phase 2 of the reparameterization 

proccss (Section ô.1.2). the validation check is tirnestep dependent. For this reason a 

grid vertes cannot be burned during the current deformation step if any of the 26 grid 

vert ices connected to it have been burned during tliis deformation step. 



Figure 6.12: T-surface flowing around torus. The topology constraint prevents the mode1 

from merging mith itself. It coilides but cannot not penetrate. 

(a) (b) 

Figure 6.13: Cross-sectional slices of the fitted T-surface. 



Figure 6.11: T-surface fit to object ivith complex topology. The topology constraint 

preïents the T-surface from merging with itself. ( b )  Cross-section of the fitted mode! 

illiistrating ttiat no topology change has taken place. 

Figure 6.15: T-surface shrinking and wrapping around torus. The topoiogy const raints 

prevents the T-surface from spli t t ing. 



Figure 6-16: Superquadric cells growing and splitting to recover object with bifurcation. 

6.3.2 Global Shape Constraints 

LVe have estended the superquadric ce11 growing/spli tting procedure to 3D using superel- 

lipsoiclal cells (Figure 6.16~~-f) .  As in the 2D case. the superellipsoids are able to scale. 

bend and taper. and are constrained to overlap. Once a ce11 has completed its growing 

phase. a parametric -skinl surface deforms arvay  from the cell. Maximum skin displace- 

ment regions are then determined and child ce11 seed-sites cornputed. Child cells are 

given an initial spherical shape for a fised number of deformations to establish a good 

orientation. They are then converted to cylinders (in this example) for the remainder of 

the growing phase. Ypon termination of the ce11 groiving/splitting process. the implicit 

forni of the deformed superquadric ellipsoids are blended resulting in an isosurface ciosely 

siirroiinding the cells (Figure 6.LÏa). This implicit skin is convertcd to a T-surface wliich 

deforms to capture the shape details of the object (Figure 6. i 'ib). 



Figure 6.17: (a)  Result of blend of superquadric cells to lorm initial T-surfàce. ( b )  Final 

fit of T-surface. 



Chapter 7 

Segmentation of Medical Images 
with T-Snakes and T-Surfaces 

This chapter presents 2D and 3D segmentation examples using T-snakes and T-surfaces. 

-4 i d e  range of anatomic structures rvith complex shapes and topologies are estracted 

frorn a variety of medical images. Esamples range from segmenting neuronal cells from an 

ES1 photomicrograph to segmenting cerebral vasculature from massive Magnetic Reso- 

nance -4ngiogram (MR.4) image volumes. The examples serve to dernonstrate the power 

and Aesibility of simplicial ce11 decomposition based deformable rnodels for segmenta- 

t.ion. reconstruction and analysis. This chapter also describes our prototype :\CD-based 

interactive segmentation system. 

7.1 Prototype Medical Image Processing System 

\\é lia\-e d e ~ d o p e d  prototype interactive segmentation systems based on 2D and :ID 

versions of our .\CD-based deformable models. The systems are ivritten in C and are im- 

plernented on Silicon Graphics worlist at ions. User interaction is made available t hroiigh 

a graphical user interface and an input device such as a mouse. The remainder of this 

section will briefly describe the :ID system. 

The 3 D  system provides views of the data and model in separate windows to facilitate 

the initialization. interaction and visualization of the data and the T-surface. One window 

tlisplays a 3D view of the model which can be interactively rotated or scaled. Another 

window displays a 2D image slice with the corresponding cross sectional contour of the 
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model overlaid. Three standard view planes are available to display the image slices 

(-W. S Z .  Y Z ) .  The user can quickly scan through the image volume slices using the 

keyboard arrow keys. 

Two control panels are used for interaction and display. The first control panel is 

iiseci in combination wi th  the mouse to initialize the deforrnable model. Initialization is 

performed using an implicitly defined superquadric function. The superquadric -seedm* 

can be quickly scaled. b e ~ t  and tapered. if desired, using the control panel. placed inside 

the object of interest (or scaled such that it contains the object) and is then converted 

to a T-surface represent at  ion. Mu1 t iple "seeds" can be dynamically created and placed 

throughoiit the object. Seed placement is performed with the mouse and the 2D image 

slice window. -4 cross-sectional view of the seed is displayed in the image slice ivindow 

and t h e  user can employ the mouse to move the seed into position. This process is 

repeated for the two other orthogonal views of the image volume. 

The second control panel controls model evolution and display. The mode1 can be 

stoppecl. startcd. and restarted. and model evolut ion and display parameters can b e  

d>-narnically changeci. Fiirthermore. the user can also interact wit h thc nioclel in the 2 D  

image slice window by positioning the mouse at  some point in the window and depressing 

a mouse but ton. The mouse position is determined and the closest mode1 point on the 

cross-sectional contour is calculated. .A spring force is then applied to the model in the 

direction of the i-ector from the mode1 point to the mouse position. The force is applied 

as long as the mouse button is depressed and its direction can be changed by dragging 

t h e  mouse button to a new position in the window. The user can also interact with the 

model hy positioning the mouse and depressing a mouse button to specify a "pin* point. 

Pin points apply a sustained spring force to the closest model node on the cross-sectional 

contour. These sustained forces -pinn the rnodel to the point (i.e. force the model to 

closely approsimate the pin point). This niechanisrn allows the user to  reinforce or create 

an object edge. 
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Figure 7.1: Segmentation of two cross sectional images of a human vertebra phantom. 

7.2 Image Segmentation with T-Snakes 

7.2.1 Segmentation of Vertebra Phantom Cross-sections 

Our first esperiment demonstrates the geornetric and topological flesibility of T-snakcs 

on a more realistic image. W e  segment several 128 x 120 image slices from a CT image 

volume of a human vertebra phantorn. CVe use a 50 x 50 squared ce11 grid (with each cell 

divided into two triangles) and mode1 parameters: p = 51.0, q = -50.0, a = 20.0. b = 40.0. 

At = 0.005. and iV = 10 (time steps per deformation step). Once the T-snake collides 

mith itself in Figures ?.la-d, it automatically splits into three parts. two parts segmenting 

the inner boundary of the vertebra and one for the outer boundary. In Figures ;.le-h. 

t h e  snake shrink-wraps itself around the objects and spli ts to segment the different part.s. 

7.2.2 Segmentation of Vasculature fkom Retinal Images 
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Figure 7.2: Segmentation of the blood vessels in angiogram of retina. The top row is an  

image sequence showing a snake Bowing and branching along a vessel. 



Ret inal angiograms provide information about the blood supply system of the retina. 

They are used in diagnosing diabetic retinopathy. hypertension and various vascular 

disorders. Different imaging techniques. such as color or fluorescin p hotograp hy. and 

scanning laser opthalmoscopy are now available. Fluorescent angiography is the most 

comnion technique, as it provides high resolution images. Routine analysis of retinal im- 

ages involves inspection of the vessel tree (for abnormally shaped vessels. t heir branching 

pattern. vessel cali ber). presence and location of microaneurysms. haemorrhages. exu- 

dates. new vessels. degree of retinal perfusion and the shape and size of the optic disc. 

.\nalyzing the vessel morphology first requires their extraction anci reconstruction in 

some suitable analytic form. Skeletonization algorithms can then be applied to compute 

vessel topology and geometry. Segmentation of the vessels is an especially difficult prob- 

lem. Fluorescent angiograms of the retina show a marked decrease of image intensity 

from the center of the image to the periphery due to the ttvo dimensional projection of 

the retinal surface and inhomogeneity of the illumination. For this reason, we currently 

require some user interaction to perform the segmentation using T-snakes. 

We initialized a T-snake at the source of each major branch of a 1021 x 102-1 pixel 

angiogram ( Figure 7.2) in the vicinity of the optic disk and perforrned the segmentation 

one branch at a time. To enable the T-snake to floiv along the narrow vessels. a pixel- 

resolutioii grid mas required with mode1 parameters: p = 51.0. q = 50.0, a = 20.0. 

b = 10.0. At = 0.0004. and iV = 10. Due to the image intensity variation ive used 

several barriers or forbidden zones (Section 5.2.1) to prevent a T-snake from leaking into 

non-vesse1 areas. To decrease or eliminate this user interaction and to force a T-snake 

into t h e  ver- narrow vessels may require image preprocessing to adjust or normalize the 

average intensity and contrast. This topic is not explored in this thesis. 

Segmentation using Global Shape Constraints 

In this experiment we demonstrate the potentiai of the ce11 growing and splitting process 

for segmenting and analyzing branching structures. We seed a vessel with a single ce11 

in a clipped portion of the retinal image and start the ce11 growing-splitting process 

(Figure 7.3a-d). When a ce11 splits, it passes current information about the local image 
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Figure 7.3: Superquadric cells growing and splitting to recover vessels in clipped retinal 

image. 

Figure 7.4: The result of the ce11 growing-splitting process. 
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Figure 7..5: (a)  Superquadric cells blended to form initial T-snake. ( b )  Final T-snake 

segmentation. ( c )  T-snake with underlying cells. 

intensity to its child. The child ce11 is able to alter the image intensity threshold based on 

this information. effectively compensating for the intensity variation mentioned earlier. 

The final resuit of the ce11 fitting is shown in Figure 7.4. The cells are blended to form 

the initial T-snake (Figure 7.5a). which then deforms to accurately capture the vessel 

boundaries (Figure ï..ib). The combination of the T-snake and underlying cells (Figure 
- , . . k )  provides sufficient informat ion to perform a complete analysis of vessel morphology 

7.2.3 Segmentation of Brain Contours 

Segment,ing the human cerebral cortes from MR images is an  important first step in sub- 

sequent operations such as visualization. quantitative analysis. multimodal registrat ion. 

and rnapping and unfolding the cortex. Contours represent ing the highly convoluted 

cortex are usually determined through edge detection and linking, or contour following. 

or are drawn by hand. Edge detection methods suffer from the identification of either 

too few or too many edge points. creating problems in edge Iinking. Contour following 

methods are typically noise sensitive and cannot easily be made to satisfy known bound- 

ary conditions. Finally. drawing contours manually is labor-intensive. t ime-consuming 

and difficult to  reproduce. 

The use of snakes and other deformable models can overcome man- of these prob- 

lems. Mowever. classical snakes often have difficulty deforming into the narrow cavities 
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(4 (b )  (4 (4 

Figure 7.6: T-snake used to segment gray-matterfwhi te-mat ter interface in h4R brain 

image slice. 

(4 

Figure 7.7: ( a )  Closeup of T-snake fit. ( b )  1 

segrnented image. 

(b)  

Fitted T-snake (black) overlaid on manually 



Figure 7.5: T-snake shrinking and segmenting CSFfgray matter interface in M R  brain 

image sIice. 

and protrusions of the cortex. T-snakes. on the other hand. are an effective tool for this 

segmentation problem. In the first experiment. Ive attempt to extract the gray mat- 

ter/rvhite matter interface of the cortex from a 256 x 256 MR image slice. .-\ T-snake 

is initialized wit hin the white matter (Figure 7.6a). flows around the ventricles ( Figure 

7.6b.c) and finally conforms to the grayfwhite matter interface (Figure 7.6d). A pixel- 

resolution grid \vas used with model parameters: p = 0.0, q = 50.0. a = '10.0. b = 40.0. 

At = 0.001. and .V = 5 .  and the segmentation requires about 90 seconds on an SGI 

Indigo workstation. Statistics of white matter pisel intensity are used to weight the T- 

snake inflation force (Section 5.2.2). Figure 7.7a shows a scaled-up view of the result. 

Figure 7.7b shows the segmentation result overlaid on a manually segmented version of 

the  image. Evidently. the T-snake performs very well on t his problem. 

In the second experiment. we wrap a T-snake around an BIR image slice from the 

same data set and allow it to shrink and conform to the outer surface (cerebrospinai 

Ruidlgray matter interface) of the cortex (Figure ;.Sa-d). A 128 x 128 ce11 grid rvas used 

with model parameters: p = 0.0, q = 50.0, a = 20.0, b = 40.01 At = 0.001, and N = 5. In 

this experiment rve not only use statistical constraints but also the topological constraint 

described in Section 5.2.3. -4s mentioned in that section, robust skeletonization is an 

excellent technique for constructing structural representations of cortical topography. 

Figure 7.9 shows a scaled-up view of the segmentation result and Figure 7.10 shows a 

close-up view of the T-snake near a very narrow region of gray matter. Segmentation 
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Figure 7.9: (a) Closeup of T-snake segmentat 

segniented image. 

( b l  

,ion. (b) Fitted T-snake overlaid on manually 

Figure 7.10: Closeup of fitted T-snake near narrow cavity. Topological constraints pre- 

vent T-snake self-intersect ion. 



Figure 7.1 1: ( a )  T-snake fitted to second MR brain image slice. ( b )  Fitted T-snake 

overiaid on manually segmented image. 

results from a second slice are also presented (Figures 7.11 ). 

7.2.4 Segmentation of the Corpus Callosum 

In this expr iment  ive use ce11 groming and splitting process to segment the corpus callo- 

sum from a rnid-sagittal slice of an 4IRI brain data set. A superquadric ce11 is manually 

seeded approsimately in the center of the corpus callosum and the ce11 growing-spli t t ing 

process is init iated ( Figure 7. l'a-d). Automat ic seeding could be performed by comput- 

ing the center of a box bounding the structure or the center of gravity of the structure. 

The result of the ce11 fitting is shown in Figure 7.13. 

We ?ailor" the ce11 growing-splitting process to fit this particular segmentation prob- 

lem by 

1 .  using a preset number of cells. 

2. specifying a different superquadric "squareness" parameter for the two "end" cells 

and removing the point constraint with their parent cells. 
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Figure 7.12: Superquadric cells growing and splitting to recover coarse shape of corpus 

callosum from hIR brain image slice. 

Figure 7.13: Final fitted superquadric cells. 



Figure 7.14: (a)  Blended superquadric cells forming initial T-snake. ( b )  Final fitted 

T-snake. (c)  Example of T-snake segmentation without global shape constraint. 

Once the cells have extracted the rough shape of the corpus callosum. they are blended 

to form the initial T-snake (Figure 7.11a). The T-snake then deforms to robustly and 

accurately capture the shape details (Figure ï . l?b).  Figure 7.14(c) shows a segmentation 

result iising a T-snake only. without the constraints imposed by superquadric cells. In 

t his esample. the T-snake has "leaked7 into a neighboring structure. 

7.2.5 Segmentation of Neuronal Cells 

In this esperiment we make use of geometric point cons t ra i~ts  - both "soft' and -bard" 

constraints - to segment neuronal cells in an Ebl photornicrograph. We begin by defining 

a series of points on the ce11 boundary, forming a closed polygon from these points and 

finally converting the polygon to an initial T-snake (Figure ï.l.5a). The T-snake deforms 

and recovers the ce11 boundary (Figure ï.15b) and is constrained to pass through the 

initial user-defined points (Figure 7.15~).  The segmentation requires under a second on 

an SGI Indigo workstation and only a few seconds to select the initial points. A second 

esample is shown in Figure 9.1.5c.d. 

In a third experiment we make use of soft geometric point constraints in the form of 

anchored springs. The springs exert forces on T-snake nodes that  are within a specified 

neighborhood of the springs. In Figures 7.16a.b the initialization and result of the T- 

snake segmentation wit hout spring constraints is shown. The T-snake has attached itseif 
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Figure 7.15: T-snake (derived from closed polygon) used to segment neuronal cells. The 

T-snake is const rained to pass t hrough the initial user-specified points. 

Figure 7.16: (a )  (b )  T-snake formed from user-specified closed polygon deforms t'o seg- 

ment neuronal cell. ( c )  Soft point constraints are used to pull T-snake off spurious edges. 
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Figure 7.17: T-surface segmenting vertebra phantom frorn CT image volume. 

to several interior parts of the cell. Figure 7 .16~  shows the addition of spring constraints 

(the springs were added dynamically) has resulted in a correct segmentation of the ce11 

boundar-  -411 esperiments use a 160 x 132 ce11 grid on the 640 x 488 pixel image and 

mode1 parameters: p = 51 .O. q = 50.0. a = 20.0: b = 40.0. At = 0.005, and :V = 10. 

7.3 Volume Image Segmentation wit h T-Surfaces 

7.3.1 Vertebra Phantom Segmentation and Reconstruction 

In the first esample we apply a T-surface to a 120 x 128 x 52 CS image volume of a 

human vertebra phantom to demonstrate the topological adaptability of the 3D mode1 

(Figure 7.17). Mè use a 32 x 30 x 13 ce11 grid (where each cubical ce11 is divided into 6 
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(a)  ( b )  

Figure 7-18: T w o  views of the fitted T-surface. 

Figure 7.19: Several cross-sections of T-surface overlaid on CT vertebra image volume 
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Figure 7-20: CT sagittal image slice of canine heart. 

tetrahedra) with model parameters: p = 20.0. q = SO.0. a = 20.0. b = 60.0. AL = 0.001. 

and .V = 10. Figure 7-18 shows two views of the final result after conversion to a classical 

deformable surface. Figure 7-19 shows several cross-sections of the fitted model. 

7.3.2 Segmentation of the Left Ventricle and Aorta 

In this experirnent we segment and reconstruct the left-ventricular (LV) chamber and 

aorta from 3D CT images of a canine heart. The image volume dimensions are 1 3  x 

1% x 11s and a 20 x 10 x 20 resolution grid mas used (model parameters: p = 61.0. 

q = 60.0. a = m.0, b = 40.0. At = 0.001. and :V = 10). The volurnetric heart data 

cornes from the dynamic spatial reconstructor (DSR), a high speed volumetric S-ray 

CT scanner. Each slice of the image volume represents an  approximately 0.9 mm ttiick 

transverse cross-section of the  scanned anatomy and each vosel represents a (0 .9rnrn)~  

cube of tissue. In order to bring out the LV as a bright object. a Roentgen con t ra t  agent 

is injectrd into the right atrium several seconds prior to the scan of the left ventricle. 

Fig. 7-20 depicts a sagittal (y-z plane) slice of a canine heart. The bright (high 

intensity) regions include the LV chamber, left atrial (LA)  chamber. and aorta. The 

surrounding loiver intensity region is t he  myocardiurn. The portion of the LV chamber 

near the valves is referred to as  the base, and the lower tip is known as the apex. In 

t his experinient. ive manually seed the LV with a small T-surface and the segmentation 

tlicn proceeds automatically (Figure 7.21). The inflation force is weighted with LV re- 

gion image intensity statistics to reinforce the image edge forces. The final result. after 
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Figure 7.21: T-surface segmenting LV and aorta from CT image volume. 
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Figure 7.22: Final fitted T-surface and four cross-sections of the  model. 
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discarding the grid and converting to a classical deformable surface is shown in Figure 

7 . 2 .  Figures ;.??a-d depict several cross-sections of the fitted model. CVhile t here are 

a ferv cross-sections that may require manual editing. most of the  model fits very accu- 

rately (using visual inspection) and the entire process takes under 1 minutes on an SC1 

Indigo 2 workstation. The LV/aorta segmentation is also bighly reproducible: as long as 

the T-surface is seedeci within the bright region of the LV. it produces almost identical 

resd tç. 

7.3.3 LV Segmentation wit h T-Surfaces and Superquadrics 

In this experiment. we apply the 3D ce11 growing and splitting process to segment the 

Li'. We initially seed a superquadric ce11 near the LV apex and star t  the ce11 growing- 

splitting process (Figure 7-04. In this simple example ive limit the  number of cells to 

three. This number is sufficient to robustly capture the coarse shape of the LI- and the 

initial portion of the aorta. Figure 7.2lf shows the result of the blended superquadric 

cells. This isosurface is converted to an initial T-snake which then deforms to  capture the 

shape details of the LV (Figure 7.24g). This experiment demonstrates the potential of T- 

surface global shape constraints to form the b a i s  of a completel- automatic segmentation 

and analysis technique. 

7.3.4 Segmentation of Brain Ventricies 

In this esperiment ive use a T-surface to estract the major brain ventricles from a 256 x 

256 x S5 (0.937.5mm x 0.Y37.jmm x 1.5mrn) >IR image volume (Figure 7.25). The volume 

was interpolated to  produce cubical voxels resulting in 136 slices rather than S5. A 

123 x 128 x 6s resolution grid was used, with model parameters p = 30.0. q = 38.0. 

n = 20.0. b = 40.0. At = 0.0005, and .V = 10, as well as a region statistics-weighted 

inflation force. Since the T-surface provides a boundary and interior representation. 

the volume occupied by the rnodel can be be quickly and acciirately calculated. Brain 

ventricle volumes are  useful indicators of many brain pathologies. Figures 7.25~-g show 

several cross sections of the fitted model. 
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Figure 7.23: Superquadric cells growing and splitting to segment coarse shape of L i 7  and 

part of aorta. 

Figure 7.24: ( f )  BIend of superquadric ce1Is to form initial T-surface. (g) Final fitted 

T-surface, 
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Figure 7-25: T-surface segmentaAtion of ventricles from MR image volume of the brain. 
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7.3.5 Segmentation of Airway Structures of the Lung 

Accurate quantitative rneasurrnents of airway and vascular dimensions are essential for 

evaluating function in both the normal and the diseased lung. Image volumes of these 

pulmonary tree structures can be generated using High Resolution Computed Tomogra- 

phy (HRCT).  To ohtain quantitative data. each tree can be reduced to its central axis. 

From the central axis. branch Iength is measured as the distance between two successive 

hranch points. branch angle is measured as the angle produced by two child branches. 

and cross-sectional area is mewured frorn a plane perpendicular to the central axis point. 

Robust. automatic central axis extraction is dependent on accurate, noise-free seg- 

mentations. In this experiment, serially scanned two-dimensional slices of the lower left 

lobe of an isolated canine lung were stacked to crcate a volume of data. The volume 

dimensions arc 2.56 x 2.56 x 133. each slice is Zmm in t hickness and t hey are lmm apart 

(there is overlap between the successive images). The image volume was interpolated to 

produce cuhical vonels resulting in 266 slices instead of 133. T h e  airway is then extracted 

and reconstructed using a T-surface seeded a t  the root of t he  tree structure (Figure 7.3 .5) .  

A vosel resolution grid was used with niodel parameters: p = 00.0. q = 50.0. a = 20.0. 

b = 10.0. At = 0.001. and .V = 10. Since the openings to branches of the  airway struc- 

ture  can be very narrow. edge extraction techniques can produce incorrect results near 

t hese regions: false edges may be created that completel' block t hese openings. For t his 

reason. we set t h e  image edge force weight p to zero and use the image threshold intensity 

force (Equation 4.4) only  Although the T-surface performed well on the major branches 

( Figure 7.3.5a-d ), t here is some over-segmentat ion on the tiny branches. .in adapt ive 

image threshold technique may ameliorate the over-segmentation probleni. Furthermore. 

some over-segmentat ion may be tolerated by central axis extraction algorit hms wit hout 

significantly affecting the result [1 131. 

7.3.6 Segmentation of Cerebral Vasculature 

The introduction of Magnetic Resonance Angiography ( M R A )  and spiral CT Angiogra- 

phy into clinical routine protocols tias made the acquisition of vascular volume data sets 

feasible. Typically the acquired data consist of a stack of up to  1.50 images with 256* or 
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Figure 7.26: T-surface segmentation of the airvay structures of a canine lung frorn HRCT 

image volume. Several cross-sections of the fitted mode1 are also shown. 



Figure 7.27: T-surface segmentation of cerebral vasculature from SIR.\ image volume. 

5 12- pisels. a spatial resolution of less than L .Omm and an intensity resolution of 12 bits. 

Region growing techniques have been used with some success to segment the strongly 

connected structures of the vascular systern. When combined \vit h statistical const raints. 

T-surfaces behave as an active region growing mode1 t hat is also able to integrate edge 

iriforniation and filter out noise using the rnodel smoothness constraints. 

\\C. ha\-e used a T-surface to segment and reconstruct the vascular system of t h e  brain 

froni an .\IR.\ image volume. The data consist of a stack of 100 slices each with ,512' 

pisels. 2 bj-tes per pisel (vosel size 0.1296875mm x 0.1296Si.jrnrn x O.7rnm). The image 

1-olume was i nterpolated to prodiice cubical vosels resulting in 161 slices. -4 T-surface 

is seerlcd at  the  root of the vesse1 tree and then fIows into the vessels. automatically 

estracting the t-ascular system (Figure 7.:3.6).  .A vosel resolution grid w a s  used (rnodel 

parameters: p = 00.0. q = 80.0. a = 20.0. b = 60.0. At = 0.0005..Y = 10) and the cntirc 

segmentation process takes approximately 1 Iiour on an SGI Reality Engine.' 

Althoiigh bath S-ray and MR angiography produce high contrast images. thcy can 

have a large deviation in the gray scale range. This large range makes it difficult t o  

segment the images with simple threshold techniques. Currently. the T-surface inflation 

force is weighted using global image st atist ics and. consequent ly. some oversegmentat ion 

' ~ h e  limited rncmory on the SGI Reality Engine (6431 bytes) coupled with the massive MR.4 image 
volume and program rnemory reqiiirernents (> 100.11 bytes) result in voluminous disk activity and 
clisk thrashing. This factor significantly affects segmentation performance. lncreased rnernory capacity 
coupled with parallel machine architectures should result in dramatic performance improvements. 
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can result. -4s mentioned previously. the use of an adaptive threshold. based on ~ocnl  

gray scale statistics. may overcome this problem [ S i ] .  This topic is not explored in this 

thesis and is a subject of future research. 

7.3.7 Segmentation of the Cerebral Cortex 

The analysis of cerebral functional data obtained from posi t ron-emission tomography 

(PET)  or magneto-encephalography (MEG). often requires complementary anatomical 

information obtained from MR images. .As mentioned in Section 5.2 .3 .  a promising 

technique for the interpretation of cerebral cortex topography from :3D .\.IR images is 

3D skeletonization. Due to the noise sensitivity of the skeletonization algorithrns. it 

is desirable to produce a smooth (noise-filtered) segmentation of the cortex whicli is 

giiaranteed to  have the sarne topology as the real object. Ln this esperiment. we use a 

T-surface with a region statistics-weighted inflation force as well as a global topological 

constraint to segment the cerebral cortex from a preprocessed '\.IR image volume ( the  

skull region has been manually removed frorn the image) (Figure 7-23). -1 61 x 6-1 x 134 

resolution grid was used for the 256 x '2.56 x 136 vosel image volume (mode1 parameters: 

p = 0.0. q = *.O. a = 20.0. 6 = 40.0. At = 0.0008. and -V = 10). The T-surface 

!vas initialized to surround the cortex and then shrinks and conforms to the CSF/gray 

matter interface. The autornatically subdividing T-surface is able to penetrate. with 

good success. into t he narrow and deep cavities of the highly convoluted cortex. -4 more 

acctirate result could be obtained with a finer resolution grid a t  the espense of increased 

coinputat ion t inie and a larger nuniber of modei triangles. 

TIVO techniques that could potentially significantly irnprove the performance and ac- 

curacy of t his part icular segmentation scenario are the following: 

The T-surface could be allowed to initially extract the gray-matterlwhite-matter 

interface of the cortex. From t his position. the topoiogically constrained T-surface 

could expand out towards the CSF/gray matter interface. This process coiild ensure 

t hat the T-surface complet,ely penetrates al1 of the narrow and deep cavities of the 

cortes. 
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Figure 7-28: T-surface segmentation of the cerebral cortex from .\.IR image volume. (a)  

front view. ( b )  top view. (c)  side view. 

0 To improve performance. a coarse resolution T-surface could initialIy be used to 

segment the cortex in a smoothed image volume. This process could be repeated for 

progressively finer resolution T-surfaces and image volumes until a desired accuracy 

is reached. 



Chapter 8 

Conclusions 

The increasingly important role of medical imaging in the diagnosis and treatment of 

disease has oprned an array of challenging problems centered on the computation of ac- 

curate geomet ric models of anatornic structures from rnedical images. Deformable mod- 

els offer an attractive approach to tackling siich problems. because these models are able 

to represent the cornples shapes and broad shape variability of anatomical structures. 

Deformable rnodels overcome many of the limitations of traditional low-level image pro- 

cessing techniques. by providing compact and analytical representations of object shape. 

t>y incorporating anatornic knowledge. and by providing interactive capabilities. 

The challenge is to increase the degree of automation of deformable models to an es- 

tent that t lie labor-intensive aspects of interactive anatornic structure segment,ation are 

recloced to a basic minimum. while the accuracy. efficiency. and reproducihility of the seg- 

mentat ion is maximized. Flirt hermore. many segmentation scenarios now esist t hat are 

siiitable for cornpleteautomation. This thesis proposed an affine celi decomposition-based 

deformable model franiework in an  effort to meet these challenges. This simple. elegant 

frameivork proïides curve. surface. and solid deformable models with the ability to adapt 

to arbi t rary object geomet ry and topology- It produces intrinsic model parameterizat ions 

and insensi t ivity to model initial condit ions. By maintaining the t raditional paramet ric 

p hysics- based formulation of deformable rnodels. ACD-based deformable models are able 

to incorporate a priori anatornic knowledge in the forrn of energy and force-based con- 

straints. and provide intuitive interactive capabilities. By defining the models in terms of 

the affine ce11 framemork. -bard" geometric, topological. and global shape constraints can 



be efficiently reaiized. These combined constraints produce models that are insensitive 

to spurious image features and ensure that real boundaries of objects are recovered. and 

create a sound foundation for automatic image analysis. 

The simplicial ce11 cornplex or grid is constructed using an on-demand scheme tvhich 

results in minimal memory or computat ional overhead. The novel i terat ive simplicial ap- 

proximation or reparameterization process provides a simple. effective means of tracking 

the act ivi ty ( "temperature-) of individual modei elements: elements can be removed from 

the computat ion once t heir act ivi ty falls belotv a t hreshold level. significant ly improving 

mode1 performance. At the heart of the reparameterization process are robust. inher- 

ent 1)- parallel geomet ric algorit hms t hat ut ilize simple. fast algebraic operat ions. These 

corn bi ned factors result in an efficient implementat ion t hat usually enliances s hape recov- 

ery performance. With the advent of parallel machines architectures. we expect Further 

significant performance gains. 

iVe have demonst rated the power and flesibili ty of .\CD-based deformable models by 

using our prototype interactive segmentation systeni to extract and reconstruct a wide 

array of objects from medical images in a highly autornated manner. Lk have been 

able to process some the largest image volumes currentlp producecl by modern imag- 

ing technologies. Furthermore. ive have demonstrated the potential for fully-automatic 

niedical image processing by combining ACD-based models wit h a variety of const raint 

niechanisms. Finally. our framework is designed in a hierarchical fashion that is built on 

top of a classical deformable snakes and surfaces. The modular design alloivs the :\CD 

framework to he easily incorporated into existing variants and implementations of t,hese 

rnodels. 

8.1 Cornparison of T-Snakes/T-Surfaces to Alter- 
nat ive Models 

In this section we compare T-snakes/T-surfaces to two models revierved in Chapter 3 in 

order to underscore the viability our technique. Specifically. we show that -\CD-based 

deformable models combine several advantageous features of both parametric and implicit 

models, while at the same time eiiminate some of their difficulties. 



8.1.1 Comparison to Dynamic Particle Systems 

Lilie the actil-e particle sj-stem of Szeliski et al. [96]. T-surfaces ( o r  T-~nakesi can be 

1-irtved as a part iclr s~.stern t hat evolves according to Lagrangian rnechanics. Bot h mod- 

el.; rise inter-particle forces to  maintain the srnoothnesç of t h e  surface ! or contour i .  and 

i ~ o t  l i  use exterrial image forces to at tract particles tto the image fearures. T-inakei use 

t lit: s i  rriplicial grid t~ automat ically add part icies ( rnodel element s i and perform topolog- 

ical t ransforniatioris. and particle connectivity is esplicit ly rriaintained t hroughout the 

~-\-oltition of the niodel. Szeliski's technique seeds particles on tlie surface of t h e  object 

and part ic1t.s are addecl until t heir density on the surface is wit hin some t hreshold talue. 

<;otd iriitiai sred partirie sites may be difficult or cumbersome to firid. especiallj- au- 

toniati(.all?r. ;\ T-snake on the other h n d .  can be quickly seeded an>-rvhere tvithin the 

<jl,jwrt o f  interest or surroiiriding the ohject. To deal rvith the  0(:1-'! complesit>.of inter- 

part i(-lcx inreiact ion. Szeliski spatially haskies particle positions to  reduce the  corn plesitj- 

t 0 - 1 1 .  -1.-snakes rriairitain explicir particle connect ivity \-ia t he  simplicial grid: 

i riter-l'art icle i ri teract iori coriiplexi ty is constant . Furt hermore. u. hile Szeliski 'r mode1 is 

t.op<jlogicalI~ adaptable. it is a strictly parametric approach. T-snakes can be considered 

Imtli ail iiiiplicit riio(le1 - spar r  is partit ioned into an interior. houndar?- and psterior - 

ai I V P I I  as a parariietric riiodel. This property allorvs topologjcal. statistical and global 

. i l i i t p  (-orisirairits 1.0 I)e irriposed on t h  niodel. One advantage of Szeliski's part icle sys- 

i ~ i i i  O\-w- 7'-srial<es is thci  vasri wit  h wliich it is able to forni operi surfaces. as n-el1 as ciosed 

5 11 rfa(-Ps. 

8.1.2 Comparison to Level Set Evolution Techniques 

:\s (lisciissr(1 i i i  cliapter 3 several researchers have adopteti the level set evolut ion tech- 

iiiqiii. clwduped I>y Oslier aiid Sethian [ i d ]  to the problem of shape recovery (13. 59. 11 5. 

1-1. SS! ( s w  :\ppcndir .A for a detailcd disciission of levei set evolution). These models 

art2 Soir~iulat rd  in terms of a partial differen t ial equat ion. based on curvat ure dependent 

riiotion. and are riot t h e  result of minirnizing an energy functional. They are viewed 

as ari rvolving contour wliicli is the level set of some iniplicitly defincd surface. LVhile 

t l i ~  Oslier-Setliiari front propagation technique providcs a wcll defined mathematical 



Framework. the strictly implicit model formulation is not as convenient as a pararnetric 

formulation for interactive guidance by expert users or  high-level cont rol mechanisms 

and in terms of computational burden. In particular. by using the higher dimensional 

surface to  define and cont rol the evolving contour. the  implici t formulation loses the  Rex- 

ibility t o  impose arbitrary constraints in the form of forces or  e n e g y  functions or other 

geometric or topological constraints: it may be difficult. if not impossible. t o  translate 

these const raints into the higher dimensional representat ion. Fort hermore. the numer- 

ical implementation of the level set evolution techniques requires. for every iteration. 

a (boiinded) search of the domain for the  nem level set. T h e  irnplementation can also 

require massive amounts of computer memory to  store the  fised domain points (used in 

the Eulerian formulation to define the level set)  unless special da t a  structures are used. 

;\ T-snake is a hybrid model that niaintains a parametric formulation while providing 

the capabilities of a n  implicit model without resorting t o  a higher dimensional represen- 

tation. By rnairitaining a parametric formulation. T-snakes. like classical snakes. are able 

t O easily i ncorporate soft const raint s espressed as energy funct ions or force funct ions and 

provide interact ive capabilit ies. T-snakes are  also able  to  incorporate hart1 const raints 

t hrough the siniplicial grid and by maintaining direct control of the T-snake boundary 

evoliition. The parametric formulation also alloivs for a simple. and .'cheap" (in terms 

of computat ional cost and memory) implementat ion. T h e  computat ional algori t h m  is 

composed of basic. well-defined algebraic operations and  uses a fcw standard. efficient 

data  structures such as lists. and hash tables. For this reason. as nientioned previously. 

ire Iiavc been able t o  apply T-snakes and T-surfaces t o  even the  most massive medical 

data  sets. 

8.2 Research Directions 

Our esperience with AC'D-based deformable models has revealed several issues t hat are  

relevant t o  the continued development and success of this approach. This section sum- 

niarizes these issues and  indicates some potential research directions. 



8.2.1 Mode1 Simplification 

A geometric model of shape may be evaluated based on the parsimony of its formula- 

t ion. i ts representat ional power. and i ts topological Bexibility. Generally. parameterized 

models offer the greatest parsimony, free-form (spline) model feat ure broad geomet ric 

CO\-erage. and implicit models have the greatest topological flexibili ty. Deformable mod- 

els have been developed based on each of these geometric classes. The hybrid ACD-based 

deformable models are an attempt to combine some of the complementary features of 

t hese geomet ric classes. However. in certain scenarios. such as the segmentation and 

modeling of cornplex. multipart structures Iike arterial trees. or topologically comples 

structures such as vertebrae. a large number of model triangles can be produced. In 

order to reduce the number of triangles. simplification algorithms are needed [107. 3S]. 

These algorithms could attempt to take advantage of the hierarchical nature of the sim- 

plicial grid. .Alternat ively. regions of triangles could he replaced wi t h more compact 

representations such as high-order finite element or spline patches [ ? O ] .  

8.2.2 Robustness 

Ideally. a cleformable mode 

Deformable models. such as 

1 should be insensitive to initial 

T-snakes and T-surfaces. are ab 

conditions and noisy data. 

le to  exploit multiple image 

attributes and high level or  global information to increase the robustness of shape recov- 

ery. S t rategies wort hy of furt her research include the incorporation of shape const raints 

into the deformable mode1 framework that are derived from low level image processing 

operations such as thinning. media1 axis transforms. or mathematical morphology [S-l]. 

A classical approach to  improve the robustness and performance of model fitting is the 

use of multiscale image preprocessing techniques [l'i. 1051. These techniques would blend 

nicely wi t h the multiresolut ion ACD-based models. 

8.2.3 Curve versus Surface versus Solid Models 

The earliest deformable models were curves and surfaces. -4natomic structures in the 

human body. however. are either solid or thick-walled. To support the expanding role 

of medical images into tasks such as surgical planning and simulation: and the func- 



tional modeling of structures such as bones, muscles. skin. or arterial blood Aom? may 

require volumetric or solid deformable models rather than surface models. For example. 

the planning of facial reconstruct ive surgery requires the extraction and reconstruction 

of the skin. muscles. and bones from 3D images using accurate solid models. It also 

requires the ability to simulate the rnovement and interactions of these structures in 

response to forces. the ability to move. cut and fuse pieces of the model in a realistic 

fashion. and the ability to stimulate the simulated muscles of the model to predict the 

effect of the surgery. Several researchers have begun to explore the use of volumetric or 

solid deformable models of the human face and head for cornputer graphics applications 

[50. 301 and for medical applications. particularly reconstriictive surgery [114. S.  7s. :37] 

and there is rnuch room for further research. T-surfaces are well-suited for this research 

direction since t hey automatically generate solid models t hrough the tetraliedral grid. 

The solid models generated by the segmentation and reconstruction of arter? trees pre- 

senteti in Chapter 7 for example, can serve as the basis for performing comples fluid flow 

analysis. Furt liermore. incorporat ing physical properties such as the vessel elast ici ty in to 

the models woiild allow for their use in a surgical planning environment. 

8.2.4 Automat ic Init ializat ion, Shape Recovery and Analysis 

Conipletely automat ic medical image segmentation using deformable models requires 

the automatic --seeding" or initialization of the models. and the incorporation of n priori 

anatornical knowledge to ensure robust shape recovery. Automatic interpretat,ion of these 

images requires models t hat not only describe the size. shape. localion and orientation of 

the target object but  that also permit expected variations in these characteristics. .-\CD- 

based deformable models combined with topological andfor global shape constraints are 

an  attempt to mect sorne of these requirements. Further research is needed t,o create 

automat ic rnodel init ializat ion techniques. In addition. furt her developrnent. formaliza- 

tion and generalizatiori of the global shape constraint mechanism is required. Finally. 

the combinat ion of T-surfaces mit h topological constraints and deformable anatomical 

atlases is a very promising approach that is worthy of future study. 



Appendix A 

Level Set Curve Evolution 

T h e  Euclidean heat  f o w  equation 

rvliere C(s. t ) = (x(.s. t ). y(s. t ) )  is a parameterized planar  curve. .s is arc  length. t is t ime. 

r; is c ~ r \ ~ a t u r e .  a n d  N is t h e  unit inward normal. is well knorvn for its excellent geometr ic  

smoothing properties [34. 391. The flow decreases t h e  to ta l  curvature  of t h e  c u r w  as 

well as t h e  nuniber of zero crossings and  t h e  value of curvature  masima/mininia .  T h i s  

equation is also known as curve shortening Roiv since it evolves t h e  curl-e in t h e  gradient  

direct ion of its a r c  lengt h. I i imia e t  al. [4S] have s tudied a generalizat ion of t his equat ion 

in the  contes t  of const ruct ing a representation of shape  in  compute r  vision. In ~ a r t i c u l a r .  

ttiey analyze planar curve evolution by a linear speed function c r ( t i ) :  

wherc C L O .  Q I  a r e  constants.  T h e  constant velocity t e r m  ûoN. cailed t h e  renction com- 

ponent by I i imia  et al.. is a hyperbolic t e r m  and  malies the  evolution nonlinear. The 

te rm can lcad t o  shocks o r  singularities when t h e  characterist ic curves of (.4.3) collide 

[!Ml. In order  t o  obta in  physically correct solutions, t h e  classical entropy condition for a 

propagating flame front is used [i l]: once a particie is burnt. it stays burnt. T h e  constant  

\ d o c i  ty  term is related t o  classical m a t  hemat  ical morphology [S 1 ] a n d  shape offsetting 

in C.4D [?5] .  In [Sg]. t h e  authors show t h a t  al1 mathemat ica l  morphology operat ions  



(for convex structuring elements) are obtained via curve evolution using the constant 

velocity term only. where the coefficient of the term depends on the structuring element. 

The term alriN is called the diffusion terrn. It provides a quasi-linear. parabolic behav- 

ior to the evolution. Based on these principles. Iiimia e t  al. define a reaction-diffusion 

scaie space of shapes pararneterized by (ao, al ). That is. the scale space is the result of 

deforming shape by various combinations of reaction and diffusion. The different types 

of shocks or singularities that form in this space are equivalent to shape skeletons [ I I ] .  

and together with the time of their formation are used to derive a set high-level shape 

descriptors. 

The niirnerical implementation of the curve evolution equation faces a number of 

problems. including the handling of topological changes. capturing discontinuities. and 

the huild-up of error. For example. using a Lagrangian formulation of the eqiiation can 

lead to numerical inst,abilities as small errors in the computed curvc particle positions can 

be amplified by the curvature term. These problems can be resolved by the use of level set 

evolut ion. proposed by Osher and Set hian for modeling Rame propagation [;-Il. int roducecl 

to cornputer \%ion by Iiimia et al.. ancl first applied to segmentation using active contours 

in (13. 591. This niethod uses techniques from the theory of hyperbolic conservation lams 

to successftilly compute the curve evolutions. Osher and Sethian show that by embedding 

tlie ciir\.e in a tivo dimensional surface and then evolving the surface rather than the 

ciinTe. one derives robust. stable. and reliable evolution equations. Formally. the ciirve 

C is corisidered as the Ot h level set of an evolving surface ~ ( s .  y. t ). The evoliition of the 

surface is defined by a Hamilton-Jacobi-like equation 

irtiere ,3 is an arbitrary speed function. The advantages of this formulation are that 

the parameterization is defiried in terms of the intrinsic local geometry of the curve. the 

formulation is stable and 6 remains a function as long as 3 is smooth. while tlie level sets 

of d can arbitrarily change topology. Furthermore? the intrinsic properties (N. r l )  of the 

contour can be easily determined and the method is extensible to higher dimensions. One 

disadvantage of the approach is that it requires a representation one dimension higher 



than that of the original data. 

To apply the level set technique to shape recovery problems. Caselles r t  al. [13!  and 

Slalladi e t  al. [59] independently formulated t h e  problem as t h e  steady state solution of 

the evolution (o(0. C) = o o ( C ) )  

1 ivhere g( = [+(GG,.I)2 is a negative speed function that stops the curve at object 

boundaries. c is a constant speed term sirnilar to the inflation force of a snake. C;, * I 

is the convoiut ion of the image I with the Gaussian Cc. The gradient of the surface 

Vo is t h e  normal to the Ievel set C. (i-e. N). and the term d i c ( g )  is its curvature K.  

The image based speed term has vaiues that are close to zero in regions of high intensity 

gradient and values that are close to unity in regions of constant intensity. Caselles e t  

al. proved the  esistence and uniqueness of solutions of this PDE in the viscosity sense 

for bounded Lipschitz continuous initial data. 



Appendix B 

Classification Algorit hm 

In Chapter -I n*e claimed that the classification algorithm is sufficient to iinambiguously 

label a grid vertes point r as burned or not-burned. To prove this claim. we must show 

that the algorithm uniquely determines whether r lies iriside or outside of polygon Q 

(using Definitions 4.5 and -1.6) for each of the 16 possible cases. \Ve note that if p l n  

or p-n lie esactly on line L L or L?. tlien the? will be classified as being on the inside 

half-space of L 1 or L2. respectively. \.\é present a simple. geometric proof for cases 1-6 

ancl 1'1- l.j ncst ( the  remaining cases follorv by symmetry): 

Pm-$ 

Case 1: Since p l n .  p h  E S2. they lie to  the right of Lt! and therefore edge p i n p z n  

cannot cut  5 ' 3 .  Point p l n  also lies to the left of LI  and pl is on LI therefore (al1 

points of) edge p l p l n  must lie to the left of L 1. -4 similar argument pro\-es that 

edge p2p-n lies to the right of LZ and t herefore cannot cut 53. Since pl r2 lies to 

t h e  right of L2  then p l p l n  must cut S3 into two. 2D open sets. Therefore. a raJ- 

cast from r to the left. parallel to  p lpZ  passes through S3 and intersects only one 

edge p l p  1 n of polygon Q.  

0 Case 2: L:sing arguments similar to those of case 1. p l p l n  and p l n p 2 n  lie entirely 

to the left of L 1 and therefore cannot cut SI. Edge p2p-n lies to the right of Lu 

and pZn E S I  therefore. p'Lp2n cuts S1 into two open sets. Therefore. a ray cast 

from tv to the right. parallel to p l p 2  passes through S 1 and intersects oiily one edge 

p2p2n of Q. 



a Case 3. 4. 5 .  6.  12: Edge p2pZn lies entirely to the left of LZ and plpln  lies either 

to the  left of L I .  L2 or both. Therefore. no edge of Q cuts S 1  and a ray cast from 

r. to  the right. parallel to p l p 2 .  intersects zero edges of Q. 

a Case 13: Point p ln  E S.3. therfore p l p l n  E 53. Similarly. p 2 p h  E Sl. Therefore. 

p l n p 2 n  m u t  cut either 5 2  or SO into two open sets. -4 ray cast from c d o n g  L 1  

and away from p l  intersects only one edge p 1 n p - n  i f  p l n p 2 n  cuts S2. or intersects 

zero edges if p l n p Z n  cuts SO. 

a Case 14: Similar to case l:3 with points p l n  and p2n reversed. 

a Case 1.5: Edge p l p l n  and p2pZn lie entirely to the left of i 1  and cannot cut $1. 

Since pln E S2 and p 2 n  E SO then p l n p o n  must cut either Si or 53 into two open 

sets. :\ ray cast from r to the right and parallel to pip2 intersects only one edge 

p l n p - n  if p l n p ' n  cuts S l .  or intersects zero edges if plnpzn cuts S. 



Appendix C 

Superquadric Cells and Ce11 Fitting 

-4 i-ariation of t he  classic ellipse function is the superellipse which can be defined by the 

implicit equatiori /(x. y )  = O with 

mhere c controls t he  roundness of the shape. uo is a global scaling factor. and a l  and 

n2 are horizontal and  \-ertical scaling factors. respectively For c = 2 the  superellipse 

coii~cicles witli the  ellipse. as c increases more and more beyond 2. it  hiilges outward. 

For i-er?. large \ d u e s  of 6. it becomes boxlike. Its *-sides" are  near l~ .  straight and its 

.-corners" rather sharp. On the other hand. as c decreases below 2. there is Iess and less 

biilge outward. so tha t  a t  c = 1 the side are straight lines. For c < 1. it bulges inward 

with a look of being pinched. 

The  superellipse also has a parametric representation e( t r  ) = (ci( 11 ). E > (  11 ) )T .  where 

2nd -ii 5 11 5 a. and where SI',' = sgn!sin tr)l sin w(' and C , '  = sgn(cos u-)l cos cri' 
respect ively. 

Iii 3D. t he  irnplicit form of a superellipsoid is 



and the parametric equation e ( u .  c )  = ( e l ( u .  c ) .  e ? ( u .  o ) .  E ~ ( u .  c ) ) ~  is defined as 

where - r / 2  5 u < 7~/2  and -;; 5 c < ;i. and where S. '  = sgn(sin u*) 1 sin tr 1 '  and = 

sgn(cos ir ) J  cos tcl' respectivel. Here. a0 2 O is a scale parameter. O 5 n 1 .  a*. a3 5 1. are 

aspect ratio parameters. and r 1. €2 > O are -squareness- parameters. 

C .  1 Dynamic Deformable Superquadric Cells 

F'ollowing \letasas and Terzopoulos [[O?. 6S]. the positions of points on  a superqmdric 

cc11 at t imc t. relative to an inertial frame of reference in space are given by 

X(U.  t ) = c( t  ) + R ( t ) p ( u .  t ) .  (C.5) 

tvhere c is the origin of a celi-centered reference frame. and R is a rotation mat ris t hat 

@\-es the orientation of the cell-centered frame relative to the inertial frame. In the cell- 

centered frame. the positioris of ce11 points p is the sum of a reference shape s and a local 

displacernent d: 

p(u. t )  = s(u.  t )  + d ( u .  t ) .  ( C A )  

The local displacements allow the representation of fine shape detail while the reference 

shape s captures the coarse sliape of an object. The reference shape is tlefinecl as 

rrliere e is the parametric superellipsoid described previously. The gcomct ric primitive e 

is siibjected to the global deformation T (such as bending and tapering) which depends on 

the deformat ion parameters 6;. .\lt hough nonlinear. e and T are assunied differentiable 

so that the Jacobian of s may be cornputed. T may be a composite sequence of primitive 

deformation functions T(e) = Tl (Tz(. . . T,(e))). The global deformation parameters are 

concatenated into a vector qs = (no. a l . .  . . . bO. bl . .  . .)T. The displacment d is e'tpressed 

as a linear combination of basis functions d = Sqd where S is a shape matris whose 



entries are the shape functions and qd = (. . . . dr.. . . )T  is a vector of local delormation 

parameters (see [IO?. 681 for details). 

The dynamics framework detailed in [IO-. 681 is used to fit a superquadric ceil t o  

data. The framework requires the cornputation of the Jacobian J = -&. :\ vector of 

generalized superquadric ce11 coordinates q = (qz. ql .  d. q2lT. where qc = c( t  ). q, is 

the quaternion used to  specify R(t) .  is integrated into the dynamics framework which 

computes an  updated set of the coordinates such that  the ce11 more closely represents 

the data. The  framework combines the applied forces described in 4.2.2 acting on the  

ce11 degrees of freedom qd wit h interna1 srnoot hness forces acting on t hese variables. --\ 

simple Euler integration method is used to  implement dynarnic cell fitting process. LVe 

also scale or ivarp the material coordinates u of a ce11 to create a more even distribut ion 

of cell nodes (which improves ce11 fitting) [26]. 

C.2 Point-to-point Ce11 Constraints 

Point-to-point const raints between two superquadric cells are implemented using a tech- 

nique int roduced by [35] known as -displacement const raints" . This approach uncouples 

the constraints connecting two cells from the effects of the esterna! forces. .-\ ce11 is fitted 

to the data dynarnically as described in t h e  previous section for a specified number of 

iterations. This step is then followed by a step that  atternpts to sat,isfy the geornetric 

const raints between two cells. by iteratively adjusting the position of each ce11 until they 

are within a preset tolerance. This technique is simpler and more efficient than coupled 

C.3 Ce11 Blending 

The  implicit functions of' the superquadric cells can be blended to  forrn a smooth transi- 

tion betwveen their bounding surfaces. CVe use a blending function 6 : Y?" -t'R known as 

the superelliptic blend [Il01 is defined by 



This function geiierates a smoot h isosurface t hat closely bounds t lie superquadric cells. 

As the  blend parameter p is increased. t he  isosurface wraps the cells more tightly (i-e. as 

p + x. the isosurface approaches the union of the ce11 bounding surfaces). 
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