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The increasingly important role of medical imaging in the diagnosis and treatment
of disease has opened an arrav of challenging problems centered on the computation of
accurate geometric models of anatomic structures from medical images. A promising ap-
proach to tackle such problems is the use of deformable models. These powerful models
have proven to be effective in segmenting, visualizing. matching. and tracking anatomic
structures by exploiting (bottom-up) constraints derived from the image data together
with (top-down) a priori knowledge about the location. size. and shape of these struc-
tures. Furthermore. deformable models support highly intuitive interaction mechanisms
that allow medical scientists and practitioners to bring their expertise to bear on the
image interpretation task.

This thesis proposes. develops. and applies a new class of discrete deformable models
for the segmentation and analysis of medical images. This new class of deformable models
is embedded and defined in terms of an Affine Cell Decomposition (ACD) framework -
a theoretically sound framework that significantly extends the abilities of traditional
deformable models. enabling topological flexibility among other features. ACD-based
deformable models can be used to extract. reconstruct and analyze even the most complex
biological structures from medical images.

The ACD framework combined with a novel and original reparameterization algorithm
creates a simple but elegant and powerful mechanism for multiresolution deformable
curve. surface. and solid models to “flow™ or “grow™ into objects with complex geome-
tries and topologies. and adapt their shape to conform to the object boundaries. Multiple
instances of the models can be dynamically created or destroyed and can seamlessly split

or merge to adapt to object topology. ACD-based models maintain the traditional para-
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metric physics-based formulation of deformable models. allowing them to incorporate a
priori anatomic knowledge in the form of energy and force-based constraints. and pro-
vide intuitive interactive capabilities. Furthermore. by defining the models in terms of
the ACD framework. “hard™ geometric. topological. and global shape constraints can be
efficiently realized. These combined properties lead to a robust. elegant. and highly auto-
mated method of linking sparse or noisy local image features into a complete. consistent.

and analvtical object model.
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Chapter 1

Introduction

The rapid development and proliferation of medical imaging technologies is revolution-
izing medicine. Medical imaging allows scientists and physicians to glean potentially
life-saving information by peering noninvasively into the human body. In recent yvears.
the role of medical imaging has expanded bevond the simple visualization and inspection
of anatomic structures. [t has become a tool for surgical planning and simulation. intra-
operative navigation. radiotherapy planning. and for tracking the progress of disease.
For example. ascertaining the detailed shape and organization of anatomic structures
enables a surgeon to preoperatively plan an optimal approach to some target structure.
[n radiotherapy. medical imaging allows the delivery of a necrotic dose of radiation to a
tumor with minimal collateral damage to healthy tissue.

With medical imaging playing an increasingly prominent role in the diagnosis and
treatment of disease. the medical image analysis community has become preoccupied with
the challenging problem of extracting—with the assistance of computers—clinically useful
information about anatomic structures imaged through CT. MR. PET. and other modal-
ities. Although modern imaging devices provide exceptional views of internal anatomy
{Figure 1.1). the use of computers to quantify and analyze the embedded structures
with accuracy and efficiency is limited. Accurate. reproducible. quantitative data must
be efficiently extracted in order to support the spectrum of biomedical investigations and
clinical activities from diagnosis. to radiotherapy. to surgery.

Segmenting structures from medical images and reconstructing a compact analytic
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(d) (e) (f)

Figure 1.1: (a) MR image slice of the brain. (b) Cells in an EM photomicrograph. (c)
Ultrasound image of fetus. (d) Portion of a fluorescent angiogram of the retina. (e) CT

image slice of canine heart. (f) PET image slice of brain.



CHAPTER 1. INTRODUCTION 3

representation of these structures is difficult due to the sheer size of the data sets and the
complexity and variability of the anatomic shapes of interest. Furthermore. the short-
comings typical of sampled data. such as sampling artifacts. spatial aliasing, and noise.
may cause the boundaries of structures to be indistinct and disconnected. The challenge
is to extract boundary elements belonging to the same structure and integrate these
elements into a complete and consistent model of the structure. Traditional low-level
image processing techniques which consider only local information can make incorrect
assumptions during this integration process and generate infeasible object boundaries.
As a result. these model-free techniques usually require considerable amounts of expert
intervention. Furthermore. the subsequent analysis and interpretation of the segmented
objects is hindered by the pixel- or voxel-level structure representations generated by

most image processing operations.

A promising and vigorously researched computer-assisted medical image analysis tech-
nique is the use of deformable models (see the recent survey [64}). Among model-based
techniques. deformable models offer a unique and powerful approach to image analysis
that combines geometry. physics. and approximation theory. These continuous geometric
models consider an object boundary as a single connected structure. Connectivity of the
object is therefore guaranteed. Deformable models can make use of a priori knowledge
of object shape to constrain the segmentation problem and the inherent continuity and
smoothness of the models can compensate for noise. gaps and other irregularities in ob-
ject boundaries. Furthermore. the parametric representations of the models can provide
a compact. analytical description of object shape. Finally. deformable models support
highly intuitive interaction mechanisms that. when necessary. allow medical scientists
and practitioners to bring their expertise to bear on the model-based image interpreta-
tion task. These combined properties lead to a robust and elegant technique for linking

sparse or noisy local image features into a complete well-defined model.

This thesis proposes. develops, and applies a new class of deformable models for the
segmentation and analysis of medical images. This new class of deformable models ex-
ploits an Affine Cell Decomposition (ACD) of the image domain — a theoretically sound

framework that significantly extends the abilities of classical deformable models such as
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deformable contours or snakes [47] and deformable surfaces [99. 1053]. Affine cell de-
compositions divide an image domain into a collection of convex polytopes. Embedding
deformable models in this framework allows the models to extract and reconstruct even
the most complex biological structures. The ACD framework combined with a novel
reparameterization algorithm creates a simple but elegant and powerful mechanism for
multiresolution deformable curve. surface. and solid models to “flow™ or “grow™ into ob-
jects with complex geometries and topologies. adapting their shape to conform to the
object boundaries. Model shape adaptation or deformation is governed by a physics-
based formulation. The ACD framework enables the models to maintain the traditional
properties associated with classical deformable models. such as user interaction and the
incorporation of constraints through energy functions or force functions. while overcom-
ing many of their limitations. The ACD framework also provides a convenient mecha-
nism for the incorporation of “hard™ geometric. topological and global shape constraints.
These combined properties produce an effective technique for the efficient. accurate. re-
producible and highly automated extraction and analysis of anatomic structures from

medical images.

1.1 Problem Statement

The segmentation of anatomic structures—the partitioning of the original set of image
points into subsets corresponding to the structures—is an essential first stage of most
medical image analysis tasks. such as shape analysis. visualization. registration. labeling.
and motion tracking. These tasks usually require anatomic structures in the original
image to be reduced to a compact. analytic representation of their shapes. A primary
example is the segmentation of the heart. especially the left ventricle (LV). from cardiac
imagery. Segmentation and reconstruction of the left ventricle is a prerequisite for com-
puting diagnostic information such as ejection-fraction ratio. ventricular volume ratio.
heart output. and for wall motion analysis which provides information on wall thicken-
ing. etc. [91].

The manual segmentation of medical images can be extremely labor intensive and
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time-consuming. Consequently. semi-automatic and, ultimately. fully-automatic tech-
niques are a desirable goal. Increasing the degree of automation can not only relieve
clinicians from the labor intensive aspects of their work. but it can also increase the effi-
ciency. accuracy and perhaps most importantly. reproducibility of the segmentation. On
the other hand. since erroneous interpretations of medical images are unacceptable. any
successful segmentation technique should support intuitive. efficient interactive guidance
or editing by the medical expert.

With this motivation in mind. our geal is to considerably extend the capabilities of
classical deformable models such as snakes. improving their performance and increasing
their degree of automation. while retaining all of their traditional strengths. An impor-
tant property to maintain is the ability to design energy functions or force functions to
constrain and interactively guide the model: in other words. the ability to incorporate or

apply @ priori knowledge. The most significant limitations to overcome are the following:

e Snakes and other deformable models are sensitive to their initial conditions. Clas-
sical snakes were designed as interactive models and usually must be placed close
to the boundary of the target object to guarantee good performance. The external
energy functionals used in the variational model formulations are typically noncon-
vex with multiple local minima. Furthermore. gradient descent algorithms. which
do not guarantee global solutions. are the most common method used for energy
minimization. As a result. snakes can settle into local minimum solutions that do

not represent the true boundary of the object.

e The topology of the object of interest must be known in advance since traditional
deformable models are parametric and are incapable of topological transformations

without additional machinery.

® The internal energy constraints of snakes. arc-length and curvature minimization,
can limit their geometric flexibility and prevent them from representing long tube-
like shapes or shapes with significant protrusions. The energy function of most

deformable models depends on its parameterization and is not directly related to
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the geometry of the object. New parameterizations can change the model energy

in arbitrary ways.

e Deformable models can be attracted to spurious image features during the energy
minimization. This is essentially due to the local nature of boundary-based models
such as snakes. Furthermore. even if global energy minimization schemes are used.
there may be no relationship between the equilibrium of a snake and the real
boundaries of the object. Finally. it is difficult to perform a global analysis of
object shape using local boundary-based models. The incorporation of a priori
knowledge of global object shape is essential for robust segmentation and analysis

of noisy medical images.

These combined factors may ultimately limit the efficiency and degree of automation

that can be achieved by classical deformable models for the segmentation and analysis

of medical images.

1.2 ACD-based Deformable Models

Most classical deformable models are parametric models whose parameterization is de-
fined initially and does not change automatically throughout the deformation process. If
the topology of an object is fixed and known a priori and the geometry is simple (i.e.
relatively compact and convex). such models may be the most appropriate since they will
provide greater constraint. Implicit models on the other hand. such as the formulation
proposed in [13. 14, 59]. provide topological and geometric flexibility through their level
set representation. They are best suited to the recovery of objects with complex shapes
and unknown or complex topologies. Unfortunately. implicit models are not as conve-
nient as parametric models in terms of mathematical formulation and for accommodating
interaction or guidance by expert users and high-level control mechanisms.

In this thesis. we develop a parametric deformable model that has the power of an
implicit formulation by using a superposed affine cell compler or grid to automatically

and efficiently reparameterize the model during the deformation process. That is, we
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embed the traditional parametric snakes model within the framework of affine cell domain
decomposition — a mathematically sound decomposition method based on the theory
of algebraic topology. This framework enables our models to efficiently and effectively
fulfill our goal of maintaining the traditional properties associated with snakes. such as
user interaction and the incorporation of constraints through energy functions or force
functions. while overcoming many of the limitations described in the previous section.
Using the grid to iteratively reparameterize the model allows it to flow into complex
shapes and change its topology as necessary. Multiple connected components of the
model can be dynamically created or destroved. or can seamlessly split or merge. In the
following chapters of this thesis. we describe these features of ACD-based deformable

models and many others that serve to demonstrate the power of this approach.

1.3 Contributions

Deformable models offer a flexible and powerful approach to medical image analysis. Nev-
ertheless. deformable models suffer from several limitations that prevent their application
to the full range of medical image analysis problems and that limit their potential for
automation. We propose ACD-based deformable models as a solution to many of these
limitations. As we will demonstrate in this thesis. this new class of deformable models
can be used to segment. reconstruct and analyze almost any anatomic structure from
images generated by almost any imaging modality. Furthermore. when combined with
various constraint mechanisms. the models are capable of developing into a completely
automatic image analysis technique. The contributions of the research are detailed in

the following sections.

1.3.1 The Affine Cell Decomposition Framework

e \We cast classical deformable models within the mathematically robust framework
of domain decomposition via affine cells to yield a powerful and computationally
efficient discrete geometric approach to topologically adaptable deformable models.

The 2D and 3D models developed within the framework have all of the capabilities
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of an implicit formulation combined with the advantages of parametric models. The
models are capable of segmenting and reconstructing objects with complex shapes
and topologies. The framework enables our models to maintzin the traditional
properties associated with classical deformable models. such as user interaction
and the incorporation of data-derived constraints. while overcoming many of the

limitations previously described.

o The affine cell grid provides an elegant mechanism for automatic model reparame-
terization. allowing our models to segment and reconstruct objects with significant
protrusions. tube-like objects. or objects with bifurcations. Furthermore. the grid
produces model parameterizations in terms of the intrinsic local geometry of an
object: there is no explicit parameterization sensitivity. Finally. the automatic
and intrinsic reparameterization makes the model (relatively) insensitive to initial
placement. significantly improving the efficiency and automation of the segmenta-

tion process.

1.3.2 Topologically Adaptive Deformable Models

We develop topologically adaptive snakes (T-snakes) [62. 63] and topologically adaptive
deformable surfaces (T-surfaces) [66. 65]. The affine cell grid provides a mathematically
sound framework for robust topological transformations. This property allows our mod-
els to seamlessly split or merge. adapting to the topology of a target object. Topological
adaptability combined with broad geometric coverage significantly increases model au-
tomation. Furthermore. topological transformations are performed by efficiently tracking
and recording the interior region of the models as they flow into an object. This space
partitioning property provides a useful mechanism to map object topology and structure,

as well as to perform interior region analysis.

1.3.3 Constraint Mechanisms

o Geometric Constraints

Model point constraints and other geometric constraints can be easily incorporated
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into ACD-based deformable models either as soft constraints to be satisfied ap-
proximately or as hard constraints that must never pe violated. The advantage of
retaining a parametric model formulation as opposed to an implicit model formu-
lation is that any data constraint expressed as an energy function or force function

can easily be incorporated into the physics-based framework.

e Topological Constraints
We develop a technique for imposing a global topological constraint on our ACD-
based deformable models. In particular. the models maintain the topology of a
sphere by evolving according to a sequence of topology-preserving deformations.
This constraint enables ACD-based models to be insensitive to breaks in the object
around boundaries or near narrow cavities due to noise and other imaging artifacts.
This property is important in applications such as registration or labeling using a
deformable anatomical atlas. Furthermore. multiple models can be simultaneously
evolved under the ACD framework. The affine cell grid allows for extremely efficient
collision detection and avoidance between models. again providing a potentially

valuable constraint for the construction of deformable anatomical atlas models.

o Statistical Constraints
Using the ACD framework. model evolution is performed by tracking and recording
the interior region of a model as it expands or contracts under the influence of
pressure forces. The strength of these pressure forces can be directly linked to the
local or global statistics of the image pixel intensity values of the target object.
These statistical constraints allow ACD-based models to behave as active region
growing models that can effectively integrate edge information with region-based

information.

e Global Shape Constraints
We develop a technique for imposing global shape constraints on ACD-based de-
formable models. We use multiple superquadric shape templates that are con-
strained to overlap. The implicitly defined superquadric “cells™ are fitted to anatomic

structures using a “cell growing and splitting” procedure. The superquadrics cap-
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ture the gross shape of an object and a priori anatomic knowledge is used to prevent
the generation of infeasible shapes. Using the affine cell grid. an implicit “skin™
is then wrapped around the superquadrics and acts as the initial placement of an
ACD-based deformable model. The resulting closed contour or surface model is
then deformed as usual to capture the shape details of the object. We can also
constrain the skin. if necessary. to remain close to the underlying superquadric
templates. The global shape constraints provided by the superquadrics combined
with ACD-based deformable models significantly increase the potential for fully
automatic medical image segmentation and analysis. For example. the deformable
skin and underlying superquadrics provide a mechanism for the automatic detection

of shape abnormalities.

1.3.4 Prototype Interactive System and Applications

We implement a prototype medical image analyvsis system that utilizes 2D and 3D ACD-
based deformable models. We have used the system to segment and reconstruct a wide
variety of anatomic structures with complex shapes and topologies. We use a discrete.
computationally efficient implementation that incorporates a model element “cooling”
process. When the “temperature™ of an element falls below a -freezing point™. the
clement is removed from the computation. This adjustable mechanism allows the system
to maintain a small. manageable computational burden in many segmentation scenarios.
Furthermore. we compute the vertices. edges and cells of the grid as they are needed
during the evolution of the model. Consequently. the only memory requirement for
the grid is one bit for each grid vertex. This “virtual™ grid scheme allows us to use
pixel or even subpixel resolution grids. if necessarv. without incurring significant memory
or computational overhead. Finally. the evolution of ACD-based deformable models
is implemented using a naturally parallel geometric algorithm and we expect further

significant performance gains on parallel machines.
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1.4 Thesis Organization

The organization of the remainder of the thesis is as follows:

In Chapter 2 we review the basic mathematical formulation of classical deformable
models. In particular. we provide a detailed description of the snakes formulation in
order to illustrate with a concrete example the basic mathematical machinery that is
present in many deformable models. We end the chapter with a description of the 3D
generalization of snakes.

In Chapter 3 we survey the application of deformable models to two fundamental
medical image analysis problems: segmentation and shape representation. We describe
many of the deformable curve and surface models that have been developed and provide a
brief comparison between parametric deformable models and implicit deformable models.
We conclude the chapter with a survey of various mechanisms for incorporating a prior:
knowledge into a deformable model framework.

[n Chapter 4 we present topologically adaptable snakes (T-snakes). We introduce the
idea of using an affine cell decomposition of an image domain to iteratively reparameterize
a deformable contour model and to perform topological transformations. We begin by
describing the relationship of ACD-based deformable models to front propagation or
curve evolution. We describe T-snakes in detail. including an overview of the theory
of affine cell decomposition using a class of affine cells known as simplicial cells. We
then provide a detailed description of the T-snake reparameterization (iterative simplicial
approximation) process.

In Chapter 5 we use T-snakes to describe and demonstrate several properties of ACD-
based deformable models. We then describe. with examples. the constraint mechanisms
that can be imposed on these models. Geometric constraints. topological constraints.

statistical constraints. and global shape constraints are presented.

{n Chapter 6 we present topologically adaptable deformable surfaces (T-surfaces): a
deformable closed-surface model that is a 3D generalization of topologically adaptable
snakes. We extend simplicial cell decomposition to three dimensions using tetrahedra

and demonstrate the fundamental similarity of the 2D and 3D algorithms.
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In Chapter 7 we describe a prototype system for segmenting and reconstructing
anatomic structures using T-snakes and T-surfaces and present a wide range of applica-
tion examples. The real-world examples serve to demonstrate the power and flexibility of
the simplicial cell decomposition framework and illustrate the properties and constraint
mechanisms of the model described in earlier chapters.

Chapter 8 summarizes the thesis and suggests future research directions. We also
present a comparison of ACD-based deformable models with alternative models in order
to underscore the viability of our approach.

Appendix A outlines the basic mathematical theory of front propagation or curve
evolution and its adaptation to the problems of shape recovery.

Appendix B provides a geometric proof of the robustness of the classification algorithm
that underlies the ability of ACD-based deformable models to flow into objects with
complex shapes and topologies.

Appendix C provides a detailed description of superquadrics as well as superquadric

data-fitting and blending.



Chapter 2

Mathematical Foundations of

Deformable Models

The mathematical foundations of deformable models represent the confluence of geom-
etry. physics. and approximation theory. Geometry serves to represent object shape.
physics imposes constraints on how the shape may vary over space and time. and opti-
mal approximation theory provides the formal underpinnings of mechanisms for fitting
the models to measured data.

Deformable model geometry usually permits broad shape coverage by emploving ge-
ometric representations that involve many degrees of freedom. such as splines. The
model remains manageable. however. because the degrees of freedom are generally not
permitted to evolve independently. but are governed by physical principles that bestow
intuitively meaningful behavior upon the geometric substrate. The name “deformable
models” stems primarily from the use of elasticity theory at the physical level. generally
within a Lagrangian dynamics setting. The physical interpretation views deformable
models as elastic bodies which respond naturally to applied forces and constraints. Tvp-
ically. deformation energy functions defined in terms of the geometric degrees of freedom
are associated with the deformable model. The energy grows monotonically as the model
deforms away from a specified natural or “rest shape” and often includes terms that
constrain the smoothness or symmetry of the model. In the Lagrangian setting. the de-

formation energy gives rise to elastic forces internal to the model. Taking a physics-based

13
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Figure 2.1: Snake (white) attracted to cell membrane in an EM photomicrograph [12].

view of classical optimal approximation. external potential energy functions are defined
in terms of the data of interest to which the model is to be fitted. These potential ener-
gies give rise to external forces which deform the model such that it maximally fits the
data.

Deformable curve. surface. and solid models gained popularity after thev were pro-
posed fer use in computer vision [103] and computer graphics [101] in the mid 1930’s.
[n computer vision. deformable curve and surface models were proposed as solutions to
ill-posed inverse problems such as edge detection and surface reconstruction. Terzopou-
los introduced the theory of continuous (multidimensional) deformable models in a La-
grangian dynamics setting [98]. based on deformation energies in the form of (controlled-
continuity) generalized splines {99]. The controlled-continuity spline is a generalization
of a Tikhonov stabilizer [106]. and can formally be regarded as regularizing [79] the ill-
posed problems. recasting them as well-posed functional minimization problems. Early
ancestors of the deformable models now in common use include Fischler and Elshlager’s
spring-loaded templates [33] and Widrow's rubber mask technique [116].

The deformable model that has attracted the most attention to date is popularly
known as “snakes” [47]. Snakes or “deformable contour models™ represent a special case
of the general multidimensional deformable model theory [9S]. We will review their simple
formulation in the remainder of this chapter in order to illustrate with a concrete example
the basic mathematical machinery that is present in many deformable models. We will

end the chapter with a brief description of the deformable surface model formulation.



CHAPTER 2. MATHEMATICAL FOUNDATIONS OF DEFORMABLE MODELS 15

Snakes are planar deformable contours that are useful in several image analysis tasks.
They are often used to approximate the locations and shapes of object boundaries in
images based on the reasonable assumption that boundaries are piecewise continuous or
smooth (Fig. 2.1). In its basic form. the mathematical formulation of snakes draws from

the theory of optimal approximation involving functionals [113].

2.1 Energy-Minimizing Deformable Models

Geometrically. a snake is a parametric contour embedded in the image plane (r.y) € R*.
The contour is represented as v(s) = (r(s).y(s))7. where r and y are the coordinate
functions and s € [0.1] is the parametric domain. Boundary conditions may be used to
specifyv the overall topology of the contour. For example. applying a periodic boundary
condition. v(0) = v(1). produces a closed snake.

The shape of the contour subject to an image /(z.y) is dictated by the functional
E(v) =S(v) + P(v). (2.1)

The functional can be viewed as a representation of the energy of the contour and the
final shape and position of the contour corresponds to the minimum of this energy. The

first term of the functional.
2
+ lL'Q(S)
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is the internal deformation energy. It characterizes the deformation of an elastic contour.

I
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—

i
S(v) =/O wi(s)

Two physical parameter functions dictate the simulated physical characteristics of the
contour: w(s) controls the “tension™ of the contour while wa(s) controls its “rigidity™.!
We note here that the internal deformation energy defined above is a linearized version

of a more general. nonlinear planar curve strain energy:

S(v) = /01 wy(s)s® + wa(s)k’ds. (2.3)

!The values of the non-negative functions wi(s) and wa(s) determine the extent to which the snake
can stretch or bend at any point s on the snake. For example, increasing the magnitude of w(s)
increases the “tension” and tends to eliminate extraneous loops and ripples by reducing the length of
the snake. Increasing us(s) increases the bending “rigidity” of the snake and tends to make the snake
smoother and less flexible. Setting the value of one or both of these functions to zero at a point s permits
discontinuities in the contour at s.
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where s and w represent the arc length and curvature respectively. The linearized func-
tional (2.2) approximates (2.3) for small deformations near the actual minimum (where
higher order terms tend to 0) but is well behaved for large deformations and its quadratic
form leads to significant computational benefits. In Chapter 4. we will describe our topo-
logically adaptable snakes formulation that uses a discrete approximation to (2.3).

The second term in (2.1) consists of external energy potentials that couple the snake

to the image and support user interaction. Traditionally.
1
P(v) = /0 P(v(s))ds. (2.4)

where P(r.y) denotes a scalar potential function defined on the image plane. To couple
snakes to images. external potentials are designed whose local minima coincide with
intensity extrema. edges. and other image features of interest. For example. the contour

will be attracted to intensity edges in an image /(z.y) by choosing a potential

[
Ot
—

Ple.y) = =[G, [z y)]l- (2

where ¢ controls the magnitude of the potential. ¥ is the gradient operator. and G, * [
denotes the image convolved with a (Gaussian) smoothing filter whose characteristic
width o controls the spatial extent of the local minima of P.

[t medical image analysis. it is essential for a user to be able to interactively control the
segmentation process. Few medical images lend themselves to fully automatic processing
with satisfactory results. Furthermore. the equilibrium state of the snake will. in general.
represent only one local minimum solution out of a large set of possible local minima.
The user must have the ability to pull the snake out of one local minimum into another.
This ability is conveniently realized in the energy minimization framework through the
use of user defined external constraint potentials such as interactive springs. anchored
springs. and “volcanos™ [47]. For example. the snake can be pulled in the direction of
the mouse cursor location (rmouse. Ymouse) by choosing a spring potential P(r.y) =
¢((r — rmouse)? + (¥ — ymouse)?). where c controls the strength of the spring. Points on
the snake that are affected by the spring can be restricted to a small section of the snake

closest to the mouse.
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The combination of external image potentials and external constraint potentials can
create a wide range of snake behavior. allowing snakes to extract and represent a broad
spectrum of shapes. Furthermore. external constraint potentials are an effective. flexible
means from which high-level control mechanisms can guide shape recoverv. forming a
sound basis for fully automatic image analysis.

In accordance with the calculus of variations. the contour v(s) which minimizes the
energy £(v) must satisfy the Euler-Lagrange equation

. ] 42 02
- d(_)c. (u'[g—::) + c?d? (wg%) + VP(v(s.t)) =0. (2.6)
This vector-valued partial differential equation expresses the balance of internal and
external forces when the contour rests at equilibrium. The first two terms represent the
internal stretching and bending forces. respectively. while the third term represents the
external forces that couple the snake to the image data. The usual approach to solving

(2.6) is through the application of numerical algorithms (Sec. 2.1.2).

2.1.1 Dynamic Deformable Models

While it is natural to view energy minimization as a static problem. a potent approach
to computing the local minima of a functional such as (2.1) is to construct a dvnamical
system that is governed by the functional and allow the system to evolve to equilibrium.
The syvstem may be constructed by applying the principles of Lagrangian mechanics.
This leads to dynamic deformable models that unify the description of shape and motion.
making it possible to quantify not just static shape. but also shape evolution through
time. Dynamic models are valuable for medical image analysis. since most anatomical
structures are deformable and continually undergo nonrigid motion in viro. Moreover.
dynamic models exhibit intuitively meaningful physical behaviors. making their evolution
amenable to interactive guidance from a user (Fig. 2.2).

A simple example is a dynamic snake which can be represented by introducing a
time-varying contour v(s.t) = (z(s.t).y(s.t))" with a mass density u(s) and a damping

density v(s). The Lagrange equations of motion for a snake with the internal energy
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Figure 2.2: Snake deforming towards high gradients in a processed cardiac image. influ-
enced by “pin~ points and an interactive “spring” which pulls the contour towards an

edge [61].

given by (2.2) and external energy given by (2.4) is

v dv ()(d_v) ﬁ( v

L+ — 7 {uw w
o T ot T a5\ as :

T 0s?

The first two terms on the left hand side of this partial differential equation represent
inertial and damping forces. Referring to (2.6). the remaining terms represent the internal
stretching and bending forces. while the right hand side represents the external forces.
Equilibrium is achieved when the internal and external forces balance and the contour

comes to rest (i.e.. dv/dt = J*v/dt? = 0). which vields the equilibrium condition (2.6).

2.1.2 Discretization and Numerical Simulation

[n order to compute numerically a minimum energy solution. it is necessary to discretize
the energy £(v). The usual approach is to represent the continuous geometric model v
in terms of linear combinations of local-support or global-support basis functions. Finite
elements [121]. finite differences [82], and geometric splines [31] are local representation
methods. whereas Fourier bases [4] are global representation methods. The continuous

model v(s) is represented in discrete form by a vector u of shape parameters associated
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with the basis functions. The discrete form of energies such as £(v) for the snake may
be written as

E(u) = =u"Ku + P(u) (2.3)

| r—

¢

where K is called the stiffness matrir. and P{u) is the discrete version of the external
potential. The minimum energy solution results from setting the gradient of (2.8) to O.

which is equivalent to solving the set of nonlinear algebraic equations
Ku=-VP=f (2.9)

where f is the generalized external force vector.
The discretized version of the Lagrangian dynamics equation (2.7) may be written as

a set of second order ordinary differential equations for u(¢):
Mu + Cu + Ku =f. (2.10)

where M is the mass matrix and C is a damping matrix. The time derivatives in (2.7)
are approximated by finite differences and explicit or implicit numerical time integration
methods are applied to simulate the resulting system of ordinary differential equations
in the shape parameters u.

Many shape recovery problems do not involve time-varying data. [n these situations
the mass density pu is often set to zero. resulting in simplified equations of motion and a

snake that comes to rest as soon as the internal forces balance the external forces:
Cu+Ku=f. (2.11)

Essentially. the massless snake is in a viscous medium. We can solve this first-order
dynamics equation iteratively using an explicit first-order Euler method. This method
approximates the temporal derivatives with forward finite differences. [t updates the

shape parameters u from time ¢ to time ¢t + At according to the formula
ult+an = y) 4 At(C(”)‘[ (f(!) _ Ku“)) ) (2.12)

This procedure can be equivalently viewed as minimizing the snake energy £(u) using

gradient descent. Depending on the form of the external potential energy P(u) and on
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the form of the stiffness matrix K. the simple gradient descent algorithm may converge
very slowly to a solution. One way around this problem is to solve equation (2.11) using

backward finite differences to arrive at the semi-implicit first-order Euler method
(C + AtK)ul*+2) = Cul? + Aeft), (2.13)

We can view this equation as a series of linear systems. one system for each time step. In
the case of snakes (contours). the constant matrix (K + C) is pentadiagonally banded:
hence. each linear system can be solved efficiently using a direct method. such as LU
decomposition. The semi-implicit technique [47] is more effective than the explicit Euler
method at propagating smoothness constraints along the snake.

For deformable surface models. which are introduced in the next section. the linear
syvstems are larger and the constant matrix term exhibits a more complex banding struc-
ture. making matrix factorization techniques too costly. Instead. one can employ iterative
methods. such as the conjugate gradient method. To maintain the interactivity of the
deformable surface model. the number of conjugate gradient iterations per time step may
be limited. Typically. only a few iterations are required to generate a sufficiently accurate

solution to each linear svstem using the previous solution as an initial condition.

2.1.3 Deformable Surface Models

A deformable surface is represented using a vector-valued parametric representation
X(u.v) = [r(u.v) ylu.v). = (u. [,)]'r where vector X represents the positions of material
points (u.v) relative to a reference frame in Euclidean 3-space. The parametric domain
of the deformable surface is the unit square [0. 1]*.

The surface is constructed of the simulated thin-plate material under tension {99].

The deformation energy of this material is given by the energy functional

: ; d*x
+-0'2|87
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du?
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* RRK
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+ Qg1

S(X)=/Ol_/olalog—t2

S is a controlled-continuity spline defined in [99]. The non-negative weighting functions

a;,(u.v) and J;,(u.v) control the elasticity of the material. The a;o and aq; functions

control the tensions in the u and v directions. respectively. while the J,0 and Jg; functions
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Figure 2.3: Closed deformable surface being pulled by a spring force showing the effect of
various ¢;; and J;, settings [61]: (a) a;; = 0.8. 3;; = 0. (b) ai; = J;; = 0.5. (¢) ai, = 0.

.3,'1 = 08

control the corresponding bending rigidities. and the J;; function controls the twisting
rigidity. I[ncreasing the «;, has a tendency to decrease the surface area of the material.
while increasing the J;; tends to make it less flexible.

Analogous to (2.3). a more general. nonlinear strain energy for a deformable surface

is a function of the differential area and curvature at each point [103] :
S(x) = //||c;||§ +|[BJ? dude. (2.13)

where G and B represent the first and second fundamental matrices of the surface forms
[32]. and a and J weight the matrix norms. The a and J terms determine the resistance
to stretching and bending respectively. In Chapter 6. we will describe a topologically
adaptable surface formulation that uses a discrete approximation to (2.15).

The choice of boundary conditions can be used to specifyv the topology of the sur-
face model. Natural boundary conditions specify an open surface. Periodic boundary
conditions may be specified in one or both directions to vield a cylindrical and toroidal

topology respectively. The addition of pole points to the cvlindrical case vields a sphere.



Chapter 3

Medical Image Analysis with
Deformable Models

Although originally developed for application to problems in computer vision and com-
puter graphics. the potential of deformable models for use in medical image analysis has
been quickly realized. They have been applied to images generated by imaging modal-
ities as varied as X-ray. computed tomography (CT). angiography. magnetic resonance
(MR). and ultrasound. Two dimensional and three dimensional deformable models have
been used to segment. visualize. track. and quantify a variety of anatomic structures
ranging in scale from the macroscopic to the microscopic. These include the brain. heart.
face. cerebral. coronary and retinal arteries. kidnev. lungs. stomach. liver. skull. vertebra.
objects such as brain tumors. a fetus. and even cellular structures such as neurons and
chromosomes. Deformable models have been used to track the nonrigid motion of the
heart. the growing tip of a neurite. and the motion of ervthrocvtes. They have been
used to locate structures in the brain. and to register images of the retina. vertebra and

neuronal tissue.

In the following sections, we review and discuss the application of deformable mod-
els to two fundamental problems of medical image analysis: segmentation and shape

representation.

~
[A]



CHAPTER 3. MEDICAL IMAGE ANALYSIS WITH DEFORMABLE MODELS 23

3.1 Image Segmentation with Deformable Curves

Defining object contours is an essential first step in many medical image applications.
Object contour definition, or segmentation. is currently accomplished in a number of
ways: completely manually, automated first guess followed by manual editing. or manual

rough delineation followed by automatic contour definition.

Most clinical segmentation is still performed using a completely manual technique
known as manual slice editing. In this scenario. a skilled operator. using a computer
mouse or trackball. manually traces the region of interest on each slice of an image
volume. Manual slice editing suffers from several severe drawbacks. These include labor
intensiveness. the difficulty in achieving reproducible results. operator bias. forcing the
operator to view each 2D slice separately to deduce and measure the shape and volume

of 3D structures. and operator fatigue.

Segmentation using traditional low-level image processing techniques. such as region
growing. edge detection. and mathematical morphology operations [81]. followed by man-
ual editing, is still often very time consuming. requiring considerable amounts of expert
interactive guidance. Furthermore. it is difficult to automate these model-free approaches
because of the shape complexity and variability within and across individuals. In general.
the underconstrained nature of the segmentation problem limits the efficacy of approaches
that use pixel-level representations and take into account only local information. Noise
and other image artifacts can cause the generation of incorrect regions or boundaries in

objects recovered by these methods.

Manual rough delineation. followed by automatic contour definition using a deformable
model based segmentation scheme (Fig. 3.1). can overcome many of the limitations of
manual slice editing and traditional image processing techniques. Deformable models
can make use of a priori knowledge of object shape and smoothness to constrain the
segmentation problem. These continuous geometric models consider an object boundary
as a single connected structure. Therefore. not only is the connectivity and smoothness
of an object guaranteed. but noise. gaps and other irregularities in object boundaries

can be overcome. Furthermore. the geometric model representation provides a compact.
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(b) (f)

(a) (c) (e)

Figure 3.1: (a) Intensity CT image slice of LV. (b) Edge detected image. (c) Initial snake.

(d)-(f) Snake deforming towards LV boundary. driven by “inflation™ force. [61].

analytical description of object shape. These properties. combined with intuitive inter-
active mechanisms. lead to accurate. efficient and reproducible segmentations as well as
a sound platform from which to develop automatic analysis methods.

Segmentation using deformable contour models. such as snakes [17}. was among the
first uses of deformable models in medical image analysis [7. 21. 108. 85. 22, 52, 12, 41.
56. 25] for both 2D and 3D data sets. Three dimensional image volumes are processed by
placing a snake on an initial image slice near the target object and allowing it to deform
onto the object edges. Once the user is satisfied with the result. the fitted contour
model is then used as the initial object contour approximation for neighboring slices.
These models are then deformed into place and again propagated until all slices have
been processed. The resulting sequence of 2D contours can then be connected to form a
continuous 3D surface model [54. 17. 21. 22]. This spatial propagation of the deformable
contours can dramatically decrease the time taken to segment an object from an image
volume [91].

Various methods have been proposed to extend. improve and further automate the
deformable contour segmentation process. Cohen and Cohen [22] use an internal “infla-
tion~ force to expand a closed snake past spurious edges towards the real edges of the
structure. making the snake less sensitive to initial conditions (inflation forces were also
employed in [105]). Cohen et el. also normalized the image forces to avoid instabilities
and to prevent the model from becoming trapped by spurious isolated edge points.

A primary approach to solving energy minimization problems is the calculus of vari-
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ations. In this approach. finite difference or finite element techniques are used to solve
the Euler-Lagrange equations derived from the energy functional. This method can be
regarded as gradient descent along the potential energy surface of the deformable con-
tour. Unfortunately. gradient descent does not guarantee finding the global minimum if
the energy surface or landscape is not convex and the initial contour model is far from
the target. Amini et al. [2]| use dynamic programming (DP) to carry out a more exten-
sive search for global minima. Although DP provides numerical stability. it does so at
a high cost in computational complexity. Williams and Shah [117] propose an alterna-
tive (greedy) algorithm to DP which drastically cuts numerical costs: however. it does
not guarantee numerical stability. Recently. Mortensen and Barret [70] have proposed a
snake-like segmentation tool using DP which allows the user to interactively select the

most suitable boundary from a set of all optimal boundaries emanating from a seed point.

[n an alternative approach. Neuenschwanderet al. [73] allow a user to specify only the
end points of the target contour instead of a complete polygonal outline. Optimization
then progresses from these end points towards the center of the snake thereby effectively
propagating edge information along the snake. improving its convergence properties.
Blake and Zisserman [10] propose an algorithm (Graduated Nonconvexity ) which is based
on iterative approximation of the energy functional by a convex function: it can bridge

low ridges in the potential field and eliminate termination in local vallevs.

Poon et al. [30] and Grzeszczuk and Levin [40] minimize the energy of active contour
models using simulated annealing which is known to give global solutions and allows
the incorporation of non-difterentiable constraints. In general however. deterministic
algorithms are usually preferred due to their faster convergence and the importance of

user interaction in medical image segmentation scenarios.

Poon et al. [30] also use a discriminant function to incorporate region based image
features into the image forces of their active contour model. The additional image fea-
tures serve as a constraint for global segmentation consistency (i.e. every image pixel
contributes to the discriminant function). The result is a more robust energy functional
and a much better tolerance to deviation of the initial guess from the true boundaries.

Others researchers [84. 16. 13. 42. 36. 46. 60] have also integrated region-based informa-
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tion into deformable contour models in an attempt to decrease sensitivity to insignificant
edges and initial model placement.

Several limitations or problems of snake-based segmentation methods were mentioned
in Chapter 1. An additional problem is that the selection of snake elasticity and rigidity
parameters is often ad-hoc and optimal parameter settings are difficult to determine.
Another limitation is the oscillatory behavior thai can be displayed by snakes due to high
intensity gradients used to push a snake towards edges. Several approaches have been
suggested to deal with these difficulties. The stability of snakes has been investigated
by adjusting internal parameters in [86. 8. 25]. Leymarie and Levine [53] introduced
bounds on the image forces. new rules for setting the elasticity parameters. and a new
terminating condition. In [67. 85]. the elastic parameters of the deformable models are

automatically adjusted to improve the accuracy and robustness of the shape recovery.

3.1.1 Implicit Deformable Contour Models

There are two main approaches to deformable contour models. Parametric models. for
example snakes. are specified as parametric curves defined initially. which do not (nec-
essarily) change during the optimization process. [mplicit models. on the other hand do
not depend on any particular parameterization.

One of the strongest limitations of parametric deformable models is the topology of
the target object must be known in advance. Therefore. for images with multiple objects
where some objects are contained by. or embedded in others. parametric deformable
models require extensive user interaction. Recently. several researchers [13. 59. 115. [4.
38] have been developing implicit deformable contour models that allow a deformable
contour to not only represent long tube-like shapes or shapes with bifurcations. but also
to dynamically sense and change its topology.

In this approach. the deformable contour model is viewed as the level set of a higher
dimensional surface.!. The evolution of the surface is defined by a Hamilton-Jacobi-
like partial differential equation. There are several attractive features to this approach.

First. discrete mesh points used in the numerical implementation of the PDE do not

1 Appendix A provides a detailed explanation of level set evolution techniques
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move. resulting in a stable computation. Topological changes in the contour are handled
naturally by exploiting the property that the level set need not be simply connected: the
implicitly defined surface always remains a fuaction even if the level set changes topology.
The use of evolving contours as level sets and the relevant numerical implementation was
first proposed by Osher and Sethian for flame propagation [74. 90] and used by Kimia
et al. in constructing a representation for shape in computer vision [48]. Malladi et al.
[59] and Caselles et al. [14] illustrated the effectiveness of this approach for capturing
interesting structures in medical images. Recently. several researchers have extended the
level set technique to 3D [38].

There is some connection between the implicit models and parametric snakes models.
The energy minimization of the snakes model involves variational principles which can
be equivalently formulated as solutions to partial differential equations (Euler-Lagrange
equations). Caselles [14] pointed out that setting the rigidity term to zero in the energy
functional of the snake model establishes an equivalence between this parametric model
and a geometric curve evolution. since they both minimize the length of the contour in

the metric induced by the image.

3.2 Volume Image Segmentation with Deformable
Surfaces

Segmenting 3D image volumes slice by slice. either manually or by applying 2D contour
models. is a l[aborious process and requires a post-processing step to connect the sequence
of 2D contours into a continuous surface. Furthermore. the resulting surface reconstruc-
tion can contain inconsistencies or show rings or bands. The use of a true 3D deformable
surface model on the other hand, can result in a more efficient. robust segmentation
technique which ensures a globally smooth and coherent surface between image slices.
Deformable surface models in 3D were first used in computer vision [105] and com-
puter graphics [100] and several variants have since been developed. In the field of
computer-aided design. Terzopoulos and Qin [104] recently proposed D-NURBS (Dy-
namic Non-Uniform Rational B-Splines). a physics-based generalization of the NURBS

representation. D-NURBS allow a modeler to interactively sculpt complex shapes to
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required specification by applving simulated forces.

Many researchers have explored the use of deformable surface models for segmenting
structures in medical image volumes. Miller [69] constructs a polygonal approximation
to a sphere and geometrically deforms this ~balloon™ model until the balloon surface
conforms to the object surface in 3D CT data. The segmentation process is formulated
as the minimization of a cost function where the desired behavior of the balloon model
is determined by a local cost function associated with each model vertex. The cost
function is a weighted sum of three terms: a deformation potential that “inflates™ the
model vertices towards the object boundary. an image term that identifies features such
as edges and opposes the balloon expansion. and a term that maintains the topology of

the model by constraining each vertex to remain close to the centroid of its neighbors.

Cohen and Cohen [20. 22] and McInerney and Terzopoulos [61] use finite element and
physics-based techniques to implement an elastically deformable cylinder and sphere. re-
spectively. The models are used to segment the inner wall of the left ventricle of the heart
from MR or CT image volumes (Fig. 3.2). These deformable surfaces are based on the
thin-plate under tension surface spline (2.2). which controls and constrains the stretching
and bending of the surface. The models are fitted to data dynamically by integrating La-
grangian equations of motion through time in order to adjust the deformational degrees
of freedom. Furthermore. the finite element method is used to represent the models as
a continuous surface in the form of weighted sums of local polynomial basis functions.
The finite element method provides an analvtic surface representation and the use of
high-order polynomials rather than polvgons means that fewer elements are required to
accurately represent an object. Pentland and Sclaroff [77] and Nastar and Ayache {72]

also develop physics-based models but use a reduced modal basis for the finite elements.

Staib and Duncan {93] describe a 3D surface model used for geometric surface match-
ing to 3D medical image data. The model uses a Fourier parameterization which de-
composes the surface into a weighted sum of sinusoidal basis functions. Several different
surface types are developed such as tori. open surfaces. closed surfaces and tubes. Surface
finding is formulated as an optimization problem using gradient ascent which attracts

the surface to strong image gradients in the vicinity of the model. An advantage of the
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(a) (b)

Figure 3.2: (a) Deformable “balloon™ model embedded in an edge detected C'T image
volume deforming towards LV edges. Three orthogonal slices of the volume are shown.

(b) Reconstruction of LV [61].

Fourier parameterization is that it allows a wide variety of smooth surfaces to be de-
scribed with a small number of parameters. That is. a Fourier representation expresses
a function in terms of an orthonormal basis and higher indexed basis functions in the
sum represent higher spatial variation. Therefore. the series can be truncated and still
represent relatively smooth objects accurately.

Szeliski et al. [96] overcome the fixed topology limitation of parametric deformable
models by using a dynamic. self-organizing oriented particle system to model surfaces
of objects. The oriented particles. which can be visualized as small. flat disks. evolve
according to Newtonian mechanics and interact through external and interparticle forces.
The external forces attract the particles to the data while interparticle forces attempt to
group the particles into a coherent surface. The particles can reconstruct objects with
complex shapes and topologies by “flowing™ over the data. extracting and conforming to
meaningful surfaces. A triangulation is then performed which connects the particles into
a continuous global model that is consistent with the inferred object surface.

Leitner and Cinquin [51] have also developed a parametric deformable model. using

a tensor product spline surface, that is capable of changing topology from a sphere to a
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torus. Other notable work involving 3D deformable surface models and medical image

applications can be found in {27. 115. 97. 24] as well as several models described in the

following section.

3.3 Incorporating A Priori Knowledge

In medical images. the general shape. location and orientation of objects is often known
and this knowledge may be incorporated into the deformable model in the form of initial
conditions. data constraints. constraints on the model shape parameters. or into the
model fitting procedure. The use of implicit or explicit anatomical knowledge to guide
shape recovery is especially important for robust automatic interpretation of medical
images. For automatic interpretation. it is essential to have a model that not only
describes the size. shape. location and orientation of the target object but that also
permits expected variations in these characteristics. Automatic interpretation of medical
images can relieve clinicians from the labor intensive aspects of their work while increasing
the efficiency. accuracy. and reproducibility of the interpretations.

A number of researchers have incorporated knowledge of object shape into deformable
models by using deformable shape templates. These models usually use “hand-crafted”
global shape parameters to embodyv a priori knowledge of expected shape and shape
variation of the structures and have been used successfully for many applications of
automatic image interpretation. The idea of deformable templates can be traced back to
the early work on spring loaded templates by Fischler and Elshlager [33]. An excellent
example in computer vision is the work of Yuille ef al. [120] who construct deformable
templates for detecting and describing features of faces. such as the eve. [n medical
image analysis. Lipson et al. [53] note that axial cross sectional images of the spine yield
approximately elliptical vertebral contours and consequently extract the contours using
a deformable ellipsoidal template.

Deformable models based on superquadrics are another example of deformable shape
templates that are gaining in popularity in medical image research. Superquadrics con-
tain a small number of intuitive global shape parameters that can be tailored to the

average shape of a target anatomic structure. Furthermore, the global parameters can
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often be coupled with local shape parameters such as splines resulting in a powerful shape
representation scheme. For example. Metaxas and Terzopoulos [63] employ a dynamic
deformable superquadric model [102] to reconstruct and track human limbs from 3D
biokinetic data. Their models can deform both locally and globally by incorporating the
global shape parameters of a superellipsoid with the local degrees of freedom of a mem-
brane spline in a Lagrangian dynamics formulation. The global parameters efficiently
capture the gross shape features of the data. while the local deformation parameters re-
construct the fine details of complex shapes. Using Kalman filtering theory. they develop
and demonstrate a biokinetic motion tracker based on their deformable superquadric
model.

Vemuri and Radisavijevic [112. 111] construct a deformable superquadric model in
an orthonormal wavelet basis. This multi-resolution basis provides the model with the
ability to continuously transform from local to global shape deformations thereby allowing
a continuum of shape models to be created and to be represented with relatively few
parameters. They apply the model to segment and reconstruct anatomical structures in

the human brain from MRI data.

As a final example. Bardinet et al. [3. 6] fit a deformable superquadric to segmented
3D cardiac images and then refine the superquadric fit using a volumetric deformation
technique known as free form deformations (FFDs). FFDs are defined by tensor product
trivariate splines and can be visualized as a rubber-like box in which the object to be
deformed (in this case the superquadric) is embedded. Deformations of the box are
automatically transmitted to embedded objects. This volumetric aspect of FFDs allows
two superquadric surface models to be simultaneously deformed in order to reconstruct
the inner and outer surfaces of the left ventricle of the heart and the volume in between

these surfaces. Further examples of deformable superquadrics can be found in [76. 18]

Several researchers cast the deformable model fitting process in a probabilistic frame-
work and include prior knowledge of object shape by incorporating prior probability
distributions on the shape variables to be estimated [111. 92, 119. 44]. For example.
Staib and Duncan [92] use a deformable contour model on 2D echocardiograms and MR

images to extract the LV of the heart and the corpus callosum of the brain. respectively.
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This closed contour model is parameterized using an elliptic Fourier decomposition and
a priori shape information is included as a spatial probability expressed through the
likelihood of each model parameter. The model parameter probability distributions are
derived from a set of example object boundaries and serve to bias the contour model
towards expected or more likely shapes.

Szekely et al. [95] have also developed Fourier parameterized models. Furthermore.
theyv have added elasticity to their models to create “Fourier snakes™ in 2D and elastically
deformable Fourier surface models in 3D. By using the Fourier parameterization followed
by a statistical analysis of a training set. they define mean organ models and their
cigen-deformations. An elastic fit of the mean model in the subspace of eigenmodes
restricts possible deformations and finds an optimal match between the model surface
and boundary candidates.

Cootes et al. [23] and Hill et al. [43] present a statistically based technique for
building deformable shape templates and use these models to segment various organs
from 2D and 3D medical images. The statistical parameterization provides global shape
constraints and allows the model to deform only in ways implied by the training set. The
shape models represent objects by sets of landmark points which are placed in the same
way on an object boundary in each input image. For example. to extract the LV from
echocardiograms. they choose points around the ventricle boundary. the nearby edge
of the right ventricle. and the top of the left atrium. The points can be connected to
form a deformable contour. By examining the statistics of training sets of hand-labeled
medical images. and using principal component analysis. a shape model is derived that
describes the average positions and the major modes of variation of the object points.
New shapes are generated using the mean shape and a weighted sum of the major modes
of variation. Object boundaries are then segmented using this “point distribution model”
by examining a region around each model point to calculate the displacement required to
move it towards the boundary. These displacements are then used to update the shape

parameter weights.



Chapter 4

Topologically Adaptable Snakes

In this chapter we describe an extension to the classical snakes paradigm using a space
partitioning or decomposition technique to create topologically adaptabie snakes (T-
snakes). We begin by introducing the idea of using an affine cell decomposition of an
image domain to iteratively reparameterize a snakes model and to perform topological
transformations. We then describe the implementation of the model in detail. including
an overview of the theory of affine cell decomposition and approximation using a special
tyvpe of affine cell known as a simplex. We conclude the chapter with an overview of the

complete algorithm as well as a brief discussion of potential limitations of T-snakes.

4.1 Model Overview

We define our T-snakes model as a closed 2D contour consisting of a set of nodes con-
nected in series. The viscoelastic-like T-snake is a discrete approximation to a traditional
snakes model and retains many of the snakes properties. In our implementation. an “in-
flation™ force is used to push the model towards image edges until it is opposed by
external image forces. The internal forces act as a smoothness constraint and users can
interact with the model using spring forces and other constraints. The deformation of
the model is governed by discrete Lagrangian equations of motion.

Unlike traditional snakes. the set of nodes and interconnecting elements of a T-snake
does not remain constant during its evolution. That is. we decompose the image domain
into a grid of discrete cells. As the model moves under the influence of external and

internal forces. we reparameterize the model with a new set of nodes and elements by

33
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efficiently computing the intersection points of the model with the superposed grid. We
also keep track of the interior region of the model by “turning on™ any grid vertices the
T-snake passed over during its motion. By reparameterizing the model at each iteration
of the evolutionary process. we create a simple. elegant and automatic model subdivision
technique and the grid provides a framework for robust topological transformations. This
allows the model to be relatively independent of its initial placement and “flow™ into
complex shapes with complex topologies in a stable manner. Conversion to the traditional
parametric snakes model representation is simply a matter of disabling the grid at any
time during the evolutionary process. By providing a boundary representation as well as
a representation of the interior region of an object. this hyvbrid snakes model combines
the space partitioning, intrinsic parameterization and topological flexibility properties of

an implicit formulation with the boundary properties of a parametric model.

4.1.1 Relationship to Front Propagation

The motion of a T-snake is analogous to the motion of a propagating front. as in flame
propagation (see Appendix A). There exist several traditional numerical techniques used
to solve the equations of motion for this problem. The first set of techniques. as discussed
in [90]. parameterizes the moving front and discretizes the parameterization into a set
of marker particles or nodes. The normal direction to the front. the curvature. and
the stretch are approximated by discrete derivatives at the marker nodes. The motion
of the marker nodes is then governed by approximation to the equations of motion.
This Lagrangian' formulation reportedly suffers from instability problems and topological
changes in the front connectivity are difficult to achieve.

The second set of techniques. known as “volume of fluid” techniques [19]. track the
motion of the interior region rather than the boundary. These algorithms discretize the
interior region by superposing a grid of cells on the domain and assigning to each cell a
“volume fraction” corresponding to the amount of interior fluid currently in the cell. The

front is moved by constructing local polygonal approximations to the front in each cell

'A Lagrangian formulation or description of particle motion gives the velocity of each particle (i.e. a
particle is tracked with respect to its original coordinates). An Eulerian description gives the velocity
at fixed points (i.e. a particle is tracked with respect to its final coordinates).



CHAPTER 4. TOPOLOGICALLY ADAPTABLE SNAKES 35

based on neighboring volume fractions. This Eulerian technique is stable and topological
changes are easily handled. It may be difficult. however. to calculate front properties.
such as curvature and normals. from the coarse boundary representation used without
resorting to very fine resolution grids.

A third technique is the level set approach of Osher and Sethian [74] previously
introduced in Chapter 3. They model the front as the level set of an evolving higher-
dimensional surface. where the motion of the surface is described by a scalar Hamilton-
Jacobi equation with parabolic right hand side. An Eulerian formulation provides sta-
bility and topological changes are handled naturally in the higher dimensional space.

A T-snake is a hybrid model that contains aspects of all three techniques and attempts
to combine their strengths. Between reparameterization stages. a T-snake behaves as a
classical snake and evolves according to Lagrangian dynamics. This Lagrangian formu-
lation phase allows any data-derived or user-defined force to guide the snake. During the
reparameterization phase. the snake is reparameterized in terms of the simpiicial grid and
the fixed grid points are used to track the interior of the closed contour model. creating
a space partitioning similar to that of an implicit function. This Eulerian formulation

phase provides stability. intrinsic parameterization. and topological flexibility.

4.2 Model Description

A T-snake is a discrete form of the classical snake described in Chapter 2. It is defined as
a set of .V nodes indexed by i = L...... V. where the nodes are connected in series. We
associate with these nodes time varying positions x;(¢) = [z:(¢). yi(t)]. along with tension
forces a;(t), rigidity forces B,(t). inflation forces p,(¢). and external forces f;(¢) that act
in the image plane. A periodic boundary condition is applied x,(¢) = xx(t) to produce
a closed contour model.

The behavior of a T-snake is governed by a discrete and simplified form of equation

(2.7). The result is a set of first-order ordinary differential equations of motion
iXi + o + B, = p, +fi. (4.1)

where x; is the velocity of node :. v, is a damping coefficient that controls the rate of
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dissipation of the kinetic energy of the nodes. and f; and p; are external forces that attract
model nodes toward salient image edges. Since the model has no inertia. it comes to rest

as soon as the applied forces balance the internal forces (i.e. x; = 0).

4.2.1 Internal Forces

We connect the nodes in series using nonlinear springs which we also refer to as model
elements. Let [, be the given reference length of the spring connecting node ¢ to node
¢+ 1. and let ri(f) = x;4((f) — x,(¢) be the separation of the nodes. We want the spring
to resist expansion or compression only when its actual length ||r;|| is greater or less than

[; respectively. Hence. given the deformation €,(t) = [|r,|| — /.. we define the tension force
a; = a;6;F; —a,_ 1€, {(+.2)

where the «; is the tension parameter for node i and the caret denotes a unit vector. Since
the set of nodes and springs of our deformable contour model does not remain constant
during its evolution. we define the rest-lengths of the springs at time ¢ in terms of the
length of the springs at time ¢ — A¢t. This gives our model the hehavior of a viscoelastic
material.

The main objective of the rigidity forces are to minimize the local curvature of the
contour. There exist several discrete approximations to local curvature [117. 75]. For
example. one can define the local curvature at a vertex to be the difference between
the directions of the two normalized edge segments that join at that location. We use
an approximation that measures the distance between a vertex and the centroid of its
neighbors [69]. Consequently. the rigidity force attempts to minimize this distance and

is defined as

1
Bit) = bilxi(t) = 5(xict + Xus)). (1.3)

where b; is the rigidity parameter. This force can be made scale invariant by dividing
the right hand side of (4.3) by the distance between the neighbor nodes. A force in the

opposite direction. multiplied by 1/2. is also be applied to each of the neighbor nodes.
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4.2.2 External Forces

An inflation force is used to push the model towards intentity edges in the image [(zr. y).

nntil it is opposed by the image forces. The inflation force takes the form
p; =qF(I(z.y))n,. (4.4)

where n, is the unit normal vector to the contour at node i. and ¢ is the amplitude of

this force. The binary function F links the inflation force to the image data

F(l{z.y)) = +1. [(r.y)2>T. (4.5)

F(l(r.y)) = —-1. [(r.y)<T.

where T is an image intensity threshold. The functional F' makes the T-snake contract
when [{r.y) < T.

To stop the contour at significant edges. we construct the force
f. = pV P(x,). (4.6)

where the weight p controls the strength of the force and the potential P is defined by
(2.3). The weights p and q are usually chosen to be of the same order. with p slightly
larger than ¢ so that a significant edge will stop the inflation. but with ¢ large enough so
that the model will pass through weak or spurious edges.

To calculate a continuous image function /(r.y) for either (4.6) or {-.6) we compute
the intensity at an arbitrary point (r.y) by bilinearly interpolating the intensities at the

four pixels surrounding (r.y).

4.2.3 Numerical Integration

We integrate equation (4.1) forward through time using an explicit first-order Euler
method. This method approximates the temporal derivatives with forward finite differ-
ences. [t updates the positions of the model nodes from time ¢ to time t + At according

to the formula

| AL :
T =x = =a - B+ € 4 . (4.7)
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While the explicit Euler method is known to be unstable unless small time steps are used.
it is simple. efficient and. in our experience. a very reasonable range of time step sizes
can be found that produce stable T-snake behavior resulting in accurate segmentations.
However. more sophisticated numerical integration techniques such as Runge-Kutta [$2]
or semi-implicit methods [103] could also be used and would result in better convergence

and larger time steps. at the expense of a more complicated numerical implementation.

4.3 Simplicial Cell Decomposition

The intuitive idea of a space decomposition is to subdivide space into a collection of
disjoint connected subsets. Subdivision of a domain into simpler subdomains. along with
a structure that links these subdomains. allows us to obtain valuable information about
the geometry and the topology of the space. One common subset is a k-dimensional
cell (i.e. a set which is homeomorphic to an open disk of some dimension A). where
the boundary of each cell is defined to be a finite union of lower dimensional cells. The
subdivision of space using such subsets is known as a cellular compler [71]. The framework
of cellular complexes is a powerful tool for constructing definitions and proofs for image
topology [19].

Affine cell decompositions are examples of special cases of cell decompositions ob-
tained by restricting the geometry of the cells to that of a conver polytope. There are
two main types of affine cell decomposition methods: non-simplicial and simplicial. Most
nonsimplicial methods employv a rectangular tessellation of space. The marching cubes
algorithm [57] is an example of this type. These methods are fast and easy to implement
but they cannot be used to represent the boundaries of an implicitly defined object un-
ambiguously without the use of a disambiguation scheme. Although non-simplicial cell
decomposition methods can be used to reparameterize a T-snake. we use simplicial cell
decompesition [71. 110]. Simplicial cell decomposition is a theoretically sound decom-
position method that relies on classical results from algebraic topology related to the
piecewise linear structure of a simplicial compler. Computational work on this type of
method was pioneered by Allgower [1]. Throughout the remainder of this thesis, we will

use the terms “affine cell” and “simplicial cell” interchangeably.
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Figure 4.1: Freudenthal triangulation.

In a simplicial cell decomposition — also known as a triangulation — space is parti-
tioned into cells defined by open simplices. where an n-simplex is the simplest geometrical
object of dimension n: e.g.. a triangle in 2D or a tetrahedron in 3D. It is desirable to
have a small number of cell types. e.g. congruent cells. that differ only by orientation
or reflection. If all the cells are identical. computations can be made very simple and
efficient. The simplest triangulation of Euclidean space R" with this property is the
Coreter-Freudenthal triangulation (Fig. 4.1). It is constructed by dividing space using

a uniform cubic grid and the triangulation is obtained by subdividing each cube into n!

simplices.
More formally. given a set of A + 1 points {vo.v;..... v} € R™. the set is called
affinely independent if the vectors {v; — vg.va — tg.. ... vx — Uo} are linearly independent

(1.e. they do not all belong to the same k-dimensional hyperplane).
DEFINITION 1.1. The set

o = [vo..... LL]_{LeR"L_ZAL|Z,\_1,\>0} (4.8)

=0

is called a A—simpler having vertices {v;}*_;. [n other words. the simplex o* is a conver
linear hull of the points {v;}*,. The coefficients \; are usually called the barycentric
coordinates of v. If {w;}!_, is a nonempty subset of {¢;}*_,. the {-simplex 7 = [wq. . ... w
is called an [-dimensional face of o. In general. the simplex ¢! is called the ith (k —1)-
dimensional face of the simplex ¢*. Thus. a k-dimensional simplex has k + | faces of
dimension £ — L. A zero-dimensional face is a vertex. a one-dimensional face is an edge.
and a two-dimensional face is a triangle. If o is a A-simplex. the barycenter of ¢ is defined

by b(c) = L+1 Sk o vi. It is convenient to use a face of o which is formed from the convex
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(V)

Figure 4.2: A 3-simplex (far right) and examples of its & — l-dimensional faces. where

(from left to right) & = 0.1. and 2 respectively.

combination of the vertices of o with one or more specific vertices omitted (Figure 4.2}).
DEFINITION 4.2. A simplicial compler or triangulation 7 over a domain D € R™*! is

a family of simplices with the following properties:
l. D - U,,e";'.

2. If 6y.00 € T. then o, N oy is either empty or a common face (lower dimensional

simplex) of both ;..
3. If D is a compact subset of ®**! then it intersects only finitely many simplices.

DEFINITION 1.3. The meshsize of a triangulation T is defined by ¢ =sup,er diam o.
The meshsize depends on the space norm. and its value for different norms differ by a con-

stant. Using the Euclidean norm the meshsize cof the unitary Freudenthal triangulation
in R* is /n.
4.3.1 Simplicial Approximation

Medical image volumes represent the sampling, tvpically at the vertices of a cubical

lattice of voxels. of an intensity function /(z.y. =)

(Vi )| LSi< L 1<j< M. 1<k< N} (4.9)

IA

The boundaries of anatomic structures embedded in these images can be viewed as iso-

value surfaces S of this implicit function I(z.y,z) = Is (or I{z.y) = [¢. an isovalue
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A

Figure 4.3: Simplex classification.

)

contour in 2D)

Simplicial cell decompositions provide a framework for the creation of robust. con-
sistent local polvgonal (affine) approximations of the boundary contours (or boundary
surfaces in 3D) of these implicitly defined structures. In 2D. an anatomic structure par-
titions an image into two open sets of dimension 2 (the interior and exterior points) and
one open set of dimension | (the bournidary points). A simplex o? can be classified in
relation to this partitioning of space by testing the “sign™ of its vertices. If the signs
are the same for all vertices. the simplex must be totally inside or outside the struc-
ture. If the signs are different. the boundary of the structure must intersect the simplex
(Fig. -£.3). In a k-simplex. the negative (inside) vertices can always be separated from
the positive (outside) vertices by a single plane: thus an unambiguous polygonalization
of the simplex always exists. Furthermore. by the definition of a simplicial complex. a

consistent polygonization of the entire boundary contour (surface) will result.

[n a 2D image. the set of grid triangles (2-dimensional simplices) that intersect the
boundary contour of the anatomic structure (the boundary triangles) are called the {rans-
verse simplices. These boundary triangles form a two dimensional combinatorial manifold
that has as its dual a one dimensional manifold that approximates the contour. The one
dimensional manifold is constructed from the intersection of the object boundary con-
tour with the edges of each boundary triangle. The intersection points result in one line

segment ( l-dimensional simplex) approximating the boundary contour inside each bound-

*Due to sampling artifacts. spatial aliasing, and noise, Is is rarely well-defined.
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Figure 1.4: Simplicial approximation (dashed-line) of an object contour (solid-line) using
a Freudenthal triangulation. The model nodes (intersection points) are marked and the

boundary triangles are shaded.

ary triangle (Fig. 1.4). Each line segment intersects a boundary triangle at two distinct
edges. separating the inside vertices from the outside vertices. The set of all these line
segments constitute the combinatorial manifold that approximates the boundary contour
of the object.

Restating the above more formally. let H : R"*! — R" be a map. Given a trian-
gulation 7 of R"*!, we are approximating the components of H~'(0) (we shall use the
isovalue 0 without loss of generality) by using the values of H on the vertices of 7. This
leads to the following formal definitions and theorems [1]:

DEFINITION 4.4. For any map H : R**! — R". the piecewise linear approximation Hr

to H relative to the triangulation 7 of R**! is the map which is uniquely defined by

1. Hr(v) = H(v) for all vertices of T.

[V
.

For any (n + 1)-simplex ¢ = [v[.ve. . ... Unt2| € T, the restriction Hr|, of Hr to o

is an affine map. Consequently, if u = %2 X;v; is a point in o. then its barycentric

=1

coordinates JA; satisfy Z’-‘“‘f M=land \;>0for:=1..... n + 2. and since fr is
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affine. we have

n42 n42
H‘r(u) =H (Z /\,‘L‘,') = Z /\,‘H(L’,‘). (410)
=1

=1

3. The simplicial approximation of H is obtained as the union
Hr = UseTH,. (4.11)
where Hy(v) = H,(v) forv €cand o € T.

Implicit Function Theorem 1 Let H : R*"t* — R™ be a smooth map such that 0 €
range(H). Then M = {r € R*"**|H(z) = 0. r is a regular point of H} is a smooth

k-dimensional manifold.

For &£ = 1. the manifold is a curve and for & = 2. the manifold is a surface

Theorem 1 Let 0 be a regular value of Hr. If o € T has a non-empty intersection with
H7'(0) (i.e. it is transverse). then M, := o N H7'(0) is a k-dimensional polytope. and
the family

Mr:={M,|lec € T.on HF'(0) # 0} (4.12)

s a k-dimensional piecewise linear manifold approrimating M.
Proposition 1 Assume that H is Lipshitz continuous (i.e. there erists a constant a > 0

such that ||H(u) — H(v)|| < a|lu — v|| holds for all u.v € R"**) and triangulation T has
meshsize § > 0. Then ||H(r) — Hr(z)|| < 1ad? for r € R+

The theorem and proposition are not proved here; the reader is referred to [1].

4.3.2 Iterative Reparameterization

During .V time steps of equation (4.7) (referred to as a deformation step) a T-snake moves
from its current position to a new position.> At the beginning of the deformation step.
the model nodes are defined in terms of the edges of the grid boundary triangles. At

the end of the deformation step. the nodes have moved “oft™ of the grid triangle edges

3The T-snake is either expanding or shrinking, but not both. See Section 4.4 for a discussion of
T-snake deformation modes.



CHAPTER 4. TOPOLOGICALLY ADAPTABLE SNAKES 44

» ™Y g -
o’ / ..'u. - r/(" .
: v . v
! 4. X 2
. ZE “ P

.. 1o ® O s

(a) (b)
]
/

(c)

Figure 1.5: Phase 1 of T-snake reparameterization: (a) T-snake expands and moves off
grid during deformation step. (b) new model nodes are computed. {c) new T-snake nodes

and elements.
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(Figures 4.5a). We then reestablish the correspondence of the model with the grid by
computing a new simplicial approximation of the deformed T-snake. This new simplicial
approximation is computed using a novel two-phase “reparameterization” algorithm. In
phase one. we perform a local search and intersection test for each model element. That
is. for each element connecting two nodes. we compute a bounding box of the element
at its new position. Using this bounding box. we determine which grid triangle edges
may potentially intersect the model element. For each of the edges within the bounding
box. an intersection test is performed with the model element. [f an intersection point is
found. it is recorded and may become a node of the updated model (Figures 4.5b.c). If
an intersection point for this edge already exists. we can either use the latest intersection
point or the point closest to the “outside™ grid vertex of this edge. This first phase of the
reparameterization process is simple and efficient and is inherently parallel: each model

element can be processed independently.

During the deformation step. a T-snake “passes over” a set of grid triangle vertices
(Figure 4.6a). Using the analogy of front propagation. specifically flame propagation.
these grid vertices have been “burned”.! We are able to determine and track the interior
region of the T-snake by identifving and recording these burned grid vertices during the
deformation step. Furthermore, these interior grid vertices unambiguously define the
boundary of the model: theyv are used to continuously track the grid boundary triangles
throughout the evolution of the model and hence determine the set of new model nodes
used to form the T-snake boundary. By maintaining an interior region representation as
well as a boundary representation of a T-snake. we are able to construct a characteristic
function of an object O. The characteristic function yO : R* — {0.1} of an object O. is
defined as \O(p) =1 if pe O and \O(p) =01if p 5 O.

Determining the set of grid vertices that have been burned during a deformation step

uses a simple. robust and original classification algorithm. Each model element may have

*The inflation force described in section 4.2 pushes a T-snake in a direction normal to the snake at
each model node. Curves evolved in this manners can develop shocks or singularitics such as corners
and self-intersections (Appendix A). Once these singularities develop, it is not clear how to evolve the
curve beyond the singularities. We solve this problem by mimicing the physically correct behavior for a
propagating flame front. This behavior is selected by adhering to a so-called entropy condition [T4]: «f
the T-snake 1s viewed as a burming flame, then once a particle 1s burnt it stays burnt.
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(a)

(c) (d)

Figure 4.6: Phase 2 of T-snake reparameterization: (a) a model element of an expanding
T-snake may pass over a grid vertex. (b) subspace partitioning (c) new grid vertices

(light-shaded). (d) new T-snake.
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Figure 4.7: Formation of subspaces used in the labeling of a grid vertex.

passed over zero. one. or several grid vertices during a deformation step. For each model
element. we form a bounding box around the current position and the new position of
the element. The bounding box allows us to quickly determine the subset of grid vertices
that may have been burned. For each of the grid vertices within the bounding box. we
partition the image domain into four subspaces by forming two half-lines (Fig. 4.6a.b).
The lines are formed by joining the two model nodes of a model element at their current
position to a grid vertex. \We then classify the two model nodes at their new positions into
one of the four subspaces. This classification allows us to quickly determine whether the
grid vertex in question has been burned. The classification algorithm essentially consists
of several dot products and is extremely efficient and inherently parallel. Figures 4.6a-c.
tllustrate the second phase of the reparameterization process. In Figure 1.6c. the new
grid vertices are shown in light gray. Finally. Figure 4.6d shows the new T-snake after

both reparameterization phases have completed.

Classification Algorithm

This section describes a robust. efficient algorithm for determining if a model element
has passed over or “burned”™ a grid vertex v during one deformation step. We begin
by partitioning the bounded image domain into four subspaces (Figure 4.7) by forming
two half-lines L1 and L2. Line L1 is formed using node pl of the model element and

v. and line L2 is formed using node p2 and v. During one deformation step, pl and p2
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move to a new location. pln and p2n respectively. approximately in the direction of the
normal defined at the model nodes pl and p2. We restrict the maximum movement of
a model node during one deformation step to be much less than the dimensions of the
image domain. This restriction allows us to assume the movement follows a straight line
path and prevents the formation of degenerate subspaces. \We then classify pln and p2n
into one of the four subspaces. depicted in Figure 4.7. There are 2 model nodes and 4
subspaces for a total of 16 possible classification combinations (Figure 4.8(1)-(16)). The
four points pl. p2. p2n.pln form a closed polygon Q. This polvgon may be nonconvex in
which case it can be considered to consist of two convex (triangular) pieces.
DEFINITION 4.5. A point p is inside polygon Q if a ray cast from p intersects eractly
one edge of Q or eractly three edges of Q.

This definition is invalid when the rav passes exactly through an endpoint of an edge
of polyvgon Q. We will assume that this situation is detectable and one edge of the
polygon can be shortened slightly.

DEFINITION 1.6. A grid verter v is labeled as ~burned” if it is inside polygon Q.

According to these definitions. from Figure 4.8(1)-(16). cases 1. 2. and 7 would label
the v burned. cases 3-6 and 8-12 would label v not-burned. Thus. by simply classifving
pln and p2n into one of the four subspaces. we can immediately label v for the majority
of the cases. The classification algorithm consists of two inside-outside half-space tests
cach for pln and p2n. A half-space test essentially consists of a dot product hetween a
point p and the point-normal equation of a line and is extremely efficient. Furthermore.
a neighbor element of pIp2 shares one of the half-lines. L1 or L2 (which are formed from
the fixed grid vertex point v). and the maximum element movement restriction mentioned
earlier guarantees that degenerate subspaces cannot be formed. This process results in
stable numerical computations.

Cases 13-16 are ambiguous and require one additional test. For each of these cases. we
perform an inside-outside half-space test for v using a line formed by the model element
at its new location pInp2n to define the half-spaces. For cases 13 and 14. v must lie in
the same half-space as pl and p2 for v to be labeled as burned. For cases 15 and 16. v

must lie in the same half-space as pl and p2. respectively.
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(13) (14) (15) (16)

Figure 4.8: Classification combinations.

49
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(a) (b) (c)

Figure 4.9: Examples of T-snake topological transformations: (a) self-intersection. (b)
shrinking and splitting, (c¢) merging. The resulting T-snake(s) after the transformations
are shown as the dotted line(s). Node reconnections occur automatically in the shaded

triangles so that inside and outside grid vertices are separated by a model element.

We claim that the classification algorithm is sufficient to unambiguously label a grid
vertex point ¢ as burned or not-burned. We present a simple. gcometric proof of this

claim in Appendix B.

4.3.3 Topological Transformations

When a T-snake collides with itself or with another T-snake. or when a T-snake breaks
into two or more parts. a topological transformation must take place. In order to effect
consistent topological changes. consistent decisions must be made about disconnecting
and reconnecting T-snake nodes. The simplicial grid and the reparameterization process
provides us with an automatic and unambiguous mechanism to perform reconnections.
By tracking the interior grid vertices (and hence the boundary grid triangles). adhering to
the entropy condition. and reestablishing the correspondence of the model with the grid

.

after a deformation step. we can always unambiguously determine the boundary or “iso-
contour” of the new T-snake(s). We simply compute new model elements from the signs
of the grid vertices in each boundary triangle and from the intersection points computed
in the first phase of reparameterization. such that the inside and outside grid vertices

of these triangles are separated by the model element (Fig. 4.9). Thus. by mimicing
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the evolving level set of an implicit function. the simplicial grid and the reparameter-
ization process guarantees that topological transformations are handled automatically.

consistently and efficiently.

4.3.4 The T-Snake Algorithm

Unlike the level set evolution techniques which accede control to a higher dimensional im-
plicit function. T-snakes retain an explicit parametric model formulation. The parametric
formulation allows us to track and control the evolution of the T-snake. Consequently.
reparameterizations can be performed very efficiently and constraints can be easily im-
posed on the model. The entire process is essentially reduced to computing a new model
“region” — a boundary segment and interior grid vertices — generated by the movement
of one model element during a deformation step. The union of these regions defines the
new T-snake boundary and updates the interior of the T-snake. This process is directly
controllable and parallelizable. The T-snake algorithm is as follows:

For each deformation step (.V time steps):
l. For each time step:

(a) Compute the external and internal forces acting on model nodes.

(b) Update the node positions using equation {4.7).

2. Reparamcterization Phase 1: Using the procedure described in Section 4.3.2. com-
pute the grid intersection points for all model elements. These intersection points

will become the new model nodes.

3. Reparameterization Phase 2: For each model element. compute and record the grid

vertices “burned”.

4. Using this set of burned grid vertices. determine the corresponding set of boundary
grid triangles and compute all new model elements and nodes. Model nodes contain
pointers to neighboring nodes. Model node neighbors (as well as element neighbors)

are easily computed via adjacent boundary grid triangles.
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5. For all current model elements, determine if the model element is still valid. A
model element is valid if its corresponding grid triangle is still a boundary triangle.

Discard invalid model elements and unused model nodes.

A T-snake is considered to have reached its equilibrium state when all of the model
elements have been inactive for a specified number of deformation steps. Model element
activity or movement is measured via the grid again using a flame propagation analogy.
Model elements are assigned a “temperature” based on the number of deformation steps
the element (and its corresponding boundary grid triangle) has remained valid. An
element is considered inactive when its temperature falls below a pre-set ~freezing point™.
Once a T-snake has reached equilibrium the simplicial grid can be discarded. if desired.
and the model run as a classical snake. The internal energy constraints will then create

more evenly spaced model nodes (Section 3.1.4).

4.4 Limitations of T-Snakes

Section 4.3 described the mechanism by which a T-snake evolves. In particular. to
propagate a T-snake past singularities or shocks we adhere to an entropy condition: once
a particle (in our case. a grid vertex) is burned. it stays burned. While this policy
mimics physically correct behavior of a propagating front (which is consistent with our
physics-based framework) and provides robust topological transformation abilities. the
implication of this policy is that a T-snake can only expand or shrink as it evolves. but
not both. We typically seed a T-snake inside an object and allow it to expand towards
the object boundaries. Conversely, we can also surround an object with a T-snake and
allow it to shrink and wrap itself around the object. This deformation mode limitation
can affect the degree of user interaction. [f a T-snake is expanding. the user cannot exert
a force on the snake in an “inward” direction. In practice however. this restriction is
rarely problematic. Typically user interaction with T-snakes involves “dragging” model
nodes in the direction of evolution to pull the T-snake off of a spurious edge or into a
narrow cavity partially “blocked™ by an edge. Furthermore, a possible solution to this

deformation limitation would be to reverse the direction of evolution occasionally for a
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Figure 4.10: .J, triangulation.

small time interval.

The resolution of the simplicial grid controls the degree of geometric flexibility of a
T-snake. If an object of interest contains a narrow protrusion. the grid resolution must
be fine enough to allow the T-snake to flow into it. On the other hand. the “body™ of
the object may be relatively smooth (i.e. other than the protrusion. the object boundary
may not exhibit rapid shape variations). This situation results in an excessive number
of model elements used to recover and describe the object boundary. One solution to
this problem is to remove or merge model elements in regions of low shape variation
in a post-processing phase. This topic has been addressed in 3D by several researchers

[107. 38] and is not explored in this thesis.

The decomposition of a rectangular grid into triangles (Fig. 4.1) introduces diagonal
edges on the rectangles. The orientation of these diagonal edges is arbitrarily chosen
and affects the connectivity of a T-snake. For this reason. topological correctness {i.e.
faithfulness to the geometry of the object boundary) of the T-snake is not guaranteed.
only topological consistency (i.e. closed contours, without artifacts such as holes. are
always generated). Typically. this orientation bias does not present a problem since the
resolution of the grid is set fine enough to accommodate object feature size. Alternatively.
the J; triangulation (Fig. 4.10) can be used to ameliorate this orientation bias problem
(although it does not entirely eliminate it) at the expense of an increased number of
model elements and algorithmic complexity. As mentioned previously. any affine cellular
complex could be used as the T-snake grid. Topological disambiguation schemes may

be required in some cases while others may increase algorithmic complexity or perhaps
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decrease the number of model elements. We have found a simplicial complex. using the
Coxeter-Freudenthal triangulation. to be an excellent balance of mathematical theory.
algorithmic complexity. and model compactness.

As mentioned previously. if a target object contains a very narrow feature. the grid
resolution must be fine enough to allow the T-snake to flow into it. Furthermore. the
grid orientation bias mentioned above also affects the minimum feature width that can
be segmented. In general. image features that are orthogonal to the diagonal edges of the
grid are the limiting factor. These features must be wider than the length of a diagonal
edge (i.e. the grid meshsize ) to allow their segmentation. Another factor that affects the
minimum segmentable feature width w is the ratio of the inflation force strength to the
strength of the internal forces. As this ratio decreases. w increases. Finally. other factors
affecting w are the width of the (Gaussian) smoothing filter o used in the extraction of
image edge features (see section 2.1). image noise. and the local variation of the image
intensity threshold 7. Given a noise-free image and T-snake parameter values within
a normal range. then in our experience. the minimum segmentable feature width w is

approximately equal to 1.54.



Chapter 5

T-Snakes Features and Constraints

This chapter describes and demonstrates several features of T-snakes. In particular we
illustrate. with examples. the ability of T-snakes to flow into complex shapes and adapt to
object topology. the interactive capabilities of T-snakes. and several additional features
arising from the simplicial grid. We then describe the various constraint mechanisms that
can be imposed on T-snakes. Geometric constraints. topological constraints. statistical

constraints. and global shape constraints are presented.

5.1 T-Snakes Features
5.1.1 Geometric Coverage and Intrinsic Parameterization

Using the simplicial grid to reparameterize a T-snake at each iteration of the evolution
process creates a simple. elegant and automatic model subdivision technique. This pro-
cess allows a T-snake to segment and reconstruct objects with significant protrusions.
tube-like objects. or objects with bifurcations (Figures 5.1. 5.2). Furthermore. manifolds
such as curves and surfaces have certain shape properties that are independent of any
particular parameterization; the intrinsic geometry of these objects depends only on their
shape in the domain. Embedding and defining T-snakes in terms of the simplicial grid
removes any explicit parameterization and instead parameterizes the fitted T-snake in
terms of this intrinsic local geometry. This property can significantly increase segmen-
tation efficiency and reproducibility by making the T-snake relatively insensitive to its
initial placement. A T-snake may be seeded practicallv anywhere within or surround-

ing a target object and still produce similar final segmentations with similar intrinsic

ot

[
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Figure 5.1: T-snake flowing into object with protrusions.

parameterizations (Figure 5.3).! Efficiency is increased in many scenarios because the
time-consuming task of initializing a snake near the boundary of the target object is
mitigated.

This automatic and intrinsic reparameterization property of T-snakes is important
in the design of completely automatic segmentation techniques. [t is possible to design
explicitly parameterized snakes models that are capable of automatic global or local
reparameterization [56. 46]. This can be acheived. for example. by checking along the
entire length of the snake for any snake element that has become larger than some
predefined maximum length and then dividing these elements into shorter ones of equal
length [56]. In semi-automatic segmentation scenarios. this scheme can be quite effective
since the snake is typically placed near the boundary of the target object. In automatic

scenarios however, since the explicit parameterization of the snake is not directly related

!Noise and spurious image features can still affect T-snake behavior and, consequently, affect the
result of the segmentation.
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(a) (b) (c)
Figure 5.2: T-snake flowing along a spiral tube-like object.

to the geometry of the target object. different segmentation results may be generated
by snakes placed in different initial positions. especially for objects with verv complex

shapes.

5.1.2 Topological Adaptability

As described in Chapter 4. the simplicial grid provides a mathematically sound framework
for robust topological transformations. This feature allows a T-snake to seamlessly split
or merge and adapt to the topology of the target object (Figures 5.4. 3.5). Topological
adaptability combined with geometric flexibility can potentially significantly increase the

automation of the segmentation process.

5.1.3 Multi-resolution Capability

ACD-based deformable models are inherently multi-resolution. The size and number of
model elements is directly determined by the grid resolution (Figure 5.6). Furthermore.
if the grid resolution is restricted to multiples of an initial coarse resolution, the finer
grids preserve the model nodes of the coarse resolution grids (Figure 5.7).

The multi-resolution feature of T-snakes and T-surfaces can be exploited in several
ways. The grid resolution can be adjusted to generate a model tailored to expected image
feature size or to generate a desired accuracy. We can also compute an image pyramid
that provides a set of images at decreasing scales. Coarser resolution models can then

be run on large scale images and the result can be used as input to finer scale images.
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Figure 5.3: Initialization insensitivity of T-snakes. A T-snake may be seeded essentially

anywhere within or surrounding an object.
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(c) (d)

Figure 5.4: T-snake flowing and splitting to segment object with complex topology.
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Figure 5.3: T-snake shrinking, wrapping and splitting around multiple objects.
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Figure 5.6: T-snake representation of circular object using 3 grid resolutions: (a) 4 x 4

(b) 8 x (8 ¢c) 16 x 16.

4
e \

(2) (b)

Figure 5.7: T-snake nodes on coarse-resolution grid are preserved on finer resolution grid.
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(a) (b) (c)

Figure 5.8: Redistribution of snake nodes after discarding simplicial grid. Grid resolution:

(a) 4 x4 (b) 8 x8(c) 16 x 16.

Although this procedure is not explored further in this thesis. we believe it has potential

for significant improvements in segmentation efficiency for many applications.

5.1.4 Conversion to/from Classical Snakes

Converting a T-snake to the traditional parametric snakes model is simply a matter of
discarding the simplicial grid and disabling the reparameterization process. This conver-
sion can be performed at any time during the model evolution. The internal forces of the
snake will then act to redistribute the model nodes to produce a more even distribution.
(Figure 5.8).

Converting a closed snake back to a T-snake requires the specification of a point
inside the snake as well as the superposition of the grid and the resumption of the
reparameterization process. Without the specification of an inside point it is possible
that the conversion will produce an incorrect T-snake. This situation arises when a
closed snake crosses itself. Conversion from a conventional snake to a T-snake can also
be carried out at any time during the model evoliution.

The T-snake conversion feature can be very useful in some interactive segmentation
scenarios. The viscoelastic T-snake can be “slippery” when the user attempts to pull
T-snake nodes with the mouse. It is also possible to break off small pieces of a T-snake if

excessive interactive force is used. The “rubber-band”-like classical snake exhibits more
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Figure 5.9: Segmentation of the blood vessels in angiogram of retina using using multiple

T-snakes.

predictable behavior under interactive control. Converting to and from the two models

allows a user to dvnamically fine-tune sections of the T-snake fit.

5.1.5 Multiple T-Snakes

Multiple T-snakes can be staticallv or dynamically created (or destroved) (Figure 5.9).
This feature can be useful in several scenarios. Firstly. multiple T-snakes can evolve con-
currently on parallel machine architectures to improve segmentation efficiency. Secondly.
users can seed T-snakes on several objects or on part of an object that is blocked by an
edge to the object body. Finally. target objects can be automatically identified. seeded

with multiple T-snakes. and then automatically segmented.

Collision Detection and Avoidance

As described in Chapter 4. we keep track of the interior region of a T-snake by “turning
on” any grid vertices the T-snake passed over during its evolution. This feature can be
used to perform efficient collision detections among multiple T-snakes. When segmenting
multiple anatomic structures with common or adjacent boundaries using multiple T-
snakes. an efficient collision detection and avoidance scheme could be utilized as an extra
constraint in the segmentation process. By assigning different values to the grid vertices
of each T-snake, we effectively give the T-snakes a unique identifier (Fig. 5.10). As a
T-snake deforms, it may attempt to move into boundary grid triangles containing “on”

vertices. A simple check can then be performed to determine the identity of the “on”
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Figure 5.10: Collision detection and avoidance using model interior region “identifiers”.

A T-snake cannot move into “territory” already occupied by another T-snake.

L

(a) (b) (c)

Figure 5.11: Two models colliding, detecting and avoiding intersection.

vertices. [f the grid vertices belong to another T-snake. various “avoidance” strategies
can be used such as applying a repelling force to the intersecting nodes of the colliding
T-snake to push it out of the occupied region (Figure 5.11).

We demonstrate the use of the model collision detection feature with a simple example.
A sagittal slice of a preprocessed MR brain image was manually segmented into four
anatomical regions and the pixels in each region were assigned a constant intensity value.
We initialized two T-snakes in regions 2 and 4 and recovered the shapes of these regions
(Figure 5.12). We then initialized two T-snakes in regions 1 and 3 and allowed the snakes
to evolve, using only a minimum intensity threshold as the external image force. When
these T-snakes attempt to flow into the brighter regions 4 and 3 they collide with the

initial T-snakes and are forced to assume the shape of the common boundary regions
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Figure 5.12: Reconstruction of preprocessed anatomical regions of the brain using multi-
ple models. The collision detection feature was used as an extra constraint when recon-

structing regions 1 and 3.

(Fig. 5.12c).

T-snake “Seeds”

We can make use of the multiple T-snakes feature in an interesting approach to automatic
segmentation. The automatic segmentation of images containing multiple objects of
interest. objects embedded inside other objects. or objects containing holes creates an
initialization problem that cannot be resolved using a single T-snake. If the T-snake
is initialized such that it surrounds the objects of interest and then shrinks and split
around these objects. only the outer boundaries will be recovered. Conversely. to grow a
T-snake from within each object requires prior knowledge of. or automatic identification
of the objects. In our approach. inspired by [97], we uniformly distribute a set of small T-
snake “seeds” over the image domain. These T-snakes then progressively expand. shrink.
merge. and/or split to recover larger and larger regions of each object. including both the
inner and outer boundaries (Figs. 5.13a-f). If there is no object of interest to attract a
T-snake. it will shrink and eventually disappear. This technique results in a single stage

process and requires no user interaction.

5.1.6 Model Element “Cooling” Process

We incorporate a model element “cooling™ process into the T-snake implementation. As

described in Section 4.3.4, model elements are assigned a temperature based on the num-
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Figure 5.13: T-snakes seeds growing. shrinking. merging. splitting and disappearing to

automaticlly recover vertebral phantom parts.

ber of deformations steps the element (and its corresponding boundary grid triangle)
has remained valid. The temperature attribute provides an excellent measure of model
element activity or movement. When the temperature of an element falls below a user-
set freezing point. the element is removed from the computational process and stored
in a table. This adjustable mechanism allows the system to maintain a small. manage-
able computational burden for many segmentation scenarios. Figure 5.14 illustrates the
cooling process. As the T-snake flows along the spiral-shaped object. only a few model
elements of the “flame™ are active (hot) at one time. The remaining elements are inactive
(frozen) and do not contribute to the computational load. I[n this example. a 40 x 40
cell grid is used to segment the spiral from the 300 x 340 pixel image. The segmentation

completes in a few seconds on a Silicon Graphics Indigo workstation.

5.1.7 Interactive Control

The affine cell decomposition framework allows T-snakes to maintain the intuitive inter-
active capabilities associated with classical snakes. Users can exert attraction or repulsion
forces using “volcanos”, “magnets”. and “anchored springs™ [47]. For example. figure 5.15
shows a T-snake being pulled in the direction of the mouse. As mentioned previously, the

viscoelastic T-snake can be “slippery” when using mouse driven forces. In the example
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Figure 5.14: T-snake flowing along a spiral tube-like object. The active part of the

T-snake is in white, the inactive part is black.
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(a) (b) (c)
Figure 5.15: T-snake flowing along retinal artery is “pulled” into smaller branch by user.

presented. the mouse spring has slipped a little along the T-snake during the application
of the spring force as the T-snake begins to flow into the smaller branch. Other useful

T-snake interaction mechanisms are described in Section 5.2.1.

5.2 T-Snakes Constraints

The T-snakes features described above combine to create a powerful. semi-automatic
segmentation technique. The addition of the constraints detailed in the following section
provides T-snakes with the potential for completely automatic medical image analysis.
Soft constraints are incorporated through the T-snakes physics-based formulation. Hard
constraints are easily incorporated through the ACD framework and through the para-

metric model formulation that maintains direct control of T-snake evolution.

5.2.1 Geometric Constraints

Geometric constraints are incorporated into the T-snakes model either as soft constraints
to be satisfied approximately or as hard constraints that must never be violated. Soft
constraints are incorporated into the T-snakes physics-based formulation as energy func-
tions or force functions. An example of a soft point constraint was described in the
previous section through the mouse-driven spring force.

Hard fixed-point constraints are easily incorporated into the ACD framework. The
user begins by specifying a series of points with the mouse or some other input device on
or near the boundary of the target object (Figure 5.16a). These points are connected to

form a closed polygon and the polygon is converted to an initial T-snake. Each of these
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Figure 5.16: Example of geometric “hard” fixed point constraints.

69
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(2) (b)

Figure 5.17: CT image slice of LV and edge-detected version.

fixed points lies within a grid boundary triangle. Instead of forming one model element
in each of these boundary triangles the fixed points are used to create two elements.
using a fixed point to form a shared model node for the two model elements. Model
nodes created from fixed points are frozen (i.e. unresponsive to forces). To ensure that
boundary triangles containing fixed points remain valid boundary triangles throughout
the T-snake evolution. at least one vertex of these boundary triangles must remain “off”
or not “burned”. By enforcing this simple policy we ensure that the fixed points always
remain valid model nodes of the T-snake. Figures 5.16b-d show a T-snake constrained to
pass through four fixed points as it flows and conforms to a square-shaped object. The
four points were positioned slightly away from the boundary of the object for illustrative
purposes. Currently we restrict the number of fixed points per grid triangle to one.
Other useful hard geometric constraints include barriers or “forbidden zones”. For
example. the user can place a circle or ellipse in the path of a T-snake. If a T-snake
node enters one of these implicitly defined zones. it can either be instantly frozen or the
model element cooling process will quickly freeze elements connected to the node. This
constraint forces the T-snake to take on the shape of the impacted region of the circle or

ellipse. allowing the user to “shore-up” object boundary sections with sparse edges.

5.2.2 Statistical Constraints

Section 4.2.2 described the external forces used to drive a T-snake towards object bound-
aries and lock it onto object edges. Unfortunately it is often the case that image edge

forces (equation 4.6) are not quite strong enough to overcome the inflation forces, result-
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Figure 3.18: T-snake segmenting LV image slice using statistically-weighted inflation

force and image edge forces.

ing in a “leak”™ of the T-snake into regions surrounding the target object. Consequently.
interactive guidance or intervention may be required to guarantee a good result. Using
region based statistics to weight the inflation force can effectively address this problem
and thereby increase model automation. Region based statistics can be incorporated into

the inflation force by extending the functional F of equation 4.6

F(I{x.y)) +1, |[{z.y) — pu| < ko, (5.1)

F(I(z.y))

=1, |I(z.y) — u| > ko.

where u is the mean image intensity of the target object, o the standard deviation of
the object intensity and k is a user defined constant. The statistical values, u and o. are
tvpically computed or known a priori. Figure 5.17a shows a CT image slice of a canine
heart. The bright region is the left ventricle (LV). In this particular slice, notice that
the LV intensity diminishes considerably in some regions resulting in very weak edges
(Figure 5.17b). Figures 5.18 a-d show the T-snake segmenting the LV using a statistically
weighted inflation force. Figures 5.2.2a.b provide an enlarged view. Notice that the area
around the papillary muscles (the indentation in the upper right part of the T-snake) has
been correctly segmented whereas this area has been smoothed- over when only a single

threshold value is used to weight the inflation force (Figure 5.20).
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(a) (b)

Figure 5.19: Close-up view of LV segmentation: (a) image intensity slice. (b) edge-

detected image slice.

Figure 5.20: Segmentation of LV without incorporating image intensity statistics.
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5.2.3 Topological Constraints

A promising technique for the analysis and interpretation of medical images is skele-
tonization. Automating the skeletonization process is difficult however because thinning
algorithms are highly sensitive to noise. Providing a smooth segmented object to the
thinning algorithms which is guaranteed to have the topology of the real object can
potentially result in more robust skeletonizations. Classical parametric snakes models
can produce smooth object segmentations but it is difficult to guarantee that no self-
intersections of the fitted snake model have occurred. Consequently during discretiza-
tion. incorrect object topologies can be generated. The ACD framework. on the other
hand. provides a robust mechanism to identify and prevent self-intersections (and there-
fore possible topology changes) of the T-snake. The result is a simple. efficient technique
for imposing a global topological constraint on a T-snake that guarantees the topology

of the fitted T-snake matches that of the real object.

Topology Preserving Deformations

We implement the global topological constraint using topology-preserving T-snake defor-
mations. The T-snake has an initial topology of a circle and the evolution of the model
is performed using a sequence of these deformations. We are able to efficiently perform
the topology-preserving deformations since our model is defined in terms of a simplicial
cell complex.

During one deformation step, a T-snake is deformed (expanded or contracted) and
a finite number of grid vertices will be burned. The addition of these grid vertices
to the current set of burned vertices defines a new T-snake boundary. We would like to
ensure that these additional grid vertices cannot change the T-snake topology. Therefore.
before a model element [ burns a grid vertex v during a deformation step. we validate the
deformation of {. If the tentative deformation of [ is deemed invalid. then the simplest
strategy is to cancel its deformation. However, this strategy may undermine the dynamic
properties of the T-snake since some model elements are temporarily frozen for potentially
several deformation steps. A repulsion force can therefore be calculated as the sum of

internal and reversed inflation forces. lf the deformation of the element is still invalid
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Figure 5.21: At least 6 T-snake model elements are needed to contain a grid vertex.

despite the addition of the repulsion force. the deformation is cancelled.

We begin the validation process by assuming that none of the grid vertices connected
to the target (“un-burned™) vertex v by a grid triangle edge will be burned during the
current deformation step. We observe that there exists a path of grid triangle edges from
an unburned grid vertex to all other unburned grid vertices. where no grid edge intersects
a T-snake element. Otherwise there would exist an “island” of unburned grid vertices.
indicating that a topology change of the T-snake had already occurred (all burned grid
vertices are connected in a similar manner). We can therefore assume that some — but
not all — of the vertices connected to © may already have been burned.

Given any grid vertex. the smallest number of model elements needed to form a closed
polyvgon containing the vertex is 6 (Figure 5.21). Therefore we check the 6 grid triangles
surrounding v and extract any and all model elements present in these triangles. Model
element [ will. of course. be a member of this set. We then perform a breadth first
traversal of these extracted elements. That is, beginning with a seed element (/) we
visit its two neighboring elements. If either of these elements is a member of the set of
extracted elements. it is placed on a queue. We then take the first element from the
queue. visit its two neighbor elements (if they have not already been visited) and again.
place any neighbor on the queue that is a member of the extracted element set. This
process is repeated until the queue is empty or all of the extracted model elements have
been visited.

If all of the extracted model elements were marked as visited during the traversal.
then these elements are all neighbor elements; they form a contiguous section of the

T-snake with a maximum path “length” of 6 model elements. In this case, the defor-
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(a) (b)

Figure 5.22: Example of topology-preserving deformation. In (a). the model elements in
triangles 4. B.C. F form a contiguous section of the T-snake and cannot cause a topology
change when the grid vertex (light-shaded square) is burned. In (b). if element . for
example. burns the grid vertex. a topology change will occur. forming two T-snakes (one

inner T-snake and one outer).

mation of { during this deformation step is deemed valid since the extracted elements
cannot form a closed circuit around v (Figure 5.22a). This observation follows from our
assumptions that at least one of the grid vertices directly connected to v remains un-
burned. If the extracted elements do not form a contiguous set then the deformation of
[ is deemed invalid. In this case. a topology change of the T-snake will occur (Figure
5.22b). Since we do not actually update model element positions until after phase 2 of
the reparameterization process (Section 4.3.2). the validation process is deformation step
dependent. For example (Figure 5.23) during one deformation step model element A
may validly burn grid vertex 1 while model element B validly burns vertex 2. This would
result in a topology change. with a small T-snake surrounding vertices 3 and 4. For
this reason. we define two model element deformation restrictions that ensure a model

topology preserving deformation:

. A grid vertex cannot be burned during the current deformation step if any of the

6 grid vertices connected to it have been burned during this deformation step.

2. A grid vertex v cannot be burned by a model element A if
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Figure 5.23: Example used to illustrate the time dependency of the model element val-
idation proces. During one deformation step. element A may validly burn vertex | and
element B may validly burn vertex 2. A topology change will occur resulting in two

T-snakes. one inner surrounding vertices 3 and 4. and one outer T-snake.

(a) there exists another model element B whose grid triangle is one of the 6 grid

triangles surrounding v,

(b) there does not exist a connected path from 4 to B through all other model

elements extracted from the 6 grid triangles surrounding v.

Topological Constraint Examples

Figures 5.24-5.26 demonstrate the topological constraint mechanism with a series of syn-
thetic examples. In the first series (Figures 5.24a-d) a model is seeded within a donut
shaped object. The model flows into the object. collides with itself. and is unable to
interpenetrate. Figure 5.25a shows a closeup of the collision region. Figure 5.25b shows
the same object but using a finer resolution grid. Figures 5.26a-d.e-h depict two more

examples using two synthetic data sets presented in Section 5.1.2 for comparison.

5.2.4 Global Shape Constraints

[n this section we present a technique for imposing global shape constraints on T-snakes.
We use multiple deformable superquadric shape templates (referred to as “cells”) that
are fitted to pieces of the target object and are constrained to overlap (Figure 5.27).

In Chapter 3 we described the recent work of several researchers involving superquadric
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Figure 5.24: Example of T-snake topological constraint. The T-snake flows around the
donut-shaped object recovering its shape. It then collides with itself and is unable to

interpenetrate.
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Figure 5.25: A close-up view of the self-collision zone. In (b) the same example is repeated

with a finer resolution grid.

(e) (f) (g) (h)

Figure 5.26: Examples demonstrating T-snake topological constraint.
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Figure 5.27: Superquadric “cells” fitted to tubular-shaped object.

shape templates as a method of incorporating a priori knowledge into shape recovery
problems. The deformable superquadric cells described here are modified versions of
the dvnamic deformable superquadric models developed by Metaxas and Terzopoulos
[102. 68]. Appendix C provides a detailed description of our superquadric cells as well as
the cell-fitting and cell-blending process.

Like T-snakes. superquadrics have both an implicit and parametric representation.
Consequently. we can incorporate both region and boundary information into the su-
perquadric cell-fitting process. Furthermore, we have developed a cell growing and split-
ting process. In the first phase of the process. a seed cell is initially placed within a region
of the target object. Initial cell placement is currently manual but automatic mechanisms
could be easily created for many objects (using, for example. bounding boxes). The cell
then globally deforms and adapts to the coarse shape of that region (Figure 5.28a.b). In
the second phase, the parametrically-defined “skin™ of the fitted cell is locally deformed
for a preset number of iterations (Figure 5.28c). We then examine the displacement of
the skin from the underlying cell to find sections of the skin that have achieved a local
maximum displacement. The average position of a local maximum section is used as a
seed site for a new “child” superquadric cell. Seed sites could also be preset near “parent”
cell boundaries for objects with relatively simple shapes. Points on the parent cell closest
this seed site are used as a constraint point: a “child” cell is constrained to stay within
a small distance of this point (Figure 5.29a-d). In addition, to deterinine a good initial
orientation of non-circular cells, child ceils are “born™ as circles and their growth or de-
formation is restricted to global scaling and translation for a fixed time period. During
this preliminary growth phase, the child cell attempts to center itself among local image
edge features. The orientation of the cell is then computed from its center position and

the constraint point on the parent cell (i.e. along an axis formed from these points).
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(c)

(b)

(a)

Figure 5.28: (a),(b) Superquadric cell growing and fitting to section of object. (c) Para-

metric “skin” contour of cell deforming away from cell. Maximum displacement regions

(c) (d)

are used as seed sites for “child” cells.

(b)

(a)

Figure 5.29: Superquadric cells growing and “splitting” to capture coarse shape of object.

Once the cell orientation has been computed. the cell squareness parameter is set to
a predetermined value that closely matches cell shape to object shape and the normal
growth of the cell is initiated.

A priori knowledge of a specific shape recovery problem can be incorporated into
the cell growing/splitting process either statically or dvnamically. For example. limits
on the global shape parameters of an individual cell can be preset: upper and lower
limits for the scale. bend, taper. and eccentricity of a cell can ensure that infeasible cells
are not generated. The minimum and maximum number of cells can also be statically
determined. Conversely, “child” cells can dynamically “inherit” shape characteristics
from their parent during the cell splitting process. Child cells can also be “informed”
of current region and edge information by a parent. For example. it is often the case in
angiograms of arterial structures that the intensity of pixels diminishes as the distance
from the root of the artery “tree” increases. This property makes it difficult to find a
single intensity threshold value. By performing local region and edge analysis. a parent
cell can detect changes to the image intensity and pass this information to child cells.
The result is a robust adaptive threshold setting technique.

The cell growing/splitting process terminates when no further seed sites can be found
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Figure 5.30: (a) Superquadric cells blended to form initial T-snake. (b) Final fitted

T-snake (c) Fitted T-snake and underlying cells.

or the preset maximum number of cells has been reached. Using the implicit form of
the superquadric cells and the simplicial grid, the implicit cell functions are blended
resulting in an isocontour closely surrounding the cells (Figure 5.30a). This implicit skin
is converted to a T-snake. We then allow the T-snake to deform as usual to capture the
shape details of the object (Figure 5.30b). Using anchored springs. we can also constrain
the distance between the T-snake nodes and the initial implicit “skin™. We can then use
the displacement of the final T-snake from the underlying superquadrics as a mechanism

for the automatic detection of shape abnormalities (Figure 5.30c¢).

Superquadric cells possess several desirable properties for noisy data fitting:
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e A small number of intuitive global shape parameters that can generate and concisely

describe a wide range of shapes.

e An implicit and parametric representation. The parametric form provides a well-
defined boundary representation that can be used to perform efficient cell fitting
and inter-cell constraints. The implicit form provides a well-defined cell interior

and the ability to add or blend cells together.

e [mage region and edge information can be integrated over the cell boundary and/or
cell area. The effect of missing or noisy image features is therefore greatly mini-

mized.

These features. combined with the locally deformable T-snakes. result in a very robust
shape recovery technique that is “tailorable™ to a specific image analysis task. [n Chapter
7 we present several examples using the superquadric cell/T-snake system to demonstrate

its potential as a widely applicable and fully automatic medical image analysis technique.



Chapter 6

Topologically Adaptable Surfaces

This chapter presents topologically adaptable surfaces (T-surfaces) — a deformable
closed-surface model that is a 3D extension of T-snakes. We begin this chapter with
a description of the physics-based model formulation. highlighting the differences of the
2D and 3D models. We then extend the simplicial cell decomposition framework to three
dimensions using tetrahedral cells and demonstrate the fundamental similarity of the
2D and 3D algorithms. We conclude the chapter with illustrative examples of T-surface

features and constraints.

6.1 Model Description

We define our discrete deformable surface model as a closed oriented triangular surface
mesh. A T-surface is a three dimensional generalization of a T-snake. Furthermore.
analogous to the T-snake. a T-surface is a discrete form of a classical deformable model
(1.e. a closed form of the deformable surface described in section 2.1.3). The vertices
of the T-surface triangles, the model nodes. act as a dynamic particle system where the
particles are interconnected by discrete spring units [109]. Like the T-snake. we associate
with these nodes time varying positions x;(t) = [z:(¢). yi(t), z:()]. along with “tension”
forces a;(t). “rigidity” forces B,(¢), “inflation forces™ p,(t). and external forces f;(¢).
The behavior of the T-surface is governed by a 3D form of equation (4.1). Similarly.
3D forms of the tension forces (4.2), inflation forces (4.4). and external image forces {4.6)

are used. Like the T-snake, the rigidity forces attempt to minimize the local curvature

33
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A

(a) (b)

Figure 6.1: (a) 3D Freudenthal triangulation. (b) Cubic cell division into 6 tetrahedra:
po = (po-p1-p3-p7). p1 = (Po.p1.Ps.pP7). p2 = (Po-P2-P3.p7). p3 = (Po.p2.Ps.p7). P13 =
(Po- p1- ps- p7)- P5s = (Po. pa. Ps. pr7)-

of the model by keeping a model node at the centroid of its neighbors [69]

1
B.(t) =b; (X.'(f)*;l-zxj) . (6.1)

JEN
where n is the number of neighbors. This force can be made scale invariant by dividing

the right hand side of (6.1) with the maximum distance between neighboring nodes.

6.1.1 3D Simplicial Cell Decomposition

Simplicial cell decomposition in 3D uses tetrahedra. The 3D Coxeter-Freudenthal trian-
gulation (i.e. tetrahedrization) (Figure 6.1a) is constructed by dividing Euclidean space
using a uniform cubic grid and subdividing each cube into 6 tetrahedra (Figure 6.1b).
The set of grid tetrahedra that intersect the boundary surface of the anatomic struc-
ture (the boundary tetrahedra) form a three dimensional combinatorial manifold that
has as its dual a two dimensional manifold that approximates the object boundary sur-
face. The two dimensional manifold is constructed from the intersection of the object
boundary surface with the edges of each boundary tetrahedra. The intersection points
result in one triangle or one quadrilateral (which can be subdivided into two triangles)
approximating the surface inside each boundary tetrahedra (Fig. 6.2). where each trian-

gle or quadrilateral intersects a tetrahedron on three or four distinct edges. respectively.
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Figure 6.2: Intersection of object boundary with grid tetrahedra. Either one triangle is
generated or one quadrilateral which can be divided into two triangles. The “signs™ of

the tetrahedra vertices indicate whether the vertex is inside or outside the object.
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Figure 6.3: Approximation of a sphere using a 4 x 4 x 4 grid.
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(a)

Figure 6.4: Formation of subspaces used in the classification algorithm. (a) Three planes
are formed by joining the two nodes of a model triangle edge with a grid vertex. (b) The

three planes partition space into 8 subspaces.

The triangle (or quadrilateral) separates the positive vertices of the tetrahedron from
the negative vertices. The set of all these triangles constitute the combinatorial manifold

that approximates the object boundary surface (Figure 6.3).

6.1.2 Iterative Reparameterization

The T-surface reparameterization process is identical to the T-snakes case. In phase 1.
a bounding box is formed around each model element (triangle) at its new position and
grid intersection points are computed. The intersection points are used to create the new
model nodes.

In phase 2. each model triangle may have passed over zero. one. or several grid
vertices during a deformation step (Figure 6.5a). The model triangle at its current and
new positions form a prism-like polvhedron. The sides of this prism may be nonplanar
so they are divided into two triangles forming an 8-sided polyhedron (Figure 6.5b) (there
are two possible triangulations of the prism sides). To determine if a grid vertex is burned
by a model triangle during a deformation step, we must determine if the grid vertex is
contained by (inside) the polyhedron. The polyhedron may be twisted and/or inverted
depending on the path followed by the model element nodes during the deformation

step. Rather than deal with the potentially complex-shaped polyhedron directly. we use
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(c)

Figure 6.5: (a) A model triangle moves to a new position during a deformation step
and potentially burns a grid vertex. (b) The 8-sided polyhedron formed from the model
triangle at current and new positions. (c) The 8 subspaces used to classify a model

triangle at its new position and determine if the grid vertex was burned.
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a simple. robust classification algorithm that depends on the fixed positions of the grid
vertex and the well-defined current position of the model triangle nodes pl.p2.p3. The
classification algorithm is a 3D extension of the T-snakes algorithm described in Section
4.3.2. That is. we partition the image domain into eight subspaces by forming three
planes. The three planes are formed by joining the two nodes of each model triangle edge
at their current position to the target grid vertex (Figure 6.4a.b). We then classify the
three nodes of the model triangle at its new position pln.p2n.p3n into one of the eight
subspaces (Figure 6.5¢). The classification algorithm is then used to quickly determine
whether the grid vertex in question has been burned. The following section outlines the

basic principles used to construct the algorithm.

3D Classification Algorithm

As mentioned above. we begin by classifving pln.p2n.p3n into one of the 8 subspaces.
This classification operation consists of 3 inside-outside half-space tests for each model
element node. A 3D half-space test essentially consists of a dot product between a point
p and the point-normal equation of a plane and is extremely efficient. There are 3 model
nodes and 8 subspaces for a total of 512 possible classification combinations.

Examination of the 2D classification algorithm reveals essentially two underlying prin-
ciples. For cases 1-12 (Figure 4.8). if pln lies to the left of L1 (defined as the inside
half-space). and p2n lies to the right (in the inside half-space) of L2. then v is labeled as
burned. For the ambiguous cases (13. 14). this principle also holds: although in case 14,
it 1s reversed. A second principle can then be derived which states that v and either of pl
or p2 must lie in the same half-space of the half-spaces defined by plnp2n. For case 15
(or 16) a similar principle states that v must lie in the same half-space as pl (p2) where
the half-spaces are again defined by plnp2n.

These two simple principles carry over to the 3D classification algorithm. We first
note that in the 2D case each point, pln.p2n. has its own “constraint™ line LI.L[2
respectively, against which it is classified. In 3D, each point pln.p2n.p3n is associated
with fwo constraint planes. For example, pln is associated with the two planes defined

by points pl,p2.v and pl.p3.v. The first principle. extended to 3D, states the following:
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e Point pin. ¢ = 1.2,3. is in the inside half-space of one of its two constraint planes
(i.e. there is at least one point (pln.p2n. p3n) in the inside space of each constraint

plane).

® There is at least one point pin. ¢ = 1.2.3. in the inside space of all constraint

planes.

If these two conditions are met. then v is labeled as burned.
For the ambiguous cases in 3D analogous to cases 13. 14 in 2D (i.e. no point (pln. p2n. p3n)

is inside all 3 constraint planes or outside all 3 planes), a second principle is used:

e Vertex v lies in the same half-space as pl or p2 or p3. of the half-spaces defined by

the plane formed from model triangle pln. p2n. p3n.

If this condition and the two conditions from the first principle are met. ¢ is labeled
as burned. For the 3D cases equivalent to the 2D cases 13.16. the second principle is

modified slightly:

e Vertex v lies in the same half-space as all points pl. p2. p3 that have a corresponding
point pln.p2n.p3n in the inside space of all 3 constraint planes (where the half-

spaces are again defined by the plane formed from the model triangle pln. p2n. p3n.

6.1.3 Topological Transformations

Topological transformations are handled as in the T-snakes case. That is. by tracking
the interior grid vertices (and hence the boundary grid tetrahedra) and reestablishing the
correspondence of the T-surface with the grid after each deformation step. the boundary

or “isosurface” of the new model(s) is uniquely determined.

6.2 T-Surface Features

Chapter 3 described various features of T-snakes. These features are inherent to both 2D
and 3D ACD-based deformable models. The following illustrative examples will reiterate

several of these features with T-surfaces.
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(a) (b) (c) (d) (e) (f)

Figure 6.6: T-surface flowing into an object with a bifurcation. The dark shaded regions

are “frozen” and have been removed from the computation.

6.2.1 Geometric Coverage and Topological Adaptability

In the first example. we use a synthetic data set of a branching structure to demonstrate
the automatic model element subdivision provided by the reparameterization process
(Figure 6.6(1)-(6)). This feature provides a T-surface with broad geometric coverage.
This example also illustrates the model element cooling process described in section
5.1.6. The darker shaded regions of the T-surface indicate frozen model elements. Only
a relatively small number of model elements are active throughout the T-surface evolu-
tion in this example. Consequently, the segmentation and reconstruction requires onlv
approximately 1 minute on an SGI Indigo 2 workstation (grid resolution: 32 x 32 x 32
cubic cells. each divided into 6 tetrahedra. data set: 128 x 128 x 128 voxels). Figure
6.6f shows the T-surface converted into a classical deformable surface model. Like the
T-snake, conversion to a classical deformable model is simply a matter of discarding the

grid.

In the second set of examples we demonstrate the topological adaptability of T-
surfaces. Figures 6.7. 6.8, and 6.9 show a T-surface growing (or shrinking) and merging
with itself (or splitting) to segment several synthetic data sets. In Figures 6.8e and 6.9f,

the T-surface has been converted to a classical deformable surface model.
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(d) () (F)

Figure 6.7: T-surface deforming and merging with itself to recover toroidal object.

(d) (e)

Figure 6.8: T-surface recovering shape of object with complex topology.
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(d) (e) (1)

Figure 6.9: T-surface shrinking. wrapping, and splitting to recover interlocked ring ob-

jects.
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(a)

Figure 6.10: Approximation of a sphere using (a) 4 x 4 x 4 grid and (b) 8 x 8 x 8 grid.

(a) (b)

Figure 6.11: Conversion of T-surface sphere approximation to classical deformable surface
model using (a) 4 x 4 x 4 grid and (b} 8 x 8 x 8 grid. Note the redistribution of model

nodes from the action of the internal forces.

6.2.2 Multiresolution Capability

Figure 6.10 shows a sphere approximated with a T-surface at two grid resolutions. Like
the T-snake. if the grid resolution is restricted to multiples of an initial coarse resolution.
the finer grids preserve the T-surface model nodes of the coarse resolution grids.

As we have mentioned, converting a T-surface to a classical deformable surface model
is simply a matter of discarding the grid. This action results in a redistribution of the

surface model nodes due to the internal forces (Figure 6.11).

6.3 T-Surface Constraints

We have incorporated several of the constraint mechanisms described in Section 5.2 into

the T-surface model. While it is relatively straightforward to include hard geometric point
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constraints into the 3D ACD framework (the procedure is essentially identical to that of
T-snakes). this type of constraint has not been implemented. Statistical constraints are
also not described in this section (the principle is identical to the 2D case). They are.

however. used in several of the application examples presented in Chapter 7.

6.3.1 Topological Constraints

As described in Section 5.2.3. the ACD framework provides a robust. efficient mechanism
to identify and prevent model self-intersections. allowing us to impose a global topological
constraint on T-snakes and T-surfaces. In the 3D case. the T-surface has an initial
topology of a sphere. A series of topology-preserving deformations is then used to deform

the model.

The principle of the 3D topology-preserving deformation is similar to the 2D case. To
reiterate. a model element [ is allowed to burn a grid vertex v during a deformation step
only if the deformation of the element is deemed valid. The validation check is performed
by extracting any and all model elements from the 24 grid tetrahedra surrounding @v.
including model element {. Like the 2D case. we then perform a breadth first traversal of
these extracted elements to determine if they form a contiguous section of the model. In
this case. any element of the extracted set can be reached from any other element through
neighboring elements. where all neighbor elements are also members of the extracted set

(two model elements are neighbors if they share at least one model node).

[f the extracted model elements do form a contiguous section of the T-surface. then
the deformation of [ during this deformation step is deemed valid since the extracted
clements cannot form a closed circuit around v. If the extracted elements do not form a
contiguous set then the deformaticn of [ is deemed invalid. Like T-snakes. since we do
not actually update model element positions until after phase 2 of the reparameterization
process (Section 6.1.2). the validation check is time-step dependent. For this reason a
grid vertex cannot be burned during the current deformation step if any of the 26 grid

vertices connected to it have been burned during this deformation step.
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(d) (e) (f)

Figure 6.12: T-surface flowing around torus. The topology constraint prevents the model

from merging with itself. It collides but cannot not penetrate.

Figure 6.13: Cross-sectional slices of the fitted T-surface.
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(a)

Figure 6.14: T-surface fit to object with complex topology. The topologyv constraint
prevents the T-surface from merging with itself. (b) Cross-section of the fitted model

illustrating that no topology change has taken place.

(a) (b) (c) (d)

Figure 6.15: T-surface shrinking and wrapping around torus. The topology constraints

prevents the T-surface from splitting.
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(a) (b) (c) (d) (e) (F)

Figure 6.16: Superquadric cells growing and splitting to recover object with bifurcation.

6.3.2 Global Shape Constraints

We have extended the superquadric cell growing/splitting procedure to 3D using superel-
lipsoidal cells (Figure 6.16a-f). As in the 2D case. the superellipsoids are able to scale.
bend and taper. and are constrained to overlap. Once a cell has completed its growing
phase. a parametric “skin” surface deforms away from the cell. Maximum skin displace-
ment regions are then determined and child cell seed-sites computed. Child cells are
given an initial spherical shape for a fixed number of deformations to establish a good
orientation. They are then converted to cyvlinders (in this example) for the remainder of
the growing phase. Upon termination of the cell growing/splitting process. the implicit
form of the deformed superquadric ellipsoids are blended resulting in an isosurface closely
surrounding the cells (Figure 6.17a). This implicit skin is converted to a T-surface which

deforms to capture the shape details of the object (Figure 6.17b).
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(a) (b)

[Figure 6.17: (a) Result of blend of superquadric cells to form initial T-surface. (b) Final

fit of T-surface.



Chapter 7

Segmentation of Medical Images
with T-Snakes and T-Surfaces

This chapter presents 2D and 3D segmentation examples using T-snakes and T-surfaces.
A wide range of anatomic structures with complex shapes and topologies are extracted
from a variety of medical images. Examples range from segmenting neuronal cells from an
EM photomicrograph to segmenting cerebral vasculature from massive Magnetic Reso-
nance Angiogram (MRA) image volumes. The examples serve to demonstrate the power
and flexibility of simplicial cell decomposition based deformable models for segmenta-
tion. reconstruction and analysis. This chapter also describes our prototype ACD-based

interactive segmentation system.

7.1 Prototype Medical Image Processing System

We have developed prototype interactive segmentation systems based on 2D and 3D
versions of our ACD-based deformable models. The systems are written in C and are im-
plemented on Silicon Graphics workstations. User interaction is made available through
a graphical user interface and an input device such as a mouse. The remainder of this
section will briefly describe the 3D system.

The 3D systern provides views of the data and model in separate windows to facilitate
the initialization. interaction and visualization of the data and the T-surface. One window
displays a 3D view of the model which can be interactively rotated or scaled. Another

window displays a 2D image slice with the corresponding cross sectional contour of the

99
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model overlaid. Three standard view planes are available to display the image slices
(XY. XZ. YZ). The user can quickly scan through the image volume slices using the

kevboard arrow keys.

Two control panels are used for interaction and display. The first control panel is
used in combination with the mouse to initialize the deformable model. Initialization is
performed using an implicitly defined superquadric function. The superquadric “seed”
can be quickly scaled. benrt and tapered. if desired, using the control panel. placed inside
the object of interest (or scaled such that it contains the object) and is then converted
to a T-surface representation. Multiple “seeds™ can be dynamically created and placed
throughout the object. Seed placement is performed with the mouse and the 2D image
slice window. A cross-sectional view of the seed is displayed in the image slice window
and the user can employ the mouse to move the seed into position. This process is

repeated for the two other orthogonal views of the image volume.

The second control panel controls model evolution and display. The model can be
stopped. started. and restarted. and model evolution and display parameters can be
dynamically changed. Furthermore. the user can also interact with the model in the 2D
image slice window by positioning the mouse at some point in the window and depressing
a mouse button. The mouse position is determined and the closest model point on the
cross-sectional contour is calculated. A spring force is then applied to the model in the
direction of the vector from the model point to the mouse position. The force is applied
as long as the mouse button is depressed and its direction can be changed by dragging
the mouse button to a new position in the window. The user can also interact with the
model by positioning the mouse and depressing a mouse button to specify a *pin™ point.
Pin points apply a sustained spring force to the closest model node on the cross—sectional
contour. These sustained forces “pin” the model to the point (i.e. force the model to
closely approximate the pin point). This mechanism allows the user to reinforce or create

an object edge.
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(e)

Figure 7.1: Segmentation of two cross sectional images of a human vertebra phantom.

7.2 Image Segmentation with T-Snakes
7.2.1 Segmentation of Vertebra Phantom Cross-sections

Our first experiment demonstrates the geometric and topological flexibility of T-snakes
on a more realistic image. We segment several 128 x 120 image slices from a CT image
volume of a human vertebra phantom. We use a 50 x 50 squared cell grid (with each cell
divided into two triangles) and model parameters: p = 51.0, ¢ = 50.0, ¢ = 20.0, b = 40.0.
At = 0.005. and N = 10 (time steps per deformation step). Once the T-snake collides
with itself in Figures 7.1a-d, it automatically splits into three parts. two parts segmenting
the inner boundary of the vertebra and one for the outer boundary. In Figures 7.1e-h.

the snake shrink-wraps itself around the objects and splits to segment the different parts.

7.2.2 Segmentation of Vasculature from Retinal Images
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Figure 7.2: Segmentation of the blood vessels in angiogram of retina. The top row is an

image sequence showing a snake flowing and branching along a vessel.
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Retinal angiograms provide information about the blood supply system of the retina.
Thev are used in diagnosing diabetic retinopathy, hypertension and various vascular
disorders. Different imaging techniques, such as color or fluorescin photography. and
scanning laser opthalmoscopy are now available. Fluorescent angiography is the most
common technique, as it provides high resolution images. Routine analysis of retinal im-
ages involves inspection of the vessel tree (for abnormally shaped vessels. their branching
pattern. vessel caliber), presence and location of microaneurysms. haemorrhages. exu-
dates, new vessels, degree of retinal perfusion and the shape and size of the optic disc.

Analyzing the vessel morphology first requires their extraction and reconstruction in
some suitable analytic form. Skeletonization algorithms can then be applied to compute
vessel topology and geometry. Segmentation of the vessels is an especially difficult prob-
lem. Fluorescent angiograms of the retina show a marked decrease of image intensity
from the center of the image to the periphery due to the two dimensional projection of
the retinal surface and inhomogeneity of the illumination. For this reason, we currently
require some user interaction to perform the segmentation using T-snakes.

We initialized a T-snake at the source of each major branch of a 1024 x 1024 pixel
angiogram (Figure 7.2) in the vicinity of the optic disk and performed the segmentation
one branch at a time. To enable the T-snake to flow along the narrow vessels, a pixel-
resolution grid was required with model parameters: p = 51.0. ¢ = 50.0, a = 20.0.
b = 40.0. At = 0.0004. and NV = 10. Due to the image intensity variation we used
several barriers or forbidden zones (Section 5.2.1) to prevent a T-snake from leaking into
non-vessel areas. To decrease or eliminate this user interaction and to force a T-snake
into the very narrow vessels may require image preprocessing to adjust or normalize the

average intensity and contrast. This topic is not explored in this thesis.

Segmentation using Global Shape Constraints

In this experiment we demonstrate the potential of the cell growing and splitting process
for segmenting and analyzing branching structures. We seed a vessel with a single cell
in a clipped portion of the retinal image and start the cell growing-splitting process

(Figure 7.3a-d). When a cell splits, it passes current information about the local image
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(a) (b)

Figure 7.3: Superquadric cells growing and splitting to recover vessels in clipped retinal

image.

Figure 7.4: The result of the cell growing-splitting process.
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Figure 7.5: (a) Superquadric cells blended to form initial T-snake. (b) Final T-snake

segmentation. (c) T-snake with underlying cells.

intensity to its child. The child cell is able to alter the image intensity threshold based on
this information, effectively compensating for the intensity variation mentioned earlier.
The final result of the cell fitting is shown in Figure 7.4. The cells are blended to form
the initial T-snake (Figure 7.3a), which then deforms to accurately capture the vessel
boundaries (Figure 7.5b). The combination of the T-snake and underlying cells (Figure

7.5¢) provides sufficient information to perform a complete analysis of vessel morphology.

7.2.3 Segmentation of Brain Contours

Segmenting the human cerebral cortex from MR images is an important first step in sub-
sequent operations such as visualization, quantitative analysis. multimodal registration.
and mapping and unfolding the cortex. Contours representing the highly convoluted
cortex are usually determined through edge detection and linking, or contour following.
or are drawn by hand. Edge detection methods suffer from the identification of either
too few or too many edge points, creating problems in edge linking. Contour following
methods are typically noise sensitive and cannot easily be made to satisfy known bound-
ary conditions. Finally. drawing contours manually is labor-intensive. time-consuming
and difficult to reproduce.

The use of snakes and other deformable models can overcome many of these prob-

lems. However. classical snakes often have difficulty deforming into the narrow cavities
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(a)

Figure 7.6: T-snake used to segment gray-matter/white-matter interface in MR brain

image slice.

Figure 7.7: (a) Closeup of T-snake fit. (b) Fitted T-snake (black) overlaid on manually

segmented image.
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(a) (b) (c) (d)

Figure 7.8: T-snake shrinking and segmenting CSF/gray matter interface in MR brain

image slice.

and protrusions of the cortex. T-snakes, on the other hand, are an effective tool for this
segmentation problem. In the first experiment. we attempt to extract the gray mat-
ter/white matter interface of the cortex from a 256 x 256 MR image slice. A T-snake
is initialized within the white matter (Figure 7.6a). flows around the ventricles (Figure
7.6b.c) and finally conforms to the gray/white matter interface (Figure 7.6d). A pixel-
resolution grid was used with model parameters: p = 0.0, ¢ = 50.0, a = 20.0, b = 40.0.
At = 0.001. and NV = 5. and the segmentation requires about 90 seconds on an SGI
Indigo workstation. Statistics of white matter pixel intensity are used to weight the T-
snake inflation force (Section 5.2.2). Figure 7.7a shows a scaled-up view of the result.
Figure 7.7b shows the segmentation result overlaid on a manually segmented version of

the image. Evidently. the T-snake performs very well on this problem.

In the second experiment. we wrap a T-snake around an MR image slice from the
same data set and allow it to shrink and conform to the outer surface (cerebrospinal
fluid/gray matter interface) of the cortex (Figure 7.8a-d). A 128 x 128 cell grid was used
with model parameters: p = 0.0, ¢ = 50.0, a = 20.0, 6 = 40.0, At = 0.001,and N = 5. In
this experiment we not only use statistical constraints but also the topological constraint
described in Section 5.2.3. As mentioned in that section, robust skeletonization is an
excellent technique for constructing structural representations of cortical topography.
Figure 7.9 shows a scaled-up view of the segmentation result and Figure 7.10 shows a

close-up view of the T-snake near a very narrow region of gray matter. Segmentation
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Figure 7.9: (a) Closeup of T-snake segmentation. (b) Fitted T-snake overlaid on manually

segmented image.

Figure 7.10: Closeup of fitted T-snake near narrow cavity. Topological constraints pre-

vent T-snake self-intersection.
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Figure 7.11: (a) T-snake fitted to second MR brain image slice. (b) Fitted T-snake

overlaid on manually segmented image.

results from a second slice are also presented (Figures 7.11).

7.2.4 Segmentation of the Corpus Callosum

In this experiment we use cell growing and splitting process to segment the corpus callo-
sum from a mid-sagittal slice of an MRI brain data set. A superquadric cell is manually
seeded approximately in the center of the corpus callosum and the cell growing-splitting
process is initiated (Figure 7.12a-d). Automatic seeding could be performed by comput-
ing the center of a box bounding the structure or the center of gravity of the structure.
The result of the cell fitting is shown in Figure 7.13.

We “tailor” the cell growing-splitting process to fit this particular segmentation prob-

lem by
1. using a preset number of cells.

2. specifying a different superquadric “squareness” parameter for the two “end” cells

and removing the point constraint with their parent cells.
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(a) (b) (c) (d)

Figure 7.12: Superquadric cells growing and splitting to recover coarse shape of corpus

callosum from MR brain image slice.

Figure 7.13: Final fitted superquadric cells.
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(2) (b) (c)

Figure 7.14: (a) Blended superquadric cells forming initial T-snake. (b) Final fitted

T-snake. (c) Example of T-snake segmentation without global shape constraint.

Once the cells have extracted the rough shape of the corpus callosum. they are blended
to form the initial T-snake (Figure 7.14a). The T-snake then deforms to robustly and
accurately capture the shape details (Figure 7.14b). Figure 7.14(c) shows a segmentation
result using a T-snake only. without the constraints imposed by superquadric cells. In

this example. the T-snake has “leaked” into a neighboring structure.

7.2.5 Segmentation of Neuronal Cells

In this experiment we make use of geometric point constraints - both “soft” and “hard”
constraints - to segment neuronal cells in an EM photomicrograph. We begin by defining
a series of points on the cell boundary, forming a closed polygon from these points and
finally converting the polygon to an initial T-snake (Figure 7.15a). The T-snake deforms
and recovers the cell boundary (Figure 7.15b) and is constrained to pass through the
initial user-defined points (Figure 7.15¢). The segmentation requires under a second on
an SGI Indigo workstation and only a few seconds to select the initial points. A second
example is shown in Figure 7.15¢,d.

In a third experiment we make use of soft geometric point constraints in the form of
anchored springs. The springs exert forces on T-snake nodes that are within a specified
neighborhood of the springs. In Figures 7.16a.b the initialization and result of the T-

snake segmentation without spring constraints is shown. The T-snake has attached itself
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Figure 7.15: T-snake (derived from closed polygon) used to segment neuronal cells. The

T-snake is constrained to pass through the initial user-specified points.

Figure 7.16: (a) (b) T-snake formed from user-specified closed polygon deforms to seg-

ment neuronal cell. (c) Soft point constraints are used to pull T-snake off spurious edges.
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(d) (e) (f)

Figure 7.17: T-surface segmenting vertebra phantom from CT image volume.

to several interior parts of the cell. Figure 7.16c shows the addition of spring constraints
(the springs were added dvnamically) has resulted in a correct segmentation of the cell
boundary. All experiments use a 160 x 122 cell grid on the 640 x 488 pixel image and

model parameters: p = 51.0, ¢ = 50.0. a = 20.0, b = 40.0, At = 0.003, and .V = 10.

7.3 Volume Image Segmentation with T-Surfaces
7.3.1 Vertebra Phantom Segmentation and Reconstruction

In the first example we apply a T-surface to a 120 x 128 x 52 CT image volume of a
human vertebra phantom to demonstrate the topological adaptability of the 3D model

(Figure 7.17). We use a 32 x 30 x 13 cell grid (where each cubical cell is divided into 6
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(a) (b)

Figure 7.18: Two views of the fitted T-surface.

Figure 7.19: Several cross-sections of T-surface overlaid on CT vertebra image volume

slices.
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Figure 7.20: CT sagittal image slice of canine heart.

tetrahedra) with model parameters: p = 20.0, ¢ = 80.0. ¢ = 20.0. & = 60.0. At = 0.001.
and .V = 10. Figure 7.18 shows two views of the final result after conversion to a classical

deformable surface. Figure 7.19 shows several cross-sections of the fitted model.

7.3.2 Segmentation of the Left Ventricle and Aorta

In this experiment we segment and reconstruct the left-ventricular (LV) chamber and
aorta from 3D CT images of a canine heart. The image volume dimenstons are 128 x
128 x 118 and a 20 x 20 x 20 resolution grid was used (model parameters: p = 61.0.
q = 60.0. @ = 20.0, b6 = 40.0. At = 0.002. and NV = 10). The volumetric heart data
comes from the dynamic spatial reconstructor (DSR), a high speed volumetric X-ray
CT scanner. Each slice of the image volume represents an approximately 0.9 mm thick
transverse cross-section of the scanned anatomy and each voxel represents a (0.9mm)?
cube of tissue. In order to bring out the LV as a bright object. a Roentgen contrast agent
is injected into the right atrium several seconds prior to the scan of the left ventricle.
Fig. 7.20 depicts a sagittal (y-z plane) slice of a canine heart. The bright (high
intensity) regions include the LV chamber, left atrial (LA) chamber. and aorta. The
surrounding lower intensity region is the myocardium. The portion of the LV chamber
near the valves is referred to as the base, and the lower tip is known as the apex. In
this experiment, we manually seed the LV with a small T-surface and the segmentation
then proceeds automatically (Figure 7.21). The inflation force is weighted with LV re-

gion image intensity statistics to reinforce the image edge forces. The final result, after
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(a) (b) (c)

VAN

(d) (e) (f)

Figure 7.21: T-surface segmenting LV and aorta from CT image volume.
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(b) (c) (d)

Figure 7.22: Final fitted T-surface and four cross-sections of the model.

(a)
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discarding the grid and converting to a classical deformable surface is shown in Figure
7.22. Figures 7.22a-d depict several cross-sections of the fitted model. While there are
a few cross-sections that may require manual editing, most of the model fits very accu-
rately (using visual inspection) and the entire process takes under 4 minutes on an SGI
[ndigo 2 workstation. The LV /aorta segmentation is also highly reproducible: as long as
the T-surface is seeded within the bright region of the LV. it produces almost identical

results.

7.3.3 LV Segmentation with T-Surfaces and Superquadrics

[n this experiment. we apply the 3D cell growing and splitting process to segment the
LV. We initially seed a superquadric cell near the LV apex and start the cell growing-
splitting process (Figure 7.24. In this simple example we limit the number of cells to
three. This number is sufficient to robustly capture the coarse shape of the LV and the
initial portion of the aorta. Figure 7.24f shows the result of the blended superquadric
cells. This isosurface is converted to an initial T-snake which then deforms to capture the
shape details of the LV (Figure 7.24g). This experiment demonstrates the potential of T-
surface global shape constraints to form the basis of a completely automatic segmentation

and analysis technique.

7.3.4 Segmentation of Brain Ventricles

In this experiment we use a T-surface to extract the major brain ventricles from a 256 x
256 x 85 (0.9375mm x 0.9375mm x 1.3mm) MR image volume (Figure 7.253). The volume
was interpolated to produce cubical voxels resulting in 136 slices rather than 85. A
128 x 128 x 68 resolution grid was used, with model parameters p = 30.0, ¢ = 48.0.
a = 20.0. b = 40.0. At = 0.0008, and V = 10, as well as a region statistics-weighted
inflation force. Since the T-surface provides a boundary and interior representation.
the volume occupied by the model can be be quickly and accurately calculated. Brain
ventricle volumes are useful indicators of many brain pathologies. Figures 7.25¢c-g show

several cross sections of the fitted model.
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\

(a)

N

(c)

(b) (d)

Figure 7.23: Superquadric cells growing and splitting to segment coarse shape of LV and

X

g
Figure 7.24: (f) Blend of superquadric cells to form initial T-surface. (g) Final fitted

(e)

part of aorta.

T-surface.
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Figure 7.25: T-surface segmentation of ventricles from MR image volume of the brain.
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7.3.5 Segmentation of Airway Structures of the Lung

Accurate quantitative measurments of airway and vascular dimensions are essential for
evaluating function in both the normal and the diseased lung. Image volumes of these
pulmonary tree structures can be generated using High Resolution Computed Tomogra-
phy (HRCT). To obtain quantitative data, each tree can be reduced to its central axis.
From the central axis. branch length is measured as the distance between two successive
branch points. branch angle is measured as the angle produced by two child branches.
and cross-sectional area is measured from a plane perpendicular to the central axis point.

Robust. automatic central axis extraction is dependent on accurate, noise-free seg-
mentations. In this experiment, serially scanned two-dimensional slices of the lower left
lobe of an isolated canine lung were stacked to create a volume of data. The volume
dimensions are 236 x 256 x 133. each slice is 2mm in thickness and they are lmm apart
(there is overlap between the successive images). The image volume was interpolated to
produce cubical voxels resulting in 266 slices instead of 133. The airway is then extracted
and reconstructed using a T-surface seeded at the root of the tree structure (Figure 7.3.5).
A voxel resolution grid was used with model parameters: p = 00.0. ¢ = 50.0. a = 20.0.
b = 10.0. At =0.001. and .V = 10. Since the openings to branches of the airway struc-
ture can be very narrow. edge extraction techniques can produce incorrect results near
these regions: false edges may be created that completely block these openings. For this
reason. we set the image edge force weight p to zero and use the image threshold intensity
force (Equation 4.4) only. Although the T-surface performed well on the major branches
(Figure 7.3.5a-d), there is some over-segmentation on the tiny branches. An adaptive
image threshold technique may ameliorate the over-segmentation problem. Furthermore.
some over-segmentation may be tolerated by central axis extraction algorithms without

significantly affecting the result [118].

7.3.6 Segmentation of Cerebral Vasculature

The introduction of Magnetic Resonance Angiography (MRA) and spiral CT Angiogra-
phy into clinical routine protocols has made the acquisition of vascular volume data sets

feasible. Typically the acquired data consist of a stack of up to 150 images with 2562 or
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Figure 7.26: T-surface segmentation of the airway structures of a canine lung from HRCT

image volume. Several cross-sections of the fitted model are also shown.
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Figure 7.27: T-surface segmentation of cerebral vasculature from MRA image volume.

5122 pixels. a spatial resolution of less than 1.0mm and an intensity resolution of 12 bits.
Region growing techniques have been used with some success to segment the strongly
connected structures of the vascular svstem. When combined with statistical constraints.
T-surfaces behave as an active region growing model that is also able to integrate edge
information and filter out noise using the model smoothness constraints.

We have used a T-surface to segment and reconstruct the vascular system of the brain
from an MRA image volume. The data consist of a stack of 100 slices each with 5122
pixels. 2 bytes per pixel (voxel size 0.4296875mm x 0.4296875mm x 0.7mm). The image
volume was interpolated to produce cubical voxels resulting in 162 slices. A T-surface
is seeded at the root of the vessel tree and then flows into the vessels. automatically
extracting the vascular syvstem (Figure 7.3.6). A voxel resolution grid was used (model
parameters: p = 00.0. ¢ = 80.0. a = 20.0. b = 60.0. At = 0.0005..V = 10) and the entire
segmentation process takes approximately 1 hour on an SGI Reality Engine.!

Although both X-ray and MR angiography produce high contrast images. they can
have a large deviation in the gray scale range. This large range makes it difficult to
segment the images with simple threshold techniques. Currently. the T-surface inflation

force is weighted using global image statistics and, consequently. some oversegmentation

'The limited memory on the SGI Reality Engine (64M bytes) coupled with the massive MRA image
volume and program memory requirements (> 100AM bytes) result in voluminous disk activity and
disk thrashing. This factor significantly affects segmentation performance. Increased memory capacity
coupled with parallel machine architectures should result in dramatic performance improvements.
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can result. As mentioned previously. the use of an adaptive threshold. based on local
gray scale statistics, may overcome this problem [87]. This topic is not explored in this

thesis and is a subject of future research.

7.3.7 Segmentation of the Cerebral Cortex

The analysis of cerebral functional data obtained from positron-emission tomography
(PET) or magneto-encephalography (MEG). often requires complementary anatomical
information obtained from MR images. As mentioned in Section 5.2.3. a promising
technique for the interpretation of cerebral cortex topography from 3D MR images is
3D skeletonization. Due to the noise sensitivity of the skeletonization algorithms. it
is desirable to produce a smooth (noise-filtered) segmentation of the cortex which is
guaranteed to have the same topology as the real object. In this experiment. we use a
T-surface with a region statistics-weighted inflation force as well as a global topological
constraint to segment the cerebral cortex from a preprocessed MR image volume (the
skull region has been manually removed from the image) (Figure 7.28). A 64 x 64 x 34
resolution grid was used for the 256 x 256 x 136 voxel image volume (model parameters:
p = 0.0. g = 48.0. a = 20.0. b = 40.0. At = 0.0008. and .N = 10). The T-surface
was initialized to surround the cortex and then shrinks and conforms to the CSF/grav
matter interface. The automatically subdividing T-surface is able to penetrate. with
good success. into the narrow and deep cavities of the highly convoluted cortex. A more
accurate result could be obtained with a finer resolution grid at the expense of increased
computation time and a larger number of modei triangles.

Two techniques that could potentially significantly improve the performance and ac-

curacy of this particular segmentation scenario are the following:

o The T-surface could be allowed to initially extract the gray-matter/white-matter
interface of the cortex. From this position. the topologically constrained T-surface
could expand out towards the CSF/gray matter interface. This process could ensure
that the T-surface completely penetrates all of the narrow and deep cavities of the

cortex.
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(2) (b) (c)

Figure 7.28: T-surface segmentation of the cerebral cortex from MR image volume. (a)

front view. (b) top view. (c¢) side view.

e To improve performance. a coarse resolution T-surface could initially be used to
segment the cortex in a smoothed image volume. This process could be repeated for
progressively finer resolution T-surfaces and image volumes until a desired accuracy

is reached.



Chapter 8

Conclusions

The increasingly important role of medical imaging in the diagnosis and treatment of
disease has opened an array of challenging problems centered on the computation of ac-
curate geometric models of anatomic structures from medical images. Deformable mod-
els offer an attractive approach to tackling such problems. because these models are able
to represent the complex shapes and broad shape variability of anatomical structures.
Deformable models overcome many of the limitations of traditional low-level image pro-
cessing techniques. by providing compact and analytical representations of object shape.

by incorporating anatomic knowledge. and by providing interactive capabilities.

The challenge is to increase the degree of automation of deformable models to an ex-
tent that the labor-intensive aspects of interactive anatomic structure segmentation are
reduced to a basic minimum. while the accuracy. efficiency. and reproducibility of the seg-
mentation is maximized. Furthermore. many segmentation scenarios now exist that are
suitable for complete automation. This thesis proposed an affine cell decomposition-based
deformable model framework in an effort to meet these challenges. This simple. elegant
framework provides curve. surface. and solid deformable models with the ability to adapt
to arbitrary object geometry and topology. It produces intrinsic model parameterizations
and insensitivity to model initial conditions. By maintaining the traditional parametric
physics-based formulation of deformable models, ACD-based deformable models are able
to incorporate a priort anatomic knowledge in the form of energy and force-based con-
straints. and provide intuitive interactive capabilities. By defining the models in terms of

the affine cell framework. “hard” geometric, topological. and global shape constraints can
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be efficiently realized. These combined constraints produce models that are insensitive
to spurious image features and ensure that real boundaries of objects are recovered. and
create a sound foundation for automatic image analysis.

The simplicial cell complex or grid is constructed using an on-demand scheme which
results in minimal memory or computational overhead. The novel iterative simplicial ap-
proximation or reparameterization process provides a simple, effective means of tracking
the activity (“temperature”) of individual model elements; elements can be removed from
the computation once their activity falls below a threshold level. significantly improving
model performance. At the heart of the reparameterization process are robust. inher-
ently parallel geometric algorithms that utilize simple. fast algebraic operations. These
combined factors result in an efficient implementation that usually enhances shape recov-
erv performance. With the advent of parallel machines architectures. we expect further
significant performance gains.

We have demonstrated the power and flexibility of ACD-based deformable models by
using our prototype interactive segmentation system to extract and reconstruct a wide
array of objects from medical images in a highly automated manner. We have been
able to process some the largest image volumes currently produced by modern imag-
ing technologies. Furthermore. we have demonstrated the potential for fully-automatic
medical image processing by combining ACD-based models with a variety of constraint
mechanisms. Finally. our framework is designed in a hierarchical fashion that is built on
top of a classical deformable snakes and surfaces. The modular design allows the ACD
framework to be easily incorporated into existing variants and implementations of these

models.

8.1 Comparison of T-Snakes/T-Surfaces to Alter-
native Models

In this section we compare T-snakes/T-surfaces to two models reviewed in Chapter 3 in
order to underscore the viability our technique. Specifically. we show that ACD-based
deformable models combine several advantageous features of both parametric and implicit

models, while at the same time eliminate some of their difficulties.
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8.1.1 Comparison to Dynamic Particle Systems

Like the active particle system of Szeliski et al. [96]. T-surfaces (or T-snakes) can be
viewed as a particle system that evolves according to Lagrangian mechanics. Both mod-
els use inter-particle forces to maintain the smoothness of the surface ior contour). and
both use external image forces to attract particles to the image features. T-snakes use
the simplicial grid to automatically add particles (rnodel elements) and perform topolog-
ical transformations. and particle connectivity is explicitly maintained throughout the
evolution of the model. Szeliski’s technique seeds particles on the surface of the object
and particles are added until their density on the surface is within some threshold value.
Good initial seed particle sites may be difficult or cumbersome to find. especially au-
tomatically. A T-snake on the other hand. can be quickly seeded anvwhere within the
object of interest or surrounding the object. To deal with the O(V?) complexity of inter-
particle interaction. Szeliski spatially hashes particle positions to reduce the complexity
to O(Nlog V). T-snakes maintain explicit particle connectivity via the simplicial grid:
inter-particle interaction complexity is constant. Furthermore. while Szeliski’s model is
topologically adaptable. it is a strictly parametric approach. T-snakes can be considered
both an implicit model — space is partitioned into an interior. boundary and exterior —
as well as a parametric model. This property allows topological. statistical and global
shape constraints to be imposed on the model. One advantage of Szeliski’s particle sys-
tem over T-snakes is the ease with which it is able to form open surfaces. as well as closed

surfaces.

8.1.2 Comparison to Level Set Evolution Techniques

As discussed in chapter 3 several researchers have adopted the level set evolution tech-
nique developed by Osher and Sethian [74] to the problem of shape recovery [13. 59. 115.
I-£. 88] (see Appendix A for a detailed discussion of level set evolution). These models
are formulated in terms of a partial differential equation, based on curvature dependent
motion, and are not the result of minimizing an energy functional. They are viewed
as an evolving contour which is the level set of some implicitly defined surface. While

the Osher-Sethian front propagation technique provides a well defined mathematical
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framework. the strictly implicit model formulation is not as convenient as a parametric
formulation for interactive guidance by expert users or high-level control mechanisms
and in terms of computational burden. In particular. by using the higher dimensional
surface to define and control the evolving contour. the implicit formulation loses the flex-
ibility to impose arbitrary constraints in the form of forces or energy functions or other
geometric or topological constraints: it may be difficult. if not impossible. to translate
these constraints into the higher dimensional representation. Furthermore. the numer-
ical implementation of the level set evolution techniques requires. for every iteration.
a (bounded) search of the domain for the new level set. The implementation can also
require massive amounts of computer memory to store the fixed domain points (used in

the Eulerian formulation to define the level set) unless special data structures are used.

A T-snake is a hybrid model that maintains a parametric formulation while providing
the capabilities of an implicit model without resorting to a higher dimensional represen-
tation. By maintaining a parametric formulation. T-snakes. like classical snakes. are able
to easily incorporate soft constraints expressed as energy functions or force functions and
provide interactive capabilities. T-snakes are also able to incorporate hard constraints
through the simplicial grid and by maintaining direct control of the T-snake boundary
evolution. The parametric formulation also allows for a simple. and “cheap™ (in terms
of computational cost and memory) implementation. The computational algorithm is
composed of basic. well-defined algebraic operations and uses a few standard. efficient
data structures such as lists. and hash tables. For this reason. as mentioned previously.
we have been able to apply T-snakes and T-surfaces to even the most massive medical

data sets.

8.2 Research Directions

Our experience with ACD-based deformable models has revealed several issues that are
relevant to the continued development and success of this approach. This section sum-

marizes these issues and indicates some potential research directions.
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8.2.1 Model Simplification

A geometric model of shape may be evaluated based on the parsimony of its formula-
tion. its representational power. and its topological flexibility. Generally. parameterized
models offer the greatest parsimony, free-form (spline) model feature broad geometric
coverage. and implicit models have the greatest topological flexibility. Deformable mod-
els have been developed based on each of these geometric classes. The hybrid ACD-based
deformable models are an attempt to combine some of the complementary features of
these geometric classes. However. in certain scenarios. such as the segmentation and
modeling of complex. multipart structures like arterial trees, or topologically complex
structures such as vertebrae. a large number of model triangles can be produced. In
order to reduce the number of triangles, simplification algorithms are needed [107. 38].
These algorithms could attempt to take advantage of the hierarchical nature of the sim-
plicial grid. Alternatively. regions of triangles could be replaced with more compact

representations such as high-order finite element or spline patches [29].

8.2.2 Robustness

[deally. 2 deformable model should be insensitive to initial conditions and noisy data.
Deformable models. such as T-snakes and T-surfaces. are able to exploit multiple image
attributes and high level or global information to increase the robustness of shape recov-
ery. Strategies worthy of further research include the incorporation of shape constraints
into the deformable model framework that are derived from low level image processing
operations such as thinning. medial axis transforms. or mathematical morphology [84].
A classical approach to improve the robustness and performance of model fitting is the
use of multiscale image preprocessing techniques [47, 105]. These techniques would blend

nicely with the multiresolution ACD-based models.

8.2.3 Curve versus Surface versus Solid Models

The earliest deformable models were curves and surfaces. Anatomic structures in the
human body, however. are either solid or thick-walled. To support the expanding role

of medical images into tasks such as surgical planning and simulation, and the func-
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tional modeling of structures such as bones, muscles, skin. or arterial blood flow, may
require volumetric or solid deformable models rather than surface models. For example.
the planning of facial reconstructive surgery requires the extraction and reconstruction
of the skin. muscles. and bones from 3D images using accurate solid models. It also
requires the ability to simulate the movement and interactions of these structures in
response to forces. the ability to move. cut and fuse pieces of the model in a realistic
fashion. and the ability to stimulate the simulated muscles of the model to predict the
effect of the surgery. Several researchers have begun to explore the use of volumetric or
solid deformable models of the human face and head for computer graphics applications
[50. 30] and for medical applications. particularly reconstructive surgery [114. 28. 78. 37]
and there is much room for further research. T-surfaces are well-suited for this research
direction since they automatically generate solid models through the tetrahedral grid.
The solid models generated by the segmentation and reconstruction of arterv trees pre-
sented in Chapter 7 for example, can serve as the basis for performing complex fluid flow
analysis. Furthermore. incorporating physical properties such as the vessel elasticity into

the models would allow for their use in a surgical planning environment.

8.2.4 Automatic Initialization, Shape Recovery and Analysis

Completely automatic medical image segmentation using deformable models requires
the automatic “seeding” or initialization of the models. and the incorporation of a priori
anatomical knowledge to ensure robust shape recovery. Automatic interpretation of these
images requires models that not only describe the size. shape. location and orientation of
the target object but that also permit expected variations in these characteristics. ACD-
based deformable models combined with topological and/or global shape constraints are
an attempt to meet some of these requirements. Further research is needed to create
automatic model initialization techniques. In addition, further development, formaliza-
tion and generalization of the global shape constraint mechanism is required. Finally.
the combination of T-surfaces with topological constraints and deformable anatomical

atlases is a very promising approach that is worthy of future study.



Appendix A

Level Set Curve Evolution

The Euclidean heat flow equation

ac o*C

= =~x - N. (A1
ot~ 9t (A1)

where C'(s.t) = (r(s.t).y(s.t)) is a parameterized planar curve. s is arc length. ¢ is time.
x is curvature. and N is the unit inward normal. is well known for its excellent geometric
smoothing properties [34. 39]. The flow decreases the total curvature of the curve as
well as the number of zero crossings and the value of curvature maxima/minima. This
equation is also known as curve shortening flow since it evolves the curve in the gradient
direction of its arc length. Kimia et al. [48] have studied a generalization of this equation

acC

ot

in the context of constructing a representation of shape in computer vision. [n particular.

= a(x) - N. (A.2)

thev analyze planar curve evolution by a linear speed function a(x):
(Z)—(iz(ao—l-alfc)-N. (A.3)
where aq.a, are constants. The constant velocity term agN. called the reaction com-
ponent by Kimia et al.. is a hyperbolic term and makes the evolution nonlinear. The
term can lead to shocks or singularities when the characteristic curves of (A.3) collide
[94]. In order to obtain physically correct solutions, the classical entropy condition for a
propagating flame front is used [74]: once a particle is burnt, it stays burnt. The constant

velocity term is related to classical mathematical morphology [81] and shape offsetting

in CAD [45]. In [89], the authors show that all mathematical morphology operations
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(for convex structuring elements) are obtained via curve evolution using the constant
velocity term only, where the coefficient of the term depends on the structuring element.
The term a &N is called the diffusion term. It provides a quasi-linear. parabolic behav-
ior to the evolution. Based on these principles. Kimia ef al. define a reaction-diffusion
scale space of shapes parameterized by (ag, @;}. That is. the scale space is the result of
deforming shape by various combinations of reaction and diffusion. The different types
of shocks or singularities that form in this space are equivalent to shape skeletons [11].
and together with the time of their formation are used to derive a set high-level shape
descriptors.

The numerical implementation of the curve evolution equation faces a number of
problems. including the handling of topological changes. capturing discontinuities. and
the build-up of error. For example. using a Lagrangian formulation of the equation can
lead to numerical tnstabilities as small errors in the computed curve particle positions can
be amplified by the curvature term. These problems can be resolved by the use of level set
evolution. proposed by Osher and Sethian for modeling flame propagation [74]. introduced
to computer vision by Kimia et al.. and first applied to segmentation using active contours
in [[3. 39]. This method uses techniques from the theory of hyperbolic conservation laws
to successfully compute the curve evolutions. Osher and Sethian show that by embedding
the curve in a two dimensional surface and then evolving the surface rather than the
curve. one derives robust. stable. and reliable evolution equations. Formallyv. the curve
C' 1s considered as the Oth level set of an evolving surface ¢(r.y.t). The evolution of the
surface is defined by a Hamilton-Jacobi-like equation

f)_? =3-|Vo. (A.4)
where J is an arbitrary speed function. The advantages of this formulation are that
the parameterization is defined in terms of the intrinsic local geometry of the curve. the
formulation is stable and @ remains a function as long as 3 is smooth. while the level sets
of ¢ can arbitrarily change topology. Furthermore, the intrinsic properties (N.x) of the
contour can be easily determined and the method is extensible to higher dimensions. One

disadvantage of the approach is that it requires a representation one dimension higher
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than that of the original data.
To apply the level set technique to shape recovery problems. Caselles et al. [13] and
Malladi et al. [39] independently formulated the problem as the steady state solution of

the evolution (0(0.C) = o(C)}

do ., Vo <
ot = 9 NIVel(dic( 520 + €)= gl (e + 5)| Vo (A.5)
where g(/) = H-(v—cl:,,-i')f is a negative speed function that stops the curve at object

boundaries. ¢ is a constant speed term similar to the inflation force of a snake. GG, x [
is the convolution of the image / with the Gaussian G,. The gradient of the surface
Vo is the normal to the level set C. (i.e. N). and the term div(%) Is its curvature K.
The image based speed term has values that are close to zero in regions of high intensity
gradient and values that are close to unity in regions of constant intensity. Caselles et

al. proved the existence and uniqueness of solutions of this PDE in the viscosity sense

for bounded Lipschitz continuous initial data.



Appendix B

Classification Algorithm

In Chapter { we claimed that the classification algorithm is sufficient to unambiguously
label a grid vertex point v as burned or not-burned. To prove this claim. we must show
that the algorithm uniquely determines whether v lies inside or outside of polvgon @
(using Definitions 4.5 and 4.6} for each of the 16 possible cases. We note that if pln
or p2n lie exactly on line L1 or L2. then theyv will be classified as being on the inside
half-space of L1 or L2. respectively. We present a simple. geometric proof for cases 1-6
and 12-15 next (the remaining cases follow by symmetry):

Proof.

e (ase 1: Since pln.p2n € S2. theyv lie to the right of L2 and therefore edge plnp2n
cannot cut §3. Point pln also lies to the left of L1 and pl is on L1 therefore (all
points of) edge plpln must lie to the left of L1. A similar argument proves that
edge p2p2n lies to the right of L2 and therefore cannot cut $3. Since pln lies to
the right of L2 then plpIn must cut S3 into two. 2D open sets. Therefore. a ray
cast from v to the left. parallel to plp2 passes through $3 and intersects only one

edge pipln of polvgon Q.

e Case 2: Using arguments similar to those of case L. plpln and plnp2n lie entirely
to the left of L1 and therefore cannot cut S1. Edge p2p2n lies to the right of L2
and p2n € S2 therefore. p2p2n cuts S1 into two open sets. Therefore. a ray cast

from v to the right. parallel to plp2 passes through S1 and intersects only one edge

p2p2n of Q.
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e Case 3. 4. 3. 6. 12: Edge p2p2n lies entirely to the left of L2 and plpln lies either
to the left of L1. L2 or both. Therefore. no edge of @ cuts S1 and a ray cast from

v to the right. parallel to plp2. intersects zero edges of Q.

e Case 13: Point pln € S3. therfore plpln € §3. Similarly. p2p2n € S1. Therefore.

plnp2n must cut either S2 or S0 into two open sets. A ray cast from v along L1

and away from pl intersects only one edge plnp2n if plnp2n cuts S2. or intersects

zero edges if plnp2n cuts SQ.

e (ase 14: Similar to case 13 with points pln and p2n reversed.

e Case 13: Edge plpln and p2p2n lie entirely to the left of L1 and cannot cut S1.
Since pln € 52 and p2n € S0 then plnp2n must cut either S1 or S3 into two open

sets. A ray cast from v to the right and parallel to plp2 intersects only one edge

plnp2n if plnp2n cuts S1. or intersects zero edges if plnp2n cuts §3.



Appendix C

Superquadric Cells and Cell Fitting

A variation of the classic ellipse function is the superellipse which can be defined by the
implicit equation f(z.y) = 0 with

Yy
aoa;

~ 1. (C.1)

flr.y) =

apa,

where ¢ controls the roundness of the shape. ag is a global scaling factor. and a; and
a, are horizontal and vertical scaling factors, respectively. For ¢ = 2 the superellipse
coincides with the ellipse. as ¢ increases more and more bevond 2. it bulges outward.
For very large values of €. it becomes boxlike. Its "sides™ are nearly straight and its
~corners” rather sharp. On the other hand. as ¢ decreases below 2. there is less and less
bulge outward. so that at € = | the side are straight lines. For ¢ < L. it bulges inward
with a look of being pinched.

The superellipse also has a parametric representation e(u) = (e,(u).ea(u))7. where

alCuC
€ = qagp . (C.))
(l'_).s'u(
and —7 < v < 7. and where S, = sgn(sinw)|sinw|* and C,° = sgn(cos w)|cos w|*

respectively.

In 3D. the implicit form of a superellipsoid is

o= ((Z)+Z)5) +@)) -+ o
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and the parametric equation e(u.v) = (e (u.v).es{u.v).e3(u.v))’ is defined as

alcu(lcvq
€ = ay a‘zCuq 5',_,"2 . (C"l)
a35u£I
where —7/2 < u £ 7/2and —7 < v < 7. and where S,.° = sgn(sinw)|sin w|* and (',.* =

sgn(cos )| cos w|® respectively. Here. ag > 0 is a scale parameter. 0 < a;.a,.a3 < 1. are

aspect ratio parameters. and €;.¢€; > 0 are “squareness” parameters.

C.1 Dynamic Deformable Superquadric Cells

Following Metaxas and Terzopoulos [102. 63]. the positions of points on a superquadric

cell at time ¢. relative to an inertial frame of reference in space are given by
x(u.t) = c(t) + R(t)p(u.¢). (C.5)

where c is the origin of a cell-centered reference frame. and R is a rotation matrix that
gives the orientation of the cell-centered frame relative to the inertial frame. In the cell-
centered frame. the positions of cell points p is the sum of a reference shape s and a local

displacement d:

p(u.t) =s(u.t) +d(u.t). (C.6)

The local displacements allow the representation of fine shape detail while the reference

shape s captures the coarse shape of an object. The reference shape is defined as

s = T(e(u:aq.a,....):bo.by....). (C.7)

where e is the parametric superellipsoid described previously. The geometric primitive e
is subjected to the global deformation T (such as bending and tapering) which depends on
the deformation parameters b;. Although nonlinear. e and T are assumed differentiable
so that the Jacobian of s may be computed. T may be a composite sequence of primitive
deformation functions T(e) = T|(T,(... T.(e))). The global deformation parameters are
concatenated into a vector Qs = (ag.ay.....bo.b;....)T. The displacment d is expressed

as a linear combination of basis functions d = Sqq. where S is a shape matrix whose
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entries are the shape functions and qq = (....d;....)7 is a vector of local deformation
parameters (see [102. 68] for details).
The dynamics framework detailed in [102. 68] is used to fit a superquadric cell to

I3

s A vector of

data. The framework requires the computation of the Jacobian J =
generalized superquadric cell coordinates q = (ql.q.q.s.q)T. where qc = c(t). qg is
the quaternion used to specify R(¢). is integrated into the dvnamics framework which
computes an updated set of the coordinates such that the cell more closely represents
the data. The framework combines the applied forces described in 4.2.2 acting on the
cell degrees of freedom qq with internal smoothness forces acting on these variables. A
simple Euler integration method is used to implement dynamic cell fitting process. We

also scale or warp the material coordinates u of a cell to create a more even distribution

of cell nodes (which improves cell fitting) [26].

C.2 Point-to-point Cell Constraints

Point-to-point constraints between two superquadric cells are implemented using a tech-
nique introduced by [35] known as “displacement constraints™. This approach uncouples
the constraints connecting two cells from the effects of the external forces. A cell is fitted
to the data dyvnamically as described in the previous section for a specified number of
iterations. This step is then followed by a step that attempts to satisfy the geometric
constraints between two cells. by iteratively adjusting the position of each cell until they
are within a preset tolerance. This technique is simpler and more efficient than coupled

dynamic systerns.

C.3 Cell Blending

The implicit functions of the superquadric cells can be blended to form a smooth transi-
tion between their bounding surfaces. We use a blending function b : R* — R known as

the superelliptic blend [110] is defined by

k 5
[Z(fi + 1)"] - L (C.8)

1=0
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This function generates a smooth isosurface that closely bounds the superquadric cells.
As the blend parameter p is increased. the isosurface wraps the cells more tightly (i.e. as

p — <. the isosurface approaches the union of the cell bounding surfaces).
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