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Abstract 

This thesis develops a physics-ba,sed framework for 3D slia,pe and nonrigid 

motion modeling for computer vision and computer gra,phics. In computer vision it 

addresses the problems of complex 3D sha,pe representa.tion, shape reconstruction, 

quantitative model extraction froin biomedical data for ana.lysis a,nd visualizabion, 

shape estimatio11, and motion tracliing. In computer grapllics it delllo~lst,rates 

the generative power of our framework to synthesize collstra,ilied sha.pes, llollrigicl 

object motions and object interactions for the purposes of computer animation. 

Our framework is based on the use of a new class of dynamically deforniable 

primitives which allow the combination of globa,l and 1oca.l deformations. It in- 

corporates physical constraints to colnpose articulated ~noclels from deforlnable 

primitives and provides force-based techniques for fitt,ing such models to  spa.rse, 

noise-corrupted 2D and 3D visua.1 data. The framework 1ea.d~ to  shape and nonrigid 

motion estilnators that exploit dynamically deforma.ble models to track lnoving 3D 

objects froin time-varying 011serva.tions. 

We develop models with global deformation para.meters which represent the 

salient shape fea.tures of natural parts, and loca,l deforma.tjon pa,ra.meters which 

capture sha.pe details. In the context of conlputer gra.phics, these nlodels rep- 

resent the physics-based marriage of the pa.rameterized a,nd free-form inodeling 



paradigms. An important benefit of their global/local descriptive power in the 

context of computer vision is that it can potentially satisfy the often conflicting 

requirements of shape reconstruction and shape recognition. 

The Lagrange equations of motion that govern our models, augmented by con- 

straints, make them responsive to externally applied forces derived from input 

data or applied by the user. This system of differential equations is discretized us- 

ing finite element methods and simulated through time using standard numerical 

techniques. We employ these equations to formulate a shape and nonrigid motion 

estimator. The estimator is a continuous extended Kalman filter that recursively 

transforms the discrepancy between the sensory data, and the estimated inodel 

state into generalized forces. These adjust the translational, rotational, and defor- 

mational degrees of freedom such that the model evolves in a coilsistent fashion 

with the noisy data. 

We demonstrate the int,eractive time performance of our techniclues in a series 

of experiments in computer vision, graphics, and visualization. 
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Chapter 1 

Introduction 

1.1 Problem Statement 

This thesis develops a physics-based framework for 3D shape and nonrigid motion 

modeling for computer vision and computer graphics. The franlework addresses a 

variety of difficult modeling problems common to both fields. 

Despite the large body of research on object modeling for shape and motion 

estimation in computer vision, most existing techniques are limited to rigid objects 

with simple shapes. The shapes of many natural objects, however, cannot be 

represented accurately1 in terms of simple shape prinlitives and they may undergo 

motions that are nonrigid and subject to various constraints. Animal bodies, for 

instance, produce surprisingly complex motions, not only as a consequence of their 

articulated skeletons but also because of soft tissue deforinations due to riluscle 

action and gravitational effects. 

The computer graphics literature, on the other hand, is replete with matheinat- 

ical representations of solid objects. In particular, the field of solid modeling has 

lThe required degree of accuracy for object shape representation in computer vision depends 
on the application. For example, accurate shape representation may be essential in order to  grasp 
an object by a vision-guided robot arm; the same level of accuracy is not necessarily required for 
object recognition or identification. 
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developed geometric methods for representing object shape, but geometric tech- 

niques are often inconvenient for modeling object motion. The insufficiency of pure 

geometry becomes particularly evident when one faces the problem of realistically 

animating deformable objects and their complex physical interactions. 

This thesis proposes a new class of deformable object models whose behaviors 

are determined not only by their geometric structures, but a.lso by La.graagiaa 

mechanics principles involving mass and damping distributions and internal strain 

energies. The geometric structure of the models supports both global deformation 

parameters which efficiently represent the gross sha.pe fea,tures of the salient pa.rts 

of natural objects and local deformation para.meters which ca.pture shape details. 

In the context of graphics modeling, these models represent the physics-based 

unification of the parameterized and free-form paradigms. An import ant benefit 

of this global/local descriptive power in the context of computer vision is that it 

can potentially satisfy the often conflicting requirements of shape reconstruction 

and shape recognition. 

The partial differential equations of inot.ion that govern the dynamics of our 

modeling primitives make them responsive to externa,lly applied forces. External 

forces may be derived from input data,, may arise from intera.ctions in simulated 

physical environments, or may be applied interactively hy the user. We incorpo- 

rate physical constraints among primitives in order to compose articulated models 

with globally and locally deformable pa,rts a.nd provide force-based techniques for 

fitting such models to sparse, noise-corrupted 2D and 3D visual da.ta. The motion 

equations are discretized using finite element methods and int,egrated through time 

using standard numerical techniques. 

Our physics-based framework leads to shape and nonrigid motion estinlators 

that apply dynamically deformable models to time-varying observations in order 

to track nonrigidly moving 3D objects. FVe ernploy the equa,tions of motion of 

the models to formulate a sha.pe and nonrigid motion est,ima,tor. The estima.t,or is 
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a continuous extended Kalrnan filter that recursively transforms the discrepancy 

between the sensory data and the estimated model state into generalized forces. 

These forces adjust the translational, rotational, and deformational degrees of free- 

dom of the model, such that it evolves in a consistent fashion with the given noisy 

data. 

Depending on the application requirements, we may employ two types of sim- 

plifications to our framework. The first is at the model level where we idealize 

model behavior by appropriately ignoring certain higher-order physical effects, 

such as Coriolis interactions among the degrees of freedom. The second is at  the 

level of the numerical techniques used to solve the discretized Lagrange equations 

of motion. These simplifications allow the real time or interactive time simula- 

tion of our models including continuous display on commonly available graphics 

work~tations.~ 

The thesis demonstrates the utility of our framework in both vision and graph- 

ics applications. The vision applications include shape reconstruction, quantitative 

model extraction from biomedical data for analysis and visualization, shape estiina- 

tion, and motion tracking. The graphics applications exploit the generative power 

of our framework to  synthesize constrained shapes, nonrigid object motioiis, and 

object interactions for the purposes of computer animation. 

1.2 Illustrative Modeling Problems and Exam- 

ples 

We will now illustrate the spectrum of modeling problems tha.t fa.11 within the scope 

of this thesis with a brief series of examples. 

The first example illustrates the a,pplication of our dynanlic inodels to interac- 

tive shape design. Fig. 1.1 shows a snapshot of an intera,ctive .3D world inhabited 

'A simulation is real time if it can keep up with real world event,s, pa.rticularly the data  input, 
rates from r e d  sensors. Interactive time refers to  a simulation rate wliicll is fast enough so that, 
t he  user can visualize and intera.ct with it without frust,ration. This usually rneans not less than 
3 frames per second. 
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Figure 1.1: Interactions with deformable models. 

by deformable models that we dub deformable superquadrics. The figure illus- 

trates deformable superquadric shells covered by rectangular and triangular finite 

elements. Through mouse control, the user can initialize models, change their 

global deformation parameters, apply forces to them, and vary the viewpoint. The 

figure illustrates four deformable models with different settings for the global de- 

formation parameters, resulting in qualitatively different shapes. The model at 

the left is being pulled by a stretchy spring (displayed as a line) activated and 

dragged using the mouse. The applied spring force causes local (free-form) and 

global (parameterized) deformations in the model. Thus, useful shapes may be 

designed by applying forces. 

A fundamental problem in computer vision is the reconstruction of quantitative 

representations of objects from their gray-level images. It is particularly difficult 

to reconstruct the shapes of 3D objects from a single monocular image because the 

problem is seriously underconstrained. Our models often provide the additional 

constraints needed to produce a reasonable reconstruction, u~hile they provide the 

ability to conform to nontrivial shapes. For example, Fig. 1.2 illustrates the fit- 
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Figure 1.2: Fitting a deformable superquadric (b), (c), (d) to pestle image (a). 

ting of a deformable superquadric to a monocular image of a pestle Fig. 1.2(a). 

As we explain in a subsequent chapter, the image is converted into a force field 

that acts on the model, deforming it such that it becomes consistent with the 

occluding boundary of the pestle in the image. Fig. 1.2(b) shows the initial state 

of the deformable superquadric displayed in wireframe projected onto the image. 

Fig. 1.2(c) shows an intermediate step in the fitting process as the image forces 

are deforming the model and Fig. 1.2(d) shows the final reconstructed model. 

With the advent of low cost, real time visual sensors and image processing 

hardware, dynamic object representation and tracking tasks are gaining a signifi- 

cant presense in the vision literature. An interesting problem is to infer the shapes 

and motions of complex single- or multi-part deformable objects from sparse, noisy 

3D observations. Such estimation problems are particularly challenging when they 

must be solved on-line, and Kalman filtering has become a popular approach for 

accomplishing this. Fig. 1.3 illustrates a new recursive shape and motion esti- 

mator which is developed in this thesis. The estimator incorporates constrained 

deformable superquadrics as Kalman filter system models. The figure illustrates 

a model composed of 5 connected deformable superquadrics. The estimator is a.p- 

plied to biomechanical data collected by 3D position sensors applied to the arms of 
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Figure 1.3: Tracking of raising and flexing human arm motion. 
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Figure 1.4: Self-assembly (a), articulation (b), and swatting (c), (d) of a dragonfly. 

a human subject. Fig. 1.3(a) shows a view of the 3D data and the initial models. 

Fig. 1.3(b) shows an intermediate step of the fitting process driven by data forces 

from the first frame of the data sequence, while Figs. 1.3(c) and (d) show different 

views of the models fitted to the initial data. Figs. 1.3(e) and ( f )  show intermediate 

frames of the models tracking the nonrigid motion of the subject's flexing arms, 

while Figs. 1.3(g) and (h) show two views of the final position of the models. 

The deformable modeling primitives and the constraint methods that we de- 

velop in this thesis, are useful for a variety of computer graphics applications. Be- 

cause they are dynamic, our models are particularly well suited to physics-based 

animation tasks. Such an application is illustrated in Fig. 1.4, which shows the 

automatic construction of a minimalist dragonfly from its constituent deformable 

superquadric parts. Fig. 1.4(a) shows the disjoint parts in their initial configura- 

tions. After activating our constraint algorithm, the model self-assembles to form 
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the articulated dragonfly. Four point-to-point constraints hold the deformable 

body parts together. The dragonfly "works," inasmuch as forces can induce open- 

ing and flapping of the wings, as is illustrated in Fig. 1.4(b). In Fig. 1.4(c) we 

swat the dragonfly in the rear with an impenetrable plane. The body parts deform 

in response to the blow, but the point-to-point constraints continue to hold them 

together. The final shape of the dragonfly is shown in Fig. 1.4(d). 

Contributions 

This thesis develops a framework that includes 

1. a new class of dynamic deformable primitives which combine global and local 

deformation parameters, 

2. a systematic approach based on Lagrangian dynamics and the finite element 

method to convert the geometric parameters of the primitives to dyna.mic, 

degrees of freedom, 

3. the development of physics-based constraints between these deformable prim- 

itives that may be used to synthesize complex articulated models, 

4. a recursive technique for estimating shape and nonrigid motion froin noise 

corrupted data based on applying 1ialma.n filtering theory to our dynamic 

models, 

5 .  new applications to visual estimation and graphics animation. 

In the sequel, we elaborate on each of the above technical contributions, which 

have also been reported in [67, 38, 39, 40, 41, 42, 43, 44, 45, 461. 

1.3.1 New Deformable Primitives 

We create a new fanlily of modeling primitives by developing a mathematical ap- 

proach that allows the combination of global and local deformations. Our prim- 

itives include global deformation parameters which represent the salient shape 
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features of natural parts and local deformation parameters which capture shape 

details. More specifically, we develop hybrid models whose underlying geometric 

structure allows the combination of parametric models (superquadrics, spheres, 

cylinders), parameterized global deformations (bends, tapers, twists, shears, etc.) 

and local spline free-form deformations. In this way, the descriptive power of our 

models is a superset of the descriptive power of locally deformable models [65, 531, 

and globally deformable models [52, 721. In the context of computer graphics, we 

incorporate characteristics of the parameterized and free-form modeling paradigms 

within a single physics-based model. An important benefit of the global/local de- 

scriptive power of these models in the context of computer vision is that it can 

potentially satisfy the often conflicting recluirements of shape reconstruction and 

shape recognition. The local degrees of freedom of deformable models allow the 

reconstruction of fine scale structure and the natural irregula,sities of r e d  world 

data, while the global degrees of freedom capture the salient fea.tures of sha.pe tha,t 

are innate to natural parts and appropriate for matching against object prototypes. 

1.3.2 Systematic Formulation of Dynamic Primitives 

Through the application of Lagrangian mechanics, we develop a method to sys- 

tematically convert the geometric parameters of the solid primitive, the glohal 

(parameterized) and local (free-form) deformation parameters, and the six degrees 

of freedom of rigid-body motion into generalized coordina.tes or dynamic degrees 

of freedom. More precisely, our method a.pplies generally across all well-posed ge- 

ometric primitives and deformations, so long as their equa.tions a.re differentiable. 

The distinguishing feature of our approach is tha,t it combines the parasmetesized 

and free-form modeling paradigms within a single pllysical model. Thus our models 

exhibit correct mechanical behaviors and their various geometric parammeters a.s- 

sume well-defined physical meanings in relation t.o prescribed ma.ss distributions, 

elasticities, and energy dissipation rates. Furthermore, mot ivat,ed by the require- 

ments of real time vision and graphics a,pplications we a.ppropria.tely simplify the 

models and we use simple numerical integration t,echniques to a.chieve real time or 
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near real time simulation rates on available graphics workstations. 

1.3.3 Physics-based Constraints 

To deal with constrained multipart objects such as articulated anthropomorphic 

bodies, we develop an efficient technique to implement hard point-to-point con- 

straints between deformable primitives. These constraints are never violated, re- 

gardless of the magnitude of the forces experienced by the parts. Attempting to 

approximate such constraints with simple, stiff springs leads to instability. In our 

approach, we compute the constraint forces using a stabilized Lagrange multi- 

plier technique [7]. Furthermore, we develop constraint techniques to synthesize 

primitive interactions in simulated physical environments. In pa.rticular, using the 

elastic properties of our models we calculate forces stemming from collisions and 

friction against impenetrable solid or deformable surfaces. 

1.3.4 Recursive Estimation 

We also exploit the constrained nonrigid motion synthesis capabilities of our mod- 

els in order to estimate shape and motion from incomplete, noisy observations 

available sequentially over time.4 Applying continuous non1inea.r Kalman filter- 

ing theory, we construct a powerful new recursive estima,tor ~vhich employs the 

Lagrange equations of 3D nonrigid motion a,s a system model. We interpret the 

Kalman filter physically: The system model continually synthesizes nonrigid mo- 

tions in response to generalized forces that arise from inconsistencies between its 

state variables and the incoming observations. The observa.tion forces account for- 

mally for instantaneous uncertainties in the data. A Ricca.ti procedure updates an 

error covariance matrix which transforms the forces in a,ccordance with the sys- 

tem dynamics and the prior observation history. The transformed forces induce 

31n many real-time applications the time required to  arrive at a rea.sona,ble solution is often 
more critical than the accuracy of the solution. 

4These sorts of inverse problems have been studied widely in the inathe~natics literature, where 
emphasis is placed on the development of sufficient collditions to guarant,ee that the problem 
is well-posed and a unique solution exist,s. We will not concern ourselves with existence a.nd 
uniqueness in this thesis. The data set,s t,hat we will employ in pract#ice perinit our est,iination 
techniques to  converge t o  reasonable solutions. 
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changes in the translational, rotational, and deformational state variables of the 

system model to reduce the inconsistencies. Thus the system model synthesizes 

nonstationary shape and motion estimates in response to the visual data.5 Fur- 

thermore, we show that the force-based tracking scheme proposed in [33, 701 and 

applied to deformable superquadrics in [67] amounts to  a degenerate "I<alman 

filter" with a constant, unit error covariance matrix. 

1.3.5 Applications to Vision and Graphics 

We demonstrate the usefulness of the framework in several application areas in 

vision and graphics. These include quantita.tive 3D sha,pe reconstruction from 

static monocular images and model fitting and tra.cking of bi~inecha~nics data for 

analysis and visua.lization. Our modeling fra.mework also provides the necessasy 

generative power to synthesize constrained shapes and nonrigid lnotions for the 

purposes of computer animation. 

Thesis Outline 
Chapter 2 summarizes the physics-based approaches in computer vision and com- 

puter graphics that are relevant to our work and compares them to our framework. 

Chapter 3 presents the geometric formula,tion of our models. We describe a gen- 

eral technique for defining global and local geometric degrees of freedom and apply 

it to create a new class of deformable models that. we dub d e f o ~ m n b l e  super quadric.^. 

Chapter 4 develops the kinematic and dynamic formulation of our models. We 

describe a systematic method for converting the geometric degrees of freedom of 

a deformable model into generalized coordinates, or dyna.mic degrees of freedom, 

by using the Lagrange equations of motion. Furthermore, we present a general 

technique for deriving the stiffness matrix associated with the ela,stic properties of 

the model from a given deformation energy expression. 

Chapter 5 gives an overview of the finite element method that we elliploy to 

50u r  algorithms are designed to perform numerical integration steps perpetually as new data 
arrive. This allows them to react continuously to the incomillg dat.a. The de1a.y heheen  successive 
data  inputs should be long enough, however, so t,hat the integmtion met,l~od has time to achieve 
a steady state estimate for each data frame. 
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discretize the Lagrange equations of motion. In particular, we give various finite 

element tessellations of the parametric space of a deformable model, examples of 

suitable finite elements, the discretization of the Lagrange equations of motion 

through finite elements and finally the criteria for choosing the appropriate ele- 

ments for specific vision and graphics applications. 

Chapter 6 presents techniques for converting visual data into forces that can be 

applied to deformable models in data fitting scenarios. Secondly, for computer 

animation purposes, we describe two algorithms which use the elastic properties 

of our models to calculate forces stemming from collisions a.nd friction aga.inst 

impenetrable solid or deformamble surfa,ces. 

Chapter 7 first describes the integration schemes we use to approxima,te the solu- 

tion of the differential equations of motion and the algorithnl for determining the 

initial condition of our models. Second we present computer vision and computer 

graphics experiments which test the modeling methods developed to this point. 

Chapter 8 presents a technique to implement hard point,-to-point constraints 

between deformable part models which sliould not be viola.ted, regardless of the 

magnitude of the forces experienced by the parts. The chapter considers a sta- 

bilized Lagrange multiplier method and describes the various integration schemes 

we use to  simulate the constrained differential equations of motion. 

Chapter 9 presents computer vision and computer graphics experiments involving 

physics-based constraints. 

Chapter 10 applies continuous nonlinear I<alinan filtering theory to construct a 

recursive estimator which employs the Lagrange equations of :3D nonrigid motion 

that we have developed as a system model. This est'imator allows the recovery of 

shape and nonrigid motion in the presence of noise. We also describe a computa- 

tionally efficient implementation of the I<alman filter equa.tions. Finally, we present 

computer vision experiments involving shape a.nd nonrigid motion estimation from 

3D data. 

Chapter 11 draws conclusions from our work and gives a. perspective of future 

research. 



Chapter 2 

Related Prior Work 

This chapter discusses related prior work in both computer vision and computer 

graphics. In the context of computer vision we will compa.re our models to other 

related models as well as previous recursive esti~llatio~l techniclues for shape and 

motion estimation. In the context of computer graphics we will compare our 

framework with other physics-based approaches in terms of modeling power, gener- 

ality, constraint formulation, and interactions with the physical simulated physical 

environments.' 

2.1 Computer Vision 

2.1.1 Local, Global, and Physics-Based Models 

After more than a decade of research, the notion of ea.rly visual reconstruction as 

a data fitting problem using generalized spline models is now in a highly evolved 

state of development, most evidently so in the contest of t,he surface reconstruction 

problem [9][62][65]. Generalized spline techniques underlie the notion of regular- 

ization and its application to a. variety of reconstruction problems in early vision 

[55][64]. The many degrees of freedom aad 1oca.l deforma.tion properties of gener- 

l ~ h e r e  is a close relationship between our models and other approa,cl~es used for rigid articu- 
lated bodies and other constrai~lts in robotics and other a.pplication area.s. The difference is that 
our approach deals with deformable objects. 
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alized splines allow them to conform to low-level visual data with ease. 

On another front, much effort has gone into the search for suitable models 

for the purposes of object recognition. Biederman [8] reports the results of psy- 

chophysical experiments suggesting that the recovery of arrangements of two or 

three major primitive components or parts results in fast recognit ion of objects, 

even when the objects are observed from different viewpoints, are occluded, or 

are unfamiliar. Parameterized part models capture the structure of the world by 

describing meaningful chunks of data in terms of a few parameters. Such models 

are beneficial for object representation, since dealing with a manageable number 

of parameters simplifies the problem of indexing into a database of stored models 

and verifying match hypotheses. 

Throughout the 70's, the research of Binford and his coworliers on geiieralized 

cylinders focussed on the problem of recovering parameterized models of objects 

and led to vision systems such as ACRONYM which use reasoning to recover 

parameterized parts [12]. Marr and Nishihara [36] were among the first to propose a 

hierarchical representation of objects in terms of parts. Their work uses generalized 

cylinders to describe each part, thereby limiting the scope of tlie representation to 

objects adequately describable as collections of generalized cylinders. 

Motivated by the generalized cylinder idea and the need to go beyolld geome- 

try to exploit computational physics in the modeling process, Terzopoulos, Witliin 

and Kass [70] propose a deformable cylinder constructed from generalized splines. 

They develop force field techniques for fitting their model to monocular, binocu- 

lar, and dynamic image data. The distributed nature of this deformable model 

enhances its descriptive power and allows the representation of natural objects 

with asymmetries and fine detail. However, the generalized spline conlponerits of 

the model do not explicitly provide an abstract representation of object shape in 

terms of a few parameters. 

The generalized cylinder representation requires the specification of an axis, 

generally a space curve, and the cross-section f~~nct ion.  Pentlalld [49][50] proposes 
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, the use of a simpler part model with scalar parameters, the superquadric ellipsoid 

with parameterized deformations [3] (the notion of a superquadric was introduced 

by Hein [21]). Pentland's proposal has spawned a flurry of efforts to reconstruct 

superquadric ellipsoids with global geometric deformations from 3D data, and these 

have met with some success [24] [25] [61]. 

Pentland [50, 511, following the physics-based approach of Terzopoulos, Witkin 

and Kass [70], proposes an alternative method for fitting deformable part models 

based on superquadric ellipsoids. Inspired by modal analysis, a technique for ana- 

lyzing the vibrations of linear mechanical systems under periodic forcing conditions 

described by Bathe and Wilson [6], he applies to superqua.drics p~lynomia~l approx- 

imation to the deformation "modes" of a 21 node element. Pentland's modeling 

primitives a,re not fully dynamic in that the underlying superquadric pa.rameters 

do not respond to forces and are not fitted to cla.t,a through force int.era.c.tions. The 

deformation modes may make the method efficient for the recovery of smooth, 

symmetrically deformed parts. On the down side, global deforma.tion modes la.ck 

an obvious physical meaning, and they make it difficult to deal with nonlinear- 

ities and boundary conditions. Moreover, the representation of complex sha.pes 

requires many modes, rendering Pentland's scheme no more efficient than a nodal 

finite element solution [6]. 

In this thesis we combine the best of the Terzopoulos, Witkin, and Kass models 

[70] and Pentland's models [51] into our deformable primitives. The coupling of 

rigid-body and deformation dynamics is similar to tlmt described in [70], but our 

formulation accommodates global deformations defined by fully nonlinear paramet- 

ric equations. Hence, our models are more general tha,n the restrictive, linearly 

deformable ones in [72, 21 and quadratically deformable ones in [52 ,  571. 
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2.1.2 Recursive Estimation of Shape and Nonrigid Mo- 

t ion 

Kalman filtering techniques described by Gelb [22] have been applied in the vision 

literature to  the estimation of surface depth [37,27], dynamic features (e.g., Deriche 

and Faugeras [15]), and rigid motion parameters [19, 10, 111 of objects from image 

sequences. To date, these Kalman filters have been discrete filters with the simplest 

possible system models, usually constant velocity assumptions (e.g., Pentland and 

Horowitz [51]). Additional restrictions such as constant error covariance matrices 

may also be found in the literature [51]. These sorts of simplifications can severely 

limit the ability of an estimator to recover shape a.nd motion pa,rameters accurately 

from real-world data, especially when confronted with articulated or fully nonrigid 

motion. 

By contrast, the continuous Kalman filters that we develop in this paper incor- 

porate rather sophisticated Lagrange equations of 3D nonrigid motion as system 

models (simpler dynamic models for the estimation of rigid body motion param- 

eters [20, 191 or 2D nonrigid motion parameters developed hy Szeliski and Ter- 

zopoulos [63] are also available). To gain efficiency with minilna.1 loss of accura.cy, 

we design an efficient large-sca,le Ila,lma,n estimat~or t,hrough sta.te decoupling. Our 

work establishes a direct connection with existing dyna.mic vision models derived 

from physical principles. We show, for exa,mple, that the force-based tracking 

scheme proposed in [33, 701 and applied to deformable superqua.drics by Terzopou- 

10s and Metaxas [67] amounts to a, degenera.t,e "1lalma.n filter" with a constant, 

unit error covariance matrix. 

2.2 Computer Graphics 

2.2.1 Physics-Based Modeling 

In the computer graphics litera.ture, mathema.tica1 representa,tions of solid objects 

has been the commonplace. The field of solid modeling [30] 11a.s developed ge- 
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ometric methods for representing object shape, but these techniques are often 

inconvenient for modeling object motion. The insufficiency of purely geometric 

techniques (e.g., Sederberg and Parry [58] define local deformations of solid prim- 

itives as ambient space warps) becomes particularly evident when one faces the 

problem of realistically animating deformable objects. Physically-based models 

have been pursued for this purpose (e.g., [69, 26, 54, 65, 48, 14, 23, 52, 32, 131). 

These methods introduce realistic physical behaviors into free-form geometric mod- 

els of solids or their surfaces. 

Our method for deriving the equations of motion is general across geometric 

primitives and deformations. The dynamic coupling of rigid-body motioils and 

deformations that we derive is related to that described in 170, 681, but it is much 

more general, in part, because we must accommodate geometric primitives. Our 

treatment of global deformation dynamics is similar to \.liitkin and \Velch7s [72] for- 

mulation of linearly deformable primitives, but we must deal with nonlinear global 

deformations and with the fact that the parametric equations defining common 

geometric primitives can be nonlinear (e.g., the ones defined by Barr [4]). The 

implicitly defined models of Sclaroff and Pentland [57] may be viewed as comple- 

mentary to  the global parametric deformations defined in the thesis; however, our 

approach is quite different since it is not based on a modal analysis. One of the dis- 

tinguishing features of our approach is that it co~nbines the global/parameterized 

and local/free-form modeling paradigms within a single physically-based model. 

We incorporate local deformations into our model using finite elements techniques 

described by Kardestuncer [31]. 

2.2.2 Constraint Methods 

Several researchers have proposed physics-based constra.int methods for working 

with and controlling animations involving rigid and nonrigid primitives [ 5 ,  54, 53, 

71, 721. We describe a method for computing generalized constraint forces between 

our deformable models which is based on the constraint stabilization technique of 

Baumgarte [7, 731. The resulting constraint sa.tisfaction alg~ri t~hin is efficient, a.nd 
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stable for point-to-point constraints. It allows the construction and animation of 

articulated objects composed of rigid or nonrigid parameterized parts. Our con- 

straint algorithm is a generalization of work 011 physics-based constraints between 

rigid parts developed by Barzel and Barr [5]  and linearly deformable parts de- 

veloped by Witkin and Welsch [72]. As in [ 5 ] ,  it can support the assembly of 

complex objects satisfying constraints from inappropriately shaped and misposi- 

tioned deformable parts that do not initially satisfy the constrailits. Furthermore, 

to simulate interactions of our models with the physical world we adopt a force- 

based approach to  collisions which is equivalent to the velocity based technique 

used by [l, 21 in case of rigid and globally deforma.ble models. Simplifying tlie 

model by ignoring some of tlie physics and using simple numerical integration 

techniques for our constrained motion equations we can a.chieve r ed  or intera.ctive 

time animations on graphics workstations, pa,rticularly for the nuinerica,l model- 

ing of hollow "deformable shells" which a.re used in many computer vision a.nd 

computer graphics applications. 



Chapter 3 

Geometry of Deformable Models 

This chapter develops a technique for creating classes of hybrid models whose 

underlying geometric structure allows the combina.tion of parametric models (e.g., 

spheres, cylinders, superquadrics), parameterized globa,l deforlllations (e.g., tapers, 

bends, shears, twists) and local spline free-form defornlatio~ls (e.g., membranes, 

thin-plates). The local degrees of freedom will allow the representation of fine 

scale structure and the modeling of irregula,r rea.1 world objects, while the global 

deformations capture salient features of sha,pe that are innate to na,tural pa.rts in 

a computationally efficieilt way. The technique is applicable to any well-posed 

parametric model, parameterized global deformation and loca,l deformation, as 

long as the resulting equations are differentiable with respect to the uilderlying 

parameters. We formulate 3D solids and illustra.te the approach for the special 

case of 3D surface models. 

Geometrically, the models we develop are 3D solids in space whose intrinsic (ma- 

terial) coordinates are u = ('11, v,  w) ,  defined on a doma.i~l Q1. 

The positions of points on the model relative t,o an inertial frame of reference 

'For the case of a 3D "shell," u = ( u ,  v, 1) 
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in space are given by a vector-valued, time varying function of u: 

where is the transpose operator. We set up a noninertial, model-centered refer- 

ence frame $ and express these positions as 

where c ( t )  is the origin of $ at the center of the model and the orientation of 

$ is given by the rotation matrix R(t ) .  Thus, p(u, t )  denotes the positions of 

points on the model relative to the model frame. To incorpomte global and local 

deformations, we further express p as the sum of a. reference sha.pe s (u ,  t )  a,nd a. 

displacement function d(u,  t ) :  

p = s + d .  (3.3) 

Fig. 3.1 illustrates the model geometry. 

In the next two subsections we first formulate the reference shape s to account 

for global deformations consisting of parameterized primitives (e.g. superquadrics) 

and parameterized global deformations (e.g., tapers, bends). We then describe the 

displacement d which defines the 1oca.l deformations of our models. In particular 

we dub deformable superquadrics deformable models which use superquadrics as 

parameterized primitives. 

3.1.1 Global deformations 

We define the reference shape as 

s = T(e(u;  no, a l ,  . . .); b,, bl,. . .) = T(e ;  b). 
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Material coordinate 

z 
Figure 3.1: Geometry of defor~na,hle model. 
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Here, a geometric primitive e, defined parametrically in u and parameterized by 

the variables a;, is subjected to the global deformation T which depends on the pa.- 

rameters b;. Although generally nonlinear, e and T are assumed to be differentiable 

(so that we may compute the Jacobian of s) and T may be a composite sequence 

of primitive deformation functions. We define the vector of global deformation 

parameters 

qs = ( a ~ l a ~ l .  . . l b ~ l b ~ , . .  JT. ( 3 . 5 )  

The above formulation is general and can be carried out for an arbitrary reference 

shape s given as a differentiable parameterized function of u with respect to qs. 

In the next subsections we consider three examples of global deformations that 

are useful in vision and graphics applications. F~irthermore, we calculate the Ja- 

cobian matrix 

whose computation is essential for the kinematic and dyna.mic formulation to follow 

in subsequent chapters. 

Example 1: Superquadric ellipsoid 

We consider a model consisting of a superquadric ellipsoid solid which describes a 

useful class of part models suita.ble for vision aad graphics a,pplications. 

The parametric equation of a superquadric ellipsoid solid e = ( e l ,  e2, e3)  is 

where - ~ / 2  < u < 7r/2, -x 5 v < T, 0 5 20 5 1, and ST,' = sgn(sin~r)(sin u(', 

Cue = S ~ ~ ( C O S U ) [ C O S U ~ ~ ,  and similarly for CyUC and S,'. Here. no > 0 is a scale 

parameter, 0 5 al ,aa,as  5 1 ,  are aspect ra,tio parameters, and €1, c2 2 0 a.re 

"squareness" parameters [3, 41. 
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We collect the parameters in s into the parameter vector 

The Jacobian matrix J of the superquadric ellipsoid solid is a 3 x 6 matrix 

whose non-zero entries are 

Jll = W U ~ C ~ ' ~ C , ' ~ ,  

J 1 2  = aowCUC1 CVc2, 

JI5 = aoulal ln ( 1  cos zil)C~," CvC2, 

J16 = aowal ln ( 1  cos vl)Cucl C U E 2 ,  

J21 = W ~ ~ C , ~ ~ S , ~ ' ,  

J23 = aowCu'1Sv'2, 

J25 = aowa2 ln ( 1  cos u()Cuel ,S,cZ, 

J26 = aowa2 111 ( 1  sin vj)C,," 

J31 = wa3SUE1, 

J34 = c ~ ~ ~ u S ~ ' ~ ,  

J35 = CL020a3 ln ( 1  sin zi1)SUE1. 

Example 2: Tapering/bending 

We now generalize the above model to allow pa.raineterized tapering and bend- 

ing deformations to increase the geometric coverage of the pa,rt representation. 

Combining ideas from [4] and [61], we define these deforma.tions so that they are 

continuously differentiable and commutative. 

We combine linear tapering along principal ases 1 and 2 and bending a.long 

principal axis 32 of the superqua.dric e into a single pa.ra,~neterized defor~nation T, 

2Tl~e principal axes 1 , 2  and 3 correspond t,o the 1:, a.nd 2 axes of the model fra.me 4 
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and express the reference shape as 

where -1 5 t l , t 2  5 1 are the tapering parameters in principal axes 1 and 2, 

respectively, and where bl defines the magnitude of the bending and can be pos- 

itive or negative, -1 5 b2 5 1 defines the location on axis 3 where bending is 

applied and 0 < b3 5 1 defines the region of influence of hencling. Our method 

for incorporating global deformations is not restricted to only tapering and bend- 

ing deformations. Any other deformation that can be espressecl as a coiitinuous 

parameterized function can be incorporated as our global defor~nation in a similar 

way. 

We collect the parameters in s into the parameter vector 

Defining r = z 7 r b 3 ,  the Jacohian matrix J is a 3 x 11 matrix whose non-zero 

entries are 

J15 = t l  In ( 1  sin ul)SuC1aowalCuE1CvC2 + (tlS,'l + l)aatual In ( 1  cos t~1)C,'l CUE2, 

- b l b 3 ~  ln ( I  sin u()SUC1 sin(?-), 
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J25 = t2 In ( 1  sin u~)SU"aowa2Cuc1 SvL2 + (t2Suc1 + l)aowa2 In ( 1  cos uJ)CUc1 SWE2, 

J26 = (t2Suc1 + 1)aOwa2 111 ( 1  sin v ~ ) C , ' ~ S , ~ ~ ,  

where Soc = sgn(sin 8)l sin 01' and Cot = sgn(cos O ) (  cos 6)'. 

ExampIe 3: Tapering/bending/shearing/twisting 

We now generalize the model defined in example 2 by allowing global transforma- 

tions that include tapering, bending, shearing, and twisting along each of the three 

principal axes of the deformamble model. 

Without loss of generality we define a superqua.dric ellipsoid e as in the previ- 

ous examples and we define a global vector tra.nsforma.t,ion T(e; b) that includes 

tapering, bending, shearing, and twisting along each of the three principal axes 1, 

2 and 3 of the solid. We define this vector transformation T as a composition of 

three simpler trallsformations T3, T1 and T2 dong axes 3, 1 a,nd 2 respectively, 

i.e., 

T(e; b) = Tz(Tl(Tde; b) ) ) .  (3.13) 

The reference shape is therefore defined as 

s = T(e; b). (3.14) 

We give the definition of these tra.nsforma,tions in clock-wise order starting from 

axis 3. 
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The transformation along axis 3 is given by 

where 

and 

4 3  = ( e 3 / a o a 3 ~ ) ~ ~ 3 -  

Here 73 is a twisting parameter along axis 3, ti are tapering parameters along axes 
. . 

j # 3, .s$ are shearing parameters, and bai,  bzi,  by', define the amount, location, 

and range of bending in the plane spanned by axis 3 and axis j. 

The transformation along axis 1 is given by 

where 

and 

41 = (r31 /%a1 w ) * ~ l  

Here is a twisting parameter along axis 1, t( are tapering parameters along axes 
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j # 1, s{ are shearing parameters, and bai,  b':, b'i define the amount, location, 

and range of bending in the plane spanned by axis 1 and axis j. 

Finally, the transformation along axis 2 is given by 

A2 cos(42) - B2 sin($;l) 

s = T2(3'1 (T4e; b))) = 

A2 sin(42) + B2 c o ~ ( 4 ~ )  

where 

and 

4 2  = ( r l z / aoa2w)~~2 .  

Here 7 2  is a twisting parameter along axis 2, t ;  are tapering para.meters along a.xes 

j # 2, si are shearing parameters, and v:, b'i ,  b': define the amount, loca,tion, 

and range of bending in the plane spanned by axis 2 and axis j .  

We collect the 39 global deformation pammeters associa.ted with s into the 

vector 

q, = ( a o , a l , a 2 , a g , ~ l l f ~ , ~ i , t j , ~ ~ , b a ~ r b r ~ ~ b r ~ ) T ,  (3.27) 

where i, j = 1,2,3, j # i. The Jacobian inatsix J is a 3 x 39 nlatrix whose entries 

are computed in an analogous way as the Jacobian of t.he previous examples. 

3.1.2 Local Deformations 

In general [59], we can express the displacement d anywhere within a deformable 

model as a linear combination of an infinite nulnber of basis functions (e.g., poly- 

nomials) bj (u) 
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where the diagonal matrix Si is formed from the basis functions .and where qd, 

are local degrees of freedom or local generalized coordinates which depend only on 

time. The basis functions must be admissible; i.e., they must satisfy the kinema.tic 

boundary conditions of the model. 

When we reduce the problem to finite dimensions, classical approximation 

methods such as the Rayleigh-Ritz method and the Galerkin method [29] are em- 

ployed. These methods express the displacement d in terms of a finite number of 

basis functions. In this case the series of (3.28) are truncated leading to 

We can rewrite (3.29) in the compact nlatrix form 

where S is the basis matrix whose elements are the basis functions bj and the 

vector of local degrees of freedom q d  consists of the local degrees of freedom q d ,  

In this thesis, we will be using the finite element method [74], a special ca.se 

of the Rayleigh-Ritz method, to compute the local displacement d. Through this 

technique the deformable model is approximated by dividing it intlo a. finite number 

of small regions called elements. The finite elenlents are assumed to be intercon- 

nected at nodal points on their boundaries. The local degrees of freedom q d  can 

describe displacements, slopes and curvatures at selected nodal points on the de- 

formable model. Between these selected nodal points the displacement field within 

the element is approximated using a finite number of interpolating poly~lomials 

called shape functions. 

The details of the finite element inethod and its use in this tliesis will be given 

in a later chapter. 



3.2 Summary 

In this chapter we provided the geometric formulation of our models. We described 

a general technique for defining global and local geometric degrees of freedom a.nd 

applied it to create a new class of deformable models that we dub deformable 

superquadrics. Our technique is general and can be applied to aay c1a.s~ of pa- 

rameterized geometric primitives and deformations as long as their underlying 

equations are differentiable. 



Chapter 4 

Kinematics and Dynamics 

This chapter presents the kinematic and dynamic for~nula,tion of tlie deforma,ble 

models. The kinematic formulation leads to the con~putation of a. Jacobian matrix 

L which allows the transforination of 3D vectors int,o q-dimensional vectors, where 

q is the number of geometric degrees of freedom of tlie cleforinable model. These 

parameters are also called generalized coordina.tes. The dynamic formula,tion, is 

based on the Lagrangian dynamics and uses generalized coordinates. We pro- 

pose a systematic procedure for converting geo~netri~ally defiilecl pa.ra,meters into 

physical degrees of freedom. The resulting motion ecluations govern the evolution 

of generalized coordinates as a result of the appli~at~ion of ext,ernal forces on the 

model. The forces stem either from data fitting techniclues in vision applications 

or from interactions with simulated physical worlds in gra~pliics applications. Fi- 

nally, we present a force-based estimation technique for shape a,nd nonrigid motion 

estimation in computer vision applications. 

4.1 Kinematics 

From (3.2), the velocity of a point on the inode1 is given by 



where 8 = (. . . , Oi, . . .)T is the vector of rotational coordinates of the model and 

B = [. . . d(Rp)/dO; . . .]. Furthermore, 

where J is the Jacobian of the reference shape with respect to the global deforma- 

tion parameter vector (see the previous chapter for examples). 

We can therefore write the model kinematics compactly as 

and 

x = [I B RJ RS]q= Lq, (4.4) 

where < is a function that nonlinearly coinbines the generalized coordinates q to 

compute the position x of a point on the model, while L is a model Jacobian 

matrix that maps generalized coordinates q into 3D vectors. 

Here, 

9 = (q:, q;, q:, slz,'. (4.5) 

with q, = c and q e  = 8 serving as the vector of generalized coordinates for tlze 

dynamic model. 

4.1.1 Computation of R and B Using Quaternions 

We represent qs using quaternions. Upda.ting quaternions is easier than directly 

updating a rotation matrix and ensuring tha.t it remains orthogona.1. Quaternioiis 

also avoid the problems with "gimbal locli" and singularities that may arise when 

Euler angles are used to represent rota,tions [73 ] .  

A quaternion [s, v,] with unit magnitude [60], 



0 

Figure 4.1: Rotation by angle 0 through an axis of rotakion v,. 

specifies a rotation of the model from its reference position through an angle 13 = 

2 cos-' s around an axis aligned with vector v, = (vl, vz, a.s shown in Fig. 4.1. 

The rotation matrix corresponding to  [s, v,] is 

An important property of the rotation nlatris R is or.thogonality 

The matrix B is given by [59] (see Appendix A for a. proof) 
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where R represents the rotation matrix at time t ,  P(u)  is the dual 3 x 3 ma,trix of 

the position vector p(u) = (pl , p2, p3)T (see (3.3)) defined as 

and where G is a 3 x 4 matrix whose definition is based on the value of the 

quaternion q e  = [s, v,] representing the rotation at  time t 

4.2 Dynamics 

In computer vision applications (e.g., fitting of models to data, tracking of objects) 

our goal is to recover the model degrees of freedom q, while in computer graph- 

ics (e.g., animations) we want to update q. The components q, a,nd q e  a.re the 

global rigid motion coordinates, q, are the globa,l defor~llatioll coordina~tes, aad 

q d  are the local deformation coordinates of the model. Our a,pproach carries out 

the generalized coordinate update procedure a.ccording to physical principles. We 

make our model dynamic in q by introducing mass, damping. and a deforlllatio~l 

strain energy. Through the apparatus of Lagra.ngian dynamics, we arrive at a set 

of equations of motion governing the beha.vior of our nlodel under t,he a.ction of 

externally applied forces. The following sect,ions derive the La,grallge equations of 

motion for the geometrically defined models in the previous cha.pter. 

4.2.1 Lagrange Equations of Motion 

Let 7 be the kinetic energy of the defornlahle n~odel, T the lcillet,ic energy dissi- 

pation and & the deformation stra.in energy of the model. 
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The Lagrange equations of motion for the model take the form 

These equations can be written in the form 

where M, D, and K are the mass, damping, and stiffness matrices, respectively, 

where g, are inertial forces arising from the dynamic coupling between the local 

and global degrees of freedom, and where f,(u, t )  are the generalized external forces 

associated with the degrees of freedom q of the model. 

In the following subsections we derive from (4.12) forxnulas for t,he matrices 

and vectors in (4.13). 

4.2.2 Kinetic Energy: Mass Matrix 

The kinetic energy T of the model is given by 

where M = J pLTL du is the symmetric ma,ss matrix of the object and p(u) is the 

mass density of the object. Using the expression for L from (4.4), we can rewrite 

M as a block symmetric matrix as follows: 
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where 
Mcc = JpIclu, Mes = J P B T R J d u ,  

M,, = R J p J  clu, M,, = J pJT J du, 

MCd = RJpSclu,  Msd = JpJTSdu ,  

Mee = .II-6BTBdu, Mdd = JPSTSdu.  

4.2.3 Calculation of Acceleration and Inertial Forces 

The acceleration of a point x 011 the deformable model is shown in [59] to satisfy 

where 

L q = w x ( w x R p ) + 2 w x R p .  

Here, w x (w x R p )  are the centrifugal and '2w x R p  are t,he Coriolis accelerations. 

We compute 

rj = i + d = JG, + Sqd, (4.19) 

and the angular velocit,y of the deformable nlodel with respect to the world coor- 

dinate system using 1591 

w = Qd, (4.20) 

where Q is a 3 x 4 matrix whose defi~litioll is based on the value of the quaterilion 

8 = q o  = [ s ,  (vl, v2, Q ) ~ ]  represellt,illg the rotation at  time t 

The virtual work due to inertia on t,he deformahle model is computed as follows 
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where the generalized ma.ss ma.tris is 

and the generalized inertia,l forces are 

Using (4.14) and (4.22). tlie first tnro terms of (4.12) which express inertial 

forces can be written as 

where 

gives the centrifugal and Coriolis forces [59]. 

4.2.4 Energy Dissipation: Damping Matrix 

We assume velocity depencleilt kinetic energy dissipation, which can be expressed 

in terms of the (Raleigh) dissipatioil funct.iona1: 



where y(u) is a damping clensity. Since it has the same form a,s (4.14) we can 

rewrite (4.27) as follows: 

where the damping ma,trix D l1a.s the sa.me forin as M, except that y replaces p.  

Using (4.14), we express the third tern1 of (4.12) 

4.2.5 Strain Energy: Stiffness Matrix 

The stiffness matrix K deteriiliiles the global and local elastic properties of the 

model and has the general for111 

The zero submatrices indicate that only the global q, and local q d  deformat ional 

degrees of freedom can contribute to the stiff~~ess matrix through their associated 

deformation strain energy. I11 particular K,, cletermilles the stiffness of the inodel 

related to the global defoiniations, Kdd cleterlnines the stiffness of the model re- 

lated to  the local deforlllatioils and KSd cleterlniiles the stiffness as a result of the 

interaction between local and global cleformations. 

We will demonstrate a general tecl-iiiique of cleriving K,, froill a Hookean global 

deformation energy and Kdd from a local defornlatioil strain energy. Mre also 

assume independence of the al~ove two defined energies which yields KSd = 0. 

Furthermore, in coil~pilter vi5ion applicatioils we want the global clefor~nation pa- 

rameters q, to freely account for as milch of the data as possible. Consequently, 

we impose no deformatioil energy on q,; i.e., we set K,, = KSd = 0 in (4.30). The 

local deformatioil parameter5 qd, ho~~~eve r ,  must be constrained to yield a small 
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and continuous deformation function. 

Global Strain Energy and Derivation of K,, 

We assume that the energy Esi associated with each of the global parameters q,, 

is Hookean and given by the expression 

where k,, is the stiffness associated with the global parameter q,, and q,,, is the 

natural rest value associated with parameter q,,. The corresponding global stiffness 

matrix K,, is a diagonal matrix whose nonzero entries are the k,,, i.e., 

K,, = diag(k,,) 

Differentiating (4.31) with respect to q,, we derive the global elastic force as- 

sociated with parameter q,, 

Hence, if an external force acting on the model causes for example a bending 

deformation, then after that force vanishes the model deforms back to the rest 

value of the corresponding bending parameter. 

Local Strain Energy and Derivation of Kdd 

Depending on the desired continuity of the deformable model surface, we impose 

on q d  an appropriate deformation strain energy. We will now present two C0 and 

C1 continuous deformation strain energies. The first is that of a loaded membrane 

spline and the second of a thin plate under tension spline. 

A loaded membrane deformation energy [68], suit able for C0 continuous model 
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where the function woo(u) controls the local magnitude and wlO(u), wO1 (u) control 

the local variation of the deformation. In our implementation, we reduce these 

functions to scalar stiffness parameters woo = w0 and wlo = wol = wl. 

A thin plate under tension deformation energy, suitable for C1 continuous 

model surface, is given by the functional [64] 

The nonnegative weighting functions wij control the elasticity of the material. The 

wlo and wol functions control the tensions in the u and v directions, respectively. 

The wo2 and w2o functions control the bending rigidities in the u and v directions, 

respectively. The wll function controls the twisting rigidity. Increasing wol and 

wlo makes the deformations have more membrane properties, while increasing the 

~ 2 0 ,  ~ 1 1  and 2002, the deformations behave more like a thin plate. The weighting 

functions may be used to introduce depth and orientation discontinuities in the 

material. In our implementation however, we reduce these functions to scalar 

stiffness parameters waj(u) = wjj. 

We will now describe the general technique of deriving Kdd from a local defor- 

mation strain energy I. In accordance to the theory of elasticity, we can express 

a local deformation strain energy E as 

where a and e are the stress and strain vectors respectively. Furthermore we can 

always express the relation between the strain vector E and the local deformation 

d as 

e = Pd, (4.37) 

where P is a differential operator that is derived from the local deformation strain 



energy (e.g., 4.34 and 4.35). In terms of the gel~eralized loca,l c~ordina~tes qd we 

can rewrite (4.37) as 

t5 = PSqd. (4.38) 

We can also express the relation between the stress a and strains c as 

where the symmetric matrix D is derived from the local deformatioi~ strain energy. 

Substituting (4.38) into (4.:39) yielcls 

Substituting (4.38) and (4.40) into (4.36) mre get 

where we utilize the symmetsry of D. Since qd clepellds ollly on time we call rewrite 

(4.41) as 

or in compact forln 

f = q:Kddqd, 

where 

is the symmetric positive definite local deforinatio~l stiffiless matrix. 

In a subsequent chapter we will give formulas for the elements of the stiffness 

matrix Kdd usillg the above techiliclue and the finite element method, for a loaded 

membrane deformation energy. 

From (4.31) and (4.43) the fourth tern1 of (4.12), the \-ariation of & with respect 
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to  q, can be written 

6,£ = Kq. 

4.2.6 External Forces and Virtual Work 

The external forces f ( u , t )  applied to the model do virtual work which can be 

written as 

6WF = / f ' ~ 6 ~  = f:bq, (4.46) 

where 

and 

is the vector of generalized e ~ t ~ e r n a l  forces associa,tecl with the degrees of freedom 

of the model. 

4.3 Choosing the Order of the Motion Equa- 

tions 

For convenience, we rewrite the second-order ecluatioils (4.13) in standard dynam- 

ical system form, as the coupled set of first-order equations 

with state vector u, system matrix F, and driving fuilction g a.s follows: 

A full impleinenta.tion a,~ld si~nulatio~l of the a.bove c1yna.mic equations would 

be appropria,te for physics-ba.sec1 anima t'ion where it is i i l lp~rt~ailt  to achieve real- 
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istic motion synthesis [6S]. kloreover, when the dynamical syste~il is used to  track 

moving objects and a significant part of a tracked object becomes occluded tem- 

porarily, significant portioils of the generalized data force f, will suddenly vanish. 

The second-order system (4.1:3) (or, ecluivalently, (4.49) and (4.50)) is appropriate 

in such a case, since the inass term provides intertia; once the system is set in 

motion, the generalized coordinates will colltillue to evolve even when all the data 

forces vanish. Because of inertia, the system stands a better chalice of regaining 

its lock on the object when it reappears, assuming the motion of the object did 

not undergo sudden changes during the occlusion. 

However, in computer vision and geometric design applications involving the 

fitting of hollow "deformal~le shells" to static data, we may simplify the underlying 

motion equations for the salie of computational efficiency. In such applications we 

want the hollow "shell'. to fit the data and achieve ecluilil~riuni as soon as the inter- 

nal elastic forces balance the external data forces.' il'e usually care about the final 

equilibrium fit and not ahout the illtermediate motion of the hollow "shell". For 

static shape recoiislructioii probleills (i.e.. z ( t )  = z)  it mal;es sense to simplify the 

motion equations by setting the Illass density to zero, ~x~hich nonetheless preserves 

useful first-order dyllaniics that achieve the equilil~rium fit. 

Setting the mass density p(u) (see ecl. (4.14)) to zero in (4.13) results in the 

first-order dynainic system 

D q + K q = f ,  (4.51) 

(since M and g, vanish). Because these equations lack an inertial term, the system 

comes to  rest as soon as  all the forces equilibrate or vanish. We can also rewrite 

the first order-system (4.51) in the stallclard forin (4.49), where 

'111 computer vision the data forces are artificial and are cornputed using algorithllls described 
in a subsequent chapter, wliile ill computer graphics the forces are based 011 interactions in a 
simulated physical world. 



4.4 Summary 

In this chapter we described the kinematic and dyna.mic formulation of our models. 

We also described a systenlatic method for converting the geometric degrees of 

freedom of a deformable model into gelleralized coordinates, or dynamic degrees 

of freedom, by using the La,grange equa.tions of motion. This method depends on 

the calculation of a Jacobian ma.trix which requires that all the relevant model 

equations are differentiable. Furthermore, itre presented a general technique for 

deriving the stiffness matrix a.ssocia,ted with the elastic properties of the inodel 

from a given deforma,tion energy expression. 



Chapter 5 

Finite Element Implement at ion 

This chapter presents the finite eleinent method that we will employ to discretize 

the Lagrange equations of  notion for both vision and graphics applications. We 

state the criteria for choosing the appropriate elements for a given problem, we give 

various finite element tessellations of the parametric space of a cleforinable model, 

we show examples of finite elenlellts and finally we present the approsinlation to 

the Lagrange equations of mot.ion using finite elements. 

5.1 Finite Elements 

In this thesis we will be using the finite eleinent inethocl [GI, a special case of the 

Rayleigh-Ritz method, to conlpute the local clisplacei~lent d.  Through this tech- 

nique the deformable inode1 is approsi~llatecl by a finite number of small regions 

called elements. The cleformahle lnodel is partitioned b y  imaginary lines or sur- 

faces into a nu~llber of finite eleinents that are assumed to be interconilected at 

nodal points on their boundar ie~ .  The local degrees of freedom q d  can describe 

displacements, slopes and curvatures at selectecl nodal points on the deformable 

model. Between these selected nodal points the clisplaceillent field within the ele- 

ment dl is approxilnated using a finite numl~er of inteipolating polyno~nials called 
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shape functions 

where N: are the element sl~ape f~li~lct~ioils, matrix Nj is the finite elenlent shape 

matrix whose elements consist of tlre N!, q$i is the element's nodal displacement, 

jT jT ) i  qi = (qdl , . . . , qd, and 12. is the number of the element's nodes. 

Using (5.1) we ca,n express the displacement d anywhere within the deformable 

model as 

d = Sqd? 

where the basis matrix S i \  coillputed froin the finite elelllent shape functions N.1. 

A very important use of the finite elellleiit shape functions is the following. If we 

know the value of a point force f ( 2 1 )  within an elelllent j ,  the11 we can extrapolate 

it to the nodes of the elelllent using the formula 

where ATi is the shape f~~~lnction that corresponds to node i and f, is the extrapolated 

value of f (u)  to node P .  

5.1.1 Choosing the Appropriate Elements 

Errors in the finite eleineiit illetllocl call he divided into two classes 

1. Discretizatioil error\ resulting from geometric differences hetween the bound- 

aries of the model and its finite elelllent approsin~ation. 

2. Modeling errors, due to the clifference between the true solution and its shape 

fuilction represent a tion. 

Discretization errors call be reduced 11y using snlaller ele~nents- the errors tend 

to zero as the elellleilt size teilcls to zero. Shape functioil errors do not decrease as 

the element size reduces and nlaj thus prevent convergence to tllc exact solution or 
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even cause divergence. There are two main criteria required of the sha,pe function 

t o  guarantee convergence [2S] 

1. Completeness: A conll~lete of order at least p,  be used for the 

representation of the variable within an element, where p is the order of the 

highest derivative of the variable appearing in the energy functional. 

In the following sectio~ls we will give descriptions of elelnents which guarantee 

C0 or C1 continuity of the approxilllated lllodel surface. 

2. Conformity: The elenlents must, he conforming, that is, the representations 

of the variable aad its derj~,a.t.ives up to and i~lcluding order p - 1 must be 

continuous across i~lt~ereleille~lt bouncla.ries, where p is the order of the highest 

derivative appea,riilg in the functional. 

5.1.2 Various Model Tessellations 

We will give two possible tessellations of the llla,terial coordinate system u = 

(u , v ,  1) into finite elemeilt dolllaills for the case of a deformable superquadric 

ellipsoid. The first is illustrated in Fig. 5.1. The need for quadrilateral and trian- 

gular elements is evident. Ecjuation (3.7) ilnplies that the v illaterial coordinate 

of both north ( 1 1  = TI') a.nd south ( 2 1  = -7~12) poles ma,? be arbitrary. This is 

illustrated in the figure bj, the dotted lines. LTre initially used this tessellation in 

vision applications. The problenl though ~vit~11 using one rectangular instead of two 

triangular elements is that the sllape represelltation is not so accurate. To achieve 

the later we use the second representa.tmion sl~own in Fig. 5.2 where each of the 

rectangular elements has been replaced 11y two triangular elements. We use such 

a representation in applicatiorls rec-luiring shape accuracy. 

'1n two dimensions a colnpl~t,e polynomial of order p  call be written a.s f ( x ,  y )  = 
1 x,=l a , a i $ ,  l: + j 5 p, where t.lle number of terms ill the  polyllolnial is 1 = (p + l ) ( p  + 

2 ) / 2 .  In three dillle~~siolls a complet,e polynomial of order p can be writt,en as f ( x ,  y ,  z )  = 
~ t = ~  a,.xi$ z k ,  i + j + k 5 11. where the numller of ternls in the polyiloinial is 1 = (p + l ) ( p  + 
2 ) ( ~  + 3)/6. 
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Locus of possible placements 

................... 

Locus of possible placements North pole 
of north pole I 

u 

Figure 5.1: Model tessellatio~l in ma.teria1 coordina.tes: recta.ngula,r a.nd triangular 
elements. 

South pole 
I 

/' 
Locus of possible placements North pole 
of north pole I 

U 

Locus of possible placements 
of south pole 

Figure 5.2: Model tessellatioil in inaterial coordinates: triangular elements. 
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We will now give the geoinetry of the various kinds of elements and their cor- 

responding shape functioils li; t,ha,t we will he using throughout the thesis. We 

will be using elements with C0 or C1 continuity2 across elements depending on 

the smoothness of the desired solution. In 130th cases each element and its shape 

functions are defined in a, local reference coordinate system ([, 7 1 ) .  Furthermore, 

due to the model discretization in ma.teria1 coordina.tes u,  we give the relationship 

between the reference and the ma.teria,l coordinates. 

5.1.3 Co Elements 

We describe t.he bi1iaea.s quadrilateral ancl linear triangula,r elellleilts that we em- 

ploy in the above t,wo t,essella.tions. For the first tessella.tion shown in Fig. 5.1 we 

use bilinear quadrila.t,era.l and sout.11 ancl north 1inea.r triangular elements. For the 

second tessellation shomrn in Fig. 5.2 we use north, south and mid-region linear 

triangular elements. 

Bil inear Quadr i la tera l  Eleinellts 

The nodal shape functions of the bilinear cluaclrilateral elenlent (Fig. 5.3) are 

where (ti, 7,)  are the reference coordinates of node i shown in the figure. The 

relationship between the reference coordillates and nlaterial coordinates u = (u,  v) 

is given by 
3 2 

= ( 1  - 1 1 ) .  q = h ( l ~  - " C ) ?  

(1 

'1n a following section we will preseilt t,he necessa.ry criteria finite eleille~lts must satisfy to  
ensure a desired colltiiluity in t,he solut~ion. 
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Figure 5.3: Bilinear qua~c1rilat~era.l element. The four ilodes a.re numbered. 

where (u,, v,) are the coorcliilates of the eleilleilt center. The required derivatives 

of the shape fuilctions may he computed as follo~vs: 

and we may integra,te a f~~nc t~ ion  f ( u ,  2))  over Ej b y  trailsformiilg to the reference 

coordinate system: 

We approximate such iiltegrals using Gauss-Legendre qua.dra,ture rules (see Ap- 

pendix B for various integra.tion rules). 
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North Pole Linear Triangular Ele~l le~l ts  

The nodal shape fuilctions for the ilort,h pole linear triailgula,r element (Fig. 5.4) 

are 

The relationship between t,he 1 ~ 2 '  aiid [ r l  coorclina~tes is 

where (u l ,  v l )  are the coordilla,tes of' node 1 at which ( J 1 ,  ?ll) = (0,O). Computing 

the derivatives of the sl~a,pe funct.ions as i11 (5.13) a,i~d (5.7) yields 

and we ma.y integrate a. functioli f ( u . 2 1 )  over the Ej  using 

(1-17) / /  .f ( l L .  I . )  d l ~  d11 = /ol/o . f ( t l v ) ( ~ b d [ h  

E3 

We approximate such integrals using Radau cluadrature rules. 

South Pole Linear Triangular Ele~mellts 

The nodal shape f~~ilct,ions for the s o ~ t ' ~ 1  pole linear tria~lgular element (Fig. 5 . 5 )  

are 
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Figure 5.4: North pole linear triangular element,. The three nodes are numbered. 

I L- south pole 

Figure 5.5: South pole lillear triangular element. The three nodes are numbered. 
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The relationship between the uv and Jq coordinates is 

where (ul, vl)  are the coordina.t8es of node 1 at which (tl, 711) = (0 '0) .  Computing 

the derivatives of tlie sha,pe functions a.s in (5.6) and (5.7) yields 

and we may integrate a f~ulction f ( u ,  21) over the Ej using 

We approximate such integra,ls using Ra.da.11 quadra,ture rules. 

Mid-Region Triangular Elei~~ents 

The nodal shape functions for t'lle mid-region linear triangular element (Fig. 5.6) 

are 
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I > U 

Figure 5.6: Mid-region tria.ngular element. The three nodes a,re numbered. 

The relationship between the e1.r) and J71 coordiilates is 

where u g  and vl are the u and 1: coordiilatcs of nodes 3 a,nd I respectively at which 

(53 ,r /3)  = ( 0 , l )  and (J1, 1 1 ~ )  = (1,O). C;oillputillg the derivatives of the shape 

functions as in (5.6)  and (5.17) yields 

and we may integrate a f~inction f ( u ,  u )  over the E, using 
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Figure 5.7: C1 Colltilluous Tria,ngula.r Element. The three nodes are numbered. 

We approximate such i~ l t c~ ra l s  using Radau quadrature rules. 

The above ele~nents are conformiilg and satisfy the completeness requirements 

for a loaded membrane f~ulctional. For esample, the shape functions of the rectan- 

gular elements are bilinear and contain the first order polynoislial terms plus the 

xy of the higher order quadratic polynomial, therefore the elements are complete. 

Among element edges (( = - + l , t ~  = f 1) these shape functions become linear and 

the displacement d can be uniquely defined by the two correspondillg nodal values 

of d on that edge. If the adjacent elenlent is also linear then d will be continuous 

between elements since its ~ a l u e s  are uilicluely defined by the shared nodal values 

on that edge. Therefore we have a C0 conforlning element. 

5.1.4 C1 Triangular Elements 

Such elements ca.n be used for the tessellatioil sho\~n in Fig. 5.2 for problems 

requiring C1 continuity. 
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The relationship between the 1121 and [v coordinates is 

where (ui,,u;) are the 111a.teria.l coorcliilates a,t the nodes of the trimgular element. 

The nodal variable for this eleinellt is a vector consisting of the nodal displace- 

ment d,, along with its first and secoild partial derivatives emluated at each node 

i. The nodal variable vector for our models is therefore 

Concatenating the q d ,  at each of the three nodes of element j ,  the IS-dimensional 

element nodal vector qJd = [ q i  . q12 .  qi3IT is obtained. 

The 1s  nodal shape functions Nz (El 7 )  are given 13y the following formulas. For 

node 1 

for node 2 

and for node 3 



5.1. FINITE ELEAlEiY'I'S 69 

where X = 1 - I  - 11. 

The computation of the deriva.tives of the shape fuilctio~ls with respect to the 

material coordilla.tes is clone in the sa.me way as above, while we use the Radau 

quadrature rules to approxiinat'e int,egrals of functions f (u,  z,) over the E j ,  i.e., 

The element is complete up to fourth-order and its shape fuilctions contain three 

fifth-order terms [16]. The shape f~~nct ions  are C" continuous within elements 

and they ensure C1 continuity between elements. Since (4.35) contains up to 

second order derivatives, the elellle~lt is conforming. Therefore such an element is 

appropriate for a thin plate under tension deformation energy [47]. 

5.1.5 Approximat ion of the Lagrange Equations 

We may approxin~ate the Lagrange equations of motioil (4.13) by using the finite 

element method described previously. Through this method, all cluantities neces- 

sary for the Lagrange ecluatiolls of illotioil are derived from the same quantities 

computed independei~t~ly ~vithin each finite element. The various matrices and vec- 

tors involved in the Lagrange ecluatioils of motion (see chapter 4) are assembled 

from matrices computecl within each of the elements3 , i.e., 

(5.37) 

where Mi,,, DJ,,,, KJ,,,. f i  and gi are the appropriately espanclecl [29] mass, 

damping, stiffness matrices. external forces and i~lert~ial forces respectively associ- 

ated with elemeilt j . 

The calculation of all the al~ove integrals is done an element through 

3The dimensionality of t,liese iilatrices is equal to  the nuinber of degrees of freed0111 of the 
corresponding element. These ma.trices are t8hei: augllleilted to ma.trices of size q x q ,  where q is 
the  number of the  model degrees of freedom. 



the shape functions. Any quantity that must be integrated over an element is 

approxiiliated using the shape functions and the corresponding iloclal quantities. 

For example, 

M~~ = J I L ~ ~ T ~ ~  du, (5.38) 

where Nj  is the shape matrix associated with element j .  

5.1.6 Derivation of Stiffness Matrix Kdd 

We present the procedure of deriving the local stiffness matrix Kdd by applying 

finite elements to a deforlllatioil energy first for the case of a loaded membrane 

energy (4.34). 

We discretize the lnoclel in material coorclillates u using finite elements. We can 

derive Kdd as an assembly of tlle local stiffness nlatrices Kid associated with each 

element domain E, c u. Since d ( u , t )  = dJ (u , t )  = [d ; (u, t ) ,d; (u, t ) ,dJ3(u, t ) lT,  we 

can rewrite the membrane spline deforlnation energy (4.34) on E, as the sum of 

component energies 

where for E = 1: 2 , 3 ,  

In accordailce to the theory of elasticity, (,5.40) can be written in the forin 

where 
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is the strain vector and 

is the stress vector associa.ted with co~nponent k of d.  Therefore, the element stress 

vector is 

. . 
03 = DJeJ = 

where D{ = D; = D;. 

We denote the finite elelllent 1loc1a.l shape functions hy N, i=1, . . . , T I ,  where n 

is the number of ilodes a~ssocia.t,ecl ~ i ~ i t ~ l l  eleilleilt Ej. Hence, we can write (5.42) as 

where 

and 

We can write the elelllent st,ra.in vector ci a.s 
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where I?: = I?; = I?;. Thus the elelllent st,iffness lnatris is 

For a thin plate under tension, the derivation is the same except that 

and yj has exactly the same form as 4 with N: repla,cing d i .  

Using the above formu1a.s for the case of a loa,clecl membrane energy with 

wlO(u) = wO1(u) = lul and u?oo(u) = t ~ l o  the ele~l~ellts of the sjmlmetric stiff- 

ness matrix Kid, correspolldi~lg to a bilinear rectangular elelllent are given by the 

following forinulas 



while for a linear south pole elenlent the elements of Kjddk are 

5.2 Summary 

In this chapter we gave an orrrvierv of the finite element method tliat we ernploy 

to discretize the Lagrange ecluatiolls of motion. In particular, we gave various fi- 

nite element tessellations of the parametric space of a defor~llable model, examples 

of suitable finite elements, tlie discretization of the Lagrange equations of mo- 

tion through finite eleinents and finally the criteria for choosillg tlze appropriate 

elements for a given problelll in vision or graphics applications. 



Chapter 6 

Applied Forces 

This chapter describes ~ar ious  teclllliclues for computing esternal forces and ap- 

plying them to deformable models. In computer vision applications such forces 

originate from datapoints or image potentials, and are assigned to points on the 

deformable model [70]. In computer graphics applications we assign forces to points 

on the deformable model clue to collisions of the cleforillable model with other rigid 

or deformable models. or clue to a force field (e.g.. gravity) [66]. We also describe 

our force-based technique for sllape and lloilrigicl illation estimation. 

6.1 Computer Vision Applications 

In the dynamic model fitting process the data are transfor~ned into an externally 

applied force distribution f ( u ,  t ) .  Using (4.48)' we collvert the external forces to 

generalized forces f, which act on the generalized coordinates of the model. We 

employ two types of forcex l~ased on the structure of the input data. For regularly 

sampled image or vosel data we asqign short-range forces' obtained through gradi- 

ents of potential functions. For :3U range data nre assign long-range forces2 based 

on distances between data points and the model's surface. 

l T h e  strength of such forces increases close t,o tlle image or vosel da ta .  
'Long range forces are spring-like forces and t,herefore are proportio~lal  t o  t,he distai~ces be- 

tween d a t a  points and the correspo~~ding nodes on t,lle model's surface. 
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6.1.1 Short Range Forces 

We will describe various techniclues for generating suitable potential functions from 

monocular, binocular, a i d  dynaillic ima.ge sequences. For esample, to  attract a 

3D model towards significant int,e~isity gradients in a coiltinuous image I ( z ,  y ) ,  we 

construct the potential f~ulct,ion [7O] 

where Go denotes a Gaussian silloothiilg filter of characteristic width 0, which de- 

termines the extent of the region of attraction of the intensity gradient. Typically, 

the attraction has a relatively short range. The potential fullction applies a force 

to  the model, where /3 controls t,he strengt'h of the force and II is a suitable projec- 

tion (e.g., perspective, orthographic) of points on the model into t,he image plane. 

We now discuss two ways of selecting points on the ~lioclel on \vhich to  apply short 

range forces using orthographic projection, a,ssuining that the surface of the de- 

formable model ha,s been tessella,ted into triailgula,r elemelits (see chapter 5 for 

more details). 

Algorithim 1 

We select those nodes from the finite elements whose vertical distance from the 

image plane shown in Fig. 6.1. is less t,ha,n an experimentally defined threshold E .  

To each of those nodes we apply the forces (6.2). 

Algorithim 2 

We first compute the int.ersect,ion points hetween the edges of the finite elements 

and the image plane sllo\vn in Fig. 6.2. We then assign to each intersection point 

u; the force (6.2). \Ale then est,rapolate this force to each of the two corresponding 
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element 

Figure 6.2: Accura,te a.pplica.tion of image forces to nodes. 
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nodes of the triangular element using the shape functions 

where k E (1,2,3), f k  is the nodal force and Nk is the shape function correspond- 

ing to node b. This algorithnl computes the corresponding forces to the element's 

nodes more accurately than the l~revious one, but is more computationally expen- 

sive. 

To compute the potential fuilction in practice, we begin with a digital image 

I ( i ,  j ) ,  convolve it with a discrete filter G,, and coillpute at each pixel (i, j )  the 

magnitude of the discrete gradient operator calculated from central finite differ- 

ences of neighboring pixel values. To evaluate (6.2) at the location of a projected 

model point IIx = (r, y ) ,  we first calculate using central finite differences the dis- 

crete gradients VPk a t  t l ~ e  four pixels X- = 1, . . . ,4 that surround (x, y) .  We then 

consider these pixels as the notles of the c~uadrilateral finite element of Fig. 5.3, 

with a = b = 1, in order to define a bilinear interpolant in the region between the 

pixels; i.e., using ( 5 . 3 )  and (5 . .5 ) ,  the illterpolallt is given by 

where (x,, y,) denotes the cei~troicl of the four pixels and ATk are given by the same 

formulas as the shape functions of a bilinear rectangular element. 

The above techniques for the calculation of short-range forces can be generalized 

in a straightforward manner in case of :3D potentials colllputed from 3D data. 

6.1.2 Long-range Forces 

Alternatively, we may define long-range forces 

f ( u , . )  = d I I z  - x (uZ) J (  , 
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based on the separation het~reen a datapoint z in space and the force's point of 

influence u, on the nlodel's surface. In general, u, = (u,, v,) will fall somewhere 

within an element 011 the surface of the model. We can coliipute x(u,) in the 

domain of a quadrilateral element, for instance, according to its bilinear local 

interpolant 
't 

where the xi are the nodal positions (see (5.4) and (5.5)). The equivalent forces 

on each of the four nodes a.re 

When we use triangular elements, the colllputations proceed in an analogous fash- 

ion using the corresponding shape funct,ion formulas (see chapter 5). 

Miniinurn Distance Based Forces 

In many applications, we \vailt uZ to nlinilllize the distance d between a given 

dat apoint z and the ~noclel, \vheue 

A closed form analytic formula for x(u,)  is una.va,ila.ble for a discrete deformable 

model. There a,re va,rious alg~rit~li~lls for computing d(u)  ~vliicl-1 achieve various 

levels of accuracy in the coml>uta.t~ion of the nliniilluln d(u) = d(11,) depending on 

whether they use 

1. finite element nodes, 

2. finite elements, 

3. both finitme element nodes and finite elements. 

We will now describe four a.lgorit,l~ms in order of increa,si~ig accuracy in the coinpu- 

tation of d. Furthermore, in a.ssessing the complexity of ea~cll a.lgorithni we will use 
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Deformable Model 
\ 3D Datapoint 

Applied Force 

Figure 6.3: 
datapoint. 

v Selected Node 

Force applicat,ion to the model node with mini1 nal distance from a 

the fact that the number of elements is pl-oportional to the nurnber of nodes. The 

constant of proportionality depeiicls on the geometry of the mesh used to discretize 

the model surface. 

Algorithm 1 

A brute-force approach that ~vorkecl well in our experiments is to select from all 

the model nodes the one that minimizes cl as s l ~ o ~ ~ ~ n  in Fig. 6.3. The complexity of 

this operation is @(nzn), ~vliere 111 is tlie number of clatapoillts and 17 is the number 

of nodes. 

Algorithm 2 

A more accurate algorithi~l involves a c1yna.mic procedure for migrating points 

of influence over the model's surface until they arrive at locations of minimal 

distance from the given cla.tapoiiits. S ta t ing from iilitia,l points of influence not 

necessarily at millillla1 distai~ce (Fig. 6.4). we project the force at each time step 

onto the unit tallgent ~ec to r s  ( D x / ~ z L ) /  liax/au/l and (ax/&)/ l(8x/dvl( to the 

surface at the curreilt point of influence Po = uo, and we migrate the point in 
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Figure 6.4: IVligra,tion of da,ta, force point of influence over inodel surface. 

the u plane by taking an Eliler st'ep in 21 and v proportional to the magnitude 

of the respective projections. Thus, t,he l~oint of influence migrates to a point P, 

of ininiinal distance, 117here t,he taligeiltial components of the force vanish. The 

scheme works well, unless t,he surface is highly convolut.ed, in which case it may 

converge to a local minimum. The complexity of the algorithm is O(mn) .  

Algorithm 3 

In this algorithm we first apply Algorit,hin 1 to find the model node which has 

the smallest dista,nce d(uj from a, given data.point. We then use a minimiza.tion 

procedure3 within each of t,he eleinents t,ha,t the previously selected model node 

belongs as shown in Fig. 6.5. \Ve perform the miniiniza.tion tvithin each element j 

using the element's sha.pe f~irictioiis 

3T l~e  shape functions determirle wl~ether the minimization is linear or lloilliilear 
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3D Datapoint 

Deformable Model 

\ 
Applied Force 

Selected Node 

Figure 6.5: Force applica.tioi1 to a. iiioclel point with miniinal distance from a 3D 
datapoint. The model point lies within the eleinents (shaded) which share the 
model node with millillla1 distailce froin the 3D datapoint. 

where Ni is the slia.pe funct,ion corresponcling to node i whose nodal position is xi 

and j is a finite elelnent from the set E of finite elements that coinprise the model 

surface. The complkxi ty of t,lle algorit,llm is O ( m  n.). 

Algorit h1-11 4 

In this algorithm for each clata.point. we coinpute the point in each finite element 

whose distance ininimizes (6.9).  From t,hese coinputed model points we select 

the one whose distalice from t,he dat,a,poii~t is the ininimuin of all the computed 

dista.nces. The complesit,~; of the algorit,llm is 0 ( 1 7 1 1 2 ) .  

Radial Forces 

In some applications we want. t,o coillput,e ra.dial forces in the direction of the line 

connecting a datapoint z to the inode1 fra.ine shown in Fig. 6.6. The intersection 

of this line with the il~oclel surfa.ce defines a poiilt x (u )  on the model to which this 

force will be exerted. The force is t,lieii coiiiput,ed using (6.5). This kind of force is 

only suitable for convex models hecause otherwise the radia.1 line might intersect 
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Deformable Model 

I 

~ ~ p l i i d  Forces 

Figure 6.6: Application of radial forces to model points. 

with the illode1 surface in Inore than one point. F~~rthernzore, wheil the original 

shape of the model is "far" from the shape of the datapoints, such forces offer a 

more unifor~n force clistril~ution than forces based on illiililllum distance. In the 

latter case, several datayoints can be assigned to the same node 01 the same point 

within a finite element th~refore concentrating the assignmeilt of forces around 

particular nodes. Once the lnodel shape and the datapoints are "close" the radial 

and minimum distance based force assigillllellt algori t 11111s becollie equivalent. 

The above force assignment algorithms need not be executed at  every iteration 

of the program. They can be used for a period of 1 iterations, where 1 depends 

on the amoullt of model deforlnation at every iteration. Furthermore, in applica- 

tions where twisting cleforlilatiolls are iar-olvecl, any of the above force assignment 

algorithms should he applied only once ~nitially. In this way the assignlilent of 

datapoints to model points is constant 01-er time, allowing fol recovery of twisting 

deformations. 
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Time t - 3  

b v  
Time to Time to+ 

Figure 6.7: Collision of a deforlnable with a rigid moclel. 

6.2 Computer Graphics Applications 

We compute forces s t e~n~ning  from collisiolls of deformable with rigid or deformable 

models using the follo\ving two algorithms. 

6.2.1 Collisions of Deformable with Rigid Models 

Suppose that a deformable nloclel is colliclillg with a rigid model as illustrated in 

Fig. 6.7. At every time step we checli whether a node has penetrated the rigid 

model. In Fig. 6.7 where tlie clefornlable model collides with a rigid ground plane 

at  time to,  we trivially do so by checking the sign of the inner product between the 

ground normal and the vector b e t ~ ~ e e n  a node on the deformable model and an 

arbitrary point on the ground. If that inner product is positive, then no penetration 

has occurred. Other\vise penetration has occurred and we take the following steps. 

1. We project ea,ch of the penetrating nocles along the nor~lial of the collision 

plane "ack to the surface of the rigid object. This guarantees that no 

penetration will ever a.ppear. 

2. We calculate the new local cleforma.t~ion d corresponding to each penetrating 

node a,lld updat.e t'he 1-ect'or of 1oca.l defor~nations q d .  We the11 assign two 

forces to each penet,rat,ing ilocle clue to the collision. 

*The collision plane is the t,a.ngent plane between two surfaces at the point of collision. 
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Time t 
I 

Time to Tiine to+ 

Figure 6.S: C'ollision of t\vo deformahle models. 

(a) l i e  first colllpute the new elastic forces of the cleformal~le rnoclel 

where K is the global stiffiless matrix. For each penetrating node we 

then select the corresponding colliponent f; of f,, and assign to that 

node a force f, along the unit ilor~nal 11 of the collisioii plane 

where a is a, const.ant that nlodels the ela.sticity of the collision. 

(b) We compute t,he projection v, of the nodal velocity v on the collision 

plane. Assuming t'o11lom11 friction we assign to  the llocle the following 

frictional force 

where 0 5 pf 5 1 is the friction coefficient. 

6.2.2 Collisions between Deformable Models 

Let's assume that two deformable lllodels will penetrate one another as shown in 

Fig. 6.8. Then at every time step we apply the following algorithm 
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1. We assume tha,t the surface of each of the deformable models has been dis- 

cretized using finite elements and we approximate each finite element with 

a polygon. We checli if a polygon from the first model intersects with any 

polygons of the second model. If it does, then we mark the nodes of this 

polygon and the nodes of the intersecting polygons of the second model. For 

every marked node of the second deformal~le model we associate a marked 

node fro111 the first model t,ha,t has the smallest distance from that node. We 

thus form pairs of llocles from the selected marked nodes. 

2. For each such pair of nodes we check for inter~enetrat io~l  using the following 

criterion. If the clistallce l~etween the first models' model frame and the 

chosen node on the first nloclel is greater than the distance between the 

frame and the node 011 the second model, then interpenetration has occurred 

at  these two nodes. 

3. We compute the plarle at the nlidpoint which is per~>enclicular to the line 

connectiilg those two ~lloclel nodes and project both nodes to this plane, 

along the normal to the plane (time to in Fig. 6.8). 

4. We assign two forces f,, and -f,,, which have opposite directions, but equal 

magnitudes a,nd are perpe~ldicular to the above defined plane. Such forces 

are computed in the same way as in the previous algorithm. 

5 .  Assuming Coulomb friction we assign as in the previous algorithm two fric- 

tional forces f, and -f,. xvhich have opposite directions, but equal magnitudes 

and lie on the collision plane. 

The above two describecl algorithn~s ~ ~ o r k  better when the Euler step of the 

simulation is reduced when a collision is detected. In such a case penetration 

is more gradual and the computed collision forces are smaller result.ing in more 
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realistic simulations. The Euler step is increased again after the collision to its 

value before the instant of collision detection. 

6.3 Force-Based Estimation 

We present our force-based  tima mat ion technique for shape and nonrigid motion 

in computer vision applications. We take a physics-based approach to visual es- 

timation. The visual data are coilverted into traction forces and applied to the 

dynamic model based on the pre~iously presented algorithms. ?.lie fit the model 

by integrating the equations of motion (4.49) driven by these forces. 

More specifically, lel the ol~servation vector z( t )  denote time-varying input 

data. Using (4.3) we call relate z ( t  ) to the model's state vector u ( t )  as follows: 

where v( t )  represeilt~s uncorrela.ted mea.surement errors a.s a zero mean white noise 

process with known cova.riaace V( t )>  i.e., v(t) - N(0, V(t))'. In force-based 

estimation, the ra.te of chaage of the estimated model state vector li is given from 

(4.49) by 

u = F u + g .  (6.15) 

Furthermore, according t,o (4.4). (4.3), and (6.14), the driving function g in (4.50) 

includes the term 

fq = H ~ v - ' ( z  - h ( ~ ) ) ,  (6.16) 

where 

Matrix H maps the 3-spa.ce 011serva.tion forces (z - 11(ii)) scaled by V-', to q- 

 or example, if z coilsists of ohservatioils of time varying positions of inode1 points at material 
coordinates uk on the model's surface, the components of 11 are coll~puted using (4.3) evaluated 
at uk. If z includes velocity estinlates, then we also use (4.4) 
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space generalized forces f,.' If the data a,re very noisy, the entries of V have 

large values, yielding small generalized forces, hence nomilla1 changes in q. If the 

data are a.ccurate, V will have slllall entries and the generalized forces will have a 

significant effect on the model. 

6.4 Summary 

In this chapter we presented techniques for converting visual data into forces that 

can be applied to deforillable models in data fitting scenarios. Secondly, for com- 

puter animation purposes. we described tu-o algorithms which use the elastic prop- 

erties of our models to calculate forces steinming from collisiolls and friction against 

impenetrable solid or deformable surfaces. Finally, we presel~ted our force-based 

algorithm used in shape and llo~lrigid nlotion estimation applications. 

'jIn particular, for the function 11 ivhich is as~ociat~ed witJi observations of model positions, at  
material coordinates uk, then H is a inatris whose eilt,ries are comput.ed using LlUzi, evaluated 



Chapter 7 

Model Implement at ion 

In this chapter we first present a tecllniclue to integrate the motion equations (4.13) 

and (4.51) and describe the initialization of our models. Second we present various 

experiments in computer vision and corllputer graphics applications. In computer 

vision we present experiments with real and synthetic data to demo~lstrate the per- 

formance of our fraine\vork in cleformable model fitting to static 2D and 3D data 

and motion 3D data, using our force-based shape estimation algorithm. In the con- 

text of computer graphics, we will present dynamic simulations of our deformable 

models that interact wit11 each other and their simulated physical environments 

through collisions, gravity and friction against impenetrable surfaces. 

7.1 Integrating the Motion Equations 

Our approach partitions con~plicatecl noi~rigicl shapes and motioiis into rigid-body 

motions and local deformations away from globally deforming reference shapes. 

This partitioning improves the stability of sirnulatioil algorithms. PVe achieve real 

or interactive response1 by e~llploying standard numerical methods to integrate 

(4.13). The simplest ~llethod is the first-order Euler procedure which updates the 

'See the Iiltroduction for definitions. 
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state vector over a time step At from time t to t + At accordiilg to the formulas 

For the simplified equations of motion (4.51), the Euler procedure becomes 

The following details about o~u- numerical solution are noteworthy. First, we 

represent the rotation component of the models using quaternions (see Chapter 

4). This simplifies the updating of q g  and qs Second, the explicit Euler method 

does not assemble and factorize a finite element stiffness matrix, as is common 

practice when applying the finite elelllent method. Rather, we compute Kq  very 

efficiently in an element-by-elemelleit fashion for the local deformation coordinates q d  

[67]. Third, for added efficiency ~vithout significant loss of accuracy, we may lump 

masses2 to obtain a diagonal M, and we may assume mass-proportional damping, 

i.e. D = aM where cu is tlw damping coefficient [31]. We call therefore parallelize 

on multiprocessor computers the updating of the model degrees of freedom and 

the computation of Kq. 

7.2 Model Initialization 

We will now discuss va.rious ways of initializi~lg our models in computer vision 

applications. Our model fitting a.lgorithm based on (4.13) a,nd (4.51) does not 

require user intervei~tion beyond t,he iilitializatio~l pllase. The initialization step 

21n the lumped mass for~nulat~ion the t80tal nla,ss of the body is distributed among the grid 
points. All space integrals in t.he Lagrange equations of inotion reduce to suminatioils over grid 
points, making computatioils much fast.er 
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involves two steps. The first is the segmentation of the given data into parts and 

the second is the initialization of the translation and rotation parameters of the 

deformable model given some data that correspond to a part. 

As will become evident from the following experiments, we require a rough 

segmentation of the image or range data into corresponding object parts, through 

the application of an ealry-vision system. We therefore expect that the initial- 

ization can be automated using available image segmentation techniques. The 

reaction-diffusion segmeiltation process of IGmia, Tannenbauni, and Zucker [34], 

the dynamic segmentation techniclue of Leonardis, Gupta and Bajcsy [35] and the 

qualitative shape recoverj7 and segmentation technique based on primitive aspects 

of Dickinson, Pentland and Rosenfeld [17, 181 appear promising for this purpose3. 

Given some data that belong to a part of an object we initialize the translation 

of the model frame to the ccnter of Illass T of the data and its rotation using the 

matrix of central n~oment~s [Cil]. In case of :3D data we first compute the matrix of 

central moments 

(rIZ - 7 ~ ) ~  + ( V , B  - ~ 2 , ) ~  - ( r t2  - F ~ ) ( Y ~ I  - 7 1 )  -(r,3 - T3)(rt1 - T I )  
- 

- F1 )2 + ( ~ ~ 3  - T3)2 -(rig - 7 3 ) ( ~ , 2  - ~ 2 )  1 , (7.3) 

symmetric ( r , ~  - 71)' + (T,Z - ~ 2 ) ~  

where r, = (rbl,  r , ~ ,  r,3)T and r = (7-1, F 2 ,  &)T are the 3D coordinates a i d  cen- 

ter of mass of the 772 datapoints respectively. We then use the Jacobi method to 

compute the eigenvectors of ,M. These eigenvectors provide an estimate of the 

model-centered coordinate system. \Ire orient this coordinate system by compar- 

ing the corresponding eigen\~alues [GI], so that its z axis lies along the longest side 

for elongated objects and along the shortest for flat objects, the underlying as- 

sumption being that tapering and bending cleformations affect objects along their 

longest side. We consecluentlj- coll~pute by a silllple geonletric transformation the 

quaternion corresponclillg to the rotation of the colnputed coordinate system with 

respect to the inertial franle. 

3 ~ h e  development of segmenta.tion algorithms is heyoild the scope of this thesis 
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The experiments we will present in the following sections a,nd chapters require 

the correct setting of certain model parameters (e.g., wo and wl). These parameters 

are set manually on a trial and error basis since there is no automatic formal way 

so far of setting them.4 Furthern~ore, the Euler step we used in the shape and 

nonrigid motion experiments amounted to 20 - 100 algorithm steps required for a 

model to fit each data frame. 

7.3 Computer Vision Experiments 

7.3.1 Static Shape Recovery 

We will present examples of fitting deformable superquadric models to 2D real 

image data and 3D real range data from t,he NRCC 3D image database [56]. The 

Euler method time step was -1.0 x lo-" s and we used a unit damping matrix D. 

2D Image Data 

Fig. 7.1 shows the various steps of fitting a cleformahle superquadric to a 120 x 128, 

256-intensity monocular image Fig. 7. l(a)  of a 3D ol3ject-a pestle. The size of the 

image is rescaled to fit within the unit square on the z - y plane. Fig. 7.l(b) shows 

the potential fullctioli P ( r ,  y )  generated from the image by computing the magni- 

tude of the intensity gradient. Fig. 7.l(c) shows the initial state of the deformable 

superquadric displayed in wireframe projected onto the image. The surface of the 

model is discretized into 5043 nodes. The initialization consists of specifying the 

center of the model c ,  along with the major and minor axes, a . (11 and a - a2,  by 

picking four points with the nlouse. This initializes the tra~lslation q, and rotation 

q s  of the model. We also fix t l  = t;! = 1.0. In this and subsequent experiments, 

the local deformation q d  is initially set to zero. Note that the initialization step 

produces a very crude first approsimatioll to the pestle. 

Fig. 7.l(d) shows an internlediate step in the fitting process which simulates the 

*The development of fonnal t,echlliques to aut,omatica.lly set t,hem is a topic of future research. 
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Figure 7.1: Fitt,i~lg a. deformable supercluadric to pestle image. 

Figu1.c 7.2:  ( a )  Doll image. ( I ) )  Doll potential.  
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Figure 7.3: (a) 1nitializa.tion of deformable superquadrics to doll image. (b) Fitting 
deformable superquadrics t.o doll image. 

equations of motion using stiffness parameters wo = 1.0 x and w1 = 4.0 x 

Using an orthogonal projectioil II, nodes of the model whose positions x in space 

lie near the image plane ( 1 ~ 3 1  < 0.2) are subject to a force directed parallel to the 

image plane: 

where the force strength factlor is ,B = 4.0 x 

The forces deform the lllodel ant1 Figs. 7.l(e) and ( f )  show the final state of the 

model a t  equilibrium, s~iperimposed on the image and the potential, respectively. 

In the second experiment. we use the image of a doll shown in Fig. 7.2(a) whose 

potential is shown in Fig. 7.2(b). The specifics of this experiment are identical to 

those of the previous one, except t11a.t the discrete models consisted of 963 nodes 

and their stiffness parameters were 200 = 0.001 and wl = 0.1. Fig. 7.3(a) illustrates 

the results of the initialization phase for the doll image, which was carried out as 

described above, showing 11 crude approsimations to the major body parts of the 

figure. The image forces deform the part nlodels into the final shapes shown in 

Fig. 7.3(b). 
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(b)  (4 
Figure 7.4: Fitting deformable superclua.dric (b), (c) to egg range data (a). 

3D Range Data 

3D data generally provide greater constraint in the model fit tiilg process than do 2D 

image projections. The follo\virig experiments utilize range data from the NRCC 

3D image database [56]. We fit the model to 3D data using the force techniques 

described in a previous chapter. In the following simulations, we have applied 

forces to  the model using the brute-force nearest-node search method, updating 

the nodes of attachment for each datapoint every 200 algorithm steps. 

In the first experiment we fit a deformable superquadric model with 2,603 

nodes to  3D data sparsely sa,n~plecl from the upper "hemisphere" of an egg (from 
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( 4  (b) 

Figure 7.5: Fitting deformable superquadric (b) to mug range data (a.). 

range map EGG 1 CAT # 233). Fig. 7.4(a) shows the 499 range datapoints. The 

stiffness parameters of the model were wo = 1.0 x lov6 and .zul = 0.1. We initialized 

the model to a sphere located at the center of gravity of the data (a = 1.2, a1 = 

a2 = a3 = 0.5, € 1  = € 2  = 1.0). Fig. 7.4(b) shows the fitted deformable superquadric 

at equilibrium and Fig. 7.4(c) shows a top view of the fitted model. Evidently, 

the fit is accurate over the portions of the surface covered by datapoints, but it 

begins to deteriorate at the 11ounda.ry of the data near the "equa.torV because of 

the influence of the underside of the model which remains too spherical due to  the 

lack of datapoints. 

In the second experiment we fit. a, model with 1,683 nodes to 3D data sparsely 

sampled from the upper part of a. mug with a pitted surface (from range map 

MUG 1 CAT # 251). Fig. 7.5(a.) shows the 651 range datapoints. The stiffness 

parameters of the model were ZLJO = 0.01 a.nd zol = 0.1. We initialized the model to 

a "tubular" shape (a = 1.5, nl = a2 = 0.3, a3 = 0.8, € 1  = 0.7, €2 = 1.0). Fig. 7.5(b) 

shows the fitted c1eforma.ble superquadric at equilibrium. The underside of the 

model is smooth due to the lack of data., hut the pitted texture of the top surface 

has been accurately reconst.ruct,ecl by the local deformational degrees of freedom 

of the deforma.ble supercluadric. 
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7.3.2 Shape and Nonrigid Motion Estimation 

We have carried out various shape and nonrigid motion estimation experiments 

utilizing synthetic data. The syr~tlletic data sets consist of time-varying 3D posi- 

tions of points sampled from the surfaces of synthesized deformable superquadrics 

undergoing nonrigid motions in response to externally applied forces. 

In the esperiments, we couple the models to the data points, indicated by dark 

dots in the forthcoming figures, by searching for the nearest node of the model 

to each datapoint. This brute-force method for assigning data points to model 

points, is simple and robust. Despite the method's inefficiency compared to the 

other methods proposed in [67], our algorithlns execute at rates of 2-3 secoilds per 

frame of data on a single processor of a Silicon Graphics 4D-340VGX workstation, 

including the real-time 3D graphics. The estimator advances to the next frame of 

data when the change in each of the estimated parameters falls below The 

Euler method time step was 4.0 x s and we used a unit damping matrix D. 

We present results which utilize our force-based estimation techllique for shape 

and nonrigid motion estimation. 

The following lnodel fitting esperiments utilize data that were synthesized by 

deformable superquadrics produci~lg nonrigid lnotions in response to externally 

applied forces. The synthetic data consists of time-varying 3D positions of points 

sampled from the surfaces of models. We indicate datapoii~ts by dark dots in 

the forthcoming figures. 'CVe tested the performance of our technique in various 

examples including sparse and noisy data. 

In the first experi~nent we fit a deforlnable supercluadric model with 27 nodes 

to 27 3D datapoints sampled over time (20 frames) from a squash-like deformable 

superquadric object undergoing global deformations. Applied forces make impart 

nonrigid motions on the squash so that an initially positive bl bend along the x axis 

becomes negative over time. Figs. T.G(a) and (b) show two views of the datapoints 

and the initial model which is an ellipsoid (q, = (2.7,0.1,0.2,0.7,1.0,1.0,0.0,0.0, 

0.0,0.0,0.2)~).  TVe did not posit ion the initial model at the center of gravity of 

the data in order to demonstlate the performance of the model fitting algorithm 



7.3. COMPUTER VISION EXPERIA4ENTS 

Figure 7.6: Tracking of glohally deformable squash shaped object. 
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Figure 7.7: Tracking of globa,lly deformable squash shaped object using noisy data. 

when the initia~l estimate is poor. Figs. 7.6(c) and (d) show two views of the model 

fitted to the initial data. Fig. 7.6je) is aa  intermediate time frame of the model 

tracking the motion of the scluash, while Figs. 7.6(f) and (g) show two views of the 

final position of the model. 

In the second experiment we a.dd f 1.5% noise, with the sign chosen randomly, 

to the motion range da.ta of the first experinlent and fit a deformable supercjuadric 

whose initial paramet,ers and position a,se the same as in the first experiment. 

Fig. 7.7 is analogous to Fig. 7.6. This experiment demonstrates that the global 

deformations successf~~lly captured the gross shape indicated by data corrupted by 

significant noise. 

In the third experiment we fit a clefor~na,ble superqua.dric model with 27 nodes 

to 6 3D datapoints sa,n~ple,cl froin the surface of a squash-like model undergoing 

only global defornlations exa.ctly as in the first experiment. The initial position and 

other parameters are identical. Fig. 7.5; is a,nalogous to Fig. 7.6. The additional 
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Figure 7.8: Tracking of globally defornlable squash model using sparse data. 

Fig. 7.8(c1) shows an internledia,te step in fitting the model to the initial datapoints. 

The fit is nearly idential even t3hough there are far fewer da,tapoints. This is to 

be expected, since oilly a, few data.points a,re required to constrain sufficiently the 

global deformational degrees of freedom of the model for it to capture the overall 

shape of the object. 

The above  experiment.^ indica.t.e that global deforlnations require relatively few 

datapoints to abstract the sha,pes of objects. 

7.4 Computer Graphics Experiments 

We have created several real time physics-based animation examples involving 

models made from deformable supercluaclric primitives. We employed paralleliza- 

tion of the updating of the model degrees of freedom, after computing the collision 

and other external forces, whenever more than one deformable model was involved 

in a simulation. 

Figs. 7.9(a), (b) and (c)  illustrate an example where user interaction with a 

deformable model is allo~vecl. ,4 user can pick the node on the deformable su- 

perquadric that is closest to the position of a 3D mouse which can be moved 

in 3D under user control. A spring force shown as a line is then exerted from 

the mouse position on the deformable superquadric which causes it to rotate, 

translate and deform. The elastic l>arameters of the deformable superquadric 
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were wo = 1.1 and 2u1 = 5.0, the Euler step 0.00002, the nodal mass 

the damping coefficient v = 4000.0 and the global superquadric parameters were 

q, = (7.0,0.4,0.4,1.0,2.5,1.0)T. 

Fig. 7.10 illustrates a strobed motion sequence of a morphing deformable shell 

designed to show the possible global deformations of our models starting from up- 

per right to a sphere. An elmtic ohject collides under the influence of gravity with 

several planes, and in between collisions, changes shape by geometric modification 

of the relevant global defor~nation parameters. The elastic object initia,lly has a 

spherical shape and after going through a series of global s1ia.pe transformations, 

comes to its rest position in the shape of a, sea s11ell.Throughout the physical sim- 

ulation, the elastic pa,ra.met,ers of the object were wo = 65.0 and wl = 85.0, the 

Euler step 0.0031, the nodal ma.ss 6.8, the daniping coefficient v = 1.2, the pla.ne 

elasticity 5000.0 and the frictioil coefficient 0.3. 

Fig. 7.11 shows a strobed  notion sequence of a "jello-ball"' dropping on a 

slanted plane a,nd subsequently collicling with the ground. The elastic parameters 

of the "jello-ball" were ti:,-, = 20.0 and = 15.0, the Euler step 0.031, the nodal 

mass 8.0, the damping coefficient 1) = 1.4, the plane elasticity 670.0 and the friction 

coefficient 0.3. As a result of collision forces ~vith the plane and the ground which 

include friction, the "jello-ball" rotat'es in between collisions and rolls on the ground 

until it comes to rest. 

Fig. 7.12 shows a, strol~ecl nlot,ion sequence of a,n elastic "rugby-ball" dropping 

on a slanted plane, subsequently collicling with a box and the ground and eventually 

coming to rest. The elastic para.meters of the "rugby-ball" were wo = 65.0 and 

wl = 85.0, the Euler st.ep 0.00:31, the nodal mass 6.8, the damping coefficient 

Y = 1.2, the plane elasticity 1050.0 a,ncl the friction coefficient 0.15. The "rugby- 

ball" rotates in between collisions a.s a. result of collision forces with the ground 

and the box cvhich include friction, 

Figs. 7.13(a-i) show an cla.st,ic "ba,na~ia," dropping on a box and subsequently 

colliding with two planes. The elastic pa.rameters of the "banana" were w0 = 

65.0 and wl = 85.0, the Euler step 0.0025, the nodal mass 7.4, the damping 
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( b )  (4 
Figure 7.9: 1ntera.ctive Deforlllnble Superqua.dric. 
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Figure 7.10: Morphing Shell. 

Figure 7.11: "Jello-11a.11" dropped on a plane. 



Figure 7.12: Ela.stic "rugby-ball" dropped on a. plane. 

coefficient v = 1.47, the plane elasticity 90.0 and the friction coefficient 0.15. Most 

of the "banana" mass is concentra.ted a.t its ends. The highly nonuniform mass 

distribution causes exaggerated s~vings a,s the "banana." collides with the planes. 

Figs. 7.14(a-i) illustra.te collisions of t,wo loca,lljr deformable balls with planes 

and a spring loaded see-saw, while Fig. 7.15 shows the strobed motion sequence. 

The elastic parameters of ea.ch ball were ,100 = 65.0 and 201 = 85.0, the Euler step 

0.0031, the nodal ina.ss 6.8, the da.ml>ing coefficient I/ = 1.2, the plane elasticity 

5000.0 and the friction coefficient 0.4. The see-saw is also a physical object which 

is rigid and can only undergo rota.ttion a,round its pivoting axis. We a.chieve the 

spring loading of the see-sa.nr by imposing a spring-like "stiffness energy" a.ssociated 

with the rotation of the see saw. Its formula.tion 11a.s the same form a.s the stiffness 

energy associa.ted with global cleforma,t,ions we presented in cha.pter 4. 

7.5 Summary 

In this chapter we first described the integration schemes we use to simula.te the 

differential equations of motion in para.llel and the algorithm for initia.1 placement of 

our models. Secondly, we presented some computer vision a,nd computer gra.phics 



7.5. SUMMARY 104 

Figure 7.13: Elastic "ba.na.naV dropped on a box. 

Figure 7.14: Collisiolls of cleformable balls with planes a.nd a spring 1oa.ded see-saw 
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Figure 7.15: Strobecl inot,ion sequence of previous example. 

experiments t11a.t test the lnodelillg methods developed to this point. 



Chapter 8 

Constrained Nonrigid Mot ion 

This chapter extends t,he ecluat,ions of inotion (4.13) to account for the mot,ions of 

composite models with iilterconnect,ed deformable parts which are constrained not 

to separate. 

8.1 Holonomic Constraints and Lagrange Mul- 

t ipliers 

Shabana [59] describes the well-lcno~vn Lagrange inultiplier il~ethod for multibody 

systems. We form a coillposite generalized coordinate vector q and force vectors 

gq and fq for an 12-]>art illode1 by concateilating the q,, gqZ,  and fqZ associated 

with each part i = 1, . . . ,6. Siillilarly, the conlposite matrices M, D, and K for 

the n-part model are block diagoilal illatrices with submatrices M,, D,, and K,, 

respectively, for each part i .  The proble~ll is the11 posed as follows. 

Given a set of holollolllic constraiilt equations 

where 
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expresses k constraints a,nlollg the ii parts of the model, we want to compute the 

generalized constraint forces fg, acting among the parts. 

Once we compute fgc ive a,ugilleilt the Lagrange equations of motion and arrive 

to the following systenl of eclua,tiolls 

while in case of the simplified model, the equations become 

We can rewrite both of t.he above equations as a first order syste~n of the form 

where u, F have exa,ctly the same for a.s in (4.50) and (4.52) for second and first 

order systems re~pect~ively. Tlle vector g is now given by 

for second-order systenls and 

for first-order systems. 

In the Lagrange lllultiplier n~et~hod the composite equations of illotioll take the 

form 

M c + D q + K q =  g q + f q  - C p ,  (8.8) 
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where the generalized constraint forces fgc are computed as 

The term C& is the transpose of the constraint Jacobian matrix and 

is the vector of Lagrange multipliers that must be determined. 

Equation (8.8) comprises fewer equations than unknowns. To obtain the addi- 

tional equations, we differentiate (8.1) twice with respect to time 

yielding Cqq + Ctt + (Cqq)qq + 2Cq,q = 0.  Rearranging terms we get 

Appending this equation to (8.8) and rearranging terms, we arrive at the aug- 

mented equations of motion 

In ~ r i n c i ~ l e ,  these equations may be integrated from initial conditions q(0) and 

4(0) satisfying C(q(O), 0) = O and ~ ( ~ ( 0 ) ~  0) = 0 .  

There are two practical problems in applying (8.13) to model-based visual esti- 

mation and computer animation. First, the constraints must be satisfied initially. 

In computer vision, due to a lack of full information and errors in the data, the 

parameter values of the various parts may be initialized such that the parts do not 

satisfy the constraints (i.e., C(q, 0) # 0 ) .  In computer graphics we would also like 

to give the modeler the freedom to place the various parts of an object in positions 
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that do not satisfy these co~lstraints initially, allowing for the self-assembly of com- 

plicated objects. Second, even if the constraints may be satisfied a,t a given time 

step of the dynamic estin~a,tion process (i.e., C(q ,  t )  = 0, c ( ~ ,  t )  = 0), they may 

not be satisfied at the nest t,i~lle step (i.e., C(q, t + A t )  # 0)  heca,use of numerical 

integration errors, noise, etc. 

8.2 Stabilized Constraints 

To remedy these two problems, we apply a illethod proposed by Baumgarte which 

stabilizes the constrail~ed ecluatioils througll linear feedback control [7, 731. The 

method replaces the clifferential equation (8.12) by other equations which have the 

same solutions, but which are asymptotically stable in the sense of Ljapunov; for 

example, the damped second-order differential ecluatioiis 

where ct and p are stabiliza.tion fact,ors modify (8.13) a.s follo~vs 

Fast stabilization means choosing /3 = cr t,o obta.in the critically damped solution 

which, for given a, lias the cluickest a.sympt,otic decay towards constraint satisfac- 

tion C = 0.  A cavea,t in applying the coilstraiilt stabilization method is that it 

introduces additioml eigenfrecluencies int'o the dyna,lnical system. Increasing a in 

an attempt to increase the ra.te of constraint sa.tisfactlion will eventually result in 

constrained motion equa.tions which are doininated by the stabilizing terms and 

also in numerically stiff eclua~tions. 
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8.3 Fast Point-to-Point Constraint Force Corn- 

putat ion 

The general Lagrange multiplier method described above is potelltially expensive 

for our models, since the iilatris in (8.13) call be large, depending on the number 

of finite elements used in the niodel cliscretization. We have devised a specialized 

solver for the unknown const raint forces fgc for point-to-point constraints. The 

specialized method requires the solution of linear systems of size proportional to 

the number of constraints, which is usually small. In this sense, it is similar to 

the dynamic co~lstraint techniclue of [5] ; ho\ve~.er, it is suitable for nonrigid parts. 

We derive the method for second-order dynamic systelils (4.13) and for first-order 

dynamic systems (4.51). 

8.3.1 Second Order Dynamic Systems 

We will start by giving siinple esaml~les of inult,ipart objects with constraints. This 

will clarify the general algorit,hi~l described 1a.ter. 

Single Constraii~t 

Fig. 8.1 illustrates two pasts. 1 and 2. IVe constraiil points A and B to be in 

contact, and must conipute the coilstraillt forces f,(t) at point A and -f,(t) at 

point B needed to accoinplisli this. From (4.13), the motioll ecluations of the parts 

are 

& = M;'(gq, + 4, + fg,, - K19r - Dlil i) ,  (8.17) 

where the generalized constrai~it forces at points A and B a.re, respectively, 

and LA, LB are colnputed using (4.4). 
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Figure S. 1: Point-to-point, constraint. 

From (4.4) and (4.3): the const.ra.int eclua.tion aild its tiine derivatives a,re 

Replacing these expressio~ls into Baumagarte's ecluatioii (8.14) (with a = P ) ,  we 

obtain the linear ecluatiolls 

Nf, + r = 0. (8.21) 

for f,, where the 3 x 3 mat,ris N is 

and the vector r is 

r = iaill - iBt12 + 2 n ~  + clZC + LAM;l(gq1 + f,, - Klq, - Dlq,) - 
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LBM;'(gq2 + fq2 - K 2 q z  - D2q2). (8.23) 

Two Constraints 

Figure 8.2 illustrates three parts, 1, 2 and 3 of an object. We coilstrain points A 

and B, and points C and D to be in contact, and must conlpute the necessary 

constraint forces fc,(t) at point A, -fc,(t) at point B, fc,(t) at point C and -fc,(t) 

at  point D. From (4.1:3), the illotioil ecluatiolls of the parts are 

where the generalized coilst8ra,islt forces a,t points A, B, C and D are, respectively, 

and LA, LB, LC, Lo, are cornputed using (4.4).  

From (4.4) and (4.3) ,  t lle two coilstraillt ecluations and their tiine derivatives 

are 
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Figure 8.2: T ~ v o  Point-to-point constra.ints. 

and 

Replacing these espressio~ls illto Ba,umaga,rte's equa,tion (S.14) (with cr = P ) ,  
we obtain the 1inea.r system of ecluatiolls 

with unknowns the constraint forces f, = (f:, fL)T. where the 3 x 1 vectors rll 
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and r 2 2  are 

and 
-1 T L~MT'L;  + LBM, LB - (LBM~ LC) 

ATl = 
0 0 

- 

) ,  

Combining (8.30) we arril-e at the linear system 

which we solve using a,n L/7 clecoi~lposition algorit'hm. 

Multiple Collstraillts 

For multiple point-to-point constraiilts the constraiilt force col~lputation illust take 

into account all of the coilstraillt forces acting on the various parts of the model. 

This requires the solutioil of a s ~ ~ s t e m  of collstraiilt ecluations ~vhose size is 3& x 3k, 

where k is the total number of constraints. 

Suppose we specify constraints aillolig i? inodel parts. Let f,, be the constraint 

force for constraint i .  We asseml~le the inultipart model's constraint force vector 
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f, = (f:, f:, . . . , fG)T and express the equation for constraint forces fct as in (8.30): 

where 

and N; is a 3 i  x 3b matrix. Assembling the k systems, we arrive at a composite 

system in the form of 

Nf, + r = 0, 

where 
k 

and 

Based on the forill of ecluations (S.65) we call devise the following algorithm to 

automatically coinpute t.he eilt,ries of t,he above ina'trix N. 

The algorithin is a,s follo117s: 

Step 0: Divide N i11t.o submatrices a.s follows 

where Nij are 3 x 13 subma~trices a,ilcl is the number of constraints. 

Set N = 0. 
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Step 1: For each con~t~raint I ,  0 5 I 5 k do 

The constraint recluires tha.t i A  and jB  of two deformable parts i and j  should 

always be in contact. Let's also assume that the pointer t o  part i is marked 

as one ,  while the pointer to part j is marked as two. 

- Step 1-0: Set 

- Step 1-1: For each constra.int 0 5 m 5 do 

If constra~int na involves point i J which belongs to p a t  i, and the pointer 

to  part ?: is ma.rked as orre: 

e k e  if the pointer t20 part i is ilia,rlcecl as two: 

- Step 1-8: For each ~onst~raint. 0 5 I- 5 k do 

If coilstraint r which involves point j J  \hrhich belongs to  part j ,  and the 

pointer to  part j is lllarlied as one: 

else if the point,er t80 part  j is marlied a.s teoo: 

The pattern of nonzero entries in N clepellcls on the connectivity of the parts. 
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8.3.2 First Order Dynamic Systems 

In first order systems the siiri~lified La,gra.nge equations of motioil take the form 

D q + K q =  f,. (8.49) 

Since the simplified Lagrange equa,tions of lnotioil do not involve accelera.tion, 

we approxima.te the seconcl derivative of the constra.int c in Ba.umgarte's differ- 

ential equation of the c.onst,raiilt a,s follows 

C(q. t ,  At) 7z 
~ ( q .  t )  - ~ ( q ,  t - At) 

At 

Baumgarte's tecllnique is iinplen~entecl in the same way as for second order sys- 

tems with a few ininor moclifications. \\re arrive at the general algorithm through 

an example invol~ing an ol>ject ~vi th  three parts and two constraints. 

8.3.3 Two Constraints 

Figure S.2 illustrates three part.s, 1> 2 a,nd :3 of an object. \Ve constra.in points A 

and B, and points C a.nc1 D t,o he in cont'act, a,llcl must colllpute the necessary 

constraint forces f,,(t) at point A, -fc,(t) a,t point 3, f,,(t) at point C and -f,,(t) 

at point D. From (3.51). the illot,ion eclua.tions of the parts are 
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= Dil(fgcD + V3), (8.53) 

where the generalized collstraillt forces at points A, 3, C and D are, respectively, 

and LA, LB, LC, Lo, are co~~lputecl using (4.4). 

From (4.4) and (4.3), the two constraillt equations and their time derivatives 

are 

c1 = L.4ql - LBq2 
c1 - c 1 ( t  - A t )  

C1 = 
At 

7 

and 

c 2  - &(t  - At) 
C 2  = 

_ I t  

Replacing these expressions into Bauinagarte's ecluation (8.14) (with a = P ) ,  
we obtain the linear system of equations 
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where 

and 

Combining (8.57) we arrive at the linear sj-stem 

which we solve using an L l -  clecompositioll algorithm. 

The main difference \vi t h the previously described second-order systems is the 

replacement of the mass matrix M with the clainpillg matrix D and the multi- 

plicative coefficient ( & + '70 ) ill the various expressions. 

Multiple Coilstraiilts 

For multiple point-to-point collstraiilts t,he coilstrai~lt force computation must take 

into account all of the coiistrai~lt forces acting on the various parts of the model. 

This requires the solution of a system of coilstraillt ecluatioils whose size 3k  x 3 k ,  
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where is the total number of constraints. 

Suppose we specify constraints ailloilg i i  model parts. Let fCt be the constraint 

force for constraint i .  We assemhle the ~nultipart model's constraint force vector 

f, = (f: , f:, . . . , f:)T and express the equation for constraint forces f,, as in (8.30): 

where 

T T T 
ri = (oT,. . . , r i i , .  . . , O  ) 

and N i  is a 3k x 3 k  ma.tris. Assenlbling the X. systems, we a.rrive a t  a composite 

system in the forill of 

Nf, + r = 0, (8.67) 

where 

and 

Based on the forill of ecluations (8.65) we can devise the follo~ving algorithm to 

automatica,lly compute the entries of the above matrix N. 

The algorithm is as follo~vs: 

Step 0: Divide N into submat,rices as in (8.43). 

Set N = 0. 

Step I: For ea,ch const~raint 1. 0 5 1 5 do 

The constraint requires that i 4 and jB of two deformable parts i and j should 

always be in contact. Let's also assume that the pointer to  part i is marked 

as one, while the pointer to part j is marked as t t ~ i o .  
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- Step 1-0: Set 

- Step 1-1: For each constraint 0 5 112 5 k do 

If constraint m ill\-olves point iJ which belongs to  part i ,  and the pointer 

to part i is marked as orze: 

else if the poiiit,er to part i is marlied as two: 

- Step 1-1: For each coust raint 0 5 7- 5 k do 

If constraint r wliich inr-o11.e~ point j J  which belongs to part j ,  and the 

pointer to part j is ~llarlied as one: 

else if the pointer t.o part j is 1nar1;ed as two: 

(S. 7 3 )  

The pattern of nonzero entries in N depends on the connectivity of the parts. 

8.4 Integrating the Constrained Motion Equa- 

t ions 

In integrating the cons trained  rioti ion equations, at each time step we may solve 

(8.13) for and A") ivitli linoirn q( t )  and G('),  and then we integrate 4 and (1 



from t to  t + At to  obtain q ( t + a t )  and q( t+At) ,  respectively, using the Euler method 

((7.2) or (7.1)) . 

In applying the fa.st point-to-point constraiilt algorithm of Section 8.3, at each 

time step we assemble N and r a,nd colnpute the constraint forces f, by solving 

(8.21) using LU factorization. We then augment the equatiolls of motion of each 

part with the a.ppropria.te collst'raillt forces and we integrate using the Euler method 

as before. 

8.5 Summary 

In this chapter we presellted a techniclue to illlplelnellt hard point-to-point con- 

straints between deformable part lnodels which should not be violated, regardless 

of the magnitude of t,he forces esperieilced by the parts. We thell developed a 

stabilized Lagrange multiplier method. 



Chapter 9 

Experiments with Constraints 

In this chapter we present various esperinleilts involving colnputer vision and com- 

puter graphics applicatiol~s of our models and constraint algorithms. We first 

present vision experiments that clelnollstrate the performance of our framework in 

complex deformable model fitting to 3D motion data, using our force-based shape 

estimation algorithm. Next we present dynamic graphical simulations of complex 

models that interact with each other and their simulated physical environments 

through constraints, collisions. gravity, and friction against impenetrable surfaces. 

9.1 Computer Vision Experiments 

We have carried out various shape and  lollr rigid motion estimation experiments 

utilizing 3D human motion data and synthetic data. The synthetic data sets con- 

sist of time-varying 3D positions of points sampled from the surfaces of synthesized 

deformable superquadrics undergoing nonrigid motions in response to externally 

applied forces. The human nlotio~l data were collected using \VATSMART, a com- 

mercial non-contact , 3D motion digitizing and analysis system. Using multiple 

optoelectric measureinent cameras, it call track as many as 64 infrared light emit- 

ting diode markers attached to various body parts of a moving subject. It produces 

3D coordinates of the markers at sampling rates of 19 Hz to 400 Hz. At least two 

cameras must see a ~narker hcfore its three dimensional coordinates can be calcu- 
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Figure 9.1: Trac1;ing of four globall!; cleformable superqua.drics in a row. 

lated using a direct lillea,r transforma.tiori t.echnique.. Our da.ta. were collected using 

4 camera.s and 32 markers at a 50 Hz sarnpling ra.te. 

In the esperinlents, we couple the models to the data points, indicated by clark 

dots in the forthcoming figures, by searching for the  lear rest node of the model 

to  each data,point. This brute-l'oorce n~et~hod for assigning data, points to model 

points, is simple and robust. Despite the method's inefficiency compared to the 

other metllods in [ G 7 ] ,  our algorithms execute a,t rat,es of 2-3 seconds per 

frame of data, on a, single processor of a Silicon Gra.phics 4D-340VGX 1\~0rlistation, 

including the real-time :3D gl.al>hics. The estimator a.clvances to the next frame of 

data when the change i n  ea.cll of t,he est,ilnatecl pa.rameters falls below lo-? The 

Euler methocl time step 1va.s 4.0 x 1 0 - 5  and we used a unit clamping matrix D. 

We present results which ~lt~ilize eit.l~er our force-basecl or our recursive estirnatioll 

technique for shape and nonrigitl motion estimation. 

In the first experiment we tracl; the nlotion of an articulated chain of four 

deformal->le sul>erclua.drics const,ra.ined to be  in end-t,o-end conta.ct. The clata- 
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Figure 9.2: Tracking of occluded four glohally deformable superql~aclrics in a row. 

points were synthesized by sin>ulating the motion of a connected chain of four 

deformable supercjuaclrics that. may undergo only global deformations, and sam- 

pling 27 datapoints from each supercluadric "linl<" through time (47 frames). To 

demonstrate the performaace of our constrained niotion tracking algorithm, we 

initialize the deformable superquadric parts, each with 27 nodes, as shown in 

Figs. 9.l(a) and (b). The initial part moclels are ellipsoidal parameters (q, = 

(1.6,1.0,0.2,0.8,1.0,1.0.0.0,0.0.0.0,0.0,0.0)'). Fig. 9.l(c) shows a view of the 

parts fitted to the clatapoi~lts in the first time frame. The constraint forces help 

position the four parts in t,he correct configuration. Figs. g.l(c1) and (e) show a 

frame of the 4 constrained deformable superquadrics tracking the upward motion 

of the chain datapoi~lts, while Figs. 9. l (f)  and (g) show t h e ~ n  tracliing doivnward 

motion. 

In the second experiment shown in Fig. 9.2 we track the ~liotion of an ar- 

ticulated cha,in of four cleformal>le superqua.drics constra.ined to be in end-to-end 

contact. The datapoints [Irere sj.nthesized by simulating the nlotion of a con- 

nected chain of four cleforma.l~le superclua.drics that ma,y undergo only global de- 

formations, and sa.mpling throug11 t,irne (47 fra~nes) 27 da.ta.points from each su- 

perquadric "link," except the t,hircl, \vliose data, point,s are missing due to occlu- 

sion. To demonstrate the performance of our constrained motion tracking algo- 

rithm, we initialize tl-~e clefosmal~le supe~quadric parts, each with 27 nodes, as 

shown in Figs. 9.2(a.). The init,ia.l part, models are ellipsoicla.1 pa.ra.ineters (q ,  = 
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Figure 9.3: Tra.cking of an insect's parts. 

(1.6,1.0,0.2,O.S, 1.0,1.0,0.0.0.0. O.O,O.O,O.O)T). Fig. 9.2(b) shows a, view of the 

parts fitted to the da.tapoints in the first time fsa.me. The constra.int forces help 

position the four pa,rts in the correct configuration. Fig. 9.2(c) shows a, subsequent 

frame of the superqua.dric chain t'racliing clo~vn\vard motion. The constraint forces 

deform the occluded pa.rt to connect the cha.in properly a.nd they impa.rt on the 

occluded part a, illation t,ha.t is consistent with the motion of its neighbors. Of 

course the sha.pe of the occluded pa.rt is ina.ccurate, since no data are available to 

deform it t o  the correct cross section. 
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Finally we report two Inore esperilllents in which we used our force-ba.sec1 track- 

ing algorithm. Fig. 9.3 illustra.t,es the tra.cking of an articulated "insect" consisting 

of five deformable superclua.clric parts, each having 27 nodes. \Ve again synthesized 

datapoints by simula.ting the n~ot~ions of constra.ined deformable superquadrics un- 

dergoing global and local deforma,tions and sa.mpling 27 da.tapoints from ea,ch su- 

perqua.dric through time (36 fra.lnes). The ilonrigid motions were imparted by three 

forces, a force a.pplied tzo each wing tip to make the wings fla.p and a. force applied to  

the nose to pull the insect forwa.rc1 through space. The  1oca.l deforma.tion stiffness 

pa.rameters were set t,o 111" = 0.1 a.nd zol = 0.5. To demoi~stra.te the performance of 

our constrairled motioll algorit.11111, we initia.lize the c1eforma.ble superyuaclrics mod- 

els to  ellipsoida.1 shapes (q, = (2.0.O.S, 0.07,0.07,1.0,1.0,0.0,0.0,0.0,0.0, 0..5)T ) as 

shown in Fig. 9.3(a.). Fig. 9.3(b) sho\\ls an int,ermeclia.te step in fitting the models 

to the datapoints a.ssocia.t.et1 \\:it,ll t,he first. t,ilne frame, while Fig. 9.3(c) shows the 

final fit to these initial cla't,a.point's. Again, the const,raint forces help configure 

the five parts correct.ly, a.s is evident from the fina.1 deforma.tions of the wings. 

Fig. 9.3(d) shows t,hree time fra.mes of the fitted insect model tra.cking the time- 

varying datapoints a.s t,he wings a.re open upwa.rds, while Fig. 9.3(e) shows a frame 

of the motion with t.he wings clipping c1owniva.sd. 

Fig. 9.4 illustrates a spa.rse cla.t,a.point version of the yre\iious experin~ent.  \Ve 

use the same pa.ra.n~et.er sett.ings, hut now t.herc a.re only 7 data,points per su- 

perquadric. Again, t,he colistra.int forces help link the five superquadrics into the 

correct configura.tion. The shapes of the n-ings in Fig. 9.4(cI) differ from the shapes 

in the previous insect esperiinent. The  spa.rse c1a.ta. do not provide enough con- 

straints for the loca.1 deforma,t,ions to recover tjhe exact shapes. 

The  above experiments indicat'e the t,ra.deoffs between 1oca.l and and global 

deformations in the spa.rse da.ta case. Global deformations require relatively few 

datapoints to a.bstsa.ct the sha.l)es of objects. By contrast, local deforlnations can 

provide a more a.ccura.te a.pproxilna.tion to the exact s11a.l~ of a coinplex object, 

but their recovery genera.lly recluires more da.ta. The  sylnbiosis of 1oca.l and global 

deformartions \vithin our tl\,~la.mic nloclels a.11pea.r~ to offer the best of both wol.lds. 



Figure 9.4: T'racliing of a.n insect's parts using spasse c1a.ta. 
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9.2 Computer Graphics Experiments 

We have created several rea.1 time physics-baed a,nima.tion examples involving 

constrained complex models made from deforma.ble superquadric primitives. 

Fig. 9.5 shows several fra.mes from an ani~nat ion of two deforma.ble supercluadric 

"balloons" suspended in gravity l>y flexible but inextensil~le strings atta.chec1 to a 

ceiling using point-to-point constraints. Point-to-point constraints also connect the 

balloons to  the strings. The  "l~a~lloon" elastic pa.rameters were wo = 60.0 ancl to1 = 

90.0, the Euler step wa.s 0.00:3., t,he noda'l mass 10.0 a.nd t,he damping coefficie~lt 

v = 1.6. The  "string" ela.st>ic pa.rarnetcrs were 200 = 60.0 and P L ~ ~  = 100.0, the Euler 

step was 0.0001, the not1a.l ma.ss 0.8 and the da.mping coefficient u = 2.6. Fig. 9.5(a) 

shows the initia.1 configura.t,ion with the left balloon pulled to tshe side. Gravity is 

activated in Fig. 9.5(11). The  ba.lloons defornl under their own weight. The  left 

balloon swings to  the right, colliding inela.stically with its neighbor in Fig. 9.5(c), 

thereby tra,nsferring some of its liinet,ic energy. 111 Figs. 9.5(d-f) the balloons collide 

repeakedly until a,ll the kinet,ic energy is dissil>a.ted. The  collisions are implemented 

using rea.ct,ion const,ra.int,s [54] bet,\veen ~llultiple cleformahle bodies. Fig. 9.6 shows 

a simila,r scena.rio involving t.llree balloons. By deforming, the middle balloon 

cushions the left balloon fro111 the blo~v of the collision. It therefore swings a 

shorter distance tha.11 the left ba.lloon clicl in the 2-ba.lloon a.nima.tion. 

Fig. 9.7 shows the a.utoma.tic construct.ion of a minimalist dra.gonfly from its 

constituent deformable supercluaclric pa.rts. Fig. 9.'i(a.) shows the disjoint pa.rts in 

their initial configura.t.ions. The  elastic pa.ra.inet,ers were ti),, = 0.1 and wl = 0.5, 

the Euler step 0.00:31, the noc1a.l mass 2.0 ancl the danlping coefficient v = 1.6. 

After a.ctivating our constra,illt algorithm, the moclel self-a.ssembles (in a similar 

fashion to  the self-assembling motlels in [71, 51) to form the a.rticula.ted dra.gonfly 

shown in Figs. 9.7(b-c). Four point-to-point constraints hold the deformable body 

parts together. The  clra.gonfly .'\\.orlisX ina.smuch as forces can induce opening and 

flapping of the wings, as is illustlratecl in Figs. 9.7(d-f). An impenetrable plane 

appea.rs in Fig. 9.'7(g) to s\va.t the clragolifly in the rear (Fig. 9.7(11)). The  body 
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Figure 9.5: Two ha.lloon penclulums. 
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Figure 9.6: Three balloon pendulums. 

parts deform in response to t,he I)lo\r, but the point-to-point constra.ints continue 

to hold them together. The mangled tlragonfly is sho~vn in Fig. 9.7(i). 

Fig. 9.8 illustra.tes the self-a.sselnbly ancl subsequent a.nima.tion of a. snownia,n. 

Figs. 9.8(a-b) show two \;ie\vs of t'he tlisjoir~t deforma.l)le superquadric body parts 

of a snowma,n. The e1a.st.i~ pa.ra.met.ers of ea.cl1 pa.rt \\.ere 200 = 0.1 and tol = 0.5, the 

Euler step 0.001, the notlal nla.ss 1.0, the c1a.mping coefficient I/  = 200.0, the plane 

elasticity 200.0 and the friction coefficient. 0.15. The snowman self-assembles when 

the constra.ints a.re a'ctiva.t.ed (Fig. ~ . S ( C ) ) .  There are 12 point-to-point constraints 

holding the snowba.11 pa,rt.s toget.her. Gra,vity is a.ctiva.ted a,nd the sn0wma.n drops 

to  the impenetra,ble floor and locomotes along a.  resp specified pa.th by repea,tedly 

bouncing in a, cont~rollecl fashion (Figs. 9.8(tl-1')). 
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Figure 9.7: Self-assrmbly, articulation, and swatting of a dragonfly. 



9.2. COA4P UTER GRAPHIC'S ESPERlilrlENTS 

Figure 9.S: Self-asseml,ly ancl animated hopl>ing of a snowman. 



Chapter 10 

Shape and Nonrigid Motion 

Estimation 

This chapter describes a recursi~~e technique for estimatiilg shape and nonrigid 

motion from incomplete, noisy observations available sequentially over time. The 

estimator is a nonlinear I<alman filter that eniploys the constraint equations of 

motion as a system inoclel. The teclllliclue trailsforms the discrepancy between 

current observations and points on the lllodel into forces, using the algorithms 

described in a previous chapter. The Iialinan filter illclucles an error covariance 

matrix which transforms the forces in accordance with the system dynamics and 

the prior observation history. The transformed forces induce changes in the transla- 

tional, rotational, and deformational state variables of the system model to reduce 

the inconsistencies. Thus the system lxoclel synthesizes ilonstationary shape and 

motion estimates in response to the visual data. 

10.1 Recursive Estimation 

The force based estilila,tio~i scl~enle described in C1ia.pter 6 er~lploys data forces 

(6.16) which take int,o account. the current observa,t~ions only. This section proposes 

a more sophisticatecl estiniator ~vhich tra.nsforms the generalized forces through 

an error covaria,nce matrix before a,pplying tl-~em to the model. The covariance 
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matrix takes into account the nlocleling uncertainty, along with the history of 

prior observations and their uncertainties. 

Our estimator is a contiiluous extended Iialman filter. The basic idea behind 

Kalman filtering is to perfor111 optinla1 least squares estimation recursively as new 

measurements arrive, making use of ilonstationary models known as system mod- 

els [22]. We exploit our dynamic models of nonrigid objects within the Iialman 

framework by employing their differential ecluations of motion as system models. 

To do this, we assume that vectors w(t) and v(t)  represent uncorrelated mod- 

eling and measurement erro1.s. respectivel>-, as zero ineail white noise processes 

with known covariances, i.c., w(t) N X(O, Q ( t ) )  and v(t) N AT(O,V(t)).l In view 

of (4.49) and (6.14) the ilolllinear 1l;alinan filter equations for our dynamic model 

take the form 

where 

(gl = D-'f,, for the first-order model). The vector gl which includes generalized 

inertial and constraiilt forces is treated as a deterininistic disturbance in the system 

model. The state estiillation equation for uncorrelated system and measurement 

noises (i.e., E[w(t)vT(.r ) ]  = 0)  is 

'Kalman filtering is optimal for linear systein and illeasurelnelit models, assuming the asso- 
ciated noise processes are Gaussian [ 2 2 ] .  The Gaussian noise assumption is unrealistic in many 
applications. Often in practice, hen-eyer, all call economically measure about the charac- 
teristics of a noise process is its autocorrelatioll function; hence. a Gaussian model is the most 
convenient choice. 
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where H is computed using (6.17). The expression G(t )  = PHTV-I  is known 

as the Kalman gain matrix. The sylllinetric error covariance matrix P ( t )  is the 

solution of the matrix Ricca.ti equa,tion 

Note that the term PHTV-I  (z-h(ii)) in (10.3) is a generalized force. It results 

from the instantaneous disparity between the measurements z and the estimated 

state of the model u. For unit covariance matrix P(t) = I, this term reduces to the 

generalized data forces (6.16) ~rhic1-1 are applied to dynamic models in force-based 

estimation [67, 701. \hie interpret the Iialnlan filter physically: The system model 

continually synthesizes nonrigid motions in response to generalized forces that arise 

from inconsistencies bet~vecn its state variables and the incoming observations. The 

observation forces account formally for instantaneous uncertainties in the data. 

The improvement offered 11y the Iialnlail filter over force-based estimation can 

be explained intuitively 1)). realizing that the covariance ~na t r i s  P ( t )  comprises a 

time-varying measure of the ~~ncertaintj- in the estimate 6 1221. The measure de- 

pends on current and prior ol~ser\.ations, system dynamics, and inodeling errors. 

Consequently, the Iialnlan gain rlla t rix G becomes "proportional" to the uncer- 

tainty in the estimate and .'illversely proportional" to the measurement noise. If, 

on the one hand, there is sigilificant nleasurement noise and the state estimate 

errors are small, the term in parentheses in (10.3) is clue mainly to noise and only 

small changes in the state estinlates should he made. On the other hand, small 

measurement noise and large uncertainty in the state estimates suggest that the 

same term coiltains sigllificant information about errors in the estimates. There- 

fore, the difference between the actual and the predicted measurenlent will be used 

as a basis for making strong corrections to the estimates. 
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10.2 Kalman Filter Implementation 

The continuous I<alinan est inlation ecluations (10.3) and (10.4) can be integrated 

using standard numerical techniques; the simplest being Euler's method. 

The cost of computing (10.4) can be large because the size of the error co- 

variance matris is proportional to the size of q d ,  which depends on the number 

of finite elements used to  discretize the model. We take a common approach to 

implementing practical large-scale I<alman filters: suboptimal filter design [22]. 

There are several ways to sinlplify the I<alman filter equations, such as decoupling 

state variables, deleting state ~,arlal~les, simplifying filtel gains, etc. Suitable sim- 

plifications are often based on knolvledge ahout the particular system inodel used 

in the I<alman filter equations. l'hey call lead to a sigilificantly reduced computer 

burden with little reductioil in esti~llation accuracy. 

We simplify the 1l;alman filter ecluations by decoupling state variables. The 

decoupling is dictated by the structure of the state vector u in (4.49) which is 

comprised of the transla tion ( q, . q,) , rotation (qs, qe ), global deformation (q,, 

q,), and local deformatioil (qd. qd) state ~.ariahles for the various part models. To 

decouple (10.4), we ignore the off-diagonal block submatrices of P m7hicll specify 

covariances among the different sets of state ~ariahles. Each set can then be 

updated independently. Note that the suhmatris of P associated with the local 

deformatiolls is structured like the stiffness matrix K [67]; i.e., it is a sparse matrix 

which may be updated on a per-element basis. Each syillinetric elemental error 

covariance submatris is full, since the elenlental stiffness submatrix is also a full 

symmetric matrix, i.e., its nodal clisplacell~eilts are interdependent. 

For additional savings. we may assurlle independellt modeling and measurement 

errors, which lead to covariance nlatrices Q and V that are scalar multiples of the 

identity matrix. Note that althollgh the entries of the nleasurement covariance 

matrix V are often linown, it is not easy to deternline appropriate values for the 

system covariance matrix Q ["I. The latter are therefore co~lsidered as filter tuning 

parameters. If the entries of Q are inappropriate for the particular application, the 
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Figure 10.1: T~ac,liilig of fully deforina.ble sclua.sh sha.pec1 object. 

filter may diverge or corlverge to the wrolig value [I l l .  This is due to  the nonlinear 

measureme~lt equa.tions (10.1). Tlle entries of Q should therefore be tuned so that 

the filter converges to the correct solution. 

10.3 Recursive Estimation of Shape and Non- 

rigid Motion 

This section presents several quantitative esperiillellts involviilg synthetic data. 

We employ motion secluences of scluasli shaped objects in which we used our 

Kalman estimation algorithm. In Fig. 10.1 we fit a deformable superquadric 

model with 123 nodes to  123 3D datapoints. The dat,apoints are sampled over 
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20 frames from the surface of a synthesized squash-like model undergoing both 

global and local defornlations in response to a time-varying force applied at the 

upper left of the squash. Figs. lO.l(a) and (b) show two views of the range 

data and the initial model. The local deformation stiffness parameters of the 

model were ulo = 0.1 and 21.1 = 0.5 (see [67]). The initial model was an ellipsoid 

(q, = (2.7,0.1,0.2,0.7,1.0, 1.0,0.0,0.0,0.0,0.0,0.2)T). The diagonal entries of the 

initial covariance matrix P(0) were set to 1.0 while the off-diagonal entries used 

in the estimation of local deformations were set to 0.4. \Ve also set Q = 0.1 I and 

V = 0.1 I. In order to demonstrate the performance of the model fitting algo- 

rithm, we did not initialize the part illodels at the center of gravity of the data. 

Fig. lO.l(c) shows an intermediate step of the fitting process driven by data forces 

from the first frame of the nlotion secluence, while Figs. lO.l(d) and (e) show the 

mode1 fitted to the initial data, with visible tapering and bending global deforma- 

tions. Fig. 10.1 (f) s h o ~ ~ s  an intermediate frame of the model tracking the nonrigid 

motion of the squash, while Fig. lO.l(g) shows the final position of the squash; the 

local deformations are now readilj. apparent. 

To assess the perfornlallce of our estimation algorithm quantitatively, we con- 

ducted a series of error analjsis experiments with data points from the above 

experiment at  100% data density and also decimated to 75%, 50% and 25% data 

densities. We corrupted the data wit11 zero-mean independent Gaussian noise of 

variance 0, 1, 5, and 10. \Ye itlitializecl the estimator as in the above esperiment. 

In each run we compute tlie average error per frame in the estimated translation, 

rotation, global and local deformation, aq well as the error in the estimated nodal 

positions of the tllodel using the fornlula 

where a sta.nds for q,, q ~ ,  q,, qd, or X,  the subscripts e and T denote estimated and 

true values respectively, and n is the number of frames used in the experiment-in 

this ca,se, 20. 
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The following tal~les shoxv the error ana.lysis results for tlie various data per- 

centages and noise variances. 

Table 1. Noise esperiment. Data density 100%. 

Table 2. Noise esperinlent. Data. density 75%. 
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Fig. 10.2 shows a det,a,iled plot,, over the 20 frames, of the error in the estimated 

nodal positions from the 7596 clata. density, noise variance 1 experiment. Given an 

inaccurate initial model, the error drops sharply as the algorithm rapidly estimates 

the correct nodal positions. The nlodest increase in error up to frame S and its 

subsequent decrease is clue t.o t,he increasing size of the local deforination implied 

by the data.. The filter t,unes aft,er S franles (local deformations a,re now significant) 

and we observe a subsecluent decrease in the frame error. 

Table 4. Noise experiment. Data densit,y 25%. 

The above error analysis esperiillents first deinonstrate that the recovery of 

translation, rotation and global c1eforma.tions is more robust than the recovery of 

local deforillations in tlle presence of noise. Secondly, the I<alman filter ignores 

some of the noise by not forcing tlle local cleforinations to interpolate the data- 

points. It produces reasonal~ly accurate shape estimation by keeping the overall 

position estima.tion error small. 14'e observed that the reliability of the estimated 

motion paraineters begall to fail at clata densities of a.round 25% a.11~1 variances 

around 10. 

The following esl>erilnent iilclicates the perforll~a~lce of the il~etliod for non- 

Gaussian noise%nd when t heie is no one-to-one correspondence between the model 

nodes and the data points. 111 Fig. 10.3 we add ulliforill noise, by perturbing by 

&5?4 (with randolnly chosen sign) the noiseless valile of the 1213 motion range data 

2The estilllat,ioil of accurate noise models from input data is beyond the scope of this thesis. 
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position error 

O.O" t . 1  1 I I frame number 
0 5 10 15 20 

Figure 10.2: Position error per frame with 75% of the cla,ta aad noise variance 1.0. 

point. We fit a cleformal~le supercluaclric with S1 ilocles whose parameters and 

initial position a.re the same as in the first experiment, except for the initial ellipsoid 

parameters which were (q, = (2.S,0.1,0.2,O.S, 1.0,1.0,0.0,0.0,0.0,0.0, 0.2)T) and 

we set V = 6.0 I to  account for noise. Fig. 10.3 is sirnila,~ to  Fig. 10.1. Figs. 10.3(a) 

and (b) show two \.iews of t lie range clat a aiicl the initial model. Fig. 10.3(c) shows 

an intermediate step of the fitting process drivel1 1337 data forces from the first frame 

of the motioil sequence. Figs. 10.3(d) and (e) show the inodel fitted to the initial 

data, with visible ta,pering ant1 l~encling glo11a.l deforma.tions. Fig. 10.3(f) shows an 

intermediate frame of the moclel tracking the nonrigid motioil of the squash, while 

Figs. 10.3(g) and (11) show the final position of the scluash. 

We collducted tliree more experiments iilvolving real 3D data from arm and 

torso motions of a. lluman suhject using the IVATShIIART system. Approximately 

120 time frames were used in  this experiment,. The i~lcoilling data are segmented, 

inasmuch as individual datapoints can I>e associated ~vi th  the correct body parts. 

We used 49 nodes for each dcformable supercluadric part. to  nlodel the arms and 
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Figure 10.3: Tracking of f t r l l ~ .  clcl'ormal~le scluash shaped object with noise. 
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Figure 10.4: Tracking of raising and flexing human arm motion. 
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36 nodes for the torso. The models were automatically initialized to the center 

of mass of the relevant cla.t.a, a,ncl their initial orientatiolls were computed using 

the matrix of centra.1  moment,^ of the data.. The initial size along the longest 

axis (we initia.lized the model along the other two axes arbitrarily) was set by 

simply calculating the distance between the furthermost data points along the 

initial model centered coordina.te system [61]. The initial I<a.lman filter covaria.nce 

matrix was P(0)  = I, a.nc-1 \vc. used Q = 0.1 I and V = 4.0 I. Loca.1 deformations 

were not permitted in this experiment, since the a.va.ilable data. were very sparse, 

i.e., about 6 to 13 points pel clcformahle superclua.clric part. 

Fig. 10.4 shows sha.pe ant1 mot,ion e~t~iination results involving a.n a.rticulated 

multipart model composecl of 5 connect,ecl deforma.ble superclua.drics using data 

collected from the ra.ising ancl flesing motion of the two a,rms of a human subject. 

Fig. 10.4(n) shows a. vie\\: of the sange da.ta ancl the initial models. Fig. 10.4(b) 

shows a.n int,ermediate st,ep of the fitt.ing process driven by data forces from the 

first frame of the m o t i o ~ ~  secluence. \vhile Figs. 10.4(c) aad (cl) show the models 

fitted to the init.ia.1 c1a.t.a. Figs. 10.4(e) ancl (f) show intermedia.te frames of the 

models tracking the nonrigicl 1not.ion of the a.rms, while Figs. 10.4(g) and (h)  show 

two views of the fina.1 position of t'he models. 

In Fig. 10.5 we fit 3 tleformal~lc superclua~clrics to data. collected from the rotat- 

ing motion of the right. arm of :I. human subject. Figs. 10.5(a.) a.nc1 (11) shoiv two 

viewpoints of the range data ancl t,he initia.1 models. Figs. 10.5(c) a.nd (cl) show an 

intermediate step of the fittitig process driven by data forces from the first frame 

of the motion sequence, wllilo Figs. 10.5(e) a.nd (f)  show the models fitted to the 

initial data.. Ea,ch of t.he rema.ining three fra.~nes show two \:iewpoints each, of the 

models tracking the rotat,ional motion of the a.rm. 

In Fig. 10.6 we fit 3 deformable supesqua.clrics to data. collected from the up- 

down motion of the right arm of a huma.n subject. Figs. 10.6(a) and (b) show 

two viewpoints of t,he range cla.ta and the initial models. Fig. 10.6(c) shows an 

intermediate step of the fitt,ing process driven by da.ta forces from the first frame 

of the motion sequence, wllile Figs. lO.G(c1) a.nd (e) show the models fitted to the 



Figure 10.5: Tracking of rot,a.ting humaa arm motion. 

initial data. Fig. I O. ( i ( f )  sho~vs a n  intern-iecliate frame of t,he nlodels traclcing the 

nonrigid motion of thc a r m ,  ~vllile Figs. 10.G(g) a.nd (11) show tn7o ~rieivpoints of 

the final position of the moclels. 

The above esperiments demoustrate tha.t the coml)ina.tion of our constraint 

forces algori thrn t,oget,her wi t.11 t.lle a.pplica,tion of the I<a,ln~a.n filter produce very 

good fits to the spa.rse a.ntl noisc corruptecl da.ta.. 

10.4 Summary 

In this chapter we applied continuous non1inea.r 1i;alnla.n filtering theory, to con- 

struct a, recursive est,ima.t,or which employs the La.grange equations of 3D nonrigicl 

motion that we have de~~elol~ecl a.s a syst,em model. This esti~ilator allows the re- 

covery of s11a.l~ a.nd nonrigicl iiiotion in the presence of noise. We a,lso described a, 

computationa.ll?; efficient iinplementa.tion of the I<alman filter equations. Finally, 

we presented computer \.ision esl)eriments involving shape and nollrigid motion 
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Figure 10.6: 'rracking: of up-doivn h u m a n  a r m  motion. 



estimation from 3D range dat,a, using the recursive estimation techniques based 

on Kalman filtering. 



Chapter 11 

Conclusions 

We conclude by giving a surnma1.j. of t,he t.hesis and proposing directions for future 

research. 

11.1 Summary 

This thesis developed a ~~h~-.;ic.;-l~asecl franlework for 3D shape and nonrigid motion 

modeling for computer visioil and computer graphics. The framework features a 

new class of dynamic defonnable part models. It i~lcorporates physical constraints 

to  compose articulated lnoclels fro111 cleformable parts and provides force-based 

techniques for fitting sucll moclel5 to sparse, noise-corrupted 2D and 3D visual 

data. The frame\~orli lead5 to estimators that exploit dynamic deformable models 

to track moving 3D objects fioill time-varying observations. The thesis demon- 

strated the useft~lness of' the f~alrle\\.ork in several application areas. These include 

quantitative ~noclel extraction fiom biomedical data for analysis and visualization. 

The modeling framework also pro~.icles the necessary generative power to synthesize 

constrained shapes and nonrigid nlotions for the purposes of computer animation. 

We developed ~lloclels with glotjal deforlllation parameters which represent the 

salient shape features of natural parts, and local defornlation parameters which 

capture shape details. Our a~>l>roach is general and can be used to combine pa- 

rameterized geometric l>rimiti~e5. paran~eterized global cleformations, and local 



deformations. In the cont.est of computer gra.pliics, these models combine the 

parameterized a i d  free-fonn niodeling pa.ra.digms. An important benefit of their 

global/loca,l descriptive power in t,he context of computer vision is that it can 

potentially satisfy the coilflict,ing requirements of shape reconstruction and shape 

recognition. 

The Lagra,nge equations of motion that govern our models, augmented by con- 

straints, ma,lie them responsi\~e to externally applied forces derived from input data 

or stemming from interactions of our deformable models with the physical world 

or from the user. This systcnl of differeilt,ial equations is discretized using finite 

element methods and simulated t~lirough time using sta,ndard liunierical techniques. 

We also developed a rec11rsi1.e techniclue for 3D sha.pe lnodeling and nonrigid 

motion estimation from incomplete, noise-corrupted, tiine-varying observations. 

Assimila,ting our c1yna.mic ~liodels within continuous nonlinea,r I<alma.n filtering 

theory, we derived recursive algorit,hms to estimate translation, rota,tion, and de- 

formation parameters of nonrigid ohjects. Our estiillators are much more complex 

and powerful tlmn previous Iialman filt'er based estillla,tors described in the vision 

literature (including our varlier force-based estima.tors [67] which may be viewed 

as degenera.te "1i;alman filt.ersW with unit error covaria,nce i~~at~r ices) .  

The forinula,tioiis in t,liis thesis were purposefully genera.1, since the general 

models may become import'a~it in off-line analysis ta,sks a.nd in iatera.ctive tasks on 

faster computers. Nonetheless. n.e shonred that it is possible to ease significantly 

the computa~tioiial burden of our recursive estimation algorithms with minimal 

loss of a.ccuracy through various 11-iea.ns, such as through state decoupling. We are 

confident that with t.hese reasonable silliplifications our fra,nlework can support 

fast, on-line estimation of ilonrigid illation pa,raiileters on currently available vision 

hardwa,re for real-time apl)lications. 

We demonstra.ted the interact'ive rate time performance of our techniques in a 

series of experiments in coml,uter vision, graphics, and visualization. 



1 . 2  Future Work 

In the area of Physics-Ba,sed hlodeling and Simulation, it is possible to conduct 

further resea.rch into biometlical applica,tions of the techniques that we have devel- 

oped. Such applica,tions inclutle illodeling and simula,tion of the physical properties 

of various body tissues a,nd orga.ns such as skin, muscles, and bones and the recon- 

struction of internal or est,ernal body lmsts from MRI and CT data. The approach 

promises to  be useful, for ilist,ance, in a.ssessing patient morphology, surgical plan- 

ning, prostheses, fa.brica.tion, aacl at,hletic fitness. With the experience gained from 

the modeling and simulat,ioll of flexible object's, we would a.lso like to move towards 

the simula.tioll of other coillples p11j.sica.l phenomena such as fluid motion and tur- 

bulence to  support visualizat.ion that will promote their better understanding. 

In Computer Vision. we plan to esteiid n~oclels a,nd techiliclues in various di- 

rections. We would lilie to explore nlethocls for the estiinatioll of the local elastic 

parameters of our models. This is needed to inlprove the reconstruction of complex 

deformable objects, such as a heart, since such objects do not have uniform elastic 

properties. l i e  would also like to show the usefulness of our nlodels in recognition 

tasks and we would work on the cle\-elopment and in~plenlenta~tion of fast 2D ver- 

sions of our models for t . 1 ~  purposes of real-time a.ctive vision. Finally, we would 

like to work towards the development of an a,utonomous vision system, through 

the int,egra,t,ion of visual mod~iles, inclucling the one developed in this thesis. A 

very challenging problem in visioll apart from iillproving existing ~llodules which 

attempt to solve restrict,etl sl~bsct~s of t8he vision problem, is the cluestion of inte- 

grating these moclules t,o a.cl1ie1.e a general purpose perforinance that will be of 

practica,l significance. 

In Computer C4ra.pllics ancl Allima.tion, our nest step woulcl be research into 

the crea.tion of tools and t, l~e ftlrt.ller development of our algorithins for faster and 

more realistic anima.t,ions. The11 we ~voulcl investigate the application of control 

theory to  the models de~elopecl in t'liis thesis. This pronlises to be critical to the 

creation of complica.t,ed ai~iillatiolls in a. user-friendly wa;v. 



Appendix A 

Derivation of B matrix 

Shabana [59] has sho\vn that 

Rp = R(w6 x p ) ,  (12.1) 

where R is the rotation matrix. p is the position of a point on the deformable 

model with respect to the model Cralne Q and w4 is the angular velocity of the 

deformable ~ilodel with respect to o. 

Furthermore, in [59] it is shown that wd can be written in terms of the time 

derivative of the quaternion qo = [ s ,  v,] representing the rotation at time t as 

follows 

UI"? = Gqe, (12.2) 

where G is a 3 x 4 matrix u.llose clefinition is based on the value of the quaternion 

90 = IS, vqJr  - 

G = 2 

Therefore, we call rewrite tlle vector R~ using (12.2) as follows 

- 1'1 -5 213 -212 

- - L ' ~  .s 

- I ' j  ( ' 2  - 2  S 
- - 

. (12.3) 



where 6 is the dual 3 x 3 matrix of the position vector p(u) = (pl, p2, P3)T (see 

(3.3)) defined as 

-P3 P2 

fi(u)= 0 -;I 1 - 
-P2 Pl 

Comparing (12.4) and (4.1), we identify matrix B as 



Appendix B 

Integration Rules 

B. 1 Gauss-Legendre Integration Rules 

We use the Gauss-Legendrc integration rules when we use isoparalnetric quadrilat- 

eral elemeilts (e.g., bilinear c~nadrilateral elements). We first give the relevant for- 

mulas for one-dimen.sio~lnl function\ and then we estelld thein to two-dimensional 

functions. 

Suppose we have a function f(<) ~ h i c h  must be integrated over an one - 

dime~zsionnl elenlent so that we are tr),ing to find 

Then using the Gauss-Legendre ~ u l e s  itre sample the function f([) at some 

predeterininecl sampliilg positioi~ < = and ~llultiply the results by some predeter- 

mined weights 14:. Thus for a rl-point rule 

The follo\ving t,able sho\\-s t.he sampling p~sit~ioils a.nc1 weights for the first four 

Gauss-Legendre rules [p:')]. 



Table 1. Gauss-Legendre integration rules 

Note that an n-point rule exactly integrates a polynomial of degree (2n - 1) or less 

exactly [29]. 

For an isoparametric quadrilateral let g((, r ] )  be the function we want to inte- 

grate in the two-dimensional parameter space. Then using (13.8) 

where W; and Wj are the weight coefficients and g(&, 7;)  corresponds to the value 

of the function sampled at the sampling point (ti, i j ; ) .  

B .2 Radau Integration Rules 

For isoparametric triangular elements we use the Radau rules to approximate the 

integral of a function g([, q )  in the two-dimensional parametric space of the ele- 

ment. These rules have the following form [29] 
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where the weights and the sampling positions are given in the following table. 

Table 2. Weights and sampling positions for numerical integration over triangular 

regions (Radau rules). 
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