PHYSICS-BASED MODELING OF
NONRIGID OBJECTS FOR
VISION AND GRAPHICS

Dimitri N. Metaxas

A thesis submitted in conformity with the requirements
for the Degree of Doctor of Philosophy,
Graduate Department of Computer Science, in the

University of Toronto

©Copyright Dimitri N. Metaxas 1992

PHYSICS-BASED MODELING OF
NONRIGID OBJECTS FOR
VISION AND GRAPHICS
Ph.D. 1992
Dimitri N. Metaxas
Graduate Department of Computer Science

University of Toronto

Abstract

This thesis develops a physics-based framework for 3D shape and nonrigid
motion modeling for computer vision and computer graphics. In computer vision it
addresses the problems of complex 3D shape representation, shape reconstruction,
quantitative model extraction from biomedical data for analysis and visualization,
shape estimation, and motion tracking. In computer graphics it demonstrates
the generative power of our framework to synthesize constrained shapes, nonrigid
object motions and object interactions for the purposes of computer animation.

Our framework is based on the use of a new class of dynamically deformable
primitives which allow the combination of global and local deformations. It in-
corporates physical constraints to compose articulated models from deformable
primitives and provides force-based techniques for fitting such models to sparse,
noise-corrupted 2D and 3D visual data. The framework leads to shape and nonrigid

motion estimators that exploit dynamically deformable models to track moving 3D

objects from time-varying observations.

We develop models with global deformation parameters which represent the
salient shape features of natural parts, and local deformation parameters which
capture shape details. In the context of computer graphics, these models rep-

resent the physics-based marriage of the parameterized and free-form modeling

paradigms. An important benefit of their global/local descriptive power in the
context of computer vision is that it can potentially satisfy the often conflicting
requirements of shape reconstruction and shape recognition.

The Lagrange equations of motion that govern our models, augmented by con-
straints, make them responsive to externally applied forces derived from input
data or applied by the user. This system of differential equations is discretized us-
ing finite element methods and simulated through time using standard numerical
techniques. We employ these equations to formulate a shape and nonrigid motion
estimator. The estimator is a continuous extended Kalman filter that recursively
transforms the discrepancy between the sensory data and the estimated model
state into generalized forces. These adjust the translational, rotational, and defor-
mational degrees of freedom such that the model evolves in a consistent fashion
with the noisy data.

We demonstrate the interactive time performance of our techniques in a series

of experiments in computer vision, graphics, and visualization.

Dedicated to my parents
Nikolas and Ada

Acknowledgements

I would like to thank my thesis supervisor, Demetri Terzopoulos, for his con-
stant support and encouragement throughout this research. He was the best possi-
ble supervisor for this work, as he has a unique blend of technical skills, experience,
and the imagination needed to pioneer and supervise research bridging two fields.
In addition to being a true scholar, he is also a very approachable and friendly
person.

I am grateful to my external committee member Professor Takeo Kanade of
Carnegie Mellon University for his steadfast enthusiasm for the thesis, and for read-
ing it meticulously. The other members of my committee, Professors Ted Davisson,
Wayne Enright, Eugene Fiume, Evangelos Milios, and John Tsotsos deserve com-
mendation for their patience with the many drafts they perused conscientiously.
Their comments improved the clarity of the thesis. I also thank Professor Ahmed
A. Shabana of the University of Illinois at Chicago who provided valuable feedback
and advice on multibody dynamics and Dr. Richard Szeliski of Digital Equipment
Corporation for important discussions on Kalman filtering. Furthermore, I would
like to thank Professors Alain Fournier of the University of British Columbia and
Tom Huang of the University of Illinois at Urbana-Champaign for their support
and advice during this work.

I wish to thank Professor Susan Tupling for providing valuable data for my
experiments by granting me access to the WATSMART system at the Biomechanics
Lab. Ithank Michael McCool and the others at the DGP Lab for helping me create
high quality video of my computer animations.

Amongst my colleagues and friends, (now Professor) Niels da Vitoria Lobo
stands out for his steadfast support of my ambitions and for his academic ma-
turity and deep understanding of the intricacies of the world today. Additional
acknowledgements go out to other people around the lab and the department, Sean
Culhane, Jeremy Cooperstock, Isabel Cruz, Sven Dickinson, Gregory Dudek, Vin-
cent Gogan, Tim Mclnerney, Robert Majka, Theodore Norvell, David Tonnesen,
Luiz Velho, Gilbert Verghese and Dave Wilkes, with all of whom I developed warm
friendships.

For financial support during my PhD, I thank the University of Toronto Open
Fellowships office and the ITRC.

Finally, I thank my parents Nikolas and Ada Metaxas for all their love and
encouragement throughout my studies and, most importantly for giving my sister
Greta and me a thirst for knowledge and a desire for intellectual achievement.

Contents

Abstract
Acknowledgements
Contents

List of Figures
Nomenclature

1 Introduction

1.1 Problem Statement

........

...................

1.2 Illustrative Modeling Problems and Examples

1.3 Contributions v v v e e e e e e e e e e e e e e e

1.3.1 New Deformable Primitives

..................

1.3.2 Systematic Formulation of Dynamic Primitives.

1.3.3 Physics-based Constraints

1.3.4 Recursive Estimation

« e .

...................

...................

1.3.5 Applications to Vision and Graphics

1.4 Thesis Qutline

2 Related Prior Work
2.1 Computer Vision

.........

...................

2.1.1 Local, Global, and Physics-Based Models

2.1.2 Recursive Estimation of Shape and Nonrigid Motion

)

12

14
14
16
21

21

23
23
24
24

26
26
26
29

CONTENTS

2.2 Computer Graphics oo
2.2.1 Physics-Based Modeling
2.2.2 Constraint Methods,
3 Geometry of Deformable Models
3.1 HybridModels
3.1.1 Global deformations
3.1.2 Local Deformations
3.2 SUMMALY « « v v v v e e e et e e e e

4 Kinematics and Dynamics

4.1 Kinematics

4.1.1 Computation of R and B Using Quaternions
4.2 Dynamics v v v e e e e e
4.2.1 Lagrange Equations of Motion
4.2.2 Kinetic Energy: Mass Matrix
4.2.3 Calculation of Acceleration and Inertial Forces
4.2.4 Energy Dissipation: Damping Matrix
4.2.5 Strain Energy: Stiffness Matrix
4.2.6 External Forces and Virtual Work

5 Finite Element Implementation

5.1 Finite Elements

5.1.1 Choosing the Appropriate Elements
5.1.2 Various Model Tessellations
5.1.3 C° Elements

5.1.4 C! Triangular Elements
5.1.5 Approximation of the Lagrange Equations
5.1.6 Derivation of Stiffness Matrix Kgyq

29
29
30

32
32
33
40
42

43
43
44
46
46
47
48
49
50
54
54
56

CONTENTS 7

5.2 SUMIMATY « « « ¢ o v o o o e v e e e e e e e e e e 73

6 Applied Forces 74
6.1 Computer Vision Applications 74
6.1.1 Short Range Forces 75

6.1.2 Longrange Forces. 7

6.2 Computer Graphics Applications 83
6.2.1 Collisions of Deformable with Rigid Models 83

6.2.2 Collisions between Deformable Models 84

6.3 Force-Based Estimation 86
6.4 SUMIAIY .« « v v v v v e e e e e e e e 87

7 Model Implementation 88
7.1 Integrating the Motion Equations 88
7.2 Model Initialization o 0o 89
7.3 Computer Vision Experiments 91
7.3.1 Static Shape Recovery 91

7.3.2 Shape and Nonrigid Motion Estimation 96

7.4 Computer Graphics Experiments 99
7.5 SUMMATY .« « v« v v v e v e e e e e e e e e e e e 103

8 Constrained Nonrigid Motion 106
8.1 Holonomic Constraints and Lagrange Multipliers. 106
8.2 Stabilized Constraints o o oL 109
8.3 Fast Point-to-Point Constraint Force Computation. 110
8.3.1 Second Order Dynamic Systems 110

8.3.2 First Order Dynamic Systems 117

8.3.3 Two Constraints, 117

8.4 Integrating the Constrained Motion Equations 121
8.5 Summary i e e e e e e e e e 122

CONTENTS

9 Experiments with Constraints
9.1 Computer Vision Experiments

9.2 Computer Graphics Experiments

10 Shape and Nonrigid Motion Estimation
10.1 Recursive Estimation 0.
10.2 Kalman Filter Implementation
10.3 Recursive Estimation of Shape and Nonrigid Motion

10.4 Summary e e e e e e e e e e e

11 Conclusions
11,1 Summaryo e e e e e e e
11.2 Future Work e,
A Derivation of B matrix

B Integration Rules

Bibliography

123
123
129

134
134
137
138
146

149
149
151

152

154

157

List of Figures

1.1
1.2
1.3

14

3.1

4.1

5.1

5.2
5.3
5.4
5.5
5.6
5.7

6.1
6.2
6.3

6.4

Interactions with deformable models. 17
Fitting a deformable superquadric (b), (c), (d) to pestle image {a). . 18
Tracking of raising and flexing human arm motion. 19

Self-assembly (a), articulation (b), and swatting (c), (d) of a dragonfly. 20

Geometry of deformable model. 0oL 34
Rotation by angle 6 through an axis of rotation v,. 45
Model tessellation in material coordinates: rectangular and trian-

gular elements. L 60
Model tessellation in material coordinates: triangular elements. . . 60
Bilinear quadrilateral element. The four nodes are numbered. . . . 62

North pole linear triangular element. The three nodes are numbered. 64
South pole linear triangular element. The three nodes are numbered. 64
Mid-region triangular element. The three nodes are numbered. . . . 66

C! Continuous Triangular Element. The three nodes are numbered. 67

Application of image forcestonodes. 76
Accurate application of image forces tonodes. 76
Force application to the model node with minimal distance from a

3D datapoint. 79

Migration of data force point of influence over model surface. 80

9

LIST OF FIGURES 10

6.5 Force application to a model point with minimal distance from a 3D
datapoint. The model point lies within the elements (shaded) which

share the model node with minimal distance from the 3D datapoint. 81

6.6 Application of radial forces to model points. 82
6.7 Collision of a deformable with a rigid model. 83
6.8 Collision of two deformable models. 84
7.1 Fitting a deformable superquadric to pestle image. 92
7.2 (a) Doll image. (b) Doll potential. 92
7.3 (a) Initialization of deformable superquadrics to doll image. (b)

Fitting deformable superquadrics to doll image. 93
7.4 Fitting deformable superquadric (b), (c) to egg range data (a). . . . 94
7.5 Fitting deformable superquadric (b) to mug range data (a). 95
7.6 Tracking of globally deformable squash shaped object.. 97
7.7 Tracking of globally deformable squash shaped object using noisy

data. . . . oL 98
7.8 Tracking of globally deformable squash model using sparse data. . . 99
7.9 Interactive Deformable Superquadric. 101
7.10 Morphing Shell.o 102
7.11 “Jello-ball” dropped on aplane. 102
7.12 Elastic “rugby-ball” dropped on aplane. 103
7.13 Elastic “banana” droppedona box. 104

7.14 Collisions of deformable balls with planes and a spring loaded see-saw.104

7.15 Strobed motion sequence of previous example. 105
8.1 Point-to-point constraint. L 111
8.2 Two Point-to-point constraints. 113
9.1 Tracking of four globally deformable superquadrics in a row. 124

9.2 Tracking of occluded four globally deformable superquadrics in a row.125

LIST OF FIGURES 11

9.3
9.4
9.5
9.6
9.7
9.8

10.1
10.2
10.3
10.4
10.5
10.6

Tracking of an insect’sparts. 126
Tracking of an insect’s parts using sparse data. 128
Two balloon pendulums. 130
Three balloon pendulums. 131
Self-assembly, articulation, and swatting of a dragonfly. 132
Self-assembly and animated hopping of a snowman. 133
Tracking of fully deformable squash shaped object. 138
Position error per frame with 75% of the data and noise variance 1.0.142
Tracking of fully deformable squash shaped object with noise. . . . 143
Tracking of raising and flexing human arm motion. 144
Tracking of rotating human arm motion. 146

Tracking of up-down human arm motion. 147

Nomenclature

o Q v T K £

=

~ U

oh

9 M € o

material coordinates

position of a point on a deformable model wrt to an inertial frame @
position of a point on the deformable model wrt to a model frame ¢
reference shape of deformable model

local deformation of deformable model
parameterized geometric primitive

function defining parameterized global deformations
vector of global deformation parameters

Jacobian matrix wrt to global deformations

basis matrix

vector of local deformation parameters

rotation matrix

translation of model frame wrt to inertial frame
vector of translation degrees of freedom

vector of rotation degrees of freedom

mass matrix

stiffness matrix

damping matrix

generalized inertial forces

generalized external forces

vector of model generalized degrees of freedom
model angular velocity

Jacobian matrix wrt to model degrees of freedom

stress vector

strain vector

-y oz

]

By

R

g

O < T =

finite element shape function
potential function

external force

elasticity constant

unit normal vector at given point of a surface
friction coefficient

nodal velacity

damping coeflicient

matrix of central moments

model stiffness parameters

vector of point-to-point constraints
generalized constraint forces
integration step

uncorrelated modeling error noise
uncorrelated measurement error noise
error covariance matrix

modeling error covariance matrix

measurement error covariance matrix

13

Chapter 1

Introduction

1.1 Problem Statement

This thesis develops a physics-based framework for 3D shape and nonrigid motion
modeling for computer vision and computer graphics. The framework addresses a
variety of difficult modeling problems common to both fields.

Despite the large body of research on object modeling for shape and motion
estimation in computer vision, most existing techniques are limited to rigid objects
with simple shapes. The shapes of many natural objects, however, cannot be
represented accurately! in terms of simple shape primitives and they may undergo
motions that are nonrigid and subject to various constraints. Animal bodies, for
instance, produce surprisingly complex motions, not only as a consequence of their
articulated skeletons but also because of soft tissue deformations due to muscle
action and gravitational effects.

The computer graphics literature, on the other hand, is replete with mathemat-

ical representations of solid objects. In particular, the field of solid modeling has

1The required degree of accuracy for object shape representation in computer vision depends
on the application. For example, accurate shape representation may be essential in order to grasp
an object by a vision-guided robot arm; the same level of accuracy is not necessarily required for
object recognition or identification.

14

1.1. PROBLEM STATEMENT 15

developed geometric methods for representing object shape, but geometric tech-
niques are often inconvenient for modeling object motion. The insufficiency of pure
geometry becomes particularly evident when one faces the problem of realistically
animating deformable objects and their complex physical interactions.

This thesis proposes a new class of deformable object models whose behaviors
are determined not only by their geometric structures, but also by Lagrangian
mechanics principles involving mass and damping distributions and internal strain
energies. The geometric structure of the models supports both global deformation
parameters which efficiently represent the gross shape features of the salient parts
of natural objects and local deformation parameters which capture shape details.
In the context of graphics modeling, these models represent the physics-based
unification of the parameterized and free-form paradigms. An important benefit
of this global/local descriptive power in the context of computer vision is that it
can potentially satisfy the often conflicting requirements of shape reconstruction
and shape recognition.

The partial differential equations of motion that govern the dynamics of our
modeling primitives make them responsive to externally applied forces. External
forces may be derived from input data, may arise from interactions in simulated
physical environments, or may be applied interactively by the user. We incorpo-
rate physical constraints among primitives in order to compose articulated models
with globally and locally deformable parts and provide force-based techniques for
fitting such models to sparse, noise-corrupted 2D and 3D visual data. The motion
equations are discretized using finite element methods and integrated through time
using standard numerical techniques.

Our physics-based framework leads to shape and nonrigid motion estimators
that apply dynamically deformable models to time-varying observations in order
to track nonrigidly moving 3D objects. We employ the equations of motion of

the models to formulate a shape and nonrigid motion estimator. The estimator is

1.2. ILLUSTRATIVE MODELING PROBLEMS AND EXAMPLES 16

a continuous extended Kalman filter that recursively transforms the discrepancy
between the sensory data and the estimated model state into generalized forces.
These forces adjust the translational, rotational, and deformational degrees of free-
dom of the model, such that it evolves in a consistent fashion with the given noisy
data.

Depending on the application requirements, we may employ two types of sim-
plifications to our framework. The first is at the model level where we idealize
model behavior by appropriately ignoring certain higher-order physical effects,
such as Coriolis interactions among the degrees of freedom. The second is at the
level of the numerical techniques used to solve the discretized Lagrange equations
of motion. These simplifications allow the real time or interactive time simula-
tion of our models including continuous display on commonly available graphics
workstations.?

The thesis demonstrates the utility of our framework in both vision and graph-
ics applications. The vision applications include shape reconstruction, quantitative
model extraction from biomedical data for analysis and visualization, shape estima-
tion, and motion tracking. The graphics applications exploit the generative power
of our framework to synthesize constrained shapes, nonrigid object motions, and

object interactions for the purposes of computer animation.

1.2 Illustrative Modeling Problems and Exam-
ples

We will now illustrate the spectrum of modeling problems that fall within the scope
of this thesis with a brief series of examples.
The first example illustrates the application of our dynamic models to interac-

tive shape design. Fig. 1.1 shows a snapshot of an interactive 3D world inhabited

2 A simulation is real time if it can keep up with real world events, particularly the data input
rates from real sensors. Interactive time refers to a simulation rate which is fast enough so that
the user can visualize and interact with it without frustration. This usually means not less than
3 frames per second.

1.2. ILLUSTRATIVE MODELING PROBLEMS AND EXAMPLES 17

1 i

)

Figure 1.1: Interactions with deformable models.

by deformable models that we dub deformable superquadrics. The figure illus-
trates deformable superquadric shells covered by rectangular and triangular finite
elements. Through mouse control, the user can initialize models, change their
global deformation parameters, apply forces to them, and vary the viewpoint. The
figure illustrates four deformable models with different settings for the global de-
formation parameters, resulting in qualitatively different shapes. The model at
the left is being pulled by a stretchy spring (displayed as a line) activated and
dragged using the mouse. The applied spring force causes local (free-form) and
global (parameterized) deformations in the model. Thus, useful shapes may be
designed by applying forces.

A fundamental problem in computer vision is the reconstruction of quantitative
representations of objects from their gray-level images. It is particularly difficult
to reconstruct the shapes of 3D objects from a single monocular image because the
problem is seriously underconstrained. Our models often provide the additional
constraints needed to produce a reasonable reconstruction, while they provide the

ability to conform to nontrivial shapes. For example, Fig. 1.2 illustrates the fit-

1.2. ILLUSTRATIVE MODELING PROBLEMS AND EXAMPLES 18

© (@)

Figure 1.2: Fitting a deformable superquadric (b), (¢), (d) to pestle image (a).

ting of a deformable superquadric to a monocular image of a pestle Fig. 1.2(a).
As we explain in a subsequent chapter, the image is converted into a force field
that acts on the model, deforming it such that it becomes consistent with the
occluding boundary of the pestle in the image. Fig. 1.2(b) shows the initial state
of the deformable superquadric displayed in wireframe projected onto the image.
Fig. 1.2(c) shows an intermediate step in the fitting process as the image forces
are deforming the model and Fig. 1.2(d) shows the final reconstructed model.
With the advent of low cost, real time visual sensors and image processing
hardware, dynamic object representation and tracking tasks are gaining a signifi-
cant presense in the vision literature. An interesting problem is to infer the shapes
and motions of complex single- or multi-part deformable objects from sparse, noisy
3D observations. Such estimation problems are particularly challenging when they
must be solved on-line, and Kalman filtering has become a popular approach for
accomplishing this. Fig. 1.3 illustrates a new recursive shape and motion esti-
mator which is developed in this thesis. The estimator incorporates constrained
deformable superquadrics as Kalman filter system models. The figure illustrates
a model composed of 5 connected deformable superquadrics. The estimator is ap-

plied to biomechanical data collected by 3D position sensors applied to the arms of

1.2. ILLUSTRATIVE MODELING PROBLEMS AND EXAMPLES 19

Figure 1.3: Tracking of raising and flexing human arm motion.

1.2. ILLUSTRATIVE MODELING PROBLEMS AND EXAMPLES 20

(¢) (d)

Figure 1.4: Self-assembly (a), articulation (b), and swatting (c), (d) of a dragonfly.

a human subject. Fig. 1.3(a) shows a view of the 3D data and the initial models.
Fig. 1.3(b) shows an intermediate step of the fitting process driven by data forces
from the first frame of the data sequence, while Figs. 1.3(¢c) and (d) show different
views of the models fitted to the initial data. Figs. 1.3(e) and (f) show intermediate
frames of the models tracking the nonrigid motion of the subject’s flexing arms,
while Figs. 1.3(g) and (h) show two views of the final position of the models.
The deformable modeling primitives and the constraint methods that we de-
velop in this thesis, are useful for a variety of computer graphics applications. Be-
cause they are dynamic, our models are particularly well suited to physics-based
animation tasks. Such an application is illustrated in Fig. 1.4, which shows the
automatic construction of a minimalist dragonfly from its constituent deformable
superquadric parts. Fig. 1.4(a) shows the disjoint parts in their initial configura-

tions. After activating our constraint algorithm, the model self-assembles to form

1.3. CONTRIBUTIONS 21

the articulated dragonfly. Four point-to-point constraints hold the deformable
body parts together. The dragonfly “works,” inasmuch as forces can induce open-
ing and flapping of the wings, as is illustrated in Fig. 1.4(b). In Fig. 1.4(c) we
swat the dragonfly in the rear with an impenetrable plane. The body parts deform
in response to the blow, but the point-to-point constraints continue to hold them

together. The final shape of the dragonfly is shown in Fig. 1.4(d).

1.3 Contributions

This thesis develops a framework that includes

1. anew class of dynamic deformable primitives which combine global and local

deformation parameters,

2. a systematic approach based on Lagrangian dynamics and the finite element
method to convert the geometric parameters of the primitives to dynamic

degrees of freedom,

3. the development of physics-based constraints between these deformable prim-

itives that may be used to synthesize complex articulated models,

4. a recursive technique for estimating shape and nonrigid motion from noise
corrupted data based on applying Kalman filtering theory to our dynamic

models,
5. new applications to visual estimation and graphics animation.
In the sequel, we elaborate on each of the above technical contributions, which

have also been reported in [67, 38, 39, 40, 41, 42, 43, 44, 45, 46].

1.3.1 New Deformable Primitives

We create a new family of modeling primitives by developing a mathematical ap-
proach that allows the combination of global and local deformations. Our prim-

itives include global deformation parameters which represent the salient shape

1.3. CONTRIBUTIONS 22

features of natural parts and local deformation parameters which capture shape
details. More specifically, we develop hybrid models whose underlying geometric
structure allows the combination of parametric models (superquadrics, spheres,
cylinders), parameterized global deformations (bends, tapers, twists, shears, etc.)
and local spline free-form deformations. In this way, the descriptive power of our
models is a superset of the descriptive power of locally deformable models [65, 53],
and globally deformable models [52, 72]. In the context of computer graphics, we
incorporate characteristics of the parameterized and free-form modeling paradigms
within a single physics-based model. An important benefit of the global/local de-
scriptive power of these models in the context of computer vision is that it can
potentially satisfy the often conflicting requirements of shape reconstruction and
shape recognition. The local degrees of freedom of deformable models allow the
reconstruction of fine scale structure and the natural irregularities of real world
data, while the global degrees of freedom capture the salient features of shape that

are innate to natural parts and appropriate for matching against object prototypes.

1.3.2 Systematic Formulation of Dynamic Primitives

Through the application of Lagrangian mechanics, we develop a method to sys-
tematically convert the geometric parameters of the solid primitive, the global
(parameterized) and local (free-form) deformation parameters, and the six degrees
of freedom of rigid-body motion into generalized coordinates or dynamic degrees
of freedom. More precisely, our method applies generally across all well-posed ge-
ometric primitives and deformations, so long as their equations are differentiable.
The distinguishing feature of our approach is that it combines the parameterized
and free-form modeling paradigms within a single physical model. Thus our models
exhibit correct mechanical behaviors and their various geometric parameters as-
sume well-defined physical meanings in relation to prescribed mass distributions,
elasticities, and energy dissipation rates. Furthermore, motivated by the require-
ments of real time vision and graphics applications we appropriately simplify the

models and we use simple numerical integration techniques to achieve real time or

1.3. CONTRIBUTIONS 23

near real time simulation rates on available graphics workstations. 3

1.3.3 Physics-based Constraints

To deal with constrained multipart objects such as articulated anthropomorphic
bodies, we develop an efficient technique to implement hard point-to-point con-
straints between deformable primitives. These constraints are never violated, re-
gardless of the magnitude of the forces experienced by the parts. Attempting to
approximate such constraints with simple, stiff springs leads to instability. In our
approach, we compute the constraint forces using a stabilized Lagrange multi-
plier technique [7]. Furthermore, we develop constraint techniques to synthesize
primitive interactions in simulated physical environments. In particular, using the
elastic properties of our models we calculate forces stemming from collisions and

friction against impenetrable solid or deformable surfaces.

1.3.4 Recursive Estimation

We also exploit the constrained nonrigid motion synthesis capabilities of our mod-
els in order to estimate shape and motion from incomplete, noisy observations
available sequentially over time.* Applying continuous nonlinear Kalman filter-
ing theory, we construct a powerful new recursive estimator which employs the
Lagrange equations of 3D nonrigid motion as a system model. We interpret the
Kalman filter physically: The system model continually synthesizes nonrigid mo-
tions in response to generalized forces that arise from inconsistencies between its
state variables and the incoming observations. The observation forces account for-
mally for instantaneous uncertainties in the data. A Riccati procedure updates an
error covariance matrix which transforms the forces in accordance with the sys-

tem dynamics and the prior observation history. The transformed forces induce

3In many real-time applications the time required to arrive at a reasonable solution is often
more critical than the accuracy of the solution.

4These sorts of inverse problems have been studied widely in the mathematics literature, where
emphasis is placed on the development of sufficient conditions to guarantee that the problem
is well-posed and a unique solution exists. We will not concern ourselves with existence and
uniqueness in this thesis. The data sets that we will employ in practice permit our estimation
techniques to converge to reasonable solutions.

1.4. THESIS OUTLINE 24

changes in the translational, rotational, and deformational state variables of the
system model to reduce the inconsistencies. Thus the system model synthesizes
nonstationary shape and motion estimates in response to the visual data.® Fur-
thermore, we show that the force-based tracking scheme proposed in [33, 70] and
applied to deformable superquadrics in [67] amounts to a degenerate “Kalman

filter” with a constant, unit error covariance matrix.
1.3.5 Applications to Vision and Graphics

We demonstrate the usefulness of the framework in several application areas in
vision and graphics. These include quantitative 3D shape reconstruction from
static monocular images and model fitting and tracking of biomechanics data for
analysis and visualization. Our modeling framework also provides the necessary
generative power to synthesize constrained shapes and nonrigid motions for the

purposes of computer animation.

1.4 Thesis Outline

Chapter 2 summarizes the physics-based approaches in computer vision and com-
puter graphics that are relevant to our work and compares them to our framework.
Chapter 3 presents the geometric formulation of our models. We describe a gen-
eral technique for defining global and local geometric degrees of freedom and apply
it to create a new class of deformable models that we dub deformable superquadrics.
Chapter 4 develops the kinematic and dynamic formulation of our models. We
describe a systematic method for converting the geometric degrees of freedom of
a deformable model into generalized coordinates, or dynamic degrees of freedom,
by using the Lagrange equations of motion. Furthermore, we present a general
technique for deriving the stiffness matrix associated with the elastic properties of
the model from a given deformation energy expression.

Chapter 5 gives an overview of the finite element method that we employ to

5Qur algorithms are designed to perform numerical integration steps perpetually as new data
arrive. This allows them to react continuously to the incoming data. The delay between successive
data inputs should be long enough, however, so that the integration method has time to achieve
a steady state estimate for each data frame.

1.4. THESIS OUTLINE 25

discretize the Lagrange equations of motion. In particular, we give various finite
element tessellations of the parametric space of a deformable model, examples of
suitable finite elements, the discretization of the Lagrange equations of motion
through finite elements and finally the criteria for choosing the appropriate ele-
ments for specific vision and graphics applications.

Chapter 6 presents techniques for converting visual data into forces that can be
applied to deformable models in data fitting scenarios. Secondly, for computer
animation purposes, we describe two algorithms which use the elastic properties
of our models to calculate forces stemming from collisions and friction against
impenetrable solid or deformable surfaces.

Chapter 7 first describes the integration schemes we use to approximate the solu-
tion of the differential equations of motion and the algorithm for determining the
initial condition of our models. Second we present computer vision and computer
graphics experiments which test the modeling methods developed to this point.
Chapter 8 presents a technique to implement hard point-to-point constraints
between deformable part models which should not be violated, regardless of the
magnitude of the forces experienced by the parts. The chapter considers a sta-
bilized Lagrange multiplier method and describes the various integration schemes
we use to simulate the constrained differential equations of motion.

Chapter 9 presents computer vision and computer graphics experiments involving
physics-based constraints.

Chapter 10 applies continuous nonlinear Kalman filtering theory to construct a
recursive estimator which employs the Lagrange equations of 3D nonrigid motion
that we have developed as a system model. This estimator allows the recovery of
shape and nonrigid motion in the presence of noise. We also describe a computa-
tionally efficient implementation of the Kalman filter equations. Finally, we present
computer vision experiments involving shape and nonrigid motion estimation from
3D data.

Chapter 11 draws conclusions from our work and gives a perspective of future

research.

Chapter 2

Related Prior Work

This chapter discusses related prior work in both computer vision and computer
graphics. In the context of computer vision we will compare our models to other
related models as well as previous recursive estimation techniques for shape and
motion estimation. In the context of computer graphics we will compare our
framework with other physics-based approaches in terms of modeling power, gener-
ality, constraint formulation, and interactions with the physical simulated physical

environments.!

2.1 Computer Vision

2.1.1 Local, Global, and Physics-Based Models

After more than a decade of research, the notion of early visual reconstruction as
a data fitting problem using generalized spline models is now in a highly evolved
state of development, most evidently so in the context of the surface reconstruction
problem ([9][62][65]. Generalized spline techniques underlie the notion of regular-
ization and its application to a variety of reconstruction problems in early vision

[55][64]. The many degrees of freedom and local deformation properties of gener-

1There is a close relationship between our models and other approaches used for rigid articu-
lated bodies and other constraints in robotics and other application areas. The difference is that
our approach deals with deformable objects.

20

2.1. COMPUTER VISION 27

alized splines allow them to conform to low-level visual data with ease.

On another front, much effort has gone into the search for suitable models
for the purposes of object recognition. Biederman (8] reports the results of psy-
chophysical experiments suggesting that the recovery of arrangements of two or
three major primitive components or parts results in fast recognition of objects,
even when the objects are observed from different viewpoints, are occluded, or
are unfamiliar. Parameterized part models capture the structure of the world by
describing meaningful chunks of data in terms of a few parameters. Such models
are beneficial for object representation, since dealing with a manageable number
of parameters simplifies the problem of indexing into a database of stored models
and verifying match hypotheses.

Throughout the 70’s, the research of Binford and his coworkers on generalized
cylinders focussed on the problem of recovering parameterized models of objects
and led to vision systems such as ACRONYM which use reasoning to recover
parameterized parts [12]. Marr and Nishihara [36] were among the first to propose a
hierarchical representation of objects in terms of parts. Their work uses generalized
cylinders to describe each part, thereby limiting the scope of the representation to
objects adequately describable as collections of generalized cylinders.

Motivated by the generalized cylinder idea and the need to go beyond geome-
try to exploit computational physics in the modeling process, Terzopoulos, Witkin
and Kass [70] propose a deformable cylinder constructed from generalized splines.
They develop force field techniques for fitting their model to monocular, binocu-
lar, and dynamic image data. The distributed nature of this deformable model
enhances its descriptive power and allows the representation of natural objects
with asymmetries and fine detail. However, the generalized spline components of
the model do not explicitly provide an abstract representation of object shape in
terms of a few parameters.

The generalized cylinder representation requires the specification of an axis,

generally a space curve, and the cross-section function. Pentland [49][50] proposes

2.1. COMPUTER VISION 28

the use of a simpler part model with scalar parameters, the superquadric ellipsoid
with parameterized deformations [3] (the notion of a superquadric was introduced
by Hein [21]). Pentland’s proposal has spawned a flurry of efforts to reconstruct
superquadric ellipsoids with global geometric deformations from 3D data, and these
have met with some success [24][25][61].

Pentland [50, 51], following the physics-based approach of Terzopoulos, Witkin
and Kass [70], proposes an alternative method for fitting deformable part models
based on superquadric ellipsoids. Inspired by modal analysis, a technique for ana-
lyzing the vibrations of linear mechanical systems under periodic forcing conditions
described by Bathe and Wilson [6], he applies to superquadrics polynomial approx-
imation to the deformation “modes” of a 21 node element. Pentland’s modeling
primitives are not fully dynamic in that the underlying superquadric parameters
do not respond to forces and are not fitted to data through force interactions. The
deformation modes may make the method efficient for the recovery of smooth,
symmetrically deformed parts. On the down side, global deformation modes lack
an obvious physical meaning, and they make it difficult to deal with nonlinear-
ities and boundary conditions. Moreover, the representation of complex shapes
requires many modes, rendering Pentland’s scheme no more efficient than a nodal
finite element solution [6)].

In this thesis we combine the best of the Terzopoulos, Witkin, and Kass models
[70] and Pentland’s models [51] into our deformable primitives. The coupling of
rigid-body and deformation dynamics is similar to that described in [70], but our
formulation accommodates global deformations defined by fully nonlinear paramet-
ric equations. Hence, our models are more general than the restrictive, linearly

deformable ones in [72, 2] and quadratically deformable ones in [52, 57].

2.2. COMPUTER GRAPHICS 29

2.1.2 Recursive Estimation of Shape and Nonrigid Mo-

tion

Kalman filtering techniques described by Gelb [22] have been applied in the vision
literature to the estimation of surface depth [37, 27], dynamic features (e.g., Deriche
and Faugeras [15]), and rigid motion parameters {19, 10, 11] of objects from image
sequences. To date, these Kalman filters have been discrete filters with the simplest
possible system models, usually constant velocity assumptions (e.g., Pentland and
Horowitz [51]). Additional restrictions such as constant error covariance matrices
may also be found in the literature [51]. These sorts of simplifications can severely
limit the ability of an estimator to recover shape and motion parameters accurately
from real-world data, especially when confronted with articulated or fully nonrigid
motion.

By contrast, the continuous Kalman filters that we develop in this paper incor-
porate rather sophisticated Lagrange equations of 3D nonrigid motion as system
models (simpler dynamic models for the estimation of rigid body motion param-
eters [20, 19] or 2D nonrigid motion parameters developed by Szeliski and Ter-
zopoulos [63] are also available). To gain efficiency with minimal loss of accuracy,
we design an efficient large-scale Kalman estimator through state decoupling. Our
work establishes a direct connection with existing dynamic vision models derived
from physical principles. We show, for example, that the force-based tracking
scheme proposed in [33, 70] and applied to deformable superquadrics by Terzopou-
los and Metaxas [67] amounts to a degenerate “Kalman filter” with a constant,

unit error covariance matrix.

2.2 Computer Graphics

2.2.1 Physics-Based Modeling

In the computer graphics literature, mathematical representations of solid objects

has been the commonplace. The field of solid modeling [30] has developed ge-

2.2. COMPUTER GRAPHICS 30

ometric methods for representing object shape, but these techniques are often
inconvenient for modeling object motion. The insufficiency of purely geometric
techniques (e.g., Sederberg and Parry [58] define local deformations of solid prim-
itives as ambient space warps) becomes particularly evident when one faces the
problem of realistically animating deformable objects. Physically-based models
have been pursued for this purpose (e.g., [69, 26, 54, 65, 48, 14, 23, 52, 32, 13]).
These methods introduce realistic physical behaviors into free-form geometric mod-
els of solids or their surfaces.

Our method for deriving the equations of motion is general across geometric
primitives and deformations. The dynamic coupling of rigid-body motions and
deformations that we derive is related to that described in {70, 68], but it is much
more general, in part, because we must accommodate geometric primitives. Our
treatment of global deformation dynamics is similar to Witkin and Welch’s [72] for-
mulation of linearly deformable primitives, but we must deal with nonlinear global
deformations and with the fact that the parametric equations defining common
geometric primitives can be nonlinear (e.g., the ones defined by Barr [4]). The
implicitly defined models of Sclaroff and Pentland [57] may be viewed as comple-
mentary to the global parametric deformations defined in the thesis; however, our
approach is quite different since it is not based on a modal analysis. One of the dis-
tinguishing features of our approach is that it combines the global/parameterized
and local/free-form modeling paradigms within a single physically-based model.
We incorporate local deformations into our model using finite elements techniques

described by Kardestuncer [31].

2.2.2 Constraint Methods

Several researchers have proposed physics-based constraint methods for working
with and controlling animations involving rigid and nonrigid primitives [3, 54, 53,
71, 72]. We describe a method for computing generalized constraint forces between
our deformable models which is based on the constraint stahilization technique of

Baumgarte [7, 73]. The resulting constraint satisfaction algorithm is efficient and

2.2. COMPUTER GRAPHICS 31

stable for point-to-point constraints. It allows the construction and animation of
articulated objects composed of rigid or nonrigid parameterized parts. Our con-
straint algorithm is a generalization of work on physics-based constraints between
rigid parts developed by Barzel and Barr [5] and linearly deformable parts de-
veloped by Witkin and Welsch [72]. As in [5], it can support the assembly of
complex objects satisfying constraints from inappropriately shaped and misposi-
tioned deformable parts that do not initially satisfy the constraints. Furthermore,
to simulate interactions of our models with the physical world we adopt a force-
based approach to collisions which is equivalent to the velocity based technique
used by [1, 2] in case of rigid and globally deformable models. Simplifying the
model by ignoring some of the physics and using simple numerical integration
techniques for our constrained motion equations we can achieve real or interactive
time animations on graphics workstations, particularly for the numerical model-
ing of hollow “deformable shells” which are used in many computer vision and

computer graphics applications.

Chapter 3

Geometry of Deformable Models

This chapter develops a technique for creating classes of hybrid models whose
underlying geometric structure allows the combination of parametric models (e.g.,
spheres, cylinders, superquadrics), parameterized global deformations (e.g., tapers,
bends, shears, twists) and local spline free-form deformations (e.g., membranes,
thin-plates). The local degrees of freedom will allow the representation of fine
scale structure and the modeling of irregular real world objects, while the global
deformations capture salient features of shape that are innate to natural parts in
a computationally efficient way. The technique is applicable to any well-posed
parametric model, parameterized global deformation and local deformation, as
long as the resulting equations are differentiable with respect to the underlying
parameters. We formulate 3D solids and illustrate the approach for the special

case of 3D surface models.

3.1 Hybrid Models

Geometrically, the models we develop are 3D solids in space whose intrinsic (ma-
terial) coordinates are u = (u,v,w), defined on a domain Q'.

The positions of points on the model relative to an inertial frame of reference

1For the case of a 3D “shell,” u = (u,v, 1)

3.1. HYBRID MODELS 33

® in space are given by a vector-valued, time varying function of u:

x(u,t) = (z1(u, 1), z2(u, 1), 3(u, 1)) ", (3.1)

where T is the transpose operator. We set up a noninertial, model-centered refer-

ence frame ¢ and express these positions as
x =c+ Rp, (3.2)

where c(t) is the origin of ¢ at the center of the model and the orientation of
¢ is given by the rotation matrix R(¢). Thus, p(u,t) denotes the positions of
points on the model relative to the model frame. To incorporate global and local
deformations, we further express p as the sum of a reference shape s(u,t) and a

displacement function d(u,t):

p=s+d. (3.3)

Fig. 3.1 illustrates the model geometry.

In the next two subsections we first formulate the reference shape s to account
for global deformations consisting of parameterized primitives (e.g. superquadrics)
and parameterized global deformations (e.g., tapers, bends). We then describe the
displacement d which defines the local deformations of our models. In particular

we dub deformable superquadrics deformable models which use superquadrics as

parameterized primitives.

3.1.1 Global deformations

We define the reference shape as

s = T(e(u; ag, a1,...); by, b1,...) = T(e;b). (3.4)

3.1. HYBRID MODELS

Material coordinate
vA domain

Model
with global deformations

Inertial frame @

Deformable
model

Figure 3.1: Geometry of deformable model.

34

3.1. HYBRID MODELS 35

Here, a geometric primitive e, defined parametrically in u and parameterized by
the variables a;, is subjected to the global deformation T which depends on the pa-
rameters b;. Although generally nonlinear, e and T are assumed to be differentiable
(so that we may compute the Jacobian of s) and T may be a composite sequence
of primitive deformation functions. We define the vector of global deformation

parameters

qs=(a0,a1,...,bo,b1,...)T. (35)

The above formulation is general and can be carried out for an arbitrary reference
shape s given as a differentiable parameterized function of u with respect to qs.
In the next subsections we consider three examples of global deformations that

are useful in vision and graphics applications. Furthermore, we calculate the Ja-

cobian matrix

Js

J =
aqs

(3.6)

whose computation is essential for the kinematic and dynamic formulation to follow

in subsequent chapters.

Example 1: Superquadric ellipsoid

We consider a model consisting of a superquadric ellipsoid solid which describes a
useful class of part models suitable for vision and graphics applications.

The parametric equation of a superquadric ellipsoid solid e = (e, eg, €3) is

a,C, 2 C*2
e = agw a2Cu€1 SUQ s (37)

GBSuEI

where —7/2 < u <7/2, - n <v<m 0<w<1,and 5,5 = sgn(sinu)|sin u|,
C.° = sgn(cosu)|cosul, and similarly for C,* and S,°. Here, ag > 0 is a scale
parameter, 0 < aj,as,a3 < 1, are aspect ratio parameters, and €;,e; > 0 are

“squareness” parameters (3, 4].

3.1. HYBRID MODELS

36

We collect the parameters in s into the parameter vector

The Jacobian matrix J

whose non-zero entries are

Qs = (a0, a1, a2, a3, €1, €) . (3.8)

of the superquadric ellipsoid solid is a 3 x 6 matrix

way C,* Cy,2,

aowCy, C,%?,

apway In (| cos u|)C,* C, %2,
aoway In (| cos v])C,C,2,
wayCy5,%,

aowC, 1 S,?,

aowas In (| cos u|)C,** 5,2,
aowas In (| sin v])C,,* S, 2,
waz Sy,

apgwS, ",

apwaz In (| sinu|)S,=. (3.9)

Example 2: Tapering/bending

We now generalize the above model to allow parameterized tapering and bend-

ing deformations to increase the geometric coverage of the part representation.

Combining ideas from [4] and [61], we define these deformations so that they are

continuously differentiable and commutative.

We combine linear tapering along principal axes 1 and 2 and bending along

principal axis 3% of the superquadric e into a single parameterized deformation T,

2The principal axes 1,2 and 3 correspond to the z,y and z axes of the model frame ¢

3.1. HYBRID MODELS

37
and express the reference shape as
(—J—Laf)azw +1) e+ b cos(fﬁj—fﬁwbﬂ
s =T(e,t1,t2,b1, b2, b3) = | (22 +1) ey , (3.10)

€3

where —1 < ty,t; < 1 are the tapering parameters in principal axes 1 and 2,
respectively, and where b, defines the magnitude of the bending and can be pos-
itive or negative, —1 < b; < 1 defines the location on axis 3 where bending is
applied and 0 < b3 < 1 defines the region of influence of bending. Our method
for incorporating global deformations is not restricted to only tapering and bend-
ing deformations. Any other deformation that can be expressed as a continuous
parameterized function can be incorporated as our global deformation in a similar

way.

We collect the parameters in s into the parameter vector

qs = (ag, a1, az,as, €1, €, 41,19, by, b2, b3) 7. (3.11)

Defining r = fg—ﬁ%wba, the Jacobian matrix J is a 3 x 11 matrix whose non-zero

entries are

by b2bs

ajwas

Jiu = (S + DwaCC°2 + 7 sin(r),
le = (t25'u51 + 1)wa2Cu“ SUE2,
Ja1 = wazS,“ s

J12 = (tISu61 + 1)aOﬂwcvu61 Cvelzv
J23 = (tzSucl + l)anCu“ Sutz’

bibobs .
Jis = ——msin(r),
2
apgWwag
€
J34 = (Z()U)Sul,

t1In (] sin ©]) S, aowai; C,* C,? + (415, + 1)aoway In (| cos u})C,* C,2,
—by by In (| sin u]) S, sin(r),

3.1. HYBRID MODELS 38

Jas = t2In(|sinu])S, aowaC,* S, + (125, + 1)agwas In (| cos u|)C,,1 5,2,
J3s = aowazln([sinul|)S,*,

Jie = (415, + 1agway In(|cos v|)C, 1 C, 2,

Jas = (25,7 4 1aowaz In (| sinv|)C,* S, 2,

Jiz = S.%ewa,C,*C,%°2,
Jos = Su"apwayCy 5,2,
Jios = cos(r),
b, b
Jio = —— & 7 sin(r),
QoWwas
Ji11 = —bywsin(r) r, (3.12)

where S3° = sgn(sin 8)|sin 8| and Cy° = sgn(cos 0)| cos d|°.

Example 3: Tapering/bending/shearing/twisting

We now generalize the model defined in example 2 by allowing global transforma-
tions that include tapering, bending, shearing, and twisting along each of the three
principal axes of the deformable model.

Without loss of generality we define a superquadric ellipsoid e as in the previ-
ous examples and we define a global vector transformation T(e;b) that includes
tapering, bending, shearing, and twisting along each of the three principal axes 1,
2 and 3 of the solid. We define this vector transformation T as a composition of
three simpler transformations T3, T; and T, along axes 3, 1 and 2 respectively,
ie.,

T(e;b) = Tao(T1(Ts(e; b))). (3.13)

The reference shape is therefore defined as
s = T(e;b). (3.14)

We give the definition of these transformations in clock-wise order starting from

axis 3.

3.1. HYBRID MODELS 39
The transformation along axis 3 is given by
Aj cos(d3) — Bssin(és)

r3 = Ta(e;b) = | Ajsin(¢s) + Bzcos(¢s) | (3.15)

€3

where
Az = [(tée3/aoa3w) +1] e1 + b“; cos((es + bl;)/(aoa;;w)?rbré] + e3s3, (3.16)

Bs = [(2e3/aoasw) + 1) €3 + b°2 cos((es + b'2)/(apazw)mb?] + e3s2 (3.17)

and

¢s = (es/agazw)rrs. (3.18)

Here 73 is a twisting parameter along axis 3, tg are tapering parameters along axes
J#3, S% are shearing parameters, and b“g, b’é, b”é define the amount, location,
and range of bending in the plane spanned by axis 3 and axis j.

The transformation along axis 1 is given by

s,
r; = T1(Ta(e;b)) = | Ajcos(¢1) — Bysin(¢s) |, (3.19)
Aysin(é1) + By cos(¢é1)

where
A = [(tfrgl/aoalw) + 1] rs, + b“f cos[(rs, + bli)/(aoalw)'/rb’f] + r3lsf, (3.20)

B, = [(ti’rgl/aoalw) + 1) r3, + b“:;‘ cos|[(rs, + b‘?)/(aoalw)rb";’] + r31$:'1” (3.21)

and

¢1 = (r3, /aoarw)mr. (3.22)

Here 7, is a twisting parameter along axis 1, ¢] are tapering parameters along axes

3.1. HYBRID MODELS 40

j # 1, s are shearing parameters, and 4%, b’i, b define the amount, location,
and range of bending in the plane spanned by axis 1 and axis j.

Finally, the transformation along axis 2 is given by

Ag COS((ZSQ) - Bz Sin((ﬁz)
s = To(T1(Ts(e;b))) = | ry, : (3.23)

Az sin(¢s) + B3 cos(¢2)

where
Az = [(£3r1,/acasw) + 1] 1, + b3 cos|(ry, + bli‘)/(agagw)wbrg] +ry,s5, (3.24)

B, = [(térb/aoagw) +1]ry, + b“; cos|(r1, + bl;)/((lgag'll))’ﬂ'br;] +ry,55, (3.25)

and

$2 = (r1,/a0a2w)T . (3.26)

Here 7, is a twisting parameter along axis 2, t} are tapering parameters along axes
J# 2, sg are shearing parameters, and b“é, b”é, b’{, define the amount, location,
and range of bending in the plane spanned by axis 2 and axis j.

We collect the 39 global deformation parameters associated with s into the

vector

_ Jod pad pld arinT
qs = (ao, a1, az, as, €1, €2, 74, 11, 87, 62,0, 677) T, (3.27)

where ¢,5 = 1,2,3, j # . The Jacobian matrix J is a 3 X 39 matrix whose entries

are computed in an analogous way as the Jacobian of the previous examples.

3.1.2 Local Deformations

In general [59], we can express the displacement d anywhere within a deformable
model as a linear combination of an infinite number of basis functions (e.g., poly-
nomials) b;(u)

d=YS:qu, (3.28)

3.1. HYBRID MODELS 41

where the diagonal matrix S; is formed from the basis functions and where qg,
are local degrees of freedom or local generalized coordinates which depend only on
time. The basis functions must be admissible; i.e., they must satisfy the kinematic
boundary conditions of the model.

When we reduce the problem to finite dimensions, classical approximation
methods such as the Rayleigh-Ritz method and the Galerkin method [29] are em-
ployed. These methods express the displacement d in terms of a finite number of

basis functions. In this case the series of (3.28) are truncated leading to
d= i Siqq,. (3.29)
i=1
We can rewrite (3.29) in the compact matrix form
d = Sqq, (3.30)

where S is the basis matrix whose elements are the basis functions b; and the

vector of local degrees of freedom qg consists of the local degrees of freedom qy,

qd:(...,ql,...)T. (3.31)

In this thesis, we will be using the finite element method [74], a special case
of the Rayleigh-Ritz method, to compute the local displacement d. Through this
technique the deformable model is approximated by dividing it into a finite number
of small regions called elements. The finite elements are assumed to be intercon-
nected at nodal points on their boundaries. The local degrees of freedom q4 can
describe displacements, slopes and curvatures at selected nodal points on the de-
formable model. Between these selected nodal points the displacement field within
the element is approximated using a finite number of interpolating polynomials
called shape functions.

The details of the finite element method and its use in this thesis will be given

in a later chapter.

3.2. SUMMARY 42

3.2 Summary

In this chapter we provided the geometric formulation of our models. We described
a general technique for defining global and local geometric degrees of freedom and
applied it to create a new class of deformable models that we dub deformable
superquadrics. Our technique is general and can be applied to any class of pa-
rameterized geometric primitives and deformations as long as their underlying

equations are differentiable.

Chapter 4

Kinematics and Dynamics

This chapter presents the kinematic and dynamic formulation of the deformable
models. The kinematic formulation leads to the computation of a Jacobian matrix
L which allows the transformation of 3D vectors into g-dimensional vectors, where
g is the number of geometric degrees of freedom of the deformable model. These
parameters are also called generalized coordinates. The dynamic formulation, is
based on the Lagrangian dynamics and uses generalized coordinates. We pro-
pose a systematic procedure for converting geometrically defined parameters into
physical degrees of freedom. The resulting motion equations govern the evolution
of generalized coordinates as a result of the application of external forces on the
model. The forces stem either from data fitting techniques in vision applications
or from interactions with simulated physical worlds in graphics applications. Fi-
nally, we present a force-based estimation technique for shape and nonrigid motion

estimation in computer vision applications.

4.1 Kinematics

From (3.2), the velocity of a point on the model is given by

x = ¢+Rp+Rp
= ¢+ B0+ RS+ RSq,, (4.1)

43

4.1. KINEMATICS 44

where 8 = (...,0;,...)T is the vector of rotational coordinates of the model and

B =[...0(Rp)/09;...]. Furthermore,

. Os | .)
- — -— 2
s = [8 J 4, = Jqs, (4.2)

where J is the Jacobian of the reference shape with respect to the global deforma-
tion parameter vector (see the previous chapter for examples).

We can therefore write the model kinematics compactly as

x=c+R(s+d)=¢&q) (4.3)

and

% = [I B RJ RS]q = Lg, (4.4)

where € is a function that nonlinearly combines the generalized coordinates q to
compute the position x of a point on the model, while L is a model Jacobian
matrix that maps generalized coordinates q into 3D vectors.

Here,
a=(a/,95,9;,94)", (4.5)

with q. = ¢ and qg = 0 serving as the vector of generalized coordinates for the

dynamic model.

4.1.1 Computation of R and B Using Quaternions

We represent qg using quaternions. Updating quaternions is easier than directly
updating a rotation matrix and ensuring that it remains orthogonal. Quaternions
also avoid the problems with “gimbal lock” and singularities that may arise when
Euler angles are used to represent rotations [73].

A quaternion [s,v,] with unit magnitude [60],

s, valll = s> + v v, =1, (4.6)

4.1. KINEMATICS 45

Figure 4.1: Rotation by angle through an axis of rotation v,.

specifies a rotation of the model from its reference position through an angle 6 =

2 cos™!

s around an axis aligned with vector v, = (vq,v9,v3)" as shown in Fig. 4.1.

The rotation matrix corresponding to [s,v,] is

1 —2(v:+v2) 2(vivy —sv3) 2(vivs + sva)
R=| 2(vvy +sv3) 1—=2(v2+03) 2vevs—sv) |- (4.7)

2(vivs — svg) 2(vovs + svr) 1 —2(vi 4+ 0?)

An important property of the rotation matrix R is orthogonality
RT =R (4.8)

The matrix B is given by [59] (see Appendix A for a proof)

B(u) = =R p(u) G, (4.9)

4.2. DYNAMICS 46

where R represents the rotation matrix at time ¢, p(u) is the dual 3 x 3 matrix of

the position vector p(u) = (p1,p2,p3)" (see (3.3)) defined as

0 —pP3 P2
puy)=| ps 0 -p |, (4.10)
—pP2 N 0

and where G is a 3 X 4 matrix whose definition is based on the value of the

quaternion qg = [s, v,] representing the rotation at time ¢

—" S V3 —7V2
G=2| —v;, —v3 s v |- (4.11)
—7s3 (%) —U1 S

4.2 Dynamics

In computer vision applications (e.g., fitting of models to data, tracking of objects)
our goal is to recover the model degrees of freedom ¢, while in computer graph-
ics (e.g., animations) we want to update . The components q. and g are the
global rigid motion coordinates, q, are the global deformation coordinates, and
qq are the local deformation coordinates of the model. Our approach carries out
the generalized coordinate update procedure according to physical principles. We
make our model dynamic in q by introducing mass, damping, and a deformation
strain energy. Through the apparatus of Lagrangian dynamics, we arrive at a set
of equations of motion governing the behavior of our model under the action of
externally applied forces. The following sections derive the Lagrange equations of

motion for the geometrically defined models in the previous chapter.

4.2.1 Lagrange Equations of Motion

Let 7 be the kinetic energy of the deformable model, F the kinetic energy dissi-

pation and £ the deformation strain energy of the model.

4.2. DYNAMICS

The Lagrange equations of motion for the model take the form

donyT_onyr o
dt \ 9q dq dq
These equations can be written in the form

Md"*'Dq*}'Kq:gq_*'fqv

i
) 1648 =1,

47

(4.12)

(4.13)

where M, D, and K are the mass, damping, and stiffness matrices, respectively,

where g, are inertial forces arising from the dynamic coupling between the local

and global degrees of freedom, and where f,(u,?) are the generalized external forces

associated with the degrees of freedom ¢ of the model.

In the following subsections we derive from (4.12) formulas for the matrices

and vectors in (4.13).

4.2.2 Kinetic Energy: Mass Matrix

The kinetic energy T of the model is given by

1 1
T = 5/;;5(T)'(du = §qT [/ ’I,LTL(ZH]C.{

(4.14)

where M = [uLTL du is the symmetric mass matrix of the object and pu(u) is the

mass density of the object. Using the expression for L from (4.4), we can rewrite

M as a block symmetric matrix as follows:

| Mcc Mc9 Mcs
Mys My,
M.,

symmetric
L

M.q
My,
M;q
My

(4.15)

4.2. DYNAMICS

48
where
M. = [uldu, My, = [uBTRIdu,
Mcg = f /iB du, Mgd = f ,uBTRS du,
M, = RfuJdu, M,, = [pI"Jdu, (4.16)

M, = RfuSdu, My = [pJ"Sdu,
Mg = [uB"Bdu, Mg = [uSTSdu.

4.2.3 Calculation of Acceleration and Inertial Forces

The acceleration of a point x on the deformable model is shown in [59] to satisfy

% =L§+ L4, (4.17)

where
Lg=w x (w X Rp) + 2w x Rp. (4.18)

Here, w x (w x Rp) are the centrifugal and 2w x Rp are the Coriolis accelerations.

We compute
p=5+d=Jq +Sd, (4.19)

and the angular velocity of the deformable model with respect to the world coor-

dinate system using [59]
w = Qb, (4.20)

where Q is a 3 X 4 matrix whose definition is based on the value of the quaternion

0 = qg = [s, (v1,v9,v3) " | representing the rotation at time ¢

— S —V3 [25)
Q = 2 — U9 Vs S —U1 . (421)
—V3 —Ug 1 S

The virtual work due to inertia on the deformable model is computed as follows

4.2. DYNAMICS ' 49

[59]
W = / u6x % du = / §a LT (L& + La) du = 6q7 (M4 — g,), (4.22)
where the generalized mass matrix is
M = /p.LTL du (4.23)
and the generalized inertial forces are
g, = ——/;JLTLQdu. (4.24)

Using (4.14) and (4.22), the first two terms of (4.12) which express inertial

forces can be written as

d oTN\T OT\T)
E(%) "(5@) =Maq - g, (4.25)
where
o170 T
By = “MQ+§[5&(q Mq)}
= = /;LLTL('](ZLx (4.26)

gives the centrifugal and Coriolis forces [59].

4.2.4 Energy Dissipation: Damping Matrix

We assume velocity dependent kinetic energy dissipation, which can be expressed

in terms of the (Raleigh) dissipation functional:

1 T
F = 5/7){ x du, (4.27)

4.2. DYNAMICS 50

where y(u) is a damping density. Since it has the same form as (4.14) we can

rewrite (4.27) as follows:

_ 1 . T .
F = 54 Dq, (4.28)

where the damping matrix D has the same form as M, except that v replaces p.

Using (4.14), we express the third term of (4.12)

oF

29" Dgq. (4.29)

4.2.5 Strain Energy: Stiffness Matrix

The stiffiness matrix K determines the global and local elastic properties of the

model and has the general form

0 0 0 0

0 0 0
K= . (4.30)
Kss st
symmetric K

The zero submatrices indicate that only the global q, and local q4 deformational
degrees of freedom can contribute to the stiffness matrix through their associated
deformation strain energy. In particular K, determines the stiffness of the model
related to the global deformations, Ky determines the stiffness of the model re-
lated to the local deformations and K,,; determines the stiffness as a result of the
interaction between local and global deformations.

We will demonstrate a general technique of deriving K, from a Hookean global
deformation energy and Ky; from a local deformation strain energy. We also
assume independence of the above two defined energies which yields K,; = 0.
Furthermore, in computer vision applications we want the global deformation pa-
rameters q, to freely account {for as much of the data as possible. Consequently,
we impose no deformation energy on qs; i.e., we set K = K¢y = 0 in (4.30). The

local deformation parameters qq, however, must be constrained to yield a small

4.2. DYNAMICS 51

and continuous deformation function.

Global Strain Energy and Derivation of K,

We assume that the energy &;, associated with each of the global parameters g,

is Hookean and given by the expression

1

& = Eks,'(qs; — Qo) (4.31)

where k;; is the stiffness associated with the global parameter q,, and qs,, is the
natural rest value associated with parameter q,,. The corresponding global stiffness

matrix K, is a diagonal matrix whose nonzero entries are the k,,, i.e.,
K,; = diag(ks,) (4.32)

Differentiating (4.31) with respect to q,, we derive the global elastic force as-

sociated with parameter q,,

fo: = ks, (Qs; — Asio)- (4.33)

Hence, if an external force acting on the model causes for example a bending
deformation, then after that force vanishes the model deforms back to the rest

value of the corresponding bending parameter.

Local Strain Energy and Derivation of Ky

Depending on the desired continuity of the deformable model surface, we impose
on qq an appropriate deformation strain energy. We will now present two C° and
C? continuous deformation strain energies. The first is that of a loaded membrane
spline and the second of a thin plate under tension spline.

A loaded membrane deformation energy [68], suitable for C° continuous model

4.2. DYNAMICS 52

where the function wge(u) controls the local magnitude and wqg(u), woy(u) control
the local variation of the deformation. In our implementation, we reduce these
functions to scalar stiffness parameters wgp = we and wyp = wey = w;.

A thin plate under tension deformation energy, suitable for C! continuous

model surface, is given by the functional [64]

92d\’ 82d * 9%d\?
E(d) = /w20<5&‘2‘) +w11(m) +’w02(w) +

ad* ad*
wm(%) + wo1 (%) +w00d2du (435)

The nonnegative weighting functions w;; control the elasticity of the material. The
wyo and wg; functions control the tensions in the u and v directions, respectively.
The wgz and w,o functions control the bending rigidities in the « and v directions,
respectively. The wy; function controls the twisting rigidity. Increasing wey, and
wyo makes the deformations have more membrane properties, while increasing the
Wag, Wyy and wpg, the deformations behave more like a thin plate. The weighting
functions may be used to introduce depth and orientation discontinuities in the
material. In our implementation however, we reduce these functions to scalar
stiffness parameters w;;(u) = w;;.

We will now describe the general technique of deriving K44 from a local defor-
mation strain energy £. In accordance to the theory of elasticity, we can express

a local deformation strain energy £ as
€= / o edu, (4.36)

where 0 and € are the stress and strain vectors respectively. Furthermore we can

always express the relation between the strain vector € and the local deformation

d as
e=Pd, (4.37)

where P is a differential operator that is derived from the local deformation strain

4.2. DYNAMICS 53

energy (e.g., 4.34 and 4.35). In terms of the generalized local coordinates q4 we

can rewrite (4.37) as

€= ’PSqd. (4.38)

We can also express the relation between the stress o and strains € as
o = De, (4.39)

where the symmetric matrix D is derived from the local deformation strain energy.

Substituting (4.38) into (4.39) vields
o = DPSqu. (4.40)
Substituting (4.38) and (4.40) into (4.36) we get
€ = / al (PS)TDPSqq du, (4.41)

where we utilize the symmetry of D. Since qq depends only on time we can rewrite

(4.41) as

€= q}(/(PS)TDPs du)q (4.42)
or in compact form
€ = q; Kauqa, (4.43)
where
K,y = /'(?S)TDPS du (4.44)

is the symmetric positive definite local deformation stiffness matrix.

In a subsequent chapter we will give formulas for the elements of the stiffness
matrix Ky using the above technique and the finite element method, for a loaded
membrane deformation energy.

From (4.31) and (4.43) the fourth term of (4.12), the variation of £ with respect

4.3. CHOOSING THE ORDER OF THE MOTION EQUATIONS 54
to q, can be written

646 = Kq. (4.45)

4.2.6 External Forces and Virtual Work

The external forces f(u,t) applied to the model do virtual work which can be

written as

Wy = / fTLéq = £ 8q, (1.46)

where
£ = /fTLdu — (767 £7.£]), (4.47)
and
ff = [fTdu, f] = [fTRJIdu,

(4.48)
f] = [fTBdu, f] = [fTRSdu,

is the vector of generalized external forces associated with the degrees of freedom

of the model.

4.3 Choosing the Order of the Motion Equa-

tions

For convenience, we rewrite the second-order equations (4.13) in standard dynam-

ical system form, as the coupled set of first-order equations

u="Fu+g, (4.49)

with state vector u, system matrix F, and driving function g as follows:

u_[q}, F:[—M—ID MUK | g:[M—l(quq)] w50)
q I 0]

0
A full implementation and simulation of the above dynamic equations would

be appropriate for physics-based animation where it is important to achieve real-

4.3. CHOOSING THE ORDER OF THE MOTION EQUATIONS %)

istic motion synthesis [68]. Moreover, when the dynamical system is used to track
moving objects and a significant part of a tracked object becomes occluded tem-
porarily, significant portions of the generalized data force f; will suddenly vanish.
The second-order system (4.13) (or, equivalently, (4.49) and (4.50)) is appropriate
in such a case, since the mass term provides intertia; once the system is set in
motion, the generalized coordinates will continue to evolve even when all the data
forces vanish. Because of inertia, the system stands a better chance of regaining
its lock on the object when it reappears, assuming the motion of the object did
not undergo sudden changes during the occlusion.

However, in computer vision and geometric design applications involving the
fitting of hollow “deformable shells” to static data, we may simplify the underlying
motion equations for the sake of computational efficiency. In such applications we
want the hollow “shell” to fit the data and achieve equilibrium as soon e;s the inter-
nal elastic forces balance the external data forces.! We usually care about the final
equilibrium fit and not about the intermediate motion of the hollow “shell”. For
static shape reconstruction problems (i.e., z(t) = z) it makes sense to simplify the
motion equations by setting the mass density to zero, which nonetheless preserves
useful first-order dynamics that achieve the equilibrium fit.

Setting the mass density p(u) (see eq. (4.14)) to zero in (4.13) results in the

first-order dynamic system

Dg + Kq = fg (4.51)

(since M and g, vanish). Because these equations lack an inertial term, the system
comes to rest as soon as all the forces equilibrate or vanish. We can also rewrite

the first order-system (4.51) in the standard form (4.49), where

u=q, F=-D'K, g=Df,. (4.52)

In computer vision the data forces are artificial and are computed using algorithms described
in a subsequent chapter, while in computer graphics the forces are based on interactions in a
simulated physical world.

4.4. SUMMARY 56

4.4 Summary

In this chapter we described the kinematic and dynamic formulation of our models.
We also described a systematic method for converting the geometric degrees of
freedom of a deformable model into generalized coordinates, or dynamic degrees
of freedom, by using the Lagrange equations of motion. This method depends on
the calculation of a Jacobian matrix which requires that all the relevant model
equations are differentiable. Furthermore, we presented a general technique for
deriving the stiffness matrix associated with the elastic properties of the model

from a given deformation energy expression.

Chapter 5

Finite Element Implementation

This chapter presents the finite element method that we will employ to discretize
the Lagrange equations of motion for both vision and graphics applications. We
state the criteria for choosing the appropriate elements for a given problem, we give
various finite element tessellations of the parametric space of a deformable model,
we show examples of finite elements and finally we present the approximation to

the Lagrange equations of motion using finite elements.

5.1 Finite Elements

In this thesis we will be using the finite element method [6], a special case of the
Rayleigh-Ritz method, to compute the local displacement d. Through this tech-
nique the deformable model is approximated by a finite number of small regions
called elements. The deformable model is partitioned by imaginary lines or sur-
faces into a number of finite elements that are assumed to be interconnected at
nodal points on their boundaries. The local degrees of freedom q, can describe
displacements, slopes and curvatures at selected nodal points on the deformable
model. Between these selected nodal points the displacement field within the ele-

ment d’ is approximated using a finite number of interpolating polynomials called

at
-1

5.1. FINITE ELEMENTS 98

shape functions

& =3 N(wa), = Na, (5.1)

i=1
where Nij are the element shape functions, matrix N7 is the finite element shape
matrix whose elements consist of the N7, qfii is the element’s nodal displacement,
o, = (qu, e qf;)T and n is the number of the element’s nodes.

Using (5.1) we can express the displacement d anywhere within the deformable
model as

d= Sqd, (5.2)

where the basis matrix S is computed from the finite element shape functions Nij .
A very important use of the finite element shape functions is the following. If we

know the value of a point force f(u) within an element j, then we can extrapolate

it to the nodes of the element using the formula

fi = Ni(u)f(u), (53)

where N; is the shape function that corresponds to node ¢ and f; is the extrapolated

value of f(u) to node .

5.1.1 Choosing the Appropriate Elements

Errors in the finite element method can be divided into two classes

1. Discretization errors resulting from geometric differences between the bound-

aries of the model and its finite element approximation.

2. Modeling errors, due to the difference between the true solution and its shape

function representation.

Discretization errors can be reduced by using smaller elements— the errors tend
to zero as the element size tends to zero. Shape function errors do not decrease as

the element size reduces and may thus prevent convergence to the exact solution or

5.1. FINITE ELEMENTS 39

even cause divergence. There are two main criteria required of the shape function

to guarantee convergence [2§]

1. Completeness: A complete polynomial® of order at least p, be used for the
representation of the variable within an element, where p is the order of the

highest derivative of the variable appearing in the energy functional.

In the following sections we will give descriptions of elements which guarantee

C° or C! continuity of the approximated model surface.

2. Conformity: The elements must be conforming, that is, the representations
of the variable and its derivatives up to and including order p — 1 must be
continuous across interelement boundaries, where p is the order of the highest

derivative appearing in the functional.

5.1.2 Various Model Tessellations

We will give two possible tessellations of the material coordinate system u =
(u,v,1) into finite element domains for the case of a deformable superquadric
ellipsoid. The first is illustrated in Fig. 5.1. The need for quadrilateral and trian-
gular elements i1s evident. Equation (3.7) implies that the v material coordinate

of both north (v = 7/2) and south (v = —=x/2) poles may be arbitrary. This is
illustrated in the figure by the dotted lines. We initially used this tessellation in
vision applications. The problem though with using one rectangular instead of two
triangular elements is that the shape representation is not so accurate. To achieve
the later we use the second representation shown in Fig. 5.2 where each of the

rectangular elements has been replaced by two triangular elements. We use such

a representation in applications requiring shape accuracy.

E:zl a,z'y i+ j < p. where the number of terms in the polynomial is I = (p + 1)(p +
2)/2. In three dimensions a complete polynomial of order p can be written as f(z,y,z) =

'In two dimensions a complete polynomial of order p can be written as fle,y) =

Zizl arziy 2% i+ j + k < p. where the number of terms in the polynomial is | = (p + 1)(p +
2)(p + 3)/6.

5.1. FINITE ELEMENTS 60

South pole Locus of possible placements
of south pole

Locus of possible placements North pole
of north pole

u

Figure 5.1: Model tessellation in material coordinates: rectangular and triangular
elements.

South pole Locus of possible placements
of south pole

S —

Locus of possible placements North pole
of north pole

u

Figure 5.2: Model tessellation in material coordinates: triangular elements.

5.1. FINITE ELEMENTS 61

We will now give the geometry of the various kinds of elements and their cor-
responding shape functions N; that we will be using throughout the thesis. We
will be using elements with C° or C! continuity? across elements depending on
the smoothness of the desired solution. In both cases each element and its shape
functions are defined in a local reference coordinate system (¢,7). Furthermore,
due to the model discretization in material coordinates u, we give the relationship

between the reference and the material coordinates.

5.1.3 (' Elements

We describe the bilinear quadrilateral and linear triangular elements that we em-
ploy in the above two tessellations. For the first tessellation shown in Fig. 5.1 we
use bilinear quadrilateral and south and north linear triangular elements. For the

second tessellation shown in Fig. 5.2 we use north, south and mid-region linear

triangular elements.

Bilinear Quadrilateral Elements

The nodal shape functions of the bilinear quadrilateral element (Fig. 5.3) are

Ni(Em) = (1 + €61+), (54)

where (&;,7;) are the reference coordinates of node 7 shown in the figure. The

relationship between the reference coordinates and material coordinates u = (u,v)
is given by
2 2
£=—(u—u.), n= Z(U - v.), (5.5)

a

2In a following section we will present the necessary criteria finite elements must satisfy to
ensure a desired continuity in the solution.

5.1. FINITE ELEMENTS 62

Q

. I

> U

Figure 5.3: Bilinear quadrilateral element. The four nodes are numbered.

where (u.,v.) are the coordinates of the element center. The required derivatives

of the shape functions may be computed as follows:

OM ()J\:_d_f_ n Bz\f’i@ . 1

du - _fjg_()u In du - 27&'(1 +), (5,6)
N, ON;9E ON:dn 1 .
dv - af Jv + 07] a'() - 2b(1 +f§z)77u (57)

and we may integrate a function f(u,v) over F; by transforming to the reference

coordinate system:

// fluv)dude = /_11 /_11 f(¢, n)a{z d¢ dn. (5.8)
E,

We approximate such integrals using Gauss-Legendre quadrature rules (see Ap-

pendix B for various integration rules).

5.1. FINITE ELEMENTS 63
North Pole Linear Triangular Elements

The nodal shape functions for the north pole linear triangular element (Fig. 5.4)

are

Ni(€y) = 1—€—n, (5.9)
No(E,n) = ¢ (5.10)
Na(&m) = 7. (5.11)

The relationship between the uv and £ coordinates is

£ = Lu-w), (5.12)

a

1
n = E(v-—vl), (5.13)

where (uy,v;) are the coordinates of node 1 at which (é1,71) = (0,0). Computing

the derivatives of the shape functions as in (5.6) and (5.7) yields

ON; 1 ON, 1 ONs -
du T du 0: (5-14)
8N1 . l al\’} S 8]\'73 .]_
dv b ov 0; dv b (5.15)
and we may integrate a function f(w.v) over the E; using
1 r(1-m)
// Fluav) du de :/ / F(€,m)abde di. (5.16)
o Jo
EJ

We approximate such integrals using Radau quadrature rules.

South Pole Linear Triangular Elements

The nodal shape functions for the south pole linear triangular element (Fig. 5.5)

are

Ni(€g) = 1—¢, (5.17)

5.1. FINITE ELEMENTS

7

64

:

|
>

1:(0,0) b
n=0

2:(1,0)

North pole

> U

Figure 5.4: North pole linear triangular element. The three nodes are numbered.

1: (0,0))
n=0

South pole

Figure 5.5: South pole linear triangular element. The three nodes are numbered.

5.1. FINITE ELEMENTS 65

ij(&ﬂ?) = 5—77, (518)
N3(&n) = . (5.19)

The relationship between the wv and £y coordinates is

(v —w), (5.20)

o =R | =

(v —v1), (5.21)

where (u1,v1) are the coordinates of node 1 at which (&,71) = (0,0). Computing

the derivatives of the shape functions as in (5.6) and (5.7) yields

a.N'] _]. a]\fz _ l 8N3 A

Bu N _a" au N a’ 0u N 0’ (522)
5Nl A 817\12 . 1 a]\fg _].
I do b Qv b (5.23)

and we may integrate a function f(u,v) over the E; using
1 e v
// f(u,v) dudv :/ /f; f(&,n)abdn dt. (5.24)
0
E]

We approximate such integrals using Radau quadrature rules.

Mid-Region Triangular Elements

The nodal shape functions for the mid-region linear triangular element (Fig. 5.6)

are

Ni(&n) = 1 —n, (5.25)
Nof€m) = E+n—1, (5.26)
Na(6m) = 1-—¢. (5.27)

5.1. FINITE ELEMENTS 66

> U

Figure 5.6: Mid-region triangular element. The three nodes are numbered.

The relationship between the wv and €5 coordinates is

£ = —(u—ua), (5.28)
n = —(v—1), (5.29)

where uz and v; are the v and v coordinates of nodes 3 and 1 respectively at which

(&3,m3) = (0,1) and (&,m1) = (1,0). Computing the derivatives of the shape

functions as in (5.6) and (5.7) yields

ONy _ 0N 1 ONs_ 1

ou o a ou _;; (5.30)
a]\7'1 _ 1 d;VZ . 1 31\"3 . .
v b dv b v 0 (5-31)

and we may integrate a function f(u,v) over the E; using

/E]/ flu,v)dude = /01 /(11—5) f(&,n)abdn d€. (5.32)

5.1. FINITE ELEMENTS 67

>3

(051)

0,0) (1,0)

u

Figure 5.7: C! Continuous Triangular Element. The three nodes are numbered.

We approximate such integrals using Radau quadrature rules.

The above elements are conforming and satisfy the completeness requirements
for a loaded membrane functional. For example, the shape functions of the rectan-
gular elements are bilinear and contain the first order polynomial terms plus the
zy of the higher order quadratic polynomial, therefore the elements are complete.
Among element edges (6 = 1,7 = £1) these shape functions become linear and
the displacement d can be uniquely defined by the two corresponding nodal values
of d on that edge. If the adjacent element is also linear then d will be continuous
between elements since its values are uniquely defined by the shared nodal values

on that edge. Therefore we have a C° conforming element.

5.1.4 C'! Triangular Elements

Such elements can be used for the tessellation shown in Fig. 5.2 for problems

requiring C! continuity.

5.1. FINITE ELEMENTS 68

The relationship between the uwv and €5 coordinates is

u = (1—&—n)uz+ Eus + nus (5.33)

v = (1 —§€—n)vg+ vy + o, (5.34)

where (u;,v;) are the material coordinates at the nodes of the triangular element.
The nodal variable for this element is a vector consisting of the nodal displace-
ment d;, along with its first and second partial derivatives evaluated at each node

1. The nodal variable vector for our models is therefore

347 odT 92dT 82dT 9°:dT1’
qu(t) = |ar. 24l 0d] 2°d] 2°d] 9°d,

T Ju T dv | Out Oudv’ Ov? (5.35)

Concatenating the qg, at each of the three nodes of element j, the 18-dimensional
element nodal vector qﬂ = [ag,-44,-94,] ' is obtained.
The 18 nodal shape functions N;(£,n) are given by the following formulas. For

node 1

Ny = A2(10A — 150 +6)3 +306(€ + 1)), Ny = EX2(3—2X — 362 + 6¢n),

N3 = 792%(3 —2X\ = 35* + 6&n). Ny = 1M1 -¢+2np),

N; = &), Ng = 37°A%(1+2¢—1),

for node 2

N; = %106 — 1562 + 66 +1577)). Ng = 5 (=86 + 1462 — 663 — 1572)),
No = £2(6—46 39— 37> +36n). N = %(26(1 &) +592)),

Ny = 93(-2+2+n+n* =€), Np = &24 80

and for node 3

Nis = 5210 — 1592 + 653 + 1562)), Ny = 5(6 — 3¢ — 4y — 362 4 3¢n),
N5 = 322—(~817 + 14n% — 60 — 15£2X), Ny = 52—22 + §2—27L3,

2

Nir = (2464248 -&)), Nig = Z(2p(1 —n)? 4+ 562)),

5.1. FINITE ELEMENTS 69

where A =1— ¢ — 1.
The computation of the derivatives of the shape functions with respect to the
material coordinates is done in the same way as above, while we use the Radau

quadrature rules to approximate integrals of functions f(u,v) over the Ej, i.e.,
// flu,v) dudv. (5.36)
E]

The element is complete up to fourth-order and its shape functions contain three
fifth-order terms [16]. The shape functions are C* continuous within elements
and they ensure C! continuity between elements. Since (4.35) contains up to
second order derivatives, the element is conforming. Therefore such an element is

appropriate for a thin plate under tension deformation energy [47].

5.1.5 Approximation of the Lagrange Equations

We may approximate the Lagrange equations of motion (4.13) by using the finite
element method described previously. Through this method, all quantities neces-
sary for the Lagrange equations of motion are derived from the same quantities
computed independently within each finite element. The various matrices and vec-
tors involved in the Lagrange equations of motion (see chapter 4) are assembled

from matrices computed within each of the elements® | i.e.,

M:ZMqu; D:ZDgxq3 K:ZKqu; fq=Zf§; gq=zg§7
j j j J j

(5.37)

D’ K}y, f7 and gl are the appropriately expanded [29] mass,

gxqs

where M’

%>
damping, stiffness matrices. external forces and inertial forces respectively associ-

ated with element j.

The calculation of all the above integrals is done within an element through

3The dimensionality of these matrices is equal to the number of degrees of freedom of the
corresponding element. These matrices are then augmented to matrices of size g x ¢, where ¢ is
the number of the model degrees of freedom.

5.1. FINITE ELEMENTS 70

the shape functions. Any quantity that must be integrated over an element is
approximated using the shape functions and the corresponding nodal quantities.

For example,

M,y = / uNTTINY du, (5.38)

where N/ is the shape matrix associated with element j.

5.1.6 Derivation of Stiffness Matrix K,

We present the procedure of deriving the local stiffness matrix Kyq by applying
finite elements to a deformation energy first for the case of a loaded membrane
energy (4.34).

We discretize the model in material coordinates u using finite elements. We can
derive Kyq as an assembly of the local stiffness matrices K, associated with each
element domain E, C u. Since d(u,t) = d?(u,t) = [d{(u,t),dé(u,t),dé’,;(u,t)].r, we
can rewrite the membrane spline deformation energy (4.34) on E; as the sum of

component energies

E1(d) = &) + E(d) + E(dy), (5.39)
where for k = 1,2, 3,
. (o4 (od)\t
&) = /-u:‘l’o (éu&) + wi; (—EI‘—) + wiyd: du. (5.40)
E

k)
In accordance to the theory of elasticity, (5.40) can be written in the form
£1(dl) = / ol €l du, (5.41)
EJ
where

» adl ad’. . i
J k . k ZJ)
€ [ou v (5.42)

5.1. FINITE ELEMENTS 71

is the strain vector and

wi, 0 0
o,=Dig=| 0 wh 0 |¢ (5.43)
0 0 wi

is the stress vector associated with component k of d. Therefore, the element stress
vector is
D] 0 0O €
o/ =Dé=| 0 D) o & |, (5.44)
0 0 Dj €
where D{ = Dg = Dg.
We denote the finite element nodal shape functions by N/, i=1,... ,n, where n

3

is the number of nodes associated with element £;. Hence, we can write (5.42) as

d=§ﬁ@ﬁzﬂ%, (5.45)
where N -
ﬂ:F%A%%Nﬂ, (5.46)
U= (1. 1) (5.47)
and
af, = [ah)1 (qh)25 (g5)n] T (5.48)

We can write the element strain vector € as
€ r, oo qz,

€=|¢e |=| 0TI o q, | =Tal (5.49)

€ 0 0 I\ d

5.1. FINITE ELEMENTS 72

where 1"{ = I‘% = I‘Q. Thus the element stiffness matrix is
K)y = [DTDITY du = diag (/i oir du) = diag(K?,,). (5.50)
EJ EJ

For a thin plate under tension, the derivation is the same except that

[od adl ordi a*dl o%dil’
- Z] k‘ k k Yk k]
€ [(]“ u’ v’ Ou?’ dudv’ 81}2} (5-51)
[wiy, 0 0 0 0 0]
0 wly 0 0 0 0
; 0 0w 0 0 0
Di = oo U , 52
* 0 0 0 wh 0 0 (5.52)
0 0 0 0 w, 0
| 0 0 0 0 0 wp|

and 'yf has exactly the same form as e& with N/ replacing dj.

[

Using the above formulas for the case of a loaded membrane energy with

wio(u) = woi(u) = wy and wee(u) = wo the elements of the symmetric stiff-
trix K’ responding to a bilinear rectangular el e given by tl
ness matrix K, corresponding to a bilinear rectangular element are given by the

following formulas

w w1 Wo
3a? + 302 + ?)
ab 4wy 2w 2wy
K- = K- = —(—
2 A 4(3a? + 307 i 9)
ab 2wy 2wy wpy
K. =K. = (- _ -2
s 1552 et
ab 2w, 4w 2wg

M= Ge "3 T g)

4
(5] (15} Wo

Kgg = (Lb(gﬁ + %3 + —9—),

K]l = (Lb(

ab 2wy 4wy 2w
Ko =K = — —
B TGe 3t 9)
ab 2wy 2w; wy
Ko.=K, = —(—c ——— 1 —
Hm 1732 T3 T)
w w b
K33 = (tb(a1 il Yo

3a? + 362 + ?)’
ab 4wy 2wy 2w
Kyy=K,;; = —(—
> 13 4(3a? * 362 + 9)

5.2. SUMMARY

while for a linear south pole element the elements of Kidk are

w

K44 == (Ll)(—+

K
K2 = K
Ki; =Ky
Ko
Ky = K,
K3

5.2 Summary

3a?

(Lb(wy
2 a?

ab

ab
—w
24 0

ab wy
2

o)

36 9

Wo

),

%% Wo

(—_? + 12)7

F4 a

w1y Wo

ab w wy

TRt

2
ab wy
2

b2

Wo
+ R).

a2 6

73

(5.53)

(5.54)

In this chapter we gave an overview of the finite element method that we employ

to discretize the Lagrange equations of motion. In particular, we gave various fi-

nite element tessellations of the parametric space of a deformable model, examples

of suitable finite elements, the discretization of the Lagrange equations of mo-

tion through finite elements and finally the criteria for choosing the appropriate

elements for a given problem in vision or graphics applications.

Chapter 6

Applied Forces

This chapter describes various techniques for computing external forces and ap-
plying them to deformable models. In computer vision applications such forces
originate from datapoints or image potentials, and are assigned to points on the
deformable model [70]. In computer graphics applications we assign forces to points
on the deformable model due to collisions of the deformable model with other rigid
or deformable models, or due to a force field (e.g., gravity) [66]. We also describe

our force-based technique for shape and nonrigid motion estimation.

6.1 Computer Vision Applications

In the dynamic model fitting process the data are transformed into an externally
applied force distribution f(u,t). Using (4.48), we convert the external forces to
generalized forces f; which act on the generalized coordinates of the model. We
employ two types of forces based on the structure of the input data. For regularly
sampled image or voxel data we assign short-range forces! obtained through gradi-
ents of potential functions. For 3D range data we assign long-range forces? based

on distances between data points and the model’s surface.

1The strength of such forces increases close to the image or voxel data.
?Long range forces are spring-like forces and therefore are proportional to the distances be-
tween data points and the corresponding nodes on the model’s surface.

T4

6.1. COMPUTER VISION APPLICATIONS 5

6.1.1 Short Range Forces

We will describe various techniques for generating suitable potential functions from
monocular, binocular, and dynamic image sequences. For example, to attract a
3D model towards significant intensity gradients in a continuous image I(z,y), we

construct the potential function [70]
Pla.y) = IV(Go + D), (6.1)

where GG, denotes a Gaussian smoothing filter of characteristic width o, which de-
termines the extent of the region of attraction of the intensity gradient. Typically,

the attraction has a relatively short range. The potential function applies a force
f = gV P(IIx) (6.2)

to the model, where 3 controls the strength of the force and II is a suitable projec-
tion (e.g., perspective, orthographic) of points on the model into the image plane.
We now discuss two ways of selecting points on the model on which to apply short
range forces using orthographic projection, assuming that the surface of the de-
formable model has been tessellated into triangular elements (see chapter 5 for
more details).

Algorithm 1

We select those nodes from the finite elements whose vertical distance from the
image plane shown in Fig. 6.1, is less than an experimentally defined threshold e.
To each of those nodes we apply the forces (6.2).

Algorithm 2

We first compute the intersection points between the edges of the finite elements
and the image plane shown in Fig. 6.2. We then assign to each intersection point

u; the force (6.2). We then extrapolate this force to each of the two corresponding

6.1. COMPUTER VISION APPLICATIONS 76

Finite Element

Selected Nodes

Figure 6.1: Application of image forces to nodes.

Finite Element

Image Plane

Intersection points between the element
and the image plane

Figure 6.2: Accurate application of image forces to nodes.

6.1. COMPUTER VISION APPLICATIONS 7

nodes of the triangular element using the shape functions
fk = Nk(ui)f(u,-), (63)

where k € (1,2,3), fi is the nodal force and N; is the shape function correspond-
ing to node k. This algorithm computes the corresponding forces to the element’s
nodes more accurately than the previous one, but is more computationally expen-
sive.

To compute the potential function in practice, we begin with a digital image
I(z,7), convolve it with a discrete filter GG, and compute at each pixel (¢,7) the
magnitude of the discrete gradient operator calculated from central finite differ-
ences of neighboring pixel values. To evaluate (6.2) at the location of a projected
model point IIx = (z,y), we first calculate using central finite differences the dis-
crete gradients V Py at the four pixels £ =1,...,4 that swrround (2,y). We then
consider these pixels as the nodes of the quadrilateral finite element of Fig. 5.3,
with @ = b =1, in order to define a bilinear interpolant in the region between the

pixels; i.e., using (5.4) and (5.5), the interpolant is given by
1
VP(a.y) =Y Ne(2(2 — 2.),2(x — y))V P, (6.4)
k=1

where (2., y.) denotes the centroid of the four pixels and N} are given by the same
formulas as the shape functions of a bilinear rectangular element.
The above techniques for the calculation of short-range forces can be generalized

in a straightforward manner in case of 3D potentials computed from 3D data.

6.1.2 Long-range Forces

Alternatively, we may define long-range forces

f(u,) =8z — x(uw.)|, (6.5)

6.1. COMPUTER VISION APPLICATIONS 78

based on the separation between a datapoint z in space and the force’s point of
influence u, on the model’s surface. In general, u, = (u,,v,) will fall somewhere
within an element on the surface of the model. We can compute x(u.) in the

domain of a quadrilateral element, for instance, according to its bilinear local

interpolant
4
x(u;) = Ni(2(u: — uc)/a,2(v, — ve)/b)x;, (6.6)
=1
where the x; are the nodal positions (see (5.4) and (5.5)). The equivalent forces

on each of the four nodes are

£ = Ni(2(us —uo)/a,2(v, — v) /b)f(u,). (6.7)

When we use triangular elements, the computations proceed in an analogous fash-

ion using the corresponding shape function formulas (see chapter 5)

Minimum Distance Based Forces

In many applications, we want u, to minimize the distance d between a given

datapoint z and the model, where

d(u) = ||z — x(u)||. (6.8)

A closed form analytic formula for x(u.) is unavailable for a discrete deformable
model. There are various algorithms for computing d(u) which achieve various

levels of accuracy in the computation of the minimum d(u) = d(u.) depending on
whether they use

1. finite element nodes,
2. finite elements,
3. both finite element nodes and finite elements.

We will now describe four algorithms in order of increasing accuracy in the compu-

tation of d. Furthermore, in assessing the complexity of each algorithm we will use

6.1. COMPUTER VISION APPLICATIONS 79

Deformable Model
3D Datapoint

k Applied Force

Selected Node

Figure 6.3: Force application to the model node with minimal distance from a 3D
datapoint.

the fact that the number of elements is proportional to the number of nodes. The
constant of proportionality depends on the geometry of the mesh used to discretize
the model surface.

Algorithm 1

A brute-force approach that worked well in our experiments is to select from all
the model nodes the one that minimizes d as shown in Fig. 6.3. The complexity of

this operation is ©(mn), where m is the number of datapoints and n is the number

of nodes.

Algorithm 2

A more accurate algorithm involves a dynamic procedure for migrating points
of influence over the model’s surface until they arrive at locations of minimal
distance from the given datapoints. Starting from initial points of influence not
necessarily at minimal distance (Fig. 6.4), we project the force at each time step
onto the unit tangent vectors (9x/du)/ ||0x/0u|| and (9x/dv)/||0x/0v]| to the

surface at the current point of influence Fy = ug, and we migrate the point in

6.1. COMPUTER VISION APPLICATIONS 80

A Tangent line

Deformable Superquadric

X

Figure 6.4: Migration of data force point of influence over model surface.

the u plane by taking an Euler step in u and v proportional to the magnitude
of the respective projections. Thus, the point of influence migrates to a point P,
of minimal distance, where the tangential components of the force vanish. The
scheme works well, unless the surface is highly convoluted, in which case it may
converge to a local minimum. The complexity of the algorithm is ©(mn).

Algorithm 3

In this algorithm we first apply Algorithm 1 to find the model node which has
the smallest distance d(u) from a given datapoint. We then use a minimization
procedure® within each of the elements that the previously selected model node
belongs as shown in Fig. 6.5. We perform the minimization within each element j

using the element’s shape functions

n

Zz — Z N,-(u)xi

=1

d(u) = min’ ||z — x(u)|| = min’

; (6.9)

3The shape functions determine whether the minimization is linear or nonlinear

6.1. COMPUTER VISION APPLICATIONS 81

3D Datapoint

Deformable Model \
Applied Force

—

Selected Node

Figure 6.5: Force application to a model point with minimal distance from a 3D

datapoint. The model point lies within the elements (shaded) which share the
model node with minimal distance from the 3D datapoint.

where N; is the shape function corresponding to node ¢ whose nodal position is x;
and j is a finite element from the set E of finite elements that comprise the model

surface. The complexity of the algorithm is @(mn).

Algorithm 4

In this algorithm for each datapoint we compute the point in each finite element

whose distance minimizes (6.9). From these computed model points we select

the one whose distance from the datapoint is the minimum of all the computed

distances. The complexity of the algorithm is O(mn).

Radial Forces

In some applications we want to compute radial forces in the direction of the line
connecting a datapoint z to the model {rame shown in Fig. 6.6. The intersection
of this line with the model surface defines a point x(u) on the model to which this
force will be exerted. The force is then computed using (6.5). This kind of force is

only suitable for convex models because otherwise the radial line might intersect

6.1. COMPUTER VISION APPLICATIONS 82

Deformable Model

Datapoints

Selected Mode! Points &

Applied Forces

Figure 6.6: Application of radial forces to model points.

with the model surface in more than one point. Furthermore, when the original
shape of the model is “far” from the shape of the datapoints, such forces offer a
more uniform force distribution than forces based on minimum distance. In the
latter case, several datapoints can be assigned to the same node or the same point
within a finite element therefore concentrating the assignment of forces around
particular nodes. Once the model shape and the datapoints are “close” the radial
and minimum distance based force assignment algorithms become equivalent.
The above force assignment algorithms need not be executed at every iteration
of the program. They can be used for a period of [iterations, where [depends
on the amount of model deformation at every iteration. Furthermore, in applica-
tions where twisting deformations are involved, any of the above force assignment
algorithms should be applied only once initially. In this way the assignment of
datapoints to model points is constant over time, allowing for recovery of twisting

deformations.

6.2. COMPUTER GRAPHICS APPLICATIONS 83

A

Time t_; Time t, Time t+

Figure 6.7: Collision of a deformable with a rigid model.
6.2 Computer Graphics Applications

We compute forces stemming from collisions of deformable with rigid or deformable

models using the following two algorithms.

6.2.1 Collisions of Deformable with Rigid Models

Suppose that a deformable model is colliding with a rigid model as illustrated in
Fig. 6.7. At every time step we check whether a node has penetrated the rigid
model. In Fig. 6.7 where the deformable model collides with a rigid ground plane
at time g, we trivially do so by checking the sign of the inner product between the
ground normal and the vector between a node on the deformable model and an
arbitrary point on the ground. If that inner product is positive, then no penetration

has occurred. Otherwise penetration has occurred and we take the following steps.

1. We project each of the penetrating nodes along the normal of the collision
plane * back to the surface of the rigid object. This guarantees that no

penetration will ever appear.

2. We calculate the new local deformation d corresponding to each penetrating
node and update the vector of local deformations q4;. We then assign two

forces to each penetrating node due to the collision.

4The collision plane is the tangent plane between two surfaces at the point of collision.

6.2. COMPUTER GRAPHICS APPLICATIONS 84

A : B : B
c
Time t_;3 Time ¢, Time t;+
Figure 6.8: Collision of two deformable models.
(a) We first compute the new elastic forces of the deformable model
f,. = Kqq, (6.10)

where K is the global stiffness matrix. For each penetrating node we
then select the corresponding component f; of f,, and assign to that

node a force f, along the unit normal n of the collision plane
f, = «(f; - n)n, (6.11)

where « is a constant that models the elasticity of the collision.

(b) We compute the projection v, of the nodal velocity v on the collision
plane. Assuming Coulomb friction we assign to the node the following

frictional force

f.= —ﬂfnfnu“jﬁ’ (6.12)

where 0 < 3; <1 is the friction coefficient.

6.2.2 Collisions between Deformable Models

Let’s assume that two deformable models will penetrate one another as shown in

Fig. 6.8. Then at every time step we apply the following algorithm

6.2. COMPUTER GRAPHICS APPLICATIONS 85

1. We assume that the surface of each of the deformable models has been dis-
cretized using finite elements and we approximate each finite element with
a polygon. We check if a polygon from the first model intersects with any
polygons of the second model. If it does, then we mark the nodes of this
polygon and the nodes of the intersecting polygons of the second model. For
every marked node of the second deformable model we associate a marked
node from the first model that has the smallest distance from that node. We

thus form pairs of nodes from the selected marked nodes.

2. For each such pair of nodes we check for interpenetration using the following
criterion. If the distance between the first models’ model frame and the
chosen node on the first model is greater than the distance between the
frame and the node on the second model, then interpenetration has occurred

at these two nodes.

3. We compute the plane at the midpoint which is perpendicular to the line
connecting those two model nodes and project both nodes to this plane,

along the normal to the plane (time ¢y in Fig. 6.8).

4. We assign two forces f, and —f,, which have opposite directions, but equal
magnitudes and are perpendicular to the above defined plane. Such forces

are computed in the same way as in the previous algorithm.

5. Assuming Coulomb friction we assign as in the previous algorithm two fric-

tional forces f. and —f.. which have opposite directions, but equal magnitudes

£,

= bs|fa (6.13)

and lie on the collision plane.

The above two described algorithms work better when the Euler step of the
simulation is reduced when a collision is detected. In such a case penetration

is more gradual and the computed collision forces are smaller resulting in more

6.3. FORCE-BASED ESTIMATION 86

realistic simulations. The Euler step is increased again after the collision to its

value before the instant of collision detection.

6.3 Force-Based Estimation

We present our force-based estimation technique for shape and nonrigid motion
in computer vision applications. We take a physics-based approach to visual es-
timation. The visual data are converted into traction forces and applied to the
dynamic model based on the previously presented algorithms. We fit the model
by integrating the equations of motion (4.49) driven by these forces.

More specifically, let the observation vector z(t) denote time-varying input

data. Using (4.3) we can relate z(t) to the model’s state vector u(¢) as follows:
z=h(u) +v, (6.14)

where v(t) represents uncorrelated measurement errors as a zero mean white noise
process with known covariance V(¢), i.e., v(t) ~ N(0,V(#))’. In force-based
estimation, the rate of change of the estimated model state vector G is given from
(4.49) by

a=Fa+g. (6.15)

Furthermore, according to (4.4), (4.3), and (6.14), the driving function g in (4.50)

includes the term

f,= H'V~!(z — h(q)), (6.16)
where
_ 0h(u)
H= au | (6.17)

Matrix H maps the 3-space observation forces (z — h(11)) scaled by V71, to g-

SFor example, if z consists of observations of time varying positions of model points at material
coordinates ux on the model’s surface, the components of h are computed using (4.3) evaluated
at ug. If z includes velocity estimates, then we also use (4.4)

6.4. SUMMARY 87

space generalized forces f,.° If the data are very noisy, the entries of V have
large values, yielding small generalized forces, hence nominal changes in q. If the

data are accurate, V will have small entries and the generalized forces will have a

significant effect on the model.

6.4 Summary

In this chapter we presented techniques for converting visual data into forces that
can be applied to deformable models in data fitting scenarios. Secondly, for com-
puter animation purposes, we described two algorithms which use the elastic prop-
erties of our models to calculate forces stemming from collisions and friction against
impenetrable solid or deformable surfaces. Finally, we presented our force-based

algorithm used in shape and nonrigid motion estimation applications.

6In particular, for the function h which is associated with observations of model positions, at

material coordinates uy, then H is a matrix whose entries are computed using L _y evaluated
at ug.

Chapter 7

Model Implementation

In this chapter we first present a technique to integrate the motion equations (4.13)
and (4.51) and describe the initialization of our models. Second we present various
experiments in computer vision and computer graphics applications. In computer
vision we present experiments with real and synthetic data to demonstrate the per-
formance of our framework in deformable model fitting to static 2D and 3D data
and motion 3D data, using our force-based shape estimation algorithm. In the con-
text of computer graphics, we will present dynamic simulations of our deformable
models that interact with each other and their simulated physical environments

through collisions, gravity and friction against impenetrable surfaces.

7.1 Integrating the Motion Equations

Our approach partitions complicated nonrigid shapes and motions into rigid-body
motions and local deformations away from globally deforming reference shapes.
This partitioning improves the stability of simulation algorithms. We achieve real
or interactive response’ by employing standard numerical methods to integrate

(4.13). The simplest method is the first-order Euler procedure which updates the

1See the Introduction for definitions.

7.2. MODEL INITIALIZATION 89

state vector over a time step At from time ¢ to ¢ + At according to the formulas

g = M'l(g[(;) + fét) -~ Kq — DgY)
q(t+Af) — q(t) + At él(t)

qit+a0 = q® 4 A gtaY, (7.1)
For the simplified equations of motion (4.51), the Euler procedure becomes
q*49 = g + At D71 (£ - Kq®). (7.2)

The following details about our numerical solution are noteworthy. First, we
represent the rotation component of the models using quaternions (see Chapter
4). This simplifies the updating of qs and ¢y. Second, the explicit Euler method
does not assemble and factorize a finite element stiffness matrix, as is common
practice when applying the finite element method. Rather, we compute Kq very
efficiently in an element-by-element fashion for the local deformation coordinates qq4
[67]. Third, for added efficiency without significant loss of accuracy, we may lump
masses® to obtain a diagonal M, and we may assume mass-proportional damping,
i.e. D = aM where ¢« is the damping coefficient [31]. We can therefore parallelize
on multiprocessor computers the updating of the model degrees of freedom and

the computation of Kq.

7.2 Model Initialization

We will now discuss various ways of initializing our models in computer vision
applications. Our model fitting algorithm based on (4.13) and (4.51) does not

require user intervention beyond the initialization phase. The initialization step

2In the lumped mass formulation the total mass of the body is distributed among the grid
points. All space integrals in the Lagrange equations of motion reduce to summations over grid
points, making computations much faster.

7.2. MODEL INITIALIZATION 90

involves two steps. The first is the segmentation of the given data into parts and
the second is the initialization of the translation and rotation parameters of the
deformable model given some data that correspond to a part.

As will become evident from the following experiments, we require a rough
segmentation of the image or range data into corresponding object parts, through
the application of an ealry-vision system. We therefore expect that the initial-
ization can be automated using available image segmentation techniques. The
reaction-diffusion segmentation process of Kimia, Tannenbaum, and Zucker [34],
the dynamic segmentation technique of Leonardis, Gupta and Bajcsy [35] and the
qualitative shape recovery and segmentation technique based on primitive aspects
of Dickinson, Pentland and Rosenfeld [17, 18] appear promising for this purpose?.

Given some data that belong to a part of an object we initialize the translation
of the model frame to the center of mass T of the data and its rotation using the
matrix of central moments [61]. In case of 3D data we first compute the matrix of

central moments

) N (rio —=72)% + (12 — 73)? —(r2 = 72)(ra1 = 71) —{ria = T3)(ri1 —71)
M= ™ Z (ra —T1)% + (ris — 7a)? —(ria = T3)(ri2 — T2) , (7.3)
=1 symmetric (ria = T1)% + (ria — 72)?

T are the 3D coordinates and cen-

where r; = (ry,ri2,7i3)" and T = (F1.75,73)
ter of mass of the m datapoints respectively. We then use the Jacobi method to
compute the eigenvectors of M. These eigenvectors provide an estimate of the
model-centered coordinate system. We orient this coordinate system by compar-
ing the corresponding eigenvalues [61], so that its z axis lies along the longest side
for elongated objects and along the shortest for flat objects, the underlying as-
sumption being that tapering and bending deformations affect objects along their
longest side. We consequently compute by a simple geometric transformation the

quaternion corresponding to the rotation of the computed coordinate system with

respect to the inertial frame.

3The development of segmentation algorithms is beyond the scope of this thesis.

7.3. COMPUTER VISION EXPERIMENTS 91

The experiments we will present in the following sections and chapters require
the correct setting of certain model parameters (e.g., wg and wy). These parameters
are set manually on a trial and error basis since there is no automatic formal way
so far of setting them.? Furthermore, the Euler step we used in the shape and
nonrigid motion experiments amounted to 20 — 100 algorithm steps required for a

model to fit each data frame.

7.3 Computer Vision Experiments

7.3.1 Static Shape Recovery

We will present examples of fitting deformable superquadric models to 2D real
image data and 3D real range data from the NRCC 3D image database [56]. The

Euler method time step was 4.0 x 107° s and we used a unit damping matrix D.

2D Image Data

Fig. 7.1 shows the various steps of fitting a deformable superquadric to a 120 x 128,
256-intensity monocular image Fig. 7.1(a) of a 3D object—a pestle. The size of the
image is rescaled to fit within the unit square on the @ —y plane. Fig. 7.1(b) shows
the potential function P(x,y) generated from the image by computing the magni-
tude of the intensity gradient. Fig. 7.1(c) shows the initial state of the deformable
superquadric displayed in wireframe projected onto the image. The surface of the
model is discretized into 5043 nodes. The initialization consists of specifying the
center of the model ¢, along with the major and minor axes, a - ¢; and a - ag, by
picking four points with the mouse. This initializes the translation q. and rotation
qs of the model. We also fix ¢; = ¢; = 1.0. In this and subsequent experiments,
the local deformation qq is initially set to zero. Note that the initialization step
produces a very crude first approximation to the pestle.

Fig. 7.1(d) shows an intermediate step in the fitting process which simulates the

4The development of formal techniques to automatically set them is a topic of future research.

7.3. COMPUTER VISION EXPERIMENTS 92

Figure 7.1: Fitting a deformable superquadric to pestle image.

(a) (b)

Figure 7.2: (a) Doll image. (b) Doll potential.

7.3. COMPUTER VISION EXPERIMENTS 93

, . o

Figure 7.3: (a) Initialization of deformable superquadrics to doll image. (b) Fitting
deformable superquadrics to doll image.

equations of motion using stiffness parameters wo = 1.0x 107 and w; = 4.0x 1072,
Using an orthogonal projection I, nodes of the model whose positions x in space
lie near the image plane (|v3] < 0.2) are subject to a force directed parallel to the
image plane: .
oP oP
f=75 B0’ %,0 ’ (7.4)
where the force strength factor is 3 = 4.0 x 107°.
The forces deform the model and Figs. 7.1(e) and (f) show the final state of the
model at equilibrium, superimposed on the image and the potential, respectively.
In the second experiment we use the image of a doll shown in Fig. 7.2(a) whose
potential is shown in Fig. 7.2(b). The specifics of this experiment are identical to
those of the previous one, except that the discrete models consisted of 963 nodes
and their stiffness parameters were wy = 0.001 and w; = 0.1. Fig. 7.3(a) illustrates
the results of the initialization phase for the doll image, which was carried out as

described above, showing 11 crude approximations to the major body parts of the

figure. The image forces deform the part models into the final shapes shown in

Fig. 7.3(b).

7.3. COMPUTER VISION EXPERIMENTS 94

(a)

)
1

(b) (c)

Figure 7.4: Fitting deformable superquadric (b), (c) to egg range data (a).

3D Range Data

3D data generally provide greater constraint in the model fitting process than do 2D
image projections. The following experiments utilize range data from the NRCC
3D image database [56]. We fit the model to 3D data using the force techniques
described in a previous chapter. In the following simulations, we have applied
forces to the model using the brute-force nearest-node search method, updating
the nodes of attachment for each datapoint every 200 algorithm steps.

In the first experiment we fit a deformable superquadric model with 2,603

nodes to 3D data sparsely sampled from the upper “hemisphere” of an egg (from

7.3. COMPUTER VISION EXPERIMENTS 95

(a) (b)

Figure 7.5: Fitting deformable superquadric (b) to mug range data (a).

range map EGG 1 CAT # 233). Fig. 7.4(a) shows the 499 range datapoints. The
stiffness parameters of the model were wy = 1.0x 107% and w; = 0.1. We initialized
the model to a sphere located at the center of gravity of the data (« = 1.2, a; =
ay, = az = 0.5, ¢, = ¢; = 1.0). Fig. 7.4(b) shows the fitted deformable superquadric
at equilibrium and Fig. 7.4(c) shows a top view of the fitted model. Evidently,
the fit is accurate over the portions of the surface covered by datapoints, but it
begins to deteriorate at the boundary of the data near the “equator” because of
the influence of the underside of the model which remains too spherical due to the
lack of datapoints.

In the second experiment we fit a model with 1,683 nodes to 3D data sparsely
sampled from the upper part of a mug with a pitted surface (from range map
MUG 1 CAT # 251). Fig. 7.5(a) shows the 651 range datapoints. The stiffness
parameters of the model were wy = 0.01 and w; = 0.1. We initialized the model to
a “tubular” shape (¢ = 1.5, a1 = ay; = 0.3, a3 = 0.8, ¢, = 0.7, ¢ = 1.0). Fig. 7.5(b)
shows the fitted deformable superquadric at equilibrium. The underside of the
model is smooth due to the lack of data, but the pitted texture of the top surface
has been accurately reconstructed by the local deformational degrees of freedom

of the deformable superquadric.

7.3. COMPUTER VISION EXPERIMENTS 96
7.3.2 Shape and Nonrigid Motion Estimation

We have carried out various shape and nonrigid motion estimation experiments
utilizing synthetic data. The synthetic data sets consist of time-varying 3D posi-
tions of points sampled from the surfaces of synthesized deformable superquadrics
undergoing nonrigid motions in response to externally applied forces.

In the experiments, we couple the models to the data points, indicated by dark
dots in the forthcoming figures, by searching for the nearest node of the model
to each datapoint. This brute-force method for assigning data points to model
points, is simple and robust. Despite the method’s inefficiency compared to the
other methods proposed in [67], our algorithms execute at rates of 2-3 seconds per
frame of data on a single processor of a Silicon Graphics 4D-340VGX workstation,
including the real-time 3D graphics. The estimator advances to the next frame of
data when the change in each of the estimated parameters falls below 10~*. The
Euler method time step was 4.0 x 10™® s and we used a unit damping matrix D.
We present results which utilize our force-based estimation technique for shape
and nonrigid motion estimation.

The following model fitting experiments utilize data that were synthesized by
deformable superquadrics producing nonrigid motions in response to externally
applied forces. The synthetic data consists of time-varying 3D positions of points
sampled from the surfaces of models. We indicate datapoints by dark dots in
the forthcoming figures. We tested the performance of our technique in various
examples including sparse and noisy data.

In the first experiment we fit a deformable superquadric model with 27 nodes
to 27 3D datapoints sampled over time (20 frames) from a squash-like deformable
superquadric object undergoing global deformations. Applied forces make impart
nonrigid motions on the squash so that an initially positive b; bend along the z axis
becomes negative over time. Figs. 7.6(a) and (b) show two views of the datapoints
and the initial model which is an ellipsoid (q, = (2.7,0.1,0.2,0.7,1.0, 1.0, 0.0, 0.0,
0.0,0.0,0.2)T). We did not position the initial model at the center of gravity of

the data in order to demonstrate the performance of the model fitting algorithm

7.3. COMPUTER VISION EXPERIMENTS

Figure 7.6: Tracking of globally deformable squash shaped object.

97

7.3. COMPUTER VISION EXPERIMENTS 98

Figure 7.7: Tracking of globally deformable squash shaped object using noisy data.

when the initial estimate is poor. Figs. 7.6(c) and (d) show two views of the model
fitted to the initial data. Fig. 7.6(e) is an intermediate time frame of the model
tracking the motion of the squash, while Figs. 7.6(f) and (g) show two views of the
final position of the model.

In the second experiment we add +15% noise, with the sign chosen randomly,
to the motion range data of the first experiment and fit a deformable superquadric
whose initial parameters and position are the same as in the first experiment.
Fig. 7.7 is analogous to Fig. 7.6. This experiment demonstrates that the global
deformations successfully captured the gross shape indicated by data corrupted by
significant noise.

In the third experiment we fit a deformable superquadric model with 27 nodes
to 6 3D datapoints sampled from the surface of a squash-like model undergoing
only global deformations exactly as in the first experiment. The initial position and

other parameters are identical. Fig. 7.8 is analogous to Fig. 7.6. The additional

7.4. COMPUTER GRAPHICS EXPERIMENTS 99

Figure 7.8: Tracking of globally deformable squash model using sparse data.

Fig. 7.8(c’) shows an intermediate step in fitting the model to the initial datapoints.
The fit is nearly identical even though there are far fewer datapoints. This is to
be expected, since only a few datapoints are required to constrain sufficiently the
global deformational degrees of freedom of the model for it to capture the overall
shape of the object.

The above experiments indicate that global deformations require relatively few

datapoints to abstract the shapes of objects.

7.4 Computer Graphics Experiments

We have created several real time physics-based animation examples involving
models made from deformable superquadric primitives. We employed paralleliza-
tion of the updating of the model degrees of freedom, after computing the collision
and other external forces, whenever more than one deformable model was involved
in a simulation.

Figs. 7.9(a), (b) and (c) illustrate an example where user interaction with a
deformable model is allowed. A user can pick the node on the deformable su-
perquadric that i1s closest to the position of a 3D mouse which can be moved
in 3D under user control. A spring force shown as a line is then exerted from
the mouse position on the deformable superquadric which causes it to rotate,

translate and deform. The elastic parameters of the deformable superquadric

7.4. COMPUTER GRAPHICS EXPERIMENTS 100

were wo = 1.1 and wy; = 5.0, the Euler step 0.00002, the nodal mass 1077,
the damping coefficient v = 4000.0 and the global superquadric parameters were
q, = (7.0,0.4,0.4,1.0,2.5,1.0)7.

Fig. 7.10 illustrates a strobed motion sequence of a morphing deformable shell
designed to show the possible global deformations of our models starting from up-
per right to a sphere. An elastic object collides under the influence of gravity with
several planes, and in between collisions, changes shape by geometric modification
of the relevant global deformation parameters. The elastic object initially has a
spherical shape and after going through a series of global shape transformations,
comes to its rest position in the shape of a sea shell. Throughout the physical sim-
ulation, the elastic parameters of the object were wg = 65.0 and w; = 85.0, the
Euler step 0.0031, the nodal mass 6.8, the damping coefficient v = 1.2, the plane
elasticity 5000.0 and the friction coefficient 0.3.

Fig. 7.11 shows a strobed motion sequence of a “jello-ball”’ dropping on a
slanted plane and subsequently colliding with the ground. The elastic parameters
of the “jello-ball” were wy = 20.0 and w; = 15.0, the Euler step 0.031, the nodal
mass 8.0, the damping coeflicient » = 1.4, the plane elasticity 670.0 and the friction
coefficient 0.3. As a result of collision forces with the plane and the ground which
include friction, the “jello-ball” rotates in between collisions and rolls on the ground
until it comes to rest.

Fig. 7.12 shows a strobed motion sequence of an elastic “rugby-ball” dropping
on a slanted plane, subsequently colliding with a box and the ground and eventually
coming to rest. The elastic parameters of the “rugby-ball” were wy = 65.0 and
w, = 85.0, the Euler step 0.0031, the nodal mass 6.8, the damping coefficient
v = 1.2, the plane elasticity 1050.0 and the friction coeflicient 0.15. The “rugby-
ball” rotates in between collisions as a result of collision forces with the ground
and the box which include friction,

Figs. 7.13(a-1) show an elastic “banana” dropping on a box and subsequently
colliding with two planes. The elastic parameters of the “banana” were wg =

65.0 and wy; = 85.0, the Euler step 0.0025, the nodal mass 7.4, the damping

7.4. COMPUTER GRAPHICS EXPERIMENTS 101

Soan

...

e
i

Figure 7.9: Interactive Deformable Superquadric.

7.4. COMPUTER GRAPHICS EXPERIMENTS 102

IFigure 7.10: Morphing Shell.

Figure 7.11: *Jello-ball” dropped on a plane.

7.5. SUMMARY 103

Figure 7.12: Elastic “rugby-ball” dropped on a plane.

coefficient v = 1.47, the plane elasticity 90.0 and the friction coefficient 0.15. Most
of the “banana” mass is concentrated at its ends. The highly nonuniform mass
distribution causes exaggerated swings as the “banana” collides with the planes.
Figs. 7.14(a-1) illustrate collisions of two locally deformable balls with planes
and a spring loaded see-saw, while Fig. 7.15 shows the strobed motion sequence.
The elastic parameters of each ball were wy = 65.0 and w; = 85.0, the Euler step
0.0031, the nodal mass 6.8, the damping coefficient v = 1.2, the plane elasticity
5000.0 and the friction coefficient 0.4. The see-saw 1s also a physical object which
is rigid and can only undergo rotation around its pivoting axis. We achieve the
spring loading of the see-saw by imposing a spring-like “stiffness energy” associated
with the rotation of the see saw. Its formulation has the same form as the stiffness

energy associated with global deformations we presented in chapter 4.

7.5 Summary

In this chapter we first described the integration schemes we use to simulate the
differential equations of motion in parallel and the algorithm for initial placement of

our models. Secondly, we presented some computer vision and computer graphics

7.5. SUMMARY 104

\

Figure 7.13: Elastic “banana” dropped on a box.

Figure 7.14: Collisions of deformable balls with planes and a spring loaded see-saw.

7.5. SUMMARY 105

=

Figure 7.15: Strobed motion sequence of previous example.

experiments that test the modeling methods developed to this point.

Chapter 8

Constrained Nonrigid Motion

This chapter extends the equations of motion (4.13) to account for the motions of

composite models with interconnected deformable parts which are constrained not

to separate.

8.1 Holonomic Constraints and Lagrange Mul-

tipliers

Shabana [59] describes the well-known Lagrange multiplier method for multibody
systems. We form a composite generalized coordinate vector q and force vectors
g, and f, for an n-part model by concatenating the q;, g,;, and f,; associated
with each part z = 1,...,7n. Similarly, the composite matrices M, D, and K for
the n-part model are block diagonal matrices with submatrices M;, D;, and K;,
respectively, for each part :. The problem is then posed as follows.

Given a set of holonomic constraint equations

where

8.1. HOLONOMIC CONSTRAINTS AND LAGRANGE MULTIPLIERS 107

expresses k constraints among the # parts of the model, we want to compute the
generalized constraint forces fy, acting among the parts.
Once we compute fy, we augment the Lagrange equations of motion and arrive

to the following system of equations
Mg+ Dg+Kq=g,+f, +f1,., (8.3)
while in case of the simplified model, the equations become
Dg+Kq=f1,+1,. (8.4)
We can rewrite both of the above equations as a first order system of the form
u = Fu+ g, (8.5)

where u, F have exactly the same for as in (4.50) and (4.52) for second and first
order systems respectively. The vector g is now given by
M~ (g, + 1, +£5.)

g = , (8.6)
0

for second-order systems and

g =D7(f, +1,), (8.7)

for first-order systems.

In the Lagrange multiplier method the composite equations of motion take the

form

M§ + D¢ + Kq = g, +f, — CA, (3.8)

8.1. HOLONOMIC CONSTRAINTS AND LAGRANGE MULTIPLIERS 108

where the generalized constraint forces f;, are computed as

f,, = —CgA. (8.9)

The term Ca is the transpose of the constraint Jacobian matrix and

A=(T,.. 0T (8.10)

is the vector of Lagrange multipliers that must be determined.
Equation (8.8) comprises fewer equations than unknowns. To obtain the addi-

tional equations, we differentiate (8.1) twice with respect to time

C(q,t) =0, (8.11)

yielding Cq§ + Cy + (Cqq)qq + 2Cq,q = 0. Rearranging terms we get

Appending this equation to (8.8) and rearranging terms, we arrive at the aug-

mented equations of motion

M Cq|d|_|-Da-Katg+h | (8.13)
Cq O A 5
In principle, these equations may be integrated from initial conditions q(0) and
¢(0) satisfying C(q(0),0) = 0 and C(q(0),0) = 0.

There are two practical problems in applying (8.13) to model-based visual esti-
mation and computer animation. First, the constraints must be satisfied initially.
In computer vision, due to a lack of full information and errors in the data, the
parameter values of the various parts may be initialized such that the parts do not
satisfy the constraints (i.e., C(q,0) # 0). In computer graphics we would also like

to give the modeler the freedom to place the various parts of an object in positions

8.2. STABILIZED CONSTRAINTS 109

that do not satisfy these constraints initially, allowing for the self-assembly of com-
plicated objects. Second, even if the constraints may be satisfied at a given time
step of the dynamic estimation process (i.e., C(q,t) = 0,C(q,t) = 0), they may
not be satisfied at the next time step (i.e., C(q,t + At) # 0) because of numerical

integration errors, noise, etc.

8.2 Stabilized Constraints

To remedy these two problems, we apply a method proposed by Baumgarte which
stabilizes the constrained equations through linear feedback control 7, 73]. The
method replaces the differential equation (8.12) by other equations which have the
same solutions, but which are asymptotically stable in the sense of Ljapunov; for

example, the damped second-order differential equations

C 4 2aC + g*C =0, (8.14)
where o and 3 are stabilization factors modify (8.13) as follows

M cl|[a| [-Da-Ka+g +1, 15
Cq O A v —2aC — §2C '

Fast stabilization means choosing 3 = « to obtain the critically damped solution
C(q.t) = C(q,0)e ™ (8.16)

which, for given «, has the quickest asymptotic decay towards constraint satisfac-
tion C = 0. A caveat in applying the constraint stabilization method is that it
introduces additional eigenfrequencies into the dynamical system. Increasing « in
an attempt to increase the rate of constraint satisfaction will eventually result in
constrained motion equations which are dominated by the stabilizing terms and

also in numerically stiff equations.

8.3. FAST POINT-TO-POINT CONSTRAINT FORCE COMPUTATION 110
8.3 Fast Point-to-Point Constraint Force Com-

putation

The general Lagrange multiplier method described above is potentially expensive
for our models, since the matrix in (8.13) can be large, depending on the number
of finite elements used in the model discretization. We have devised a specialized
solver for the unknown constraint forces fg, for point-to-point constraints. The
specialized method requires the solution of linear systems of size proportional to
the number of constraints, which is usually small. In this sense, it is similar to
the dynamic constraint technique of [5]; however, it is suitable for nonrigid parts.
We derive the method for second-order dynamic systems (4.13) and for first-order

dynamic systems (4.51).

8.3.1 Second Order Dynamic Systems

We will start by giving simple examples of multipart objects with constraints. This
will clarify the general algorithm described later.

Single Constraint

Fig. 8.1 illustrates two parts. 1 and 2. We constrain points A and B to be in
contact, and must compute the constraint forces f.(¢) at point A and —f.(¢) at
point B needed to accomplish this. From (4.13), the motion equations of the parts

are

& = My'(gy, + 1, + 1o, — Kiqy — D1@y), (8.17)
G2 = M3 (gg, + 15, + fe., — K2q2 — Do), (8.18)

where the generalized constraint forces at points A and B are, respectively,

fo, =Lif. fy =-Lgf, (8.19)

&HC

and Ly, Lp are computed using (4.4).

8.3. FAST POINT-TO-POINT CONSTRAINT FORCE COMPUTATION 111

C= (¢, +R,p,) - (c,+R, p))

Figure 8.1: Point-to-point constraint.

From (4.4) and (4.3), the constraint equation and its time derivatives are

= X4 —Xp = (c1+Ripa) — (c2 + R2p5)
= Laiai —Lpq
= La&: +Lady — Lpdz — Lpde. (8.20)

Replacing these expressions into Baumagarte’s equation (8.14) (with o =), we
obtain the linear equations

Nf.+r =0, (8.21)

for f., where the 3 x 3 matrix N is
N = (LyM7'L] + LgM;'L}) (8.22)
and the vector r is

r —= LA(Eh — LBqQ 4+ QC\C + Q‘QC + LAMl—l(gql + fql ot Klql — Dléll) —

8.3. FAST POINT-TO-POINT CONSTRAINT FORCE COMPUTATION 112

LpM; ' (gq, + f3; — Koqa — Do) (8.23)

Two Constraints

Figure 8.2 illustrates three parts, 1, 2 and 3 of an object. We constrain points A
and B, and points C' and D to be in contact, and must compute the necessary
constraint forces f. ;) at point A, —f. () at point B, f., () at point C and —f£,

at point D. From (4.13), the motion equations of the parts are

@ = Mi'(gy, +fy +fa., —Kiqi — Diay)
= M;'(f

o
Scy

+ Vi), (8.24)

G = M3'(ggy +foy + s, +fa.. — Koo — Daqy)

= M;'(fy,, +f5_ + Va), (8.25)

ocC

ds = M3'(gy,y +fy5 + fa., — Kagqs — Dags)

= M;'(fg., + Va) (8.26)

where the generalized constraint forces at points A, B, C and D are, respectively,

fo. =Lif,. fg =-Lgf,,
fo.. = L f.,. fo. = ~Lf.,, (8.27)

and L4, Lp,L¢, Lp, are computed using (4.4).
From (4.4) and (4.3), the two constraint equations and their time derivatives

are

C: = x4—x=(c1+Rips)—(c2+ Rypp)

Cl = LAéh—Lqu

8.3. FAST POINT-TO-POINT CONSTRAINT FORCE COMPUTATION 113

Figure 8.2: Two Point-to-point constraints.

C: = L.§ +Laqn — Lpde — Leqs, (8.28)
and

C, = x¢c—xp=(cz+Rypc)—(cs+ Rspp)
C; = Lcdy —Lpgs
Cy; = LcG:+ Led: — Lpds — Lpds. (8.29)

Replacing these expressions into Baumagarte’s equation (8.14) (with o = 3),

we obtain the linear system of equations

(LML) + LpM;'LE)f, — (LML), +1r; = Nyf.+r, =0
—(LCM;ILE)fcl + (L(Mz—ng + LDMglLE)fCQ +re = N2fc +ry= 07

(8.30)

with unknowns the constraint forces f. = (f;,f;)T. where the 3 x 1 vectors ry;

8.3. FAST POINT-TO-POINT CONSTRAINT FORCE COMPUTATION 114

and ry, are

r; = Ladn — Leqa + 2a¢Cy 4 0*Cy + LMV, — LpM; 'V, (8.31)
r2s = Lody — Lpgs + 2aC, 4 0°Cy + LeM; 'V, — LpM; V3, (8.32)
and
N = LiM;i'L} + LgM;'L —(LpM;'L{) (8.33)
1 —) .
0 0
0 0
N, = : (8.34)
—(LeM;'LL) LeM7'LE + LpMj LY

r

=], (8.35)
0
0

ry = . (8.36)
a2

Combining (8.30) we arrive at the linear system
Nf. +r=(N; + Ny)f. + (r; + r2) = 0, (8.37)

which we solve using an LU/ decomposition algorithm.

Multiple Constraints

For multiple point-to-point constraints the constraint force computation must take
into account all of the constraint forces acting on the various parts of the model.
This requires the solution of a system of constraint equations whose size is 3k x 3k,
where k is the total number of constraints.

Suppose we specify k constraints among 72 model parts. Let f., be the constraint

force for constraint ;. We assemble the multipart model’s constraint force vector

8.3. FAST POINT-TO-POINT CONSTRAINT FORCE COMPUTATION 115

f.= (fg, fl,... ,f;;)T and express the equation for constraint forces f., as in (8.30):

NifC +r; = 0, (838)

where

r;=(0",...,r},...,00)7 (8.39)

and N; is a 3k x 3k matrix. Assembling the k systems, we arrive at a composite
system in the form of

Nf. +r =0, (8.40)

where

N =

i

N; (8.41)

k
=1

and _
k

r=> r;. (8.42)
=1

Based on the form of equations (8.65) we can devise the following algorithm to
automatically compute the entries of the above matrix N.

Algorithm to Compute N

The algorithm is as follows:

o Step (: Divide N into submatrices as follows

Ny . . . Ng

N = . N,‘J . > (843)

Ni . . . Nz

where N;; are 3 x 3 submatrices and £ is the number of constraints.

Set N = 0.

8.3. FAST POINT-TO-POINT CONSTRAINT FORCE COMPUTATION 116

e Step I1: For each constraint {,0 <1 < k do

The constraint requires that ¢4 and jg of two deformable parts ¢ and j should
always be in contact. Let’s also assume that the pointer to part ¢ 1s marked

as one, while the pointer to part j is marked as two.

— Step 1-0: Set
Ny =L;,M'L] +L;;M;'L] . (8.44)

— Step 1-1: For each constraint 0 < m < k do

If constraint m involves point ¢2; which belongs to part 7, and the pointer

to part ¢ is marked as one:

Ny = Li,M;7'L] . (8.45)
else if the pointer to part ¢ is marked as fwo:

Nip = =L, M 'L . (8.46)

— Step 1-2: For each constraint 0 < r < k do

If constraint » which involves point 7; which belongs to part j, and the

pointer to part j is marked as one:

N, = -L;,M;'L] . (8.47)

else if the pointer to part j is marked as two:

N, =L,;,M;'L] . (8.48)

The pattern of nonzero entries in N depends on the connectivity of the parts.

8.3. FAST POINT-TO-POINT CCONSTRAINT FORCE COMPUTATION 117

8.3.2 First Order Dynamic Systems

In first order systems the simplified Lagrange equations of motion take the form
Dq+ Kq={,. (8.49)

Since the simplified Lagrange equations of motion do not involve acceleration,
we approximate the second derivative of the constraint C in Baumgarte’s differ-

ential equation of the constraint as follows

. C(q.t) — C(q,t — At
E(qut. Aty o 2191 Aiq)

. (8.50)

Baumgarte’s technique is implemented in the same way as for second order sys-
tems with a few minor modifications. We arrive at the general algorithm through

an example involving an object with three parts and two constraints.

8.3.3 Two Constraints

Figure 8.2 illustrates three parts, 1, 2 and 3 of an object. We constrain points A
and B, and points C and D to be in contact, and must compute the necessary
constraint forces f. ;) at point A, —f () at point B, f. 4 at point C and —fe (0

at point D. From (4.51). the motion equations of the parts are
G = Dl—l(fq1 + fgcA -Kiq)

= Di'(fg, + V1), (8.51)

(-;12 = DQ_I(fq2 + fch + fch ot qug)

= D' (fy, + 1, + Va), (8.52)

43 = D3'(fy; +fg, — Ksqs)

8.3. FAST POINT-TO-POINT CCONSTRAINT FORCE COMPUTATION 118

= Dj'(fg., + Vs), (8.53)

where the generalized constraint forces at points A, B, C and D are, respectively,

fgC‘A_ = Lchl’ fch = —Lgfcl’
fgcc = Lgf027 fch = _LEf623 (8.54)

and Ly, Lp,L¢, Lp, are computed using (4.4).

From (4.4) and (4.3), the two constraint equations and their time derivatives

are
Ci = x4—x=(c1+Ripa) —(c2 + Ryps)
C, = If.AQ1 - Lgq.
) G — Gt — A
C, = , ;
1 L (8.53)
and

C, = x¢c—xp =(c2+Rypc) —(c3+ Rapp)

C, = I{C(EI‘Z—'LD(.ZIS
Gy — Calt — A1)

C, = < , (8.36)

Replacing these expressions into Baumagarte’s equation (8.14) (with a = 3),

we obtain the linear system of equations

1
(57 +20)[(LaDT LY + LD L), — (LgD;'LE),) + 11 = Nifo+1; =0

1 _ - -
(E + 2&)[—(L0021L£)f61 + (LCCQ ng + LDD3ng)fC2] + oy = Ngfc + rs = 0,

(8.57)

8.3. FAST POINT-TO-POINT CONSTRAINT FORCE COMPUTATION 119

where
Ci(t — At 1 _ _
rn = 5201 - —l(lt—l + (E + 2“)(LAD1 1V1 - LBD2 1V2)a
C,y(t — Al 1 _
Too = bQCQ — —LA‘t——)' + (Z—t + 20)(LCD;1V2 — LDD3 1\/3),
and
N — (L N ‘)a) L4D1_1LX + LBDglLE ~(LBD2_1LZ)
Par T 0 0 ’

1 0 0
Nz = (E + 2a) ~17 T ~17 T 177 |’

r
ry = s
0
o
ry =
29

Combining (8.57) we arrive at the linear system

Nf. +r = (N; + No)f. + (ri + 1r3) = 0,

which we solve using an LI/ decomposition algorithm.

(8.58)

(8.59)

(8.60)

(8.61)

(3.62)

(8.63)

(8.64)

The main difference with the previously described second-order systems is the

replacement of the mass matrix M with the damping matrix D and the multi-

plicative coefficient (i + 2a) in the various expressions.

Multiple Constraints

For multiple point-to-point constraints the constraint force computation must take

into account all of the constraint forces acting on the various parts of the model.

This requires the solution of a system of constraint equations whose size 3k x 3k,

8.3. FAST POINT-TO-POINT CONSTRAINT FORCE COMPUTATION 120

where k is the total number of constraints.
Suppose we specify k constraints among 72 model parts. Let f., be the constraint

force for constraint i. We assemble the multipart model’s constraint force vector

f. = (fCTl, fCT2, ey f;';)T and express the equation for constraint forces f,, as in (8.30):
I\IifC +r; = 0, (865)

where
r;=(0",....r%,...,00)7T (8.66)

and N; is a 3k x 3k matrix. Assembling the k systems, we arrive at a composite

system in the form of

Nf. +r =0, (8.67)

where

N =
=1

&
1=

N; (8.68)
and

k
r=3r. (8.69)
=1

Based on the form of equations (8.65) we can devise the following algorithm to
automatically compute the entries of the above matrix N.

Algorithm to Compute N

The algorithm is as follows:

o Step 0: Divide N into submatrices as in (8.43).

Set N = 0.

e Step I: For each constraint [, 0 <1< k do

The constraint requires that ¢ 4 and jp of two deformable parts ¢ and 7 should
always be in contact. Let’s also assume that the pointer to part ¢ is marked

as one, while the pointer to part j is marked as two.

8.4. INTEGRATING THE (CONSTRAINED MOTION EQUATIONS 121

— Step 1-0: Set
1 ‘
Ny, = (A—t + 2a)(L; ,M;'L] + L;;M;'L]). (8.70)

— Step 1-1: For each constraint 0 < m < k do

If constraint m involves point 2y which belongs to part ¢, and the pointer

to part ¢ is marked as one:

1 .
Nim = (55 +20)L, ML, (8.71)

else if the pointer to part ¢ is marked as two:
L, 17T
Nlm = _(A—t + "’(L)LiAMi LiJ' (872)

— Step 1-2: For each constraint 0 <r < k do

If constraint r which involves point 75 which belongs to part j, and the

pointer to part j is marked as one:

1
Nip = =(57 + 2a)L;; M L], (8.73)

else if the pointer to part j is marked as two:
N, = 1 9 17 T
Iy = (E -+ “a)LjBMj LJJ (8.74)

The pattern of nonzero entries in N depends on the connectivity of the parts.

8.4 Integrating the Constrained Motion Equa-

tions

In integrating the constrained motion equations, at each time step we may solve

(8.13) for §® and A" with known g and ¢, and then we integrate § and q

8.5. SUMMARY 122

from ¢ <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>